WO2014050975A1 - シームレス鋼管製造用ピアサープラグ用素材およびその製造方法 - Google Patents

シームレス鋼管製造用ピアサープラグ用素材およびその製造方法 Download PDF

Info

Publication number
WO2014050975A1
WO2014050975A1 PCT/JP2013/076081 JP2013076081W WO2014050975A1 WO 2014050975 A1 WO2014050975 A1 WO 2014050975A1 JP 2013076081 W JP2013076081 W JP 2013076081W WO 2014050975 A1 WO2014050975 A1 WO 2014050975A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
piercer plug
heat treatment
piercer
seamless steel
Prior art date
Application number
PCT/JP2013/076081
Other languages
English (en)
French (fr)
Inventor
浩太郎 小奈
勇太 横溝
日高 康善
中西 哲也
Original Assignee
新報国製鉄株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新報国製鉄株式会社, 新日鐵住金株式会社 filed Critical 新報国製鉄株式会社
Priority to JP2014538590A priority Critical patent/JP6195570B2/ja
Priority to BR112015006482A priority patent/BR112015006482B8/pt
Priority to EP13842050.0A priority patent/EP2902522B1/en
Priority to CN201380050581.3A priority patent/CN104685085B/zh
Publication of WO2014050975A1 publication Critical patent/WO2014050975A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Definitions

  • the present invention is a piercer plug (sometimes simply referred to as a “plug”) used when a seamless steel pipe is manufactured by the Mannesmann method, and has a particularly excellent piercing resistance and machinability.
  • the present invention relates to a plug material and a manufacturing method thereof.
  • the conventional piercer plug for manufacturing a high-grade seamless steel pipe is improved in high-temperature deformation resistance by adding W and Mo, and further ensures lubricity of the piercer plug surface. Therefore, the surface coating process which produces
  • the piercer plug In order to adapt to the diversification of seamless steel pipe shapes, it has been desired that the piercer plug can be easily cut into various dimensions.
  • the piercer plug or the piercer plug material is excellent in machinability and can be stored for a long period of time.
  • a crack called “placement crack” occurs on the surface of the piercer plug during storage. It is known that cracks tend to occur especially in winter. The piercer plug in which this “placement crack” has occurred cannot be used for the production of seamless steel pipes.
  • Japanese Patent No. 2668361 Japanese Patent No. 2952382 JP 2003-129184 A PCT International Application WO2008-096708 Publication JP 63-69948 A Japanese Patent No. 4279350
  • Patent Document 1 discloses a piercer plug in which a large amount of one or more of Mo and W is added to a predetermined component for increasing high temperature deformation resistance to suppress surface decarburization, and an internal oxidation type scale layer is formed on the surface. is doing.
  • Patent Document 2 discloses that a steel substrate such as 3Ni-1Cr steel is manufactured by forming a scale on the surface of a steel substrate and using the conventional sand mold casting to mold the steel substrate by die casting. To do. It is described that the manufacturing method has an effect of improving the strength of the steel substrate and improving the scale.
  • Patent Document 3 discloses a substrate having an effect of improving the strength of the substrate and modifying the scale in the piercer plug used by forming a scale on the surface as in Patent Document 2.
  • Patent Document 4 discloses that, similarly to Patent Document 2, in a piercer plug that is used by forming a scale on the surface of a base material, a net-like scale layer entangled with the base material is formed as a layer constituting the scale layer. is doing. Patent Document 4 discloses that the structure of the scale layer can suppress the peeling and wear of the scale layer and extend the life of the piercer plug. Patent Document 5 uses the same method as Patent Document 4 to generate a scale layer as a grain boundary oxidation type scale layer, thereby providing good adhesion to the base material and suppressing peeling and abrasion of the scale layer. It is disclosed that the service life can be extended.
  • an object of the present invention is a material for a piercer plug used when a seamless steel pipe is manufactured by the Mannesmann method, which suppresses the occurrence of cracks caused by long-term storage, is excellent in machinability, and has a desired hardness.
  • the purpose of this is to solve the problem that cannot be achieved by the prior art, in which the life of the plug body can be extended.
  • the structure is mainly composed of tempered martensite and / or bainite, and the plug material should have a Rockwell hardness C scale (hereinafter abbreviated as “HRC”) of 6 or more (preferably 20 or more). It was found that a plug having appropriate toughness and strength can be obtained.
  • HRC Rockwell hardness C scale
  • the inventors of the present invention have made extensive studies on heat treatment conditions that satisfy the above-described diffusible hydrogen concentration and HRC hardness conditions.
  • the optimum heat treatment is performed at 550 to 900 ° C. after casting the material for the piercer plug, more preferably within the temperature range of 700 to 900 ° C. for a time not less than 0.5 hours and not more than 10 hours, preferably It was found that it is preferable to cool at a cooling rate of 5 ° C./min or less after holding for 0.5 hours or more and not exceeding 4 hours.
  • the inventors investigated the relationship between heat treatment conditions (especially heat treatment temperature and holding time) and hardness, and the plug material hardness (HRC) in relation to the heat treatment parameter (P H ) and carbon equivalent (C equivalent). (Hardness) was found to be adjustable.
  • the plug material before molding was too hard and the machinability was poor.
  • the plug material according to the present invention can be optimized in hardness by heat treatment under predetermined conditions before molding, and the machinability can be remarkably improved.
  • the plug material After casting the material for the piercer plug, the plug material is adjusted to an HRC hardness of 6 to 40, and the diffusible hydrogen causing the cracking is reduced below the specified value by performing an appropriate heat treatment on the material. be able to.
  • a material for a piercer plug for seamless steel pipe production according to one aspect of the present invention Ingredient is% by mass C: 0.08 to 0.3%, Si: 0.1 to 1.0%, Mn: 0.2 to 1.5%, Ni: 0.2 to 2.0%, Furthermore, it contains 1.5% to 8% in total of one or two of W and Mo, Balance Fe and impurities, Diffusible hydrogen contained as an impurity is 2 ppm or less, It is a material for a piercer plug for seamless steel pipe production having a hardness of HRC 6 or more and 40 or less.
  • the material for the piercer plug for seamless steel pipe production described in (1) above is In addition, Cu: 0.5% or less, Cr: 1.0% or less, Nb: 1.0% or less, V :: 1.0% or less, One or two or more of Ti: 1.0% or less and B: 0.1% or less may be contained.
  • the hardness may be HRC 20 or more and 40 or less.
  • the piercer plug material for seamless steel pipe production according to any one of (1) to (4) may be a cast steel material.
  • a method for producing a material for a piercer plug for seamless steel pipe production according to an aspect of the present invention includes: Ingredient is% by mass C: 0.08 to 0.3%, Si: 0.1 to 1.0%, Mn: 0.2 to 1.5%, Ni: 0.2 to 2.0%, Furthermore, it contains 1.5% to 8% in total of one or two of W and Mo, A step of casting the material for the piercer plug comprising the remaining Fe and impurities; A step of heat treatment parameters P H are defined the cast piercer material plug by the following formula 1 is subjected to heat treatment under conditions satisfying the formula 2 and formula 3, Forming a heat-treated piercer plug material.
  • P H T ⁇ (22 + log 10 Hr) Equation 1 P H ⁇ 7500 ⁇ C eq +20900 and P H ⁇ 27500 Equation 2 P H ⁇ 5000 ⁇ C eq +14500 Formula 3
  • T Indicates the heat treatment temperature, and the unit is ° K.
  • Hr Indicates the holding time at the heat treatment temperature, and the unit is time.
  • C eq represents a carbon equivalent and is defined by the following formula 4.
  • C eq C + Si / 4 + Mn / 6 + (Cu + Ni) / 15 + Cr / 5 + Mo / 5 Formula 4
  • Each element symbol represents the content of the element in mass%.
  • the piercer plug material is further in mass%, Cu: 0.5% or less, Cr: 1.0% or less, Nb: 1.0% or less, V :: 1.0% or less, One or two or more of Ti: 1.0% or less and B: 0.1% or less may be contained.
  • the piercer plug material is further in mass%, Ca: 0.5% or less, Mg: 0.5% or less, REM: You may contain 1 type or 2 types or more in 0.5% or less in total in 0.5% or less.
  • heat treatment parameters P H may satisfy the following equation 5.
  • P H ⁇ 5000 ⁇ C eq +17500 and P H ⁇ 25000 Formula 5 (10)
  • the heat treatment temperature is 550 ° C. or more and 900 ° C. or less, and the holding time at the heat treatment temperature is 0.5. It may be from 10 hours to 10 hours.
  • the heat treatment temperature is 700 ° C. or more and 900 ° C.
  • the piercer plug material may be cast steel.
  • a material for a piercer plug for manufacturing a seamless steel pipe which is used when a seamless steel pipe is manufactured by the Mannesmann method and is particularly excellent in crack resistance and machinability.
  • C The component value (%) is expressed in mass% unless otherwise specified.
  • the lower limit is preferably 0.10%, more preferably 0.12%.
  • the upper limit is preferably 0.25%, more preferably 0.20%.
  • Si 0.1 to 1.0%
  • Si is an effective component for deoxygenation, but if it is less than 0.1%, the effect is small. When it exceeds 1.0%, the toughness of the base material starts to deteriorate. Accordingly, Si is set to 0.1 to 1.0%.
  • the lower limit is preferably 0.20%, more preferably 0.30%.
  • the upper limit is preferably 0.90%, more preferably 0.80%.
  • Mn 0.2 to 1.5% Mn stabilizes austenite at high temperatures. That is, the formation of ⁇ ferrite is suppressed to suppress toughness reduction, and the effect can be obtained at 0.2% or more. However, if it is added in an amount of more than 1.5%, the hardness becomes too high and cracks tend to occur after drilling. Therefore, Mn is set to 0.2 to 1.5%.
  • the lower limit is preferably 0.30%, more preferably 0.40%.
  • the upper limit is preferably 1.30%, more preferably 1.00%.
  • Ni 0.2-2.0%
  • Ni has the effect of improving the toughness of the quenched phase formed in the plug surface layer. In order to obtain the effect, 0.2% or more is necessary, but the effect is almost saturated at 2.0%. Addition of more than that will increase the cost. Therefore, Ni is set to 0.2 to 2.0%.
  • the lower limit is preferably 0.30%, more preferably 0.40%.
  • the upper limit is preferably 1.90%, more preferably 1.80%.
  • Mo and W are effective in improving the high-temperature strength, and have the effect of increasing the Ac1 point and reducing the portion where the surface is burned after drilling. These effects are equivalent to Mo and W, and when one or both of Mo and W is less than 1.5% in total, the effect is small, so that it is added to be more than that. Further, if the total amount of either one or both of Mo and W exceeds 8.0%, ferrite remains even at a high temperature, and the strength starts to decrease and the toughness also decreases. Therefore, the total of Mo + W is set to 1.5 to 8.0%. Considering the variation in order to obtain the effect, the lower limit is preferably 1.7%, more preferably 2.0%. Similarly, the upper limit is preferably 7.5%, more preferably 7.0%.
  • Diffusible hydrogen 2 ppm or less H (hydrogen) contained as diffusible hydrogen in the material for the piercer plug is an element that promotes cracking of the piercer plug, and its content has an important meaning in the present invention.
  • Diffusible hydrogen is hydrogen that diffuses in the material and does not include hydrogen trapped in voids or the like in the material.
  • the measuring method of diffusible hydrogen is demonstrated in the Example mentioned later.
  • the content of diffusible hydrogen should be as low as possible. The inventors have found that cracking does not occur if diffusible hydrogen is 2 ppm or less (see Table 5). Therefore, the upper limit of the content of diffusible hydrogen in the piercer plug material according to the present invention is limited to 2 ppm.
  • the upper limit is preferably limited to 1.5 ppm, more preferably to 1.0 ppm or less.
  • the steel material by casting contains 7 ppm or more of diffusible hydrogen.
  • the diffusible hydrogen in the material can be reduced during the heat treatment in which the temperature is maintained in the temperature range of 700 to 900 ° C. for 0.5 hours to 4 hours. The details of the dehydrogenation process will be described in the manufacturing method described later.
  • Nb, V, Cr, Ti 1.0% or less each Nb, V, and Ti have the effect of refining crystal grains. However, if each exceeds 1.0%, an embrittled phase precipitates, resulting in deterioration of toughness. Accordingly, one or more of Nb, V, and Ti is preferably added in an amount of 1.0% or less. In consideration of variation in order to obtain the effect, the upper limit is preferably 0.5%, more preferably 0.1%. Cr has the effect of improving the toughness of steel materials and the deformation resistance at high temperatures. However, from the economical viewpoint, the upper limit of the content is set to 1.0%.
  • Cu 0.5% or less
  • Cu is an austenite stabilizing element, and has an effect of improving the toughness of the plug surface layer portion which is held at a high temperature during drilling to become austenite.
  • 0.01% or more is necessary, but the effect is almost saturated at 0.5%. Therefore, Cu was made 0.5% or less.
  • the lower limit is preferably 0.01%, more preferably 0.1%.
  • the upper limit is preferably 0.5% by weight, more preferably 0.3%.
  • B 0.1% or less B has the effect of strengthening the grain boundary of the steel surface layer that has been retained at high temperature during drilling to become austenite and improve deformation resistance and deformability at high temperature. If the content exceeds 0.1%, the toughness decreases due to precipitation of an embrittlement phase. In consideration of variation in order to obtain the effect, the upper limit is preferably 0.05%, more preferably 0.01%.
  • Ca, Mg, REM 0.5% or less in total Any of Ca, Mg, and REM can be added for the purpose of desulfurization. In particular, it is effective for making the material finer and has the effect of improving the toughness of the steel material. However, when the total content exceeds 0.5%, an embrittled phase is precipitated, leading to a decrease in toughness. Therefore, the total content of these components is set to 0.5% or less. In consideration of variation in order to obtain the effect, the upper limit is preferably 0.2%, more preferably 0.1%.
  • the hardness of the piercer plug material of the present invention is preferably HRC6 to 40. When the hardness exceeds HRC40, cracks tend to occur. On the other hand, if it is below HRC6, the piercing life as a piercer plug is reduced. That is, due to insufficient strength, the piercer plug may be greatly deformed during piercing and rolling. A more preferred lower limit is HRC20.
  • the structure of the material for the piercer plug is suitably tempered martensite and / or bainite. However, until the piercer plug material is cast and cast, the structure is mainly hardened martensite. By heat treatment after casting, a tempered martensite and / or bainite-based structure can be obtained to ensure toughness.
  • the material of the piercer plug according to the present invention is characterized in that the hardness is HRC 6 or more and 40 or less, the content of diffusible hydrogen is limited to 2 ppm or less, and a tempered martensite and / or bainite-based structure is formed. . These characteristics are built in by the heat treatment conditions after casting of the constituent material that becomes the piercer plug.
  • the method for manufacturing a piercer plug material according to the present invention first obtains a piercer plug material by melting the steel having the above-mentioned predetermined component composition and casting it in a casting step S ⁇ b> 1. Thereafter, in the heat treatment step S2, a heat treatment is performed for both the hardness adjustment and dehydrogenation of the material for the piercer plug.
  • the heat treatment step S2 heats the piercer plug material to be heat-treated to a predetermined heat treatment temperature, holds the piercer plug material at the heat treatment temperature for a predetermined time, and after the predetermined time has elapsed, Including cooling.
  • the heat treatment conditions will be described from the viewpoint of the hardness of the piercer plug material and from the viewpoint of the concentration of diffusible hydrogen.
  • the heat treatment temperature refers to the surface temperature of the piercer plug material.
  • the heat treatment parameter (P H ) is defined by the following formula 1.
  • the carbon equivalent (C equivalent) was used as an index because of its great influence on the hardness of the steel composition.
  • the carbon equivalent is defined by the following formula 4.
  • FIG. 2 shows the relationship between carbon equivalent and (C eq) and heat treatment parameters P H.
  • the numerical value given in the vicinity of the white circle mark in FIG. 2 indicates the HRC value of the test piece.
  • P H may be set to heat treatment conditions so as to satisfy the following formula 2 and formula 3 I found out.
  • P H T ⁇ (22 + log 10 Hr) Equation 1
  • T represents the heat treatment temperature, and the unit is ° K.
  • the heat treatment temperature T is the surface temperature of the piercer plug material.
  • Hr indicates the holding time, that is, the time for holding the piercer plug material at the heat treatment temperature T, and the unit is time.
  • C eq indicates the carbon equivalent of the material for the piercer plug, and is defined by the following formula 4.
  • C eq C + Si / 4 + Mn / 6 + (Cu + Ni) / 15 + Cr / 5 + Mo / 5 Formula 4
  • C, Si, P, Al, and Mn in Formula 4 are content [mass%] of each element.
  • the test piece having a C eq 0.5 to 1.8, depending on heat treatment conditions within the scope of Formula 3 showing the expression 2 and the lower limit indicating an upper limit of the heat treatment parameters P H, HRC6 more It can be seen that it has a hardness of 40 or less. Furthermore, when comparing the plurality of test pieces having an equivalent C eq, it can be seen that the HRC value increases as the heat treatment parameters P H is lowered.
  • the hardness of the piercer plug material after the heat treatment is preferably HRC 20-40.
  • Piercer plug material having a hardness of such a preferred range by heat treatment parameters P H further heat treatment condition satisfying the formula 5 below, heat treating the material for the piercer plug having a composition within the range of the C equivalent Can be manufactured.
  • the heat treatment step is desirably completed within 24 hours including temperature rise and cooling from the viewpoint of productivity.
  • the thickness of the oxide scale formed on the surface of the material for the piercer plug was usually about 100 ⁇ m. It was also confirmed that this level of oxide scale can be easily removed by cutting or grinding.
  • the content of diffusible hydrogen in the material for the piercer plug can be reduced by the heat treatment that is held for 0.5 hours to 10 hours in the temperature range of 550 ° C. to 900 ° C. Normally, the content of diffusible hydrogen in the piercer plug material after casting is 7 ppm or more. However, if the piercer plug material is held for at least 0.5 hours in the temperature range, the content of diffusible hydrogen in the piercer plug material is 2 ppm or less. It was confirmed that The heat treatment atmosphere may be an air atmosphere.
  • the cooling after the heat treatment is a step for determining the structure of the material for the piercer plug.
  • the structure of the piercer plug material for the piercer plug is suitably tempered martensite and / or bainite.
  • the piercer plug material having a carbon equivalent in the range of 0.5 to 1.8 is left as cast after casting, as described above, it is mainly made of quenched martensite. Therefore, in order to ensure toughness, heat treatment is performed at a heat treatment temperature of 550 ° C. or higher and 900 ° C. or lower. Cooling after the heat treatment also has the effect of growing the precipitated carbide to some extent and making it spherical. Furthermore, the state of precipitates of Mo and W appears in hardness.
  • the hardness can be suppressed by appropriate precipitation.
  • the hardness of the piercer plug material is lowered.
  • Mo and W dissolved in the piercer plug material are precipitated and the hardness is lowered.
  • the cooling rate is desirably 1 ° C./min or less.
  • the hardness decreases as the cooling rate is slow and the cooling is slow, and the heat treatment temperature is high and the holding time is long.
  • the precipitation state of the Mo and W precipitates can be controlled, and the resulting hardness can be controlled.
  • the austenitization gradually proceeds when the temperature exceeds 900 ° C.
  • the hardness may increase even at a cooling rate of 5 ° C./min or less.
  • the lower limit of the cooling rate is not particularly limited, but if the cooling rate is too slow, the time for exposure to a high temperature region is long, resulting in a decrease in hardness and coarsening of carbides.
  • the heat treatment operation time becomes long, which causes a problem from an economical viewpoint. Therefore, the cooling rate is desirably 0.1 ° C./min or more.
  • the material for the piercer plug may be cooled in a heat treatment furnace. Slow cooling is possible by cooling in the furnace. For example, after the furnace is cooled to 480 ° C. or lower, the piercer plug material may be taken out of the furnace and allowed to cool in the atmosphere. Alternatively, the piercer plug material may be taken out of the furnace after cooling in the furnace to room temperature.
  • the natural cooling under the cooling condition 3 in Table 2 is performed at a temperature lower than 480 ° C. for the piercer plug material, and thus does not affect the structure, precipitates, and hydrogen content of the piercer plug material.
  • the piercer plug material adjusted to a hardness of HRC 6 or more and 40 or less in the heat treatment step S2 is formed into a seamless steel pipe manufacturing piercer plug material having a predetermined shape in the forming step S3.
  • the molding step S3 can be performed by cutting or the like. Further, the forming step S3 may be performed immediately after the heat treatment step S2 or after the piercer plug material is stored for a long period of time, so that it does not cause cracks.
  • the material for a piercer plug for seamless steel pipe production according to the present invention may be subjected to a protective film forming step S4 for forming a protective film on the surface by various methods after being formed into a predetermined tool shape by the forming step S3. it can.
  • a protective film forming step S4 for example, at least one kind of treatment such as a heat treatment for generating a scale layer and a treatment for coating a protective film such as ceramics by thermal spraying can be performed, and is not particularly limited.
  • Examples of the material for the piercer plug according to the present invention are prepared by performing heat treatment using steel having the composition shown in Table 1 under predetermined heat treatment conditions. For each of the examples of the present invention, hydrogen amount measurement, placement crack test, A machinability test, a toughness evaluation test, and a plug deformation test were performed.
  • H 2 analytical samples Analytical samples for measuring the content of diffusible hydrogen corresponding to each of 1 and 2 (hereinafter referred to as “H 2 analytical samples”) were prepared.
  • the H 2 analysis sample was immersed in liquid nitrogen and stored immediately after being cut out from the piercer plug material.
  • Table 4 shows the measurement results of diffusible hydrogen content measured for the H 2 analysis samples corresponding to Examples 1 to 6 and Comparative Examples 1 and 2, respectively. .
  • Examples 1 to 6 shown in Table 4 are compared with the comparative examples with respect to the hydrogen content, the cast steel having the composition defined by the present invention is subjected to the heat treatment by performing the heat treatment defined by the present invention. It can be confirmed that the dehydrogenation effect appears.
  • Toughness evaluation Toughness was evaluated by a Charpy impact test at 20 ° C. Two test pieces each cut out from the materials for piercer plugs of Examples 1 to 6 and Comparative Examples 1 to 4 were prepared, and a Charpy impact test was performed at room temperature (20 ° C.). For the toughness evaluation test, Charpy impact was applied to Example 7 in the same manner as in Examples 1 to 6 and Comparative Examples 1 and 2, using the test piece 24 of Table 3 as the material for the piercer plug of Example 7. A test was conducted. Table 7 shows the results of toughness evaluation by the Charpy impact test. In the heat treatment conditions 3-1, 3-2, 6-1 and 6-3, the level was 17 to 70 J / cm 2 . On the other hand, in the condition A, the level was 5-7 J / cm 2 , which was significantly different from those in the conditions 3-1, 3-2, 6-1 and 6-3 according to the embodiment of the present invention. .
  • Examples A1 to A4 Since the hardness of Examples A1 to A4 is within the range of the present invention, the amount of deformation of the plug after repeating piercing and rolling five times is small. On the other hand, since the hardness of Comparative Examples B1 and B2 is lower than HRC6, the deformation of the plug after repeating piercing and rolling five times is about twice as large. If the amount of deformation is 1.5 mm or less, the plug can be recycled.
  • the present invention can be used as a material for a piercer plug for seamless steel pipe production. And the raw material for piercer plugs according to the present invention can be stored for a long period of time, and can be easily processed into an appropriate shape.

Abstract

 本発明は、マンネスマン法により製造するシームレス鋼管のピアサープラグであって、特に耐置き割れ性および被削性に優れたシームレス鋼管製造用ピアサープラグ用素材およびその製造方法を提供する。前記ピアサープラグ用素材は、成分が質量%で、C:0.08~0.3%、Si:0.1~1.0%、Mn:0.2~1.5%、Ni:0.2~2.0%、さらにW、Moのうち1種または2種を合計で1.5%~8%、を含有し、残部Feおよび不純物であり、不純物として含有される拡散性水素を2ppm以下に制限したピアサープラグ用素材であって、HRC6以上40以下の硬度を有する。

Description

シームレス鋼管製造用ピアサープラグ用素材およびその製造方法
 本発明は、マンネスマン法によりシームレス鋼管を製造する際に用いられるピアサープラグ(単に「プラグ」という場合もある。)であって、特に耐置き割れ性および被削性に優れたシームレス鋼管製造用ピアサープラグ用素材およびその製造方法に関するものである。
 近年、石油掘削環境が厳しくなるのに伴い、油井管としてステンレス製や高合金鋼製などの高級シームレス鋼管が求められるようになってきた。しかし、ステンレス鋼等の変形抵抗の高い材料でシームレス鋼管を製造する際、その穿孔に用いるピアサープラグの先端部には高い面圧がかかり、その先端部が溶損し、短時間での交換を余儀なくされた。 
 そのため、特許文献1に開示されるように、従来の高級シームレス鋼管の製造用ピアサープラグは、W、Moを添加することにより高温変形抵抗が高められ、さらに前記ピアサープラグ表面の潤滑性を確保するため難剥離性の低融点スケール層を生成させる表面被覆処理が施されていた。特許文献1に開示されたピアサープラグの製造方法は、図3に示されるように、W、Moを添加した高強度の鋼材からなり所定形状を有する母材を高温酸化による熱処理をすることによって、ピアサープラグの表面に所定の前記スケール層を被覆することを特徴としている。
 一方、高級シームレス鋼管のサイズ及び形状の多様化から、ピアサープラグもそれに合わせ多様化し、多種類のものを在庫として保持し、生産計画に応じて使用されるようになってきた。
 シームレス鋼管の形状の多様化に適応するため、ピアサープラグは種々の寸法への切削が容易にできることが望まれるようになってきた。
 また、シームレス鋼管の製造工場も分散化や遠隔地化が進み、輸送時間の増大などのため在庫量の確保の観点から、ピアサープラグを長期間にわたり保管する場合が多くなってきた。
 以上の事情から、ピアサープラグ又はピアサープラグ用素材は、被削性に優れ、また長期間保管できることが望まれる。しかし、ピアサープラグの硬度を適正に調整しないと、保管中にピアサープラグ表面に「置き割れ」と称するクラックが生じる。とくに冬季には置き割れが発生し易いことが知られている。この「置き割れ」が発生したピアサープラグは、シームレス鋼管の製造には使用できない。
特許第2683861号公報 特許第2952382号公報 特開2003-129184号公報 PCT国際出願WO2008-096708号公開公報 特開昭63-69948号公報 特許第4279350号公報
 特許文献1は、高温変形抵抗を高めるための所定の成分にMo及びWの1種以上を多量添加して表面脱炭を抑制し、表面に内部酸化型スケール層が形成されたピアサープラグを開示している。
 特許文献2は、3Ni-1Cr鋼などの鋼製基体の表面にスケールを形成して使用するピアサープラグの製造方法において、従来の砂型鋳造から金型鋳造によって前記鋼製基体を作製することを開示する。そして、前記製造方法は前記鋼製基体の強度向上とスケールの改質効果がある旨、記載されている。
 特許文献3は、特許文献2と同様、表面にスケールを形成して使用するピアサープラグにおいて、基体の強度向上とスケールの改質効果がある基体について開示する。
 特許文献4は、特許文献2と同様、基材の表面上にスケールを形成して使用するピアサープラグにおいて、スケール層を構成する層として前記基材と絡み合うネット状スケール層を形成することを開示している。特許文献4は、スケール層の前記構成により、スケール層の剥離や磨耗が抑制され、ピアサープラグの寿命延長ができる旨を開示している。
 特許文献5は、特許文献4と同様の手法で、スケール層を粒界酸化型スケール層として生成することにより、基材との密着性がよく、スケール層の剥離や磨耗を抑制し、ピアサープラグの寿命延長ができる旨を開示している。
 最近は、特許文献6に開示されるように溶射を利用した被膜形成技術を用いて、ピアサープラグの表面に保護被膜を形成することによって、ピアサープラグの長寿命化が図られるようになった。
 しかし、先行技術文献においては、ピアサープラグ用素材の置き割れや被削性を課題とする提案はなされていない。
 そこで本発明の目的は、シームレス鋼管をマンネスマン法により製造するときに用いられるピアサープラグの素材であって、長期保管による置き割れの発生を抑制し、被削性にも優れ、さらに所望の硬度を有することでプラグ本体の長寿命化が達成できるという、従来技術では成しえない課題を解決することにある。
 本発明者らは、上記課題を解決するため鋭意研究開発を行った結果、以下の知見を得た。
(a)ピアサープラグの長寿命化には、ある程度の靭性を確保しつつ、熱衝撃に強くするためのある程度の硬さが必要である。そのため、焼き戻しマルテンサイト及び/またはベイナイトを主体とした組織とし、プラグ素材の硬さがロックウェル硬さCスケール(以下、「HRC」と略す。)6以上(好適には20以上)であれば、適正な靭性、強度を有するプラグが得られることが分かった。
(b)置き割れは、ピアサープラグ用素材の水素脆化が原因であることを知見した。置き割れするときは、ピアサープラグの素材中に拡散性水素が約7ppm以上含まれており、素材の硬度はHRCで40超になっていることが分かった。
(c)また、素材の置き割れを抑制するには、拡散性水素の濃度を2ppm以下にし、素材の硬度をHRCで40以下にすると良いことを見出した。また、硬度も下がるため被削性が改善されることも確認した。さらに、HRC40以下であればプラグ素材としての靭性も十分有することも確認した。
(d)本発明者らは、上記の拡散性水素の濃度及びHRC硬度の条件を満足する熱処理条件について鋭意検討を重ねた。その結果、最適な熱処理は、ピアサープラグ用素材を鋳込んだ後に550~900℃で、さらに望ましくは700~900℃の温度範囲内で0.5時間以上で10時間を越えない時間、望ましくは0.5時間以上で4時間を越えない時間保持した後、冷却速度5℃/分以下で冷却すると良いことを見出した。
 さらに、発明者らは、熱処理条件(特に熱処理温度と保持時間)と硬さとの関係について調査し、熱処理パラメータ(P)と炭素当量(C当量)との関係でプラグ素材の硬さ(HRC硬度)を調整できることを見出した。
(e)上記熱処理の条件を適正化することにより、ピアサープラグ用素材の硬度を調整でき、また素材中の拡散性水素を除去できることを確認した。
(f)従来は、プラグ成形後に酸化熱処理を行っていたため、成形前のプラグ素材は硬すぎ被削性が悪かった。しかし、本発明に基づくプラグ素材は成形前に所定の条件で熱処理を施すことで硬さを適正化することができ、被削性を格段に向上させることができた。
 ピアサープラグ用素材を鋳込んだ後に、素材に適正な熱処理を実施することで、プラグ素材をHRC硬度6~40に調整するとともに、置き割れの原因となる拡散性水素を規定値以下に減少させることができる。
 本発明は、これらの知見を基に成されたものであり、その要旨とするところは以下のとおりである。
 (1)本発明の一態様に係るシームレス鋼管製造用ピアサープラグ用素材は、
成分が質量%で、
C:0.08~0.3%、
Si:0.1~1.0%、
Mn:0.2~1.5%、
Ni:0.2~2.0%、
さらにW、Moのうち1種または2種を合計で1.5%~8%を含有し、
残部Feおよび不純物であり、
不純物として含有される拡散性水素が2ppm以下であり、
HRC6以上40以下の硬度を有するシームレス鋼管製造用ピアサープラグ用素材である。
 (2)上記(1)に記載のシームレス鋼管製造用ピアサープラグ用素材は、
さらに質量%で、
Cu:0.5%以下、
Cr:1.0%以下、
Nb:1.0%以下、
V::1.0%以下、
Ti:1.0%以下、および
B:0.1%以下
のうち1種または2種以上を含有しても良い。
 (3)上記(1)または(2)に記載のシームレス鋼管製造用ピアサープラグ用素材は、
さらに質量%で、
Ca:0.5%以下、
Mg:0.5%以下、
REM:0.5%以下
のうち1種または2種以上を合計で0.5%以下を含有しても良い。
 (4)上記(1)~(3)の何れかに記載のシームレス鋼管製造用ピアサープラグ用素材において、硬度が、HRC20以上40以下であっても良い。
 (5)上記(1)~(4)の何れかに記載のシームレス鋼管製造用ピアサープラグ用素材が、鋳鋼製素材であっても良い。
 (6)本発明の一態様に係るシームレス鋼管製造用ピアサープラグ用素材の製造方法は、
成分が質量%で、
C:0.08~0.3%、
Si:0.1~1.0%、
Mn:0.2~1.5%、
Ni:0.2~2.0%、
さらにW、Moのうち1種または2種を合計で1.5%~8%を含有し、
残部Feおよび不純物からなるピアサープラグ用素材を鋳造する工程と、
 鋳造したピアサープラグ用素材を下記式1で定義される熱処理パラメータPが式2および式3を満たす条件で熱処理する工程と、
 熱処理を施したピアサープラグ用素材を成形する工程とを有する。
=T×(22+log10Hr) ・・・ 式1
≦7500×Ceq+20900且つP≦27500・・・式2
≧5000×Ceq+14500・・・式3
但し、
T:熱処理温度を示し、単位は°Kである。
Hr:熱処理温度での保持時間を示し、単位は時間である。
eq:炭素当量を示し、以下の式4で定義される。
eq=C+Si/4+Mn/6+(Cu+Ni)/15+Cr/5+Mo/5 ・・・ 式4
尚、各元素記号は、その元素の含有量を質量%で表す。
 (7)上記(6)のシームレス鋼管製造用ピアサープラグ用素材の製造方法において、ピアサープラグ用素材は、さらに質量%で、
Cu:0.5%以下、
Cr:1.0%以下、
Nb:1.0%以下、
V::1.0%以下、
Ti:1.0%以下、および
B:0.1%以下
のうち1種または2種以上を含有しても良い。
 (8)上記(6)または(7)のシームレス鋼管製造用ピアサープラグ用素材の製造方法において、ピアサープラグ用素材は、さらに質量%で、
Ca:0.5%以下、
Mg:0.5%以下、
REM:0.5%以下
のうち1種または2種以上を合計で0.5%以下含有しても良い。
 (9)上記(6)~(8)の何れかに記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法において、熱処理パラメータPは、下記式5を満たしても良い。
≦5000×Ceq+17500且つP≦25000 ・・・ 式5
 (10)上記(6)~(9)に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法において、熱処理温度が550℃以上900℃以下であって、熱処理温度での保持時間が0.5時間以上10時間以下であっても良い。
 (11)上記(10)の何れかに記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法において、熱処理温度が700℃以上900℃以下であって、保持時間が0.5時間以上4時間以下であっても良い。
 (12)上記(11)の何れかに記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法は、熱処理後、冷却速度5℃/分以下で480℃以下の温度までピアサープラグ用素材を冷却する工程を有しても良い。
 (13)上記(6)~(12)の何れかに記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法において、ピアサープラグ用素材が鋳鋼であっても良い。
 本発明によれば、マンネスマン法によりシームレス鋼管を製造するときに用いられ、特に耐置き割れ性および被削性に優れたシームレス鋼管製造用ピアサープラグ用素材を提供することができる。
本発明のシームレス鋼管製造用ピアサープラグ用素材の製造方法のフローチャートである。 本発明のシームレス鋼管製造用ピアサープラグ用素材を製造するための熱処理パラメータP及び炭素当量Ceqの範囲を示すグラフである。 特許文献1に開示されたピアサープラグの製造方法を示すフローチャートである。
 以下、本発明について詳細に説明する。
 なお、本発明の実施態様は以下に示す実施態様に限定されることはない。
[成分]
 成分値(%)は、特に断りのない限り質量%で示す。
 C:0.08~0.3% 
 Cは高温強度向上に対する有効成分であるが、その含有量が0.08%より少ないと効果が無い。また、0.3%を超えると、硬度が高くなりすぎ、置き割れを生じ易くもなる。また、炭化物の析出状態の制御もし難くなる。従って、Cは0.08~0.3%とした。その効果を得るためばらつきを考慮すると、その下限は、好ましくは0.10%、より好ましくは0.12%とすると良い。また、同様に上限は、好ましくは0.25%、より好ましくは0.20%とすると良い。
 Si:0.1~1.0%
 Siは脱酸素に有効な成分であるが、0.1%より少ないと効果が小さい。1.0%を超えると母材の靭性が悪化し始める。従ってSiは0.1~1.0%とした。その効果を得るためばらつきを考慮すると、その下限は、好ましくは0.20%、より好ましくは0.30%とすると良い。また、同様に上限は、好ましくは0.90%、より好ましくは0.80%とすると良い。
 Mn:0.2~1.5%
 Mnは高温でのオーステナイトを安定化させる。すなわち、δフェライトの生成を抑制して靭性低下を抑制し、その効果は0.2%以上で得られる。しかし、1.5%より多く添加すると硬度が高くなりすぎ、穿孔後に置き割れが生じやすくなる。従ってMnは0.2~1.5%とした。その効果を得るためばらつきを考慮すると、その下限は、好ましくは0.30%、より好ましくは0.40%とすると良い。また、同様に上限は、好ましくは1.30%、より好ましくは1.00%とすると良い。
 Ni:0.2~2.0%
 Niはプラグ表層部に形成される焼き入れ相の靭性を改善する作用がある。その効果を得るには0.2%以上必要であるが、その効果は2.0%でほぼ飽和する。それ以上の添加はコスト増加要因となる。従ってNiは0.2~2.0%とした。その効果を得るためばらつきを考慮すると、その下限は、好ましくは0.30%、より好ましくは0.40%とすると良い。また、同様に上限は、好ましくは1.90%、より好ましくは1.80%とすると良い。
 Mo、Wのうち1種または2種:1.5~8.0%
 MoとWは、どちらも高温強度の改善に有効であり、且つAc1点を上昇させて穿孔後に表面に焼きが入る部分を低減する効果がある。これらの効果は、MoとWとで等価であり、MoとWのどちらか1種もしくは両方が合計で1.5%未満の場合は小さくなるため、それ以上となるよう添加する。また、MoとWのどちらか1種もしくは両方が合計が、8.0%を超えると高温でもフェライトが残留し、強度は低下しはじめ靭性をも低下させる。よって、Mo+Wの合計は1.5~8.0%とした。その効果を得るためばらつきを考慮すると、その下限は、好ましくは1.7%、より好ましくは2.0%とすると良い。また、同様に上限は、好ましくは7.5%、より好ましくは7.0%とすると良い。
 拡散性水素:2ppm以下
 ピアサープラグ用素材に拡散性水素として含有されるH(水素)は、ピアサープラグの置き割れを助長する元素であるため、その含有量は本発明において重要な意味を持つ。拡散性水素は、素材中を拡散する水素であり、素材中のボイド等にトラップされた水素は含まない。尚、拡散性水素の測定方法は、後述する実施例において説明される。拡散性水素の含有量は、可能な限り少ないほうが良い。発明者らは、拡散性水素が2ppm以下であれば置き割れが発生しないことを知見した(表5参照)。そのため、本発明に係るピアサープラグ用素材における拡散性水素の含有量は、その上限を2ppmに制限する。置き割れを抑制する効果を確実に得るため、その上限は、好ましくは1.5ppmに、より好ましくは1.0ppm以下に制限すると良い。
 通常、鋳造による鋼製素材は拡散性水素を7ppm以上含有する。素材中の拡散性水素は、700~900℃の温度範囲で0.5時間以上4時間以下の時間保持する熱処理時に減少させることができる。脱水素処理の詳細は、後述の製造方法において説明する。
 Nb、V、Cr、Tiの1種または2種以上:それぞれ1.0%以下 
 Nb、V、Tiは結晶粒を微細化する効果がある。しかし、それぞれ1.0%を超えて添加すると脆化相が析出し、靭性の劣化を招く。従って、Nb、V、Tiの1種または2種以上を、それぞれ1.0%以下の添加とすると良い。その効果を得るためばらつきを考慮すると、その上限は、好ましくは0.5%、より好ましくは0.1%とすると良い。
 Crは、鋼材の靭性、高温での変形抵抗を向上する作用を有する。しかし、経済的観点から、その含有量の上限を1.0%とする。
 Cu:0.5%以下
 Cuはオーステナイト安定化元素であり、穿孔時に高温に保持されてオ-ステナイトとなったプラグ表層部の靭性を改善する作用がある。その効果を得るには0.01%以上必要であるが、その効果は0.5%でほぼ飽和する。従ってCuは0.5%以下とした。その効果を得るためばらつきを考慮すると、その下限は、好ましくは0.01%、より好ましくは0.1%とすると良い。また、同様に上限は、好ましくは0.5w%、より好ましくは0.3%とすると良い。
 B:0.1%以下
 Bには、穿孔時に高温に保持されてオ-ステナイトとなった鋼材表面層の粒界を強化し、高温での変形抵抗・変形能を改善する作用があるが、 0.1%を超えて含有させると脆化相の析出等で靭性が低下する。その効果を得るためばらつきを考慮すると、その上限は、好ましくは0.05%、より好ましくは0.01%とすると良い。
 Ca,Mg,REM:合計で0.5%以下
 Ca,Mg,REM は何れも、脱硫などの目的で添加することができる。特に材料の細粒化に有効であり、鋼材の靭性改善に有している。しかし、その含有量が合計で0.5%を超えて含有させると脆化相が析出し靭性の低下を招く。従って、これらの成分の含有量は合計で0.5%以下とした。その効果を得るためばらつきを考慮すると、その上限は、好ましくは0.2%、より好ましくは0.1%とすると良い。
[硬度]
 硬度:HRC6以上40以下
 本発明のピアサープラグ用素材の硬度は、HRC6~40が望ましい。HRC40を超える高硬度になると置き割れが発生しやすくなる。一方HRC6を下回るとピアサープラグとしての穿孔寿命が低下する。すなわち、強度不足により、穿孔圧延の際に、ピアサープラグが大きく変形する虞がある。より好ましい下限はHRC20である。
[組織] 
 ピアサープラグ用素材の組織は、焼き戻しマルテンサイト及び/またはベイナイトとなることが適切である。しかし、ピアサープラグ用素材を鋳造後鋳放しままでは、組織は焼入れされたマルテンサイトが主体となる。鋳造後の熱処理により焼き戻しマルテンサイト及び/またはベイナイト主体の組織とし、靭性を確保することができる。
[製造方法]
 次に、本発明に係るピアサープラグ用素材の製造方法について説明する。
 本発明に係るピアサープラグの素材は、硬度がHRC6以上40以下であり、拡散性水素の含有量が2ppm以下に制限され、焼き戻しマルテンサイト及び/またはベイナイト主体の組織となることが特徴である。それらの特徴は、ピアサープラグになる構成素材の鋳造後の熱処理条件により造り込まれる。
 本発明に係るピアサープラグ用素材の製造方法は、図1に示されるように、まず、前記した所定成分組成の鋼を溶製後、鋳造工程S1にて鋳造し、ピアサープラグ用素材を得る。その後、熱処理工程S2にて、ピアサープラグ用素材の硬度調整と脱水素を兼ねた熱処理を行う。
[熱処理]
 熱処理工程S2は、熱処理の対象となるピアサープラグ用素材を所定の熱処理温度まで加熱し、前記ピアサープラグ用素材を前記熱処理温度で所定時間保持し、前記所定時間経過後、前記ピアサープラグ用素材を冷却することを含む。この熱処理条件について、ピアサープラグ用素材の硬度の観点、拡散性水素の濃度の観点から説明する。なお、本発明において、熱処理温度は前記ピアサープラグ用素材の表面温度を指すものとする。
 表1に記載の組成になる鋼No.1~18を高周波溶解し、ピアサープラグ用金型(サイズ:160φ×400L)にて鋳造した。鋳造した各鋼に対して表2に記載の熱処理条件1-1~8-3にて熱処理を行い、表3に示すテストピースNo.1~37を得た。各テストピースの表面硬度(HRC)の測定結果と、炭素当量、熱処理パラメータを表3に示す。尚、各テストピースの組成は、表1の組成No.に対応する。表3に記載の炭素当量と熱処理パラメータとの関係を図2に示すようにプロットして、硬度(HRC)と炭素当量(C当量)との関係を検討した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ここで、熱処理パラメータ(P)は下記式1で定義される。また、炭素当量(C当量)は、鋼組成の硬さへの影響が大きいことから、指標として用いた。炭素当量は、下記式4で定義される。
 図2に、炭素当量(C当量)と熱処理パラメータPとの関係を示す。図2の白丸印の近傍に付された数値は、当該テストピースのHRC値を示す。図2から、ピアサープラグ用素材の硬さを適性範囲であるHRC6~40の範囲に調整するためには、熱処理パラメータPが下記式2および式3を満たすように熱処理条件を設定すればよいことを見出した。
  P=T×(22+log10Hr) ・・・ 式1
  P≦7500×Ceq+20900且つP≦27500・・・式2
  P≧5000×Ceq+14500・・・式3
 但し、
 Tは、熱処理温度を示し、単位は°Kである。なお、熱処理温度Tは、ピアサープラグ用素材の表面温度である。
 Hrは、保持時間、すなわち、熱処理温度Tにてピアサープラグ用素材を保持する時間を示し、単位は時間である。
 Ceqは、ピアサープラグ用素材の炭素当量を示し、以下の式4で定義される。
  Ceq=C+Si/4+Mn/6+(Cu+Ni)/15+Cr/5+Mo/5 ・・・ 式4
 なお、式4におけるC、Si、P、Al、Mnは、各元素の含有量[質量%]である。
 図2に示されるように、C当量=0.5~1.8を有するテストピースは、熱処理パラメータPの上限を示す式2及び下限を示す式3の範囲内の熱処理条件によって、HRC6以上40以下の硬度を有することが分かる。また、同等のC当量を有する複数のテストピースを比較すると、熱処理パラメータPが低くなるに従ってHRC値が高くなることが分かる。
 また、図2に示されるように、C当量=0.5~1.8の炭素当量を有するテストピースに、式2で定義される上限を超える熱処理条件による熱処理を施した場合、熱処理後のテストピースの硬度はHRC6未満に留まる。また、C当量が前記範囲内のテストピースに対して式3で定義される下限を下回る熱処理条件による熱処理を施した場合、熱処理後のテストピースの硬度はHRC40超になる。なお、図2中の黒丸印は、置き割れが発生したことを示す。
 また、前記したように、熱処理後のピアサープラグ用素材の硬度はHRC20~40であることが好ましい。このような好ましい範囲の硬度を有するピアサープラグ用素材は、熱処理パラメータPが更に下記の式5を満たす熱処理条件で、前記C当量の範囲内の組成を有するピアサープラグ用素材を熱処理することによって製造することができる。
 P≦5000×Ceq+17500且つP≦25000 ・・・ 式5
 前記熱処理工程は、生産性の観点から、昇温と冷却を含めて24時間以内に完了することが望ましい。熱処理工程における保持時間Hrの上限は10時間以下であることが好ましく、4時間以下の時間であることがより好ましい。
 以上のテストピースの結果から、550℃以上900℃以下の熱処理温度にて0.5時間以上10時間以下、より好ましくは0.5時間以上4時間以下の保持時間で、前記熱処理パラメータPが前記式2、式3を満たすように熱処理することによって、C当量=0.5~1.8の炭素当量のピアサープラグ用素材は、HRC6~40の硬度を有することが確認された。
 本発明に係る熱処理の温度域では、ピアサープラグ用素材の表面に形成される酸化スケールの厚さは通常100μm程度であった。この程度の酸化スケールは切削処理や研削処理などにより容易に除去することができることも確認した。
 次に、ピアサープラグ用素材の脱水素の観点から考察する。
 550℃~900℃の温度範囲で0.5時間以上10時間以下保持する熱処理によって、ピアサープラグ用素材中の拡散性水素の含有量を減少させることができる。通常、鋳造後のピアサープラグ用素材の拡散性水素の含有量は7ppm以上あるが、当該温度範囲で少なくとも0.5時間保持すれば、ピアサープラグ用素材中の拡散性水素の含有量は2ppm以下となることを確認した。熱処理雰囲気は、大気雰囲気でも良い。
 上記熱処理後の冷却は、ピアサープラグ用素材の組織を決める工程となる。ピアサープラグ用のピアサープラグ用素材の組織は、焼き戻しマルテンサイト及び/又はベイナイトが適切である。しかし、炭素当量が0.5~1.8の範囲にあるピアサープラグ用素材は、鋳造後鋳放しままにされると、前述したように、焼入れされたマルテンサイトが主体となる。
 そこで、靭性を確保するために、550℃以上900℃以下の熱処理温度にて熱処理を施す。
 また、熱処理後の冷却は、析出した炭化物をある程度成長させ、球状化する効果もある。さらに、MoやWの析出物の状態は、硬度に表れる。即ち、適度に析出することにより、硬度を抑制することができる。発明者らの知見から、適度にMoやWの析出物を生成した場合、ピアサープラグ用素材の硬度が低下する。700℃~900℃の範囲の温度にて0.5時間以上の熱処理を行うことによって、ピアサープラグ用素材に固溶しているMoやWが析出して硬度が低下する。この場合、ピアサープラグ用素材の所望の硬度を得るために、5℃/分以下の冷却速度で480℃以下の温度までピアサープラグ用素材を冷却することが好ましい。前記冷却速度は、望ましくは、1℃/分以下の冷却速度とするとよい。
 冷却速度が遅く徐冷であり、熱処理温度が高いほど、また保持時間が長いほど、硬度は低下する。このように、ピアサープラグ用素材を熱処理することにより、MoやWの析出物の析出状態を制御し、その結果としての硬度を制御できる。但し、900℃を超えていくと次第にオーステナイト化が進むため、5℃/分以下の冷却速度でも硬度上昇が起きる場合もある。
 一方、冷却速度の下限は特に制限しないが、あまり冷却速度が遅すぎると、高温域に曝される時間が長く、硬度の低下や炭化物の粗大化が生じる。また、操業上では、熱処理の操業時間が長くなり、経済的な観点から問題が生じる。そのため、冷却速度は0.1℃/分以上とすることが望ましい。
 なお、この冷却条件を具現化するには、ピアサープラグ用素材を熱処理炉内で冷却すれば良い。炉内冷却により、徐冷できる。例えば、480℃以下まで炉内冷却した後は、ピアサープラグ用素材を炉外に出し、大気中で放冷すれば良い。或いは、室温に至るまで炉内冷却した後、ピアサープラグ用素材を炉外に出しても良い。
 前記表2の冷却条件3の自然冷却は、ピアサープラグ用素材が480℃よりも低い温度から行われるので、ピアサープラグ用素材の組織、析出物、水素含有量に影響を与えるものではない。
 熱処理工程S2によってHRC6以上40以下の硬度に調整されたピアサープラグ用素材は、成形工程S3によって所定形状を有するシームレス鋼管製造用ピアサープラグ用素材に成形される。成形工程S3は、切削等によって行うことができる。また、成形工程S3は、熱処理工程S2の直後に行っても、前記ピアサープラグ用素材の長期保管後に行っても、置き割れが発生しないので、良い。
 また、本発明のシームレス鋼管製造用ピアサープラグ用素材は、成形工程S3によって所定の工具形状に成形された後、種々の方法で、表面に保護被膜を形成する保護被膜形成工程S4を施すことができる。保護被膜形成工程S4として、例えば、スケール層を生成する熱処理、溶射によりセラミックス等の保護被膜をコーティングする処理等の少なくとも1種類の処理を行うことができ、特に限定されない。
 次に本発明に係るピアサープラグ用素材の実施例について説明する。表1に記載の組成の鋼を用いて所定の熱処理条件にて熱処理を行うことによって、本発明の実施例を準備し、本発明の各実施例に対して水素量測定、置き割れ試験、被削性試験、靱性評価試験、及びプラグ変形試験をそれぞれ行った。
[拡散性水素の含有量測定]
(1)測定用試料の調製
 表3に記載のテストピースNo.6~No.11を表4に示す本発明の実施例1~6として準備した。また、本発明との比較のため、表1に記載の鋼No.1及び鋼No.2を用いて、以下の熱処理条件Aにて熱処理を行う以外、表1の実施例と同一の製造条件で、比較例1及び2のピアサープラグ用素材を製造した。
 熱処理条件A(比較例):鋳込みまま大気中で自然冷却
 実施例1~6及び比較例1、2のピアサープラグ用素材からφ20×10mmの試験片を切り出して、実施例1~6及び比較例1、2のそれぞれに相当する拡散性水素の含有量測定用の分析試料(以下、「H分析試料」という。)を調製した。前記H分析試料は、ピアサープラグ用素材から切り出した直後に液体窒素中に浸漬して保管された。
(2)拡散性水素の測定条件
 拡散性水素の測定直前に前記H分析試料を液体窒素から取り出し、超音波洗浄を行った。その後、前記H分析試料を冷風乾燥し、秤量してそれぞれ測定に供した。前記H分析試料に含有される拡散性水素の測定は、前記H分析試料を質量分析装置に挿入して10分排気後、測定開始初期圧力が約1.4×10-5Paの真空中にて100℃/時間 (1.67℃/分)の定速昇温で室温から600℃まで加熱し、加熱の際に発生した水素の質量スペクトル強度を分析することによって行った。尚、水素の質量スペクトル強度の分析は、質量分析計(キャノンアネルバ社製四重極質量分析計M201QA-TDM型)を用いて行った。
(3)拡散性水素の含有量の測定結果
 実施例1~6及び比較例1、2のそれぞれに相当するH分析試料について測定された拡散性水素の含有量の測定結果を表4に示す。
 表4に示された実施例1~6と比較例とを水素含有量に関して比較すると、本発明によって規定される範囲の組成の鋳造鋼は、本発明によって規定される熱処理を行うことによって熱処理による脱水素効果が現れることを確認することができる。
Figure JPOXMLDOC01-appb-T000004
[置き割れ試験結果]
 実施例1~6及び比較例1、2と同一の熱処理条件にて、ピアサープラグ用素材を鋼1、鋼2ごとに、それぞれ20個準備し、30日間大気中にて放置したときの置き割れ発生までに要した日数を調べ、発生頻度を記載した。表5に、その結果を示す。
 実施例1~6、すなわち、本発明に係る熱処理条件3-1、3-2及び6-3によるピアサープラグ用素材は、鋼1、鋼2の組成の相違に関わらず、30日間大気中で保持しても置き割れは1個も発生しなかった。一方、比較例1及び2、すなわち、熱処理条件Aのものは14日から置き割れが発生し、30日経過時点では16個(80%)に置き割れが確認された。熱処理条件3-1、3-2、6-3のものには、置き割れが確認されなかった。以上のことから、本発明に係る脱水素効果による置き割れの抑制が確認された。
Figure JPOXMLDOC01-appb-T000005
[被削性]
 熱処理条件3-1、3-2、6-3及びAにて熱処理が施された鋼2のピアサープラグ用素材を各1個準備し、ピアサープラグの芯金部分をドリル加工での切削工具の損傷有無で、被削性を評価した。その結果を表6に示す。表6に示されるように、熱処理条件3-1、3-2及び6-3のものでは損傷がなかった。しかし、熱処理条件Aのものでは、ドリル先端の損傷が確認され、実際穴開け加工ができなかった。
Figure JPOXMLDOC01-appb-T000006
[靭性評価]
 靭性の評価を、20℃におけるシャルピー衝撃試験にて行った。実施例1~6及び比較例1~4のピアサープラグ用素材から切り出した試験片を各2個準備し、室温(20℃)にてシャルピー衝撃試験を行った。尚、靱性評価試験のため、表3のテストピース24を実施例7のピアサープラグ用素材として用いて、実施例1~6及び比較例1、2と同様の手法にて実施例7についてシャルピー衝撃試験を行った。
 シャルピー衝撃試験による靱性評価の結果を表7に示す。熱処理条件3-1、3-2、6-1及び6-3のものでは17~70J/cm2レベルであった。一方、条件Aのものでは5~7J/cm2レベルであり、本発明の実施例に係る条件3-1、3-2、6-1及び6-3のものとは顕著な差があった。
Figure JPOXMLDOC01-appb-T000007
[プラグ変形量試験]
(1)溶射皮膜の形成
 表8に記載の組成の各鋼を高周波溶解し、ピアサープラグ用金型(サイズ:160φ×400L)にて鋳造を行った。鋳造した各鋼に対して、表8に示すように表2に記載の熱処理条件にてそれぞれ熱処理を行い、実施例A1~A4及び比較例B1、B2を得た。
 実施例A1~A4及び比較例B1、B2のピアサープラグ用素材を各1個準備し、母材表面の全域に亘り、鉄基素材の溶射により、保護皮膜を形成した。
(2)穿孔圧延
 モデルピアサー(試験用ピアサー)として前記の各ピアサープラグを使用して、1200℃に加熱した下記の丸ビレットを穿孔圧延した。1つプラグにつき穿孔圧延を5回ずつ行った後、各プラグの先端が当初の形状から変形した大きさを変形量として測定した。この結果を表8に示す。
・ビレットの寸法:外径75mm、長さ700mm
・ビレットの材質:SUS304
・プラグの寸法 :外径60mm
Figure JPOXMLDOC01-appb-T000008
 実施例A1~A4は、硬度が本発明の範囲内であるため、穿孔圧延を5回繰り返した後のプラグの変形量が小さい。それに対し、比較例B1、B2は、硬度がHRC6を下回っているため、穿孔圧延を5回繰り返した後のプラグの変形量が2倍程度大きい。なお、変形量が1.5mm以下であれば、プラグのリサイクル利用が可能である。
 以上のことから、本発明に係るピアサープラグ用素材であれば、置き割れの発生を抑制できることが確認できた。また、被削性も良好であることが確認された。これにより、シームレス鋼管の多様化に対応し、現地にて保管し、適正な形状のピアサープラグに加工することが可能となった。
 本発明は、シームレス鋼管製造用のピアサープラグ用の素材として利用することができる。そして、本発明に係るピアサープラグ用素材は、長期保管が可能であり、適正な形状に加工し易いものである。

Claims (13)

  1.  成分が質量%で、
    C:0.08~0.3%、
    Si:0.1~1.0%、
    Mn:0.2~1.5%、
    Ni:0.2~2.0%、
    さらにW、Moのうち1種または2種を合計で1.5%~8%、
     を含有し、
     残部Feおよび不純物であり、
     不純物として含有される拡散性水素が2ppm以下であり、
     HRC6以上40以下の硬度を有することを特徴とするシームレス鋼管製造用ピアサープラグ用素材。
  2.  さらに質量%で、
    Cu:0.5%以下、
    Cr:1.0%以下、
    Nb:1.0%以下、
    V::1.0%以下、
    Ti:1.0%以下、および
    B:0.1%以下
    のうち1種以上を含むことを特徴とする請求項1に記載のシームレス鋼管製造用ピアサープラグ用素材。
  3.  さらに質量%で、
    Ca:0.5%以下、
    Mg:0.5%以下、
    REM:0.5%以下
    のうち1種または2種以上を合計で0.5%以下含むことを特徴とする請求項1または2に記載のシームレス鋼管製造用ピアサープラグ用素材。
  4.  前記硬度が、HRC20以上40以下であることを特徴とする請求項1~3のいずれか1項に記載のシームレス鋼管製造用ピアサープラグ用素材。
  5.  前記ピアサープラグ用素材が鋳鋼であることを特徴とする請求項1~4のいずれか1項に記載のシームレス鋼管製造用ピアサープラグ用素材。
  6.  成分が質量%で、
    C:0.08~0.3%、
    Si:0.1~1.0%、
    Mn:0.2~1.5%、
    Ni:0.2~2.0%、
    W、Moのうち1種または2種を合計で1.5%~8%
     を含有し、残部Feおよび不純物であるピアサープラグ用素材を鋳造する工程と、
     前記鋳造した前記ピアサープラグ用素材を下記式1で定義される熱処理パラメータPが式2および式3を満たす条件で熱処理する工程と、
     前記熱処理を施した前記ピアサープラグ用素材を成形する工程とを有することを特徴とするシームレス鋼管製造用ピアサープラグ用素材の製造方法。
    =T×(22+log10Hr) ・・・ 式1
    ≦7500×Ceq+20900且つP≦27500・・・式2
    ≧5000×Ceq+14500・・・式3
    但し、
    T:熱処理温度を示し、単位は°Kである。
    Hr:熱処理温度での保持時間を示し、単位は時間である。
    eq:炭素当量を示し、以下の式4で定義される。
    eq=C+Si/4+Mn/6+(Cu+Ni)/15+Cr/5+Mo/5 ・・・ 式4
    尚、各元素記号は、その元素の含有量を質量%で表す。
  7.  前記ピアサープラグ用素材は、さらに質量%で、
    Cu:0.5%以下、
    Cr:1.0%以下、
    Nb:1.0%以下、
    V::1.0%以下、
    Ti:1.0%以下、および
    B:0.1%以下
    のうち1種または2種以上を含むことを特徴とする請求項6に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
  8.  前記ピアサープラグ用素材は、さらに質量%で、
    Ca:0.5%以下、
    Mg:0.5%以下、
    REM:0.5%以下
    のうち1種または2種以上を合計で0.5%以下含むことを特徴とする請求項6または7に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
  9.  前記熱処理パラメータPが下記式5を満たすことを特徴とする請求項6~8のいずれか1項に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
    ≦5000×Ceq+17500且つP≦25000 ・・・ 式5
  10.  前記熱処理温度が550℃以上900℃以下であって、前記熱処理温度での保持時間が0.5時間以上10時間以下であることを特徴とする請求項6~9のいずれか1項に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
  11.  前記熱処理温度が700℃以上900℃以下であって、前記保持時間が0.5時間以上4時間以下であることを特徴とする請求項10に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
  12.  前記熱処理後、冷却速度5℃/分以下で480℃以下の温度まで前記ピアサープラグ用素材を冷却する工程を有することを特徴とする請求項11に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
  13.  前記ピアサープラグ用素材が鋳鋼であることを特徴とする請求項6~12のいずれか1項に記載のシームレス鋼管製造用ピアサープラグ用素材の製造方法。
PCT/JP2013/076081 2012-09-28 2013-09-26 シームレス鋼管製造用ピアサープラグ用素材およびその製造方法 WO2014050975A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014538590A JP6195570B2 (ja) 2012-09-28 2013-09-26 シームレス鋼管製造用ピアサープラグ用素材およびその製造方法
BR112015006482A BR112015006482B8 (pt) 2012-09-28 2013-09-26 material para plug usado no processo de “piercer plug mill” para fabricação de tubo de aço sem costura e método de fabricação do mesmo
EP13842050.0A EP2902522B1 (en) 2012-09-28 2013-09-26 Piercer plug material for producing seamless steel tube, and method for producing said material
CN201380050581.3A CN104685085B (zh) 2012-09-28 2013-09-26 无缝钢管制造用穿孔机顶头用坯料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012217720 2012-09-28
JP2012-217720 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050975A1 true WO2014050975A1 (ja) 2014-04-03

Family

ID=50388370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076081 WO2014050975A1 (ja) 2012-09-28 2013-09-26 シームレス鋼管製造用ピアサープラグ用素材およびその製造方法

Country Status (6)

Country Link
EP (1) EP2902522B1 (ja)
JP (1) JP6195570B2 (ja)
CN (1) CN104685085B (ja)
BR (1) BR112015006482B8 (ja)
TW (1) TWI487800B (ja)
WO (1) WO2014050975A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160022258A (ko) * 2014-08-19 2016-02-29 신호코쿠 세이테츠 가부시키가이샤 이음매 없는 관 제조용 피어서 플러그
WO2019087510A1 (ja) 2017-11-02 2019-05-09 日本製鉄株式会社 ピアサープラグ及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546228A (zh) * 2016-01-20 2016-05-04 浙江海洋学院 一种船舶用无缝钢管及其制备方法
CN106077097A (zh) * 2016-06-02 2016-11-09 天津钢管集团股份有限公司 提高穿孔机组顶头表面性能的结构及制作方法
WO2018029926A1 (ja) * 2016-08-08 2018-02-15 新日鐵住金株式会社 ピアサープラグの製造方法
CN110616364B (zh) * 2018-06-20 2021-08-13 宝山钢铁股份有限公司 一种经济型无缝钢管高穿孔寿命顶头及其制造方法
EP3822381A4 (en) * 2018-07-09 2022-01-26 Nippon Steel Corporation SEAMLESS STEEL TUBE AND METHOD OF MANUFACTURE THEREOF
CN112881121A (zh) * 2021-01-15 2021-06-01 常州宝菱重工机械有限公司 钢管穿孔顶头表面氧化膜评定方法
CN112899564A (zh) * 2021-01-15 2021-06-04 常州宝菱重工机械有限公司 钢管穿孔顶头及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369948A (ja) 1986-09-09 1988-03-30 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JP2683861B2 (ja) 1993-08-24 1997-12-03 住友金属工業株式会社 熱間製管用工具及びその製造方法
JPH10137818A (ja) * 1996-11-05 1998-05-26 Kawasaki Steel Corp 継目無鋼管穿孔圧延用プラグ
JPH11179407A (ja) * 1997-12-19 1999-07-06 Nkk Corp 継目無鋼管製造用工具
JP2952382B2 (ja) 1995-04-27 1999-09-27 住友金属工業株式会社 熱間製管工具の製造方法
JP2002047534A (ja) * 2000-07-28 2002-02-15 Nippon Chuzo Kk 継目無管製造用工具及びその製造方法
JP2003103301A (ja) * 2001-07-25 2003-04-08 Kawasaki Steel Corp 穿孔圧延用工具およびその製造方法
JP2003129184A (ja) 2001-10-25 2003-05-08 Kawasaki Steel Corp 穿孔圧延用工具
WO2008096708A1 (ja) 2007-02-05 2008-08-14 Sumitomo Metal Industries, Ltd. 金属素材の穿孔圧延に用いられるプラグの製造方法、金属管の製造方法及び金属素材の穿孔圧延に用いられるプラグ
JP4279350B1 (ja) 2007-11-01 2009-06-17 住友金属工業株式会社 穿孔圧延用プラグ、その穿孔圧延用プラグの再生方法、およびその穿孔圧延用プラグの再生設備列

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474848A (ja) * 1990-07-13 1992-03-10 Sumitomo Metal Ind Ltd 熱間製管工具用鋼及び熱間製管工具
JP2940188B2 (ja) * 1991-02-23 1999-08-25 住友金属工業株式会社 熱間製管工具及びその製造方法
JPH1060583A (ja) * 1996-08-20 1998-03-03 Hitachi Metals Ltd 熱間の耐摩耗性に優れた鋳造工具
US6866725B2 (en) * 2000-02-28 2005-03-15 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same
JP3635531B2 (ja) * 2000-07-28 2005-04-06 日本鋳造株式会社 継目無管製造用工具及びその製造方法
WO2004101837A1 (ja) * 2003-05-13 2004-11-25 Sumitomo Metal Industries, Ltd. 熱間加工用工具鋼、熱間加工用工具および継目無管製造用プラグ
CN101070581A (zh) * 2006-05-12 2007-11-14 江苏南山冶金机械制造有限公司 不锈钢无缝钢管穿孔顶头
CN101528964B (zh) * 2006-10-27 2011-06-08 住友金属工业株式会社 安全气囊蓄压器用无缝钢管及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369948A (ja) 1986-09-09 1988-03-30 Kawasaki Steel Corp 継目無鋼管製造用工具材料
JP2683861B2 (ja) 1993-08-24 1997-12-03 住友金属工業株式会社 熱間製管用工具及びその製造方法
JP2952382B2 (ja) 1995-04-27 1999-09-27 住友金属工業株式会社 熱間製管工具の製造方法
JPH10137818A (ja) * 1996-11-05 1998-05-26 Kawasaki Steel Corp 継目無鋼管穿孔圧延用プラグ
JPH11179407A (ja) * 1997-12-19 1999-07-06 Nkk Corp 継目無鋼管製造用工具
JP2002047534A (ja) * 2000-07-28 2002-02-15 Nippon Chuzo Kk 継目無管製造用工具及びその製造方法
JP2003103301A (ja) * 2001-07-25 2003-04-08 Kawasaki Steel Corp 穿孔圧延用工具およびその製造方法
JP2003129184A (ja) 2001-10-25 2003-05-08 Kawasaki Steel Corp 穿孔圧延用工具
WO2008096708A1 (ja) 2007-02-05 2008-08-14 Sumitomo Metal Industries, Ltd. 金属素材の穿孔圧延に用いられるプラグの製造方法、金属管の製造方法及び金属素材の穿孔圧延に用いられるプラグ
JP4279350B1 (ja) 2007-11-01 2009-06-17 住友金属工業株式会社 穿孔圧延用プラグ、その穿孔圧延用プラグの再生方法、およびその穿孔圧延用プラグの再生設備列

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160022258A (ko) * 2014-08-19 2016-02-29 신호코쿠 세이테츠 가부시키가이샤 이음매 없는 관 제조용 피어서 플러그
CN105369151A (zh) * 2014-08-19 2016-03-02 新报国制铁株式会社 无缝管制造用穿孔顶头
KR102320752B1 (ko) * 2014-08-19 2021-11-02 신호코쿠 세이테츠 가부시키가이샤 이음매 없는 관 제조용 피어서 플러그
WO2019087510A1 (ja) 2017-11-02 2019-05-09 日本製鉄株式会社 ピアサープラグ及びその製造方法
JPWO2019087510A1 (ja) * 2017-11-02 2020-07-30 日本製鉄株式会社 ピアサープラグ及びその製造方法
US11214855B2 (en) 2017-11-02 2022-01-04 Nippon Steel Corporation Piercer plug and method of manufacturing the same

Also Published As

Publication number Publication date
TWI487800B (zh) 2015-06-11
EP2902522A1 (en) 2015-08-05
EP2902522A4 (en) 2016-06-15
CN104685085B (zh) 2016-10-26
EP2902522B1 (en) 2018-06-27
CN104685085A (zh) 2015-06-03
JP6195570B2 (ja) 2017-09-13
JPWO2014050975A1 (ja) 2016-08-22
BR112015006482A2 (pt) 2017-07-04
BR112015006482B8 (pt) 2020-10-13
TW201420777A (zh) 2014-06-01
BR112015006482B1 (pt) 2020-01-28

Similar Documents

Publication Publication Date Title
JP6195570B2 (ja) シームレス鋼管製造用ピアサープラグ用素材およびその製造方法
CA2888154C (en) Low alloy steel for oil country tubular goods having excellent sulfide stress cracking resistance and manufacturing method therefor
US8673094B2 (en) Case hardening steel and manufacturing method thereof
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
EP3026139A1 (en) Low-alloy steel pipe for oil well and production method therefor
WO2014171472A1 (ja) 肌焼用鋼材と肌焼鋼部品
JP6103156B2 (ja) 低合金油井用鋼管
WO2017150252A1 (ja) 鋼材及び油井用鋼管
JPWO2016052397A1 (ja) 高強度油井用鋼材および油井管
JP3614113B2 (ja) 被削性に優れた軸受要素部品用鋼材
JP5533712B2 (ja) 表面硬化用熱間加工鋼材
JP5644483B2 (ja) 表面硬化用熱間加工鋼材
WO2018021452A1 (ja) 機械構造用鋼
EP2860275B1 (en) Seamless steel pipe for hollow spring
KR101677824B1 (ko) 고강도 스프링용 중공 심리스 파이프
AU2016202249A1 (en) Grinding Media Fabrication
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
KR20100077250A (ko) 고강도 스프링강 및 스프링강선
AU2012393719B9 (en) Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538590

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013842050

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006482

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015006482

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150324