WO2014049914A1 - 回転式圧縮機 - Google Patents
回転式圧縮機 Download PDFInfo
- Publication number
- WO2014049914A1 WO2014049914A1 PCT/JP2013/003812 JP2013003812W WO2014049914A1 WO 2014049914 A1 WO2014049914 A1 WO 2014049914A1 JP 2013003812 W JP2013003812 W JP 2013003812W WO 2014049914 A1 WO2014049914 A1 WO 2014049914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balance weight
- weight mechanism
- rotor
- drive shaft
- rivet
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C29/0057—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/0085—Prime movers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/04—Balancing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/807—Balance weight, counterweight
Definitions
- the present invention relates to a rotary compressor having a balance weight mechanism.
- an electric motor and a compression mechanism are accommodated in a casing.
- the electric motor includes a stator that is fixed to the casing, and a rotor that is inserted into the stator.
- the compression mechanism is connected to the electric motor via the drive shaft.
- the compression mechanism includes a cylinder in which a cylinder chamber is formed, and a piston that is fitted around the eccentric portion of the drive shaft.
- a balance weight mechanism is provided in order to achieve mass balance with the eccentric portion of the drive shaft.
- the balance weight mechanism is formed in a substantially cylindrical shape, and a solid portion and a hollow portion for adjusting the mass balance are formed inside.
- a flat portion is formed at the axially outer end of the balance weight mechanism. The balance weight mechanism is fixed to the rotor by inserting a rivet through the flat portion.
- the balance weight mechanism is attached to the rotor, thereby achieving mass balance with the eccentric portion and reducing the vibration of the compressor. Further, by forming a flat portion in the balance weight mechanism, agitation loss due to rotation of the balance weight mechanism is reduced.
- the present invention has been made in view of such points, and an object thereof is to propose a balance weight mechanism that can sufficiently reduce stirring loss in a rotary compressor.
- 32) includes a rotor core portion (32a) on which a plurality of electromagnetic steel plates are laminated, and a rivet (34) that clamps the rotor core portion (32a) from both sides in the axial direction.
- 60, 70 has an insertion part (68, 78) into which the drive shaft (40) is press-fitted and a flat part (67, 77) that forms a flat surface on the shaft end side of the drive shaft (40). And it is installed in the axial direction edge part of the said rotor (32) so that the head (34b) of the said rivet (34) may be covered.
- the rotor core portion (32a) in which a plurality of electromagnetic steel plates are laminated is sandwiched between the head portions (34b) of the rivets (34).
- the electromagnetic steel plate of a rotor core part (32a) is integrated.
- the balance weight mechanism (60, 70) of the present invention is formed with flat portions (66, 77) that form a flat surface on the shaft end side of the drive shaft (40). For this reason, the stirring loss during rotation of the balance weight mechanism (60, 70) is reduced.
- the balance weight mechanism (60, 70) is installed so as to cover the head (34b) of the rivet (34), the head (34b) of the rivet (34) is supported by the balance weight mechanism (60, 70).
- the head (34b) of the rivet (34) is fitted to the end of the balance weight mechanism (60, 70) on the rotor (32) side.
- a groove (66, 76) is formed.
- the head (34b) of the rivet (34) is fitted into the groove (66, 76) of the balance weight mechanism (60, 70). Thereby, the radial relative position of the balance weight mechanism (60, 70) with respect to the rotor (32) and the drive shaft (40) is determined.
- the balance weight mechanism (60, 70) having the flat portion (67, 77) is installed on the shaft end side of the rotor (32) so as to cover the head (34b) of the rivet (34). Therefore, the stirring loss during rotation of the balance weight mechanism (60, 70) can be reduced.
- the balance weight mechanism (60, 70) rotates the balance weight mechanism (60, 70) without welding because the drive shaft (40) is press-fitted into the insertion part (68, 78) and fixed. It can attach to the axial direction edge part side of a child (32). Therefore, it is possible to prevent the electromagnetic steel sheet of the rotor (32) from being distorted or demagnetized due to heat during welding.
- the centrifugal force of the balance weight mechanism (60, 70) can be received on the drive shaft (40) side. That is, in the present invention, the centrifugal force of the balance weight mechanism (60, 70) does not act on the rotor (32). For this reason, even if the electric motor (30) is rotated at a relatively high speed, the rotor (32) can be prevented from being deformed due to the centrifugal force of the balance weight mechanism (60, 70), and the motor efficiency can be improved. It is possible to prevent the deterioration.
- the rotor (32) and the drive shaft (by connecting the head (34b) of the rivet (34) to the groove (66,76) of the balance weight mechanism (60,70). 40), the relative positioning of the balance weight mechanism (60, 70) in the radial direction can be easily performed. Further, by fitting the head (34b) of the rivet (34) into the groove (66, 76), the groove (66, 76) can be used as a detent for the balance weight mechanism (60, 70).
- FIG. 1 is a longitudinal sectional view of a compressor according to an embodiment.
- FIG. 2 is an enlarged longitudinal sectional view of the electric motor according to the embodiment.
- FIG. 3 is a bottom view of the upper balance weight mechanism according to the embodiment.
- This embodiment is a rotary compressor (10) that compresses a fluid.
- the compressor (10) is applied to a refrigeration apparatus such as an air conditioner or a cooling apparatus.
- the refrigeration apparatus includes a refrigerant circuit filled with a refrigerant, and a compressor is connected to the refrigerant circuit.
- the refrigerant compressed by the compressor (10) is radiated by a condenser (heat radiator), depressurized by a depressurization mechanism, and then a vapor compression type refrigeration cycle is evaporated by the evaporator.
- the compressor (10) includes a vertically long casing (11), an electric motor (30) accommodated in the casing (11), a drive shaft (40), and a compression mechanism (50). ing.
- the casing (11) is a fully sealed cylindrical container.
- the casing (11) includes a cylindrical body (12), a lower boundary plate (13) for closing the lower portion of the body (12), and an upper boundary plate (for closing the upper portion of the body (12)). 14).
- the internal space of the casing (11) is filled with the refrigerant discharged from the compression mechanism (50). That is, the compressor (10) is configured as a so-called high-pressure dome type.
- the internal space of the casing (11) includes a primary space (S1) between the compression mechanism (50) and the electric motor (30) and a secondary space (S2) above the electric motor (30). . Furthermore, an oil reservoir (15) for storing oil is formed at the bottom of the casing (11). The oil reservoir (15) stores oil (lubricating oil) that lubricates the sliding portions such as the compression mechanism (50) and the bearings (53b, 54b).
- the compressor (10) includes a suction pipe (16), a discharge pipe (17), and a terminal (18).
- the suction pipe (16) penetrates the lower portion of the body (12) in the radial direction and is connected to the suction port (58) of the compression mechanism (50).
- the discharge pipe (17) penetrates the upper boundary plate (14) in the axial direction, and the inflow port (17a) communicates with the internal space of the casing (11).
- the inlet (17a) of the discharge pipe (17) is located at the radial center of the secondary space (S2).
- the terminal (18) is a relay terminal for supplying electric power outside the compressor (10) to the electric motor (30).
- the terminal (18) is inserted and fixed inside the upper border plate (14).
- the electric motor (30) is fixed to the inner peripheral surface of the trunk (12) between the inlet (17a) of the discharge pipe (17) and the compression mechanism (50).
- the electric motor (30) includes a stator (31) (stator) fixed to the casing (11), and a rotor (32) (rotor) inserted into the stator (31). .
- a stator (31) statator
- a rotor (32) rotor
- core cuts are formed across both axial ends of the stator (31).
- the core cut forms a fluid flow path having a rectangular or fan-shaped cross section perpendicular to the axis, and communicates the primary space (S1) and the secondary space (S2).
- the stator (31) is configured by laminating electromagnetic steel plates molded by press molding in the axial direction of the drive shaft (40). Coil ends (33) around which coils are wound are formed at both axial ends of the stator (31). Of these coil ends (33), on the upper side of the stator (31) and relatively close to the terminal (18), the wiring (19) from the terminal (18) is connected. .
- a guide plate (20) for guiding the wiring (19) outward in the radial direction is formed on the stator (31) of the present embodiment.
- the guide plate (20) extends upward from the upper coil end (33) of the stator (31), and its upper end is positioned higher than the upper end of the upper balance weight mechanism (60) (details will be described later). is there.
- the rotor (32) includes a rotor core portion (32a) and a pair of end plates (32b) that are stacked on both ends in the axial direction of the rotor core portion (32a). is doing.
- the rotor core portion (32a) is configured by laminating an annular electromagnetic steel plate formed by press molding in the axial direction of the drive shaft (40).
- the end plate (32b) is made of a nonmagnetic material such as stainless steel.
- the rotor (32) of the embodiment is fixed to the drive shaft (40) by shrink fitting, for example.
- the axial length (height) of the stator (31) and the rotor (32) is substantially the same.
- the rotor (32) is arranged so as to slightly shift upward with respect to the stator (31). That is, a non-facing portion that does not face the rotor (32) is formed at the lower end of the stator (31).
- a downward magnetic force (so-called magnet pull force) is generated that attracts the rotor (32) toward the non-opposing portion of the stator (31).
- vertical vibration of the drive shaft (40) is suppressed.
- the electric motor (30) of the embodiment is provided with a plurality of rivets (34) so as to sandwich both axial ends of the rotor (32).
- the rivet (34) includes a pin (34a) penetrating the rotor (32) in the axial direction, a head (34b) formed at both ends of the pin (34a) and having a larger diameter than the pin (34a). have. That is, in the rotor (32), the electromagnetic steel sheet is sandwiched inward in the axial direction by the pair of heads (34b) and integrated.
- four rivets (34) are arranged at equal intervals (90 degrees) in the circumferential direction.
- the drive shaft (40) connects the electric motor (30) and the compression mechanism (50) to drive the compression mechanism (50).
- the drive shaft (40) includes a main shaft portion (41), a crank shaft portion (eccentric portion) (42) connected to the lower end of the main shaft portion (41), and a sub shaft connected to the lower end of the crank shaft portion (42). It has a shaft part (43) and an oil pump (44) connected to the lower end of the auxiliary shaft part (43).
- the main shaft portion (41) and the sub shaft portion (43) are substantially coincident with each other, while the crankshaft portion (42) has an axial center of the main shaft portion (41) and the sub shaft portion (43). It is not.
- the oil pump (44) constitutes a pump mechanism that pumps up the oil in the oil reservoir (15) upward.
- the oil pumped up by the oil pump (44) is supplied to each sliding portion of the compression mechanism (50) and the drive shaft (40) through an oil passage (not shown) inside the drive shaft (40). Used to lubricate sliding parts.
- the cylinder (52) is a substantially annular member fixed to the inner wall of the body (12) of the casing (11).
- a suction port (58) penetrating the cylinder (52) in the radial direction is formed inside the cylinder (52).
- a suction pipe (16) is connected to the inflow end of the suction port (58), and the outflow end of the suction port (58) communicates with the suction portion of the cylinder chamber (C).
- the front head (53) has a disk-like upper closing part (53a) and a main bearing (53b) protruding upward from the central part of the upper closing part (53a).
- the main bearing (53b) rotatably supports the main shaft portion (41) of the drive shaft (40).
- a discharge port (not shown) that penetrates the upper blocking portion (53a) in the axial direction is formed inside the upper blocking portion (53a).
- the inflow end of the discharge port communicates with the discharge part of the cylinder chamber (C), and the outflow end of the discharge port communicates with the primary space (S1) through the muffler space (55a) in the muffler member (55). To do.
- the rear head (54) has a disk-like lower closing part (54a) and a secondary bearing (54b) protruding downward from the central part of the lower closing part (54a).
- the lower closing portion (54a) constitutes a thrust bearing of the crankshaft portion (42).
- the auxiliary bearing (54b) rotatably supports the auxiliary shaft portion (43) of the drive shaft (40).
- the compression mechanism (50) includes an annular piston (56) accommodated in the cylinder chamber (C).
- the piston (56) is fitted on the crankshaft portion (42).
- the cylinder chamber (C) is provided with a blade (not shown) having one end inserted into the cylinder (52) and the other end connected to the outer peripheral surface of the piston (56).
- the blade partitions the inside of the cylinder chamber (C) into a low pressure chamber (low pressure portion) communicating with the suction port (58) and a high pressure chamber (high pressure portion) communicating with the discharge port.
- the compressor (10) includes a pair of balance weight mechanisms (60, 70).
- the balance weight mechanism (60, 70) has a center of gravity decentered by a predetermined amount with respect to the axis of the drive shaft (40), and cancels the centrifugal force of the crankshaft portion (42). Apply centrifugal force to Specifically, in the compressor (10), the upper balance weight mechanism (60) is provided above the rotor (32), and the lower balance weight mechanism (70) is provided below the rotor (32). .
- the centers of gravity of the upper balance weight mechanism (60) and the lower balance weight mechanism (70) are shifted from each other by 180 ° about the axis of the drive shaft (40).
- Each balance weight mechanism (60, 70) includes a main body portion (61, 71) and an annular plate portion (62, 72) formed at the axially outer end of the main body portion (61, 71).
- a main body portion (61, 71) and an annular plate portion (62, 72) formed at the axially outer end of the main body portion (61, 71).
- an annular plate portion (62) is formed on the upper portion of the main body portion (61)
- an annular shape is formed on the lower portion of the main body portion (71).
- a plate portion (72) is formed.
- Each main body (61, 71) is formed in a cylindrical shape through which the drive shaft (40) penetrates in the axial direction.
- Each main body (61, 71) has a substantially fan-shaped solid part (63, 73) formed around the axis of the drive shaft (40) and a circumferential direction from the outer peripheral surface of the solid part (63, 73). And an outer peripheral plate portion (64, 74) having a substantially arc shape that is continuous therewith.
- the solid part (64, 74) is formed over a range exceeding about 180 ° of the main body part (61, 71), for example (see FIG. 3).
- a substantially fan-shaped hollow portion (65, 75) is formed inside the outer peripheral plate portion (64, 74).
- each balance weight mechanism (60, 70) In a state in which each balance weight mechanism (60, 70) is installed at the axial end of the rotor (32), the hollow portion (65, 75) includes a solid portion (63, 73), an outer peripheral plate portion ( 64, 74), the drive shaft (40), and the rotor (32) constitute a closed space.
- the center of gravity of the balance weight mechanism (60, 70) depends on the position and volume of the solid part (64, 74) and the hollow part (65, 75). Adjusted.
- a cylindrical groove (66, 76) is formed on the axially inner end face of each solid part (63, 73) (see FIGS. 2 and 3).
- the upper balance weight mechanism (60) has a groove (66) formed on the lower surface side of the solid portion (63), and the lower balance weight mechanism (70) has an upper surface side of the solid portion (73).
- a groove (76) is formed in the groove.
- two grooves (76) are arranged every 90 ° in the circumferential direction.
- the inner diameter of each groove (76) is slightly larger than the outer diameter of the head (34b) of the corresponding rivet (34).
- each groove (66, 76) constitutes a positioning portion for determining the relative position of the balance weight mechanism (60, 70) with respect to the drive shaft (40).
- the gravity center position of the balance weight mechanism (60, 70) is optimized, and a desired centrifugal force can be applied to the drive shaft (40).
- Each annular plate portion (62, 72) is formed in an annular shape and is formed integrally with the main body portion (61, 62).
- Flat portions (67, 77) forming a horizontal annular plane are formed on the axially outer end surfaces of the annular plate portions (62, 72).
- an annular flat portion (67) is formed above the annular plate portion (62)
- the annular plate portion (72) is formed on the lower side.
- An insertion portion (68, 78) through which the drive shaft (40) passes is formed in the radial center of each annular plate portion (62, 72).
- the inner diameter of the insertion portion (68, 78) is slightly smaller than the outer diameter of the drive shaft (40).
- the drive shaft (40) is press-fitted into the insertion portion (68, 78) of the annular plate portion (62, 72), so that each balance weight mechanism (60 , 70) is fixed to the drive shaft (40).
- the upper balance weight mechanism (60) is positioned by fitting each groove (66) of the upper balance weight mechanism (60) to the upper head (34b) of the corresponding rivet (34). Is called.
- the lower balance weight mechanism (70) is positioned by fitting each groove (76) of the lower balance weight mechanism (70) to the lower head (34b) of the corresponding rivet (34). Is done.
- the main-body part (61,71) and the rotor (32) are not directly fixed, but both are only in contact.
- each balance weight mechanism (60, 70) the axial thickness d1 of the annular plate portion (62, 72) is larger than the radial thickness d2 of the outer peripheral plate portion (64, 74).
- the press-fitting allowance of the insertion part (68,78) of an annular plate part (62,72) is fully ensured.
- the mounting strength of the balance weight mechanism (60, 70) with respect to the drive shaft (40) is increased, and oil can be reliably prevented from flowing through the gap between the insertion portions (68, 78).
- the refrigerant in the primary space (S1) flows upward through the core cut of the electric motor (30), the air gap, the gap of the coil slot, etc., and flows out to the secondary space (S2).
- the refrigerant in the secondary space (S2) flows out to the discharge pipe (17) and is used for the refrigeration cycle of the refrigeration apparatus.
- the oil in the oil reservoir (15) is sucked into the oil pump (44).
- This oil is supplied to the sliding portions of the piston (56) and the bearings (53b, 54b) through the oil flow path inside the drive shaft (40), and is used for lubrication of the sliding portions.
- the oil used for lubrication of the sliding part is separated from the refrigerant in the internal space of the casing (11) and collected in the oil reservoir (15).
- the balance weight mechanisms (60, 70) are installed on both sides of the rotor (32) in the axial direction so as to cover the head (34b) of the rivet (34) of the rotor (32). For this reason, the head (34b) of the rivet (34) or the head (34b) is moved axially outward (first space (S1) or second space (S2)) of each balance weight mechanism (60, 70). ) Is not exposed. That is, in the flat portion (66, 77) of the balance weight mechanism (60, 70) of the present embodiment, a flat surface without unevenness due to the countersink portion or the like is formed, so the balance weight mechanism (60, 70) Agitation loss during rotation can be sufficiently reduced.
- the balance weight mechanism (60, 70) rotates the balance weight mechanism (60, 70) without welding because the drive shaft (40) is press-fitted into the insertion part (68, 78) and fixed. It can attach to the axial direction edge part side of a child (32). Therefore, it is possible to prevent the electromagnetic steel sheet of the rotor (32) from being distorted or demagnetized due to heat during welding.
- the centrifugal force of the balance weight mechanism (60, 70) can be received on the drive shaft (40) side. That is, in the present invention, the centrifugal force of the balance weight mechanism (60, 70) does not act on the rotor (32). For this reason, even if the electric motor (30) is rotated at a relatively high speed, the rotor (32) can be prevented from being deformed due to the centrifugal force of the balance weight mechanism (60, 70), and the motor efficiency can be improved. It is possible to prevent the deterioration.
- each balance weight mechanism (60, 70) is formed with a groove (66, 76) into which the head (34b) of the rivet (34) is fitted at the end on the rotor (32) side. For this reason, the relative position of each balance weight mechanism (60, 70) with respect to the rotor (32) is determined by fitting the head (34b) of the rivet (34) into each groove (66, 76). it can. Moreover, this groove
- the present invention is useful for a rotary compressor provided with a balance weight mechanism.
- Compressor (Rotary compressor) 11 Casing 30 electric motor 31 Stator 32 rotor 32a Rotor core 34 Rivet 34b head 40 Drive shaft 50 Compression mechanism 60 Upper balance weight mechanism (balance weight mechanism) 66,76 groove 67,77 Flat part 68,78 insertion part 70 Lower balance weight mechanism (balance weight mechanism)
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
回転子(32)は、複数の電磁鋼板が積層される回転子コア部(32a)と、該回転子コア部(32a)を軸方向両側から挟持するリベット(34)とを有し、バランスウェイト機構(60,70)は、駆動軸(40)が圧入される挿通部(68,78)と、駆動軸(40)の軸端側に平面を形成する平坦部(67,77)とを有し、リベット(34)の頭部(34b)を覆うように回転子(32)の軸方向端部に設置される。
Description
本発明は、バランスウェイト機構を備えた回転式圧縮機に係るものである。
従来より、流体を圧縮する回転式圧縮機が知られており、冷凍装置等に広く適用されている。
例えば特許文献1に開示の回転式圧縮機は、ケーシング内に電動機と圧縮機構とが収容される。電動機は、ケーシングに固定される固定子と、該固定子の内部に挿通される回転子とを有する。圧縮機構は、駆動軸を介して電動機に連結される。圧縮機構は、シリンダ室が形成されるシリンダと、駆動軸の偏心部に外嵌するピストンとを備えている。電動機へ電力が供給されると、固定子の内部で回転子が回転し、これに伴い駆動軸、ひいてはピストンが回転する。これにより、シリンダ内の圧縮室の容積が縮小し、この圧縮室で流体が圧縮される。
特許文献1に記載の回転式圧縮機では、駆動軸の偏心部との質量バランスを図るために、バランスウェイト機構が設けられる。具体的に、このバランスウェイト機構は、略円柱状に形成され、内部には、質量バランスを調節するための中実部及び中空部が形成される。また、バランスウェイト機構の軸方向外方端部には、平坦部が形成される。バランスウェイト機構は、平坦部にリベットが挿通されることで回転子に固定される。
このように、特許文献1に記載の回転式圧縮機では、回転子にバランスウェイト機構を取り付けることで、偏心部との質量バランスを図り、圧縮機の振動の低減を図っている。また、バランスウェイト機構に平坦部を形成することで、バランスウェイト機構の回転に伴う攪拌損失を低減している。
特許文献1に開示のバランスウェイト機構では、平坦部にリベットの頭部が挿通される座繰り加工が施されている。このため、平坦部では、座繰り加工に起因する凹凸が形成されるため、バランスウェイト機構の回転に起因する攪拌損失を十分に低減できない。
本発明は、かかる点に鑑みてなされたものであり、その目的は、回転式圧縮機において、攪拌損失を十分に低減できるバランスウェイト機構を提案することである。
第1の発明は、ケーシング(11)と、該ケーシング(11)に固定される固定子(31)及び回転子(32)を有する電動機(30)と、該電動機(30)に駆動軸(40)を介して連結される圧縮機構(50)と、該駆動軸(40)に遠心力を作用させるバランスウェイト機構(60,70)とを備えた回転式圧縮機を対象とし、上記回転子(32)は、複数の電磁鋼板が積層される回転子コア部(32a)と、該回転子コア部(32a)を軸方向両側から挟持するリベット(34)とを有し、上記バランスウェイト機構(60,70)は、上記駆動軸(40)が圧入される挿通部(68,78)と、該駆動軸(40)の軸端側に平面を形成する平坦部(67,77)とを有し、上記リベット(34)の頭部(34b)を覆うように上記回転子(32)の軸方向端部に設置されることを特徴とする。
第1の発明では、複数の電磁鋼板が積層された回転子コア部(32a)がリベット(34)の頭部(34b)によって挟持される。これにより、回転子コア部(32a)の電磁鋼板が一体化される。一方、本発明のバランスウェイト機構(60,70)には、駆動軸(40)の軸端側に平面を形成する平坦部(66,77)が形成される。このため、バランスウェイト機構(60,70)の回転時における攪拌損失が低減される。また、バランスウェイト機構(60,70)は、上記リベット(34)の頭部(34b)を覆うように設置されるため、リベット(34)の頭部(34b)がバランスウェイト機構(60,70)の軸方向端面側に露出することがない。つまり、本発明の平坦部(66,77)では、座繰り部等による凹凸のない平面が形成される。このため、バランスウェイト機構(60,70)の回転時における攪拌損失を十分に低減できる。更に、バランスウェイト機構(60,70)は、挿通部(68,78)に駆動軸(40)が圧入されることで、駆動軸(40)に固定される。
第2の発明は、第1の発明において、上記バランスウェイト機構(60,70)における上記回転子(32)側の端部には、上記リベット(34)の頭部(34b)が嵌合する溝(66,76)が形成されることを特徴とする。
第2の発明では、バランスウェイト機構(60,70)の溝(66,76)にリベット(34)の頭部(34b)が嵌合する。これにより、回転子(32)及び駆動軸(40)に対するバランスウェイト機構(60,70)の径方向の相対的な位置が決定される。
本発明によれば、平坦部(67,77)を有するバランスウェイト機構(60,70)が、リベット(34)の頭部(34b)を覆うように回転子(32)の軸端側に設置されるため、バランスウェイト機構(60,70)の回転時における攪拌損失を低減できる。
また、バランスウェイト機構(60,70)は、挿通部(68,78)に駆動軸(40)が圧入されて固定されるため、溶接をせずとも、バランスウェイト機構(60,70)を回転子(32)の軸方向端部側に取り付けることができる。従って、溶接時の熱に起因して、回転子(32)の電磁鋼板が歪んだり、減磁したりすることも防止できる。
更に、バランスウェイト機構(60,70)を駆動軸(40)に圧入して固定すると、バランスウェイト機構(60,70)の遠心力を駆動軸(40)側で受けることができる。つまり、本発明では、バランスウェイト機構(60,70)の遠心力が回転子(32)に作用することがない。このため、電動機(30)を比較的高速で回転させたとしても、バランスウェイト機構(60,70)の遠心力に起因して回転子(32)が変形することを防止でき、ひいてはモータ効率が低下してしまうのを防止できる。
第2の発明によれば、バランスウェイト機構(60,70)の溝(66,76)にリベット(34)の頭部(34b)を嵌合させることで、回転子(32)及び駆動軸(40)に対するバランスウェイト機構(60,70)の径方向の相対的な位置決めを容易に行うことができる。また、溝(66,76)にリベット(34)の頭部(34b)を嵌合させることで、この溝(66,76)をバランスウェイト機構(60,70)の回り止めとして利用できる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
本発明の実施形態について説明する。本実施形態は、流体を圧縮する回転式の圧縮機(10)である。圧縮機(10)は、空気調和装置や冷却装置等の冷凍装置に適用される。具体的に、例えば冷凍装置は、冷媒が充填される冷媒回路を備え、この冷媒回路に圧縮機が接続される。冷媒回路では、圧縮機(10)で圧縮された冷媒が、凝縮器(放熱器)で放熱し、減圧機構で減圧された後、蒸発器で蒸発する蒸気圧縮式の冷凍サイクルが行われる。
〈圧縮機の基本構成〉
図1に示すように、圧縮機(10)は、縦長のケーシング(11)と、該ケーシング(11)内に収容される電動機(30)、駆動軸(40)及び圧縮機構(50)を備えている。ケーシング(11)は、全密閉式の円筒状の容器である。ケーシング(11)は、筒状の胴部(12)と、該胴部(12)の下部を閉塞する下部境板(13)と、該胴部(12)の上部を閉塞する上部境板(14)とを備えている。ケーシング(11)の内部空間は、圧縮機構(50)の吐出冷媒で満たされる。つまり、圧縮機(10)は、いわゆる高圧ドーム式に構成される。また、ケーシング(11)の内部空間は、圧縮機構(50)と電動機(30)との間の一次空間(S1)と、電動機(30)の上側の二次空間(S2)とを含んでいる。更に、ケーシング(11)内の底部には、油が貯留される油溜部(15)が形成される。油溜部(15)には、圧縮機構(50)や軸受(53b,54b)等の各摺動部を潤滑する油(潤滑油)が貯留される。
図1に示すように、圧縮機(10)は、縦長のケーシング(11)と、該ケーシング(11)内に収容される電動機(30)、駆動軸(40)及び圧縮機構(50)を備えている。ケーシング(11)は、全密閉式の円筒状の容器である。ケーシング(11)は、筒状の胴部(12)と、該胴部(12)の下部を閉塞する下部境板(13)と、該胴部(12)の上部を閉塞する上部境板(14)とを備えている。ケーシング(11)の内部空間は、圧縮機構(50)の吐出冷媒で満たされる。つまり、圧縮機(10)は、いわゆる高圧ドーム式に構成される。また、ケーシング(11)の内部空間は、圧縮機構(50)と電動機(30)との間の一次空間(S1)と、電動機(30)の上側の二次空間(S2)とを含んでいる。更に、ケーシング(11)内の底部には、油が貯留される油溜部(15)が形成される。油溜部(15)には、圧縮機構(50)や軸受(53b,54b)等の各摺動部を潤滑する油(潤滑油)が貯留される。
圧縮機(10)は、吸入管(16)と吐出管(17)とターミナル(18)とを備えている。吸入管(16)は、胴部(12)の下側寄りの部位を径方向に貫通し、圧縮機構(50)の吸入ポート(58)に接続される。吐出管(17)は、上部境板(14)を軸方向に貫通し、その流入口(17a)がケーシング(11)の内部空間に連通する。吐出管(17)の流入口(17a)は、二次空間(S2)の径方向中央部に位置する。ターミナル(18)は、圧縮機(10)の外部の電力を電動機(30)へ供給するための中継端子である。ターミナル(18)は、上部境板(14)の内部に挿通されて固定される。
電動機(30)は、吐出管(17)の流入口(17a)と圧縮機構(50)との間において、胴部(12)の内周面に固定されている。電動機(30)は、ケーシング(11)に固定される固定子(31)(ステータ)と、該固定子(31)の内部に挿通される回転子(32)(ロータ)とを有している。固定子(31)の外周面には、該固定子(31)の軸方向の両端に亘ってコアカット(図示省略)が形成される。コアカットは、軸直角断面が矩形状あるいは扇状の流体流路を構成し、一次空間(S1)と二次空間(S2)とを連通させる。
固定子(31)は、プレス成形によって成型された電磁鋼板が、駆動軸(40)の軸方向に積層されて構成される。固定子(31)の軸方向両端部には、コイルが巻回されるコイルエンド(33)が形成される。これらのコイルエンド(33)のうち固定子(31)の上側であって、ターミナル(18)に比較的近いコイルエンド(33)には、ターミナル(18)からの配線(19)が接続される。
また、本実施形態の固定子(31)には、配線(19)を径方向外方へ案内する案内板(20)が形成される。案内板(20)は、固定子(31)の上側のコイルエンド(33)から上方に延びており、その上端が上側バランスウェイト機構(60)(詳細は後述する)の上端よりも高い位置にある。この案内板(20)を設けることにより、電動機(30)の運転時において、回転する上側バランスウェイト機構(60)と配線(19)とが干渉してしまことが回避される。
図2に示すように、回転子(32)は、回転子コア部(32a)と、該回転子コア部(32a)の軸方向両端にそれぞれ積層される一対の端板(32b)とを有している。回転子コア部(32a)は、プレス成形によって成型された環状の電磁鋼板が、駆動軸(40)の軸方向に積層されて構成される。端板(32b)は、例えばステンレス等の非磁性体材料で構成される。
実施形態の回転子(32)は、例えば駆動軸(40)に焼き嵌めによって固定される。固定子(31)と回転子(32)の軸方向の長さ(高さ)は、概ね同じである。一方、回転子(32)は、固定子(31)に対して上方に若干シフトするように配置される。つまり、固定子(31)の下端部には、回転子(32)に対向しない非対向部が形成される。これにより、電動機(30)では、回転子(32)が固定子(31)の非対向部に向かって引き寄せられる下向きの磁気力(いわゆるマグネットプルフォース)が発生する。この結果、駆動軸(40)の上下の振動が抑制される。
実施形態の電動機(30)には、回転子(32)の軸方向両端部を挟み込むように、複数のリベット(34)が設けられる。リベット(34)は、回転子(32)を軸方向に貫通するピン(34a)と、該ピン(34a)の両端に形成され且つ該ピン(34a)よりも大径の頭部(34b)とを有している。つまり、回転子(32)では、一対の頭部(34b)により電磁鋼板が軸方向内方へ挟み込まれて一体化される。本実施形態の回転子(32)では、例えば4本のリベット(34)が周方向に等間隔(90度)おきに配列される。
図1に示すように、駆動軸(40)は、電動機(30)と圧縮機構(50)とを連結し、圧縮機構(50)を駆動する。駆動軸(40)は、主軸部(41)と、該主軸部(41)の下端に連結するクランク軸部(偏心部)(42)と、該クランク軸部(42)の下端に連結する副軸部(43)と、該副軸部(43)の下端に連結する油ポンプ(44)とを有している。主軸部(41)及び副軸部(43)は、これらの軸心が概ね一致する一方、クランク軸部(42)の軸心は、主軸部(41)及び副軸部(43)の軸心とずれている。また、クランク軸部(42)の外径は、主軸部(41)及び副軸部(43)の外径よりも大きい。油ポンプ(44)は、油溜部(15)の油を上方へ汲み上げるポンプ機構を構成する。油ポンプ(44)によって汲み上げられた油は、駆動軸(40)の内部の油通路(図示省略)を通じて、圧縮機構(50)や駆動軸(40)の各摺動部へ供給され、該各摺動部の潤滑に利用される。
圧縮機構(50)は、ケーシング(11)の胴部(12)の内壁に固定されるピストン収容部(51)と、該ピストン収容部(51)に収容されるピストン(56)とを備えている。ピストン収容部(51)は、環状のシリンダ(52)と、該シリンダ(52)の上側開放部を閉塞するフロントヘッド(53)と、該シリンダ(52)の下側開放部を閉塞するリヤヘッド(54)とを有している。これにより、ピストン収容部(51)の内部には、シリンダ(52)とフロントヘッド(53)とリヤヘッド(54)との間に円柱状のシリンダ室(C)が形成される。
シリンダ(52)は、ケーシング(11)の胴部(12)の内壁に固定される略環状の部材である。シリンダ(52)の内部には、該シリンダ(52)を径方向に貫通する吸入ポート(58)が形成される。吸入ポート(58)の流入端には、吸入管(16)が接続され、該吸入ポート(58)の流出端は、シリンダ室(C)の吸入部に連通する。
フロントヘッド(53)は、円板状の上側閉塞部(53a)と、該上側閉塞部(53a)の中央部から上方へ突出する主軸受(53b)とを有している。主軸受(53b)は、駆動軸(40)の主軸部(41)を回転可能に支持している。上側閉塞部(53a)の内部には、該上側閉塞部(53a)を軸方向に貫通する吐出ポート(図示省略)が形成される。吐出ポートの流入端は、シリンダ室(C)の吐出部に連通し、該吐出ポートの流出端は、マフラー部材(55)内の消音空間(55a)を介して、一次空間(S1)と連通する。
リヤヘッド(54)は、円板状の下側閉塞部(54a)と、該下側閉塞部(54a)の中央部から下方へ突出する副軸受(54b)とを有している。下側閉塞部(54a)は、クランク軸部(42)のスラスト軸受を構成する。副軸受(54b)は、駆動軸(40)の副軸部(43)を回転可能に支持している。
圧縮機構(50)は、シリンダ室(C)に収容される環状のピストン(56)を備えている。ピストン(56)は、クランク軸部(42)に外嵌している。また、シリンダ室(C)には、一端がシリンダ(52)の内部に挿通され、他端がピストン(56)の外周面に連結するブレード(図示省略)が設けられる。このブレードは、シリンダ室(C)の内部を、吸入ポート(58)に連通する低圧室(低圧部)と吐出ポートに連通する高圧室(高圧部)とに区画する。
駆動軸(40)の回転に伴いクランク軸部(42)が偏心回転すると、ピストン(56)がシリンダ室(C)で偏心回転する。これに伴い低圧室の容積が拡大されると、冷媒が吸入ポート(58)を通じて低圧室へ吸入される。同時に、高圧室の容積が縮小されると、高圧室の冷媒の圧力が高くなる。高圧室の内圧が所定値を越えると、吐出ポートの弁機構(例えばリード弁)が開放され、冷媒が吐出ポートを通じて一次空間(S1)へ吐出される。
〈バランスウェイト機構の構成〉
図2に示すように、実施形態に係る圧縮機(10)は、一対のバランスウェイト機構(60,70)を有している。バランスウェイト機構(60,70)は、駆動軸(40)の軸心に対して所定量偏心した重心を有し、クランク軸部(42)の遠心力を相殺するように、駆動軸(40)に遠心力を作用させる。具体的に、圧縮機(10)では、回転子(32)の上側に上側バランスウェイト機構(60)が設けられ、回転子(32)の下側に下側バランスウェイト機構(70)が設けられる。上側バランスウェイト機構(60)と、下側バランスウェイト機構(70)の重心は、駆動軸(40)の軸心を中心として互いに180°ずれている。
図2に示すように、実施形態に係る圧縮機(10)は、一対のバランスウェイト機構(60,70)を有している。バランスウェイト機構(60,70)は、駆動軸(40)の軸心に対して所定量偏心した重心を有し、クランク軸部(42)の遠心力を相殺するように、駆動軸(40)に遠心力を作用させる。具体的に、圧縮機(10)では、回転子(32)の上側に上側バランスウェイト機構(60)が設けられ、回転子(32)の下側に下側バランスウェイト機構(70)が設けられる。上側バランスウェイト機構(60)と、下側バランスウェイト機構(70)の重心は、駆動軸(40)の軸心を中心として互いに180°ずれている。
各バランスウェイト機構(60,70)は、本体部(61,71)と、該本体部(61,71)の軸方向外方端部に形成される環状板部(62,72)とをそれぞれ有している。具体的に、上側バランスウェイト機構(60)では、本体部(61)の上部に環状板部(62)が形成され、下側バランスウェイト機構(70)では、本体部(71)の下部に環状板部(72)が形成される。各本体部(61,71)は、駆動軸(40)が軸方向に貫通する筒状に形成される。各本体部(61,71)は、駆動軸(40)の軸周りに形成される略扇状の中実部(63,73)と、該中実部(63,73)の外周面から周方向に連続する略円弧状の外周板部(64,74)とを有している。中実部(64,74)は、例えば本体部(61,71)の約180°を越える範囲に亘って形成される(図3を参照)。外周板部(64,74)の内側には、略扇状の中空部(65,75)が形成される。各バランスウェイト機構(60,70)が、回転子(32)の軸方向端部に設置される状態において、中空部(65,75)は、中実部(63,73)、外周板部(64,74)、駆動軸(40)、及び回転子(32)によって閉塞される閉空間を構成する。このように、各バランスウェイト機構(60,70)では、中実部(64,74)及び中空部(65,75)の位置及び容積に応じて、バランスウェイト機構(60,70)の重心が調節される。
各中実部(63,73)の軸方向内方端面には、円柱状の溝(66,76)が形成される(図2及び図3を参照)。具体的に、上側バランスウェイト機構(60)では、中実部(63)の下面側に溝(66)が形成され、下側バランスウェイト機構(70)では、中実部(73)の上面側に溝(76)が形成される。本実施形態の中実部(63,73)には、例えば2つの溝(76)が周方向に90°おきに配置される。各溝(76)の内径は、対応するリベット(34)の頭部(34b)の外径よりも僅かに大きい。各バランスウェイト機構(60,70)の取付状態では、リベット(34)の頭部(34b)が、対応する溝(66,76)にそれぞれ嵌合する。つまり、各溝(66,76)は、駆動軸(40)に対するバランスウェイト機構(60,70)の相対位置を決めるための位置決め部を構成する。これにより、バランスウェイト機構(60,70)の重心位置が最適化され、駆動軸(40)に対して所望の遠心力を作用させることができる。
各環状板部(62,72)は、円環状に形成され、本体部(61,62)と一体に成形される。環状板部(62,72)の軸方向外方端面には、水平な環状の平面を形成する平坦部(67,77)が形成される。具体的に、上側バランスウェイト機構(60)では、環状板部(62)の上側に環状の平坦部(67)が形成され、下側バランスウェイト機構(70)では、環状板部(72)の下側に環状の平坦部(77)が形成される。このように、各バランスウェイト機構(60,70)に平坦部(67,77)を形成することで、電動機(30)を比較的高速回転で運転したとしても、バランスウェイト機構(60,70)の回転に起因する攪拌損失を低減できる。
各環状板部(62,72)の径方向中央部には、駆動軸(40)が貫通する挿通部(68,78)が形成される。各バランスウェイト機構(60,70)の取り付け前の状態では、挿通部(68,78)の内径が、駆動軸(40)の外径よりも僅かに小さい。そして、各バランスウェイト機構(60,70)の取り付け時には、環状板部(62,72)の挿通部(68,78)に駆動軸(40)が圧入されることで、各バランスウェイト機構(60,70)が駆動軸(40)に固定される。この際、上側バランスウェイト機構(60)の各溝(66)を、対応するリベット(34)の上側の頭部(34b)に嵌合させることで、上側バランスウェイト機構(60)の位置決めが行われる。また、下側バランスウェイト機構(70)の各溝(76)を、対応するリベット(34)の下側の頭部(34b)に嵌合させることで、下側バランスウェイト機構(70)の位置決めが行われる。なお、各バランスウェイト機構(60,70)の取り付け状態では、本体部(61,71)と回転子(32)とが直に固定されておらず、両者は単に接触しているだけである。
各バランスウェイト機構(60,70)の環状板部(62,72)の挿通部(68,78)に駆動軸(40)を圧入することで、環状板部(62,72)と駆動軸(40)とが密着する。これにより、バランスウェイト機構(60,70)が駆動軸(40)に固定されるとともに、環状板部(62,72)と駆動軸(40)との隙間が封止される。
また、各バランスウェイト機構(60,70)では、環状板部(62,72)の軸方向の厚みd1が、外周板部(64,74)の径方向の厚みd2よりも大きくなっている。これにより、各バランスウェイト機構(60,70)では、環状板部(62,72)の挿通部(68,78)の圧入代が十分確保される。この結果、バランスウェイト機構(60,70)の駆動軸(40)に対する取り付け強度が増大するとともに、挿通部(68,78)の隙間での油の流通を確実に防止できる。
-運転動作-
次いで、実施形態の圧縮機(10)の運転動作について図1を参照しながら説明する。電動機(30)が運転状態になると、固定子(31)と回転子(32)との間に回転磁界が発生し、回転子(32)、ひいては駆動軸(40)が回転駆動される。駆動軸(40)とともにクランク軸部(42)が回転すると、シリンダ室(C)でピストン(56)が旋回する。これにより、吸入ポート(58)からシリンダ室(C)へ冷媒が吸入されるとともに、シリンダ室(C)で冷媒が圧縮される。圧縮された後の高圧冷媒は、吐出ポート、消音空間(55a)を介して一次空間(S1)へ流出する。一次空間(S1)の冷媒は、電動機(30)のコアカットや、エアギャップ、コイルスロットの隙間等を通じて、上方へ流れ、二次空間(S2)へ流出する。二次空間(S2)の冷媒は、吐出管(17)へ流出し、冷凍装置の冷凍サイクルに利用される。
次いで、実施形態の圧縮機(10)の運転動作について図1を参照しながら説明する。電動機(30)が運転状態になると、固定子(31)と回転子(32)との間に回転磁界が発生し、回転子(32)、ひいては駆動軸(40)が回転駆動される。駆動軸(40)とともにクランク軸部(42)が回転すると、シリンダ室(C)でピストン(56)が旋回する。これにより、吸入ポート(58)からシリンダ室(C)へ冷媒が吸入されるとともに、シリンダ室(C)で冷媒が圧縮される。圧縮された後の高圧冷媒は、吐出ポート、消音空間(55a)を介して一次空間(S1)へ流出する。一次空間(S1)の冷媒は、電動機(30)のコアカットや、エアギャップ、コイルスロットの隙間等を通じて、上方へ流れ、二次空間(S2)へ流出する。二次空間(S2)の冷媒は、吐出管(17)へ流出し、冷凍装置の冷凍サイクルに利用される。
また、電動機(30)の運転に伴い駆動軸(40)が回転すると、油溜部(15)の油が油ポンプ(44)に吸引される。この油は、駆動軸(40)の内部の油流路を通じて、ピストン(56)や各軸受(53b,54b)の摺動部へ供給され、この摺動部の潤滑に利用される。摺動部の潤滑に利用された油は、ケーシング(11)の内部空間で冷媒と分離され、油溜部(15)に回収される。
-実施形態の効果-
上記実施形態では、回転子(32)のリベット(34)の頭部(34b)を覆うように、回転子(32)の軸方向両側にバランスウェイト機構(60,70)が設置される。このため、各バランスウェイト機構(60,70)の軸方向外方(第1空間(S1)や第2空間(S2))へ、リベット(34)の頭部(34b)や、頭部(34b)に対応する座繰り部が露出されることがない。つまり、本実施形態のバランスウェイト機構(60,70)の平坦部(66,77)では、座繰り部等に起因する凹凸のない平面が形成されるため、バランスウェイト機構(60,70)の回転時の攪拌損失を十分に低減できる。
上記実施形態では、回転子(32)のリベット(34)の頭部(34b)を覆うように、回転子(32)の軸方向両側にバランスウェイト機構(60,70)が設置される。このため、各バランスウェイト機構(60,70)の軸方向外方(第1空間(S1)や第2空間(S2))へ、リベット(34)の頭部(34b)や、頭部(34b)に対応する座繰り部が露出されることがない。つまり、本実施形態のバランスウェイト機構(60,70)の平坦部(66,77)では、座繰り部等に起因する凹凸のない平面が形成されるため、バランスウェイト機構(60,70)の回転時の攪拌損失を十分に低減できる。
また、バランスウェイト機構(60,70)は、挿通部(68,78)に駆動軸(40)が圧入されて固定されるため、溶接をせずとも、バランスウェイト機構(60,70)を回転子(32)の軸方向端部側に取り付けることができる。従って、溶接時の熱に起因して、回転子(32)の電磁鋼板が歪んだり、減磁したりすることも防止できる。
更に、バランスウェイト機構(60,70)を駆動軸(40)に圧入して固定すると、バランスウェイト機構(60,70)の遠心力を駆動軸(40)側で受けることができる。つまり、本発明では、バランスウェイト機構(60,70)の遠心力が回転子(32)に作用することがない。このため、電動機(30)を比較的高速で回転させたとしても、バランスウェイト機構(60,70)の遠心力に起因して回転子(32)が変形することを防止でき、ひいてはモータ効率が低下してしまうのを防止できる。
また、各バランスウェイト機構(60,70)には、回転子(32)側の端部にそれぞれリベット(34)の頭部(34b)が嵌合する溝(66,76)が形成される。このため、リベット(34)の頭部(34b)を各溝(66,76)に嵌合させることで、回転子(32)に対する各バランスウェイト機構(60,70)の相対的な位置を決定できる。また、この溝(66,76)を、駆動軸(40)に対するバランスウェイト機構(60,70)の回り止めとして利用できる。
以上説明したように、本発明は、バランスウェイト機構を備えた回転式圧縮機について有用である。
10 圧縮機(回転式圧縮機)
11 ケーシング
30 電動機
31 固定子
32 回転子
32a 回転子コア部
34 リベット
34b 頭部
40 駆動軸
50 圧縮機構
60 上側バランスウェイト機構(バランスウェイト機構)
66,76 溝
67,77 平坦部
68,78 挿通部
70 下側バランスウェイト機構(バランスウェイト機構)
11 ケーシング
30 電動機
31 固定子
32 回転子
32a 回転子コア部
34 リベット
34b 頭部
40 駆動軸
50 圧縮機構
60 上側バランスウェイト機構(バランスウェイト機構)
66,76 溝
67,77 平坦部
68,78 挿通部
70 下側バランスウェイト機構(バランスウェイト機構)
Claims (2)
- ケーシング(11)と、該ケーシング(11)に固定される固定子(31)及び回転子(32)を有する電動機(30)と、該電動機(30)に駆動軸(40)を介して連結される圧縮機構(50)と、該駆動軸(40)に遠心力を作用させるバランスウェイト機構(60,70)とを備えた回転式圧縮機であって、
上記回転子(32)は、複数の電磁鋼板が積層される回転子コア部(32a)と、該回転子コア部(32a)を軸方向両側から挟持するリベット(34)とを有し、
上記バランスウェイト機構(60,70)は、上記駆動軸(40)が圧入される挿通部(68,78)と、該駆動軸(40)の軸端側に平面を形成する平坦部(67,77)とを有し、上記リベット(34)の頭部(34b)を覆うように上記回転子(32)の軸方向端部に設置される
ことを特徴とする回転式圧縮機。 - 請求項1において、
上記バランスウェイト機構(60,70)における上記回転子(32)側の端部には、上記リベット(34)の頭部(34b)が嵌合する溝(66,76)が形成される
ことを特徴とする回転式圧縮機。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES13841784.5T ES2632811T3 (es) | 2012-09-28 | 2013-06-19 | Compresor rotatorio |
CN201380048481.7A CN104641115B (zh) | 2012-09-28 | 2013-06-19 | 回转式压缩机 |
US14/432,165 US9748815B2 (en) | 2012-09-28 | 2013-06-19 | Rotary compressor with the balance weight formed with a recess for receiving the head of a rivet |
EP13841784.5A EP2905470B1 (en) | 2012-09-28 | 2013-06-19 | Rotary compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012217961A JP5459375B1 (ja) | 2012-09-28 | 2012-09-28 | 回転式圧縮機 |
JP2012-217961 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014049914A1 true WO2014049914A1 (ja) | 2014-04-03 |
Family
ID=50387369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003812 WO2014049914A1 (ja) | 2012-09-28 | 2013-06-19 | 回転式圧縮機 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9748815B2 (ja) |
EP (1) | EP2905470B1 (ja) |
JP (1) | JP5459375B1 (ja) |
CN (1) | CN104641115B (ja) |
ES (1) | ES2632811T3 (ja) |
WO (1) | WO2014049914A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180291903A1 (en) * | 2015-10-16 | 2018-10-11 | Daikin Industries, Ltd. | Compressor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10954944B2 (en) * | 2015-04-27 | 2021-03-23 | Emerson Climate Technologies, Inc. | Compressor having counterweight assembly |
WO2018147430A1 (ja) * | 2017-02-09 | 2018-08-16 | ダイキン工業株式会社 | 圧縮機 |
CN110603716B (zh) * | 2017-05-01 | 2022-11-18 | 三菱电机株式会社 | 转子、电动机、压缩机及空调装置 |
KR102051097B1 (ko) * | 2018-06-07 | 2019-12-02 | 엘지전자 주식회사 | 압축기 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005192398A (ja) * | 2001-03-30 | 2005-07-14 | Sanyo Electric Co Ltd | 誘導同期電動機 |
JP2006125211A (ja) * | 2004-10-26 | 2006-05-18 | Mitsubishi Electric Corp | スクロール圧縮機 |
JP2007154657A (ja) | 2003-10-28 | 2007-06-21 | Matsushita Electric Ind Co Ltd | 圧縮機 |
JP2010144528A (ja) * | 2008-12-16 | 2010-07-01 | Mitsubishi Electric Corp | 圧縮機 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004046440B4 (de) * | 2004-09-24 | 2018-05-24 | Siemens Aktiengesellschaft | Rotor mit Klemmeinrichtung |
CN101443982B (zh) * | 2005-05-12 | 2012-10-31 | Lg电子株式会社 | 同步磁阻电动机的转子 |
US20080267799A1 (en) * | 2007-03-28 | 2008-10-30 | Samsung Gwangju Electronics Co., Ltd. | Hermetic type compressor |
JP5080287B2 (ja) * | 2008-01-09 | 2012-11-21 | 株式会社日立産機システム | 圧縮機用電動機 |
CN101684795A (zh) * | 2008-09-28 | 2010-03-31 | 乐金电子(天津)电器有限公司 | 封闭式压缩机 |
JP4696153B2 (ja) * | 2008-12-15 | 2011-06-08 | 日立アプライアンス株式会社 | 回転型圧縮機 |
DE202012002024U1 (de) * | 2012-02-28 | 2012-03-12 | Continental Automotive Gmbh | Rotierende elektrische Maschine |
-
2012
- 2012-09-28 JP JP2012217961A patent/JP5459375B1/ja active Active
-
2013
- 2013-06-19 US US14/432,165 patent/US9748815B2/en active Active
- 2013-06-19 ES ES13841784.5T patent/ES2632811T3/es active Active
- 2013-06-19 EP EP13841784.5A patent/EP2905470B1/en active Active
- 2013-06-19 WO PCT/JP2013/003812 patent/WO2014049914A1/ja active Application Filing
- 2013-06-19 CN CN201380048481.7A patent/CN104641115B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005192398A (ja) * | 2001-03-30 | 2005-07-14 | Sanyo Electric Co Ltd | 誘導同期電動機 |
JP2007154657A (ja) | 2003-10-28 | 2007-06-21 | Matsushita Electric Ind Co Ltd | 圧縮機 |
JP2006125211A (ja) * | 2004-10-26 | 2006-05-18 | Mitsubishi Electric Corp | スクロール圧縮機 |
JP2010144528A (ja) * | 2008-12-16 | 2010-07-01 | Mitsubishi Electric Corp | 圧縮機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2905470A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180291903A1 (en) * | 2015-10-16 | 2018-10-11 | Daikin Industries, Ltd. | Compressor |
Also Published As
Publication number | Publication date |
---|---|
EP2905470A1 (en) | 2015-08-12 |
EP2905470B1 (en) | 2017-04-12 |
EP2905470A4 (en) | 2016-08-03 |
US20150244238A1 (en) | 2015-08-27 |
JP5459375B1 (ja) | 2014-04-02 |
US9748815B2 (en) | 2017-08-29 |
ES2632811T3 (es) | 2017-09-15 |
CN104641115A (zh) | 2015-05-20 |
CN104641115B (zh) | 2017-02-08 |
JP2014070585A (ja) | 2014-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4143827B2 (ja) | スクロール圧縮機 | |
US9429156B2 (en) | Compressor | |
JP6680779B2 (ja) | 圧縮機、および冷凍サイクル装置 | |
WO2014049914A1 (ja) | 回転式圧縮機 | |
EP1967737A1 (en) | Rotary compressor | |
JP2011250537A (ja) | アキシャルギャップ型モータ、流体機械、及び流体機械の組立て方法 | |
JP6048044B2 (ja) | 回転式圧縮機 | |
JP2009131026A (ja) | 電動機及びそれを搭載した冷媒圧縮機 | |
WO2006106753A1 (ja) | スクロール型流体機械 | |
CN110662902B (zh) | 密封制冷压缩机及制冷装置 | |
JP7042455B2 (ja) | 圧縮機 | |
JP2014148916A (ja) | 圧縮機 | |
JP6136167B2 (ja) | 回転式圧縮機 | |
JP5575000B2 (ja) | 密閉型圧縮機 | |
JP2000287424A (ja) | ロータリ圧縮機の回転子及びこの回転子の製造方法 | |
US11378080B2 (en) | Compressor | |
WO2023012852A1 (ja) | 密閉型圧縮機および冷凍サイクル装置 | |
JP6324624B2 (ja) | 冷媒圧縮機及びそれを備えた蒸気圧縮式冷凍サイクル装置 | |
JP6091575B2 (ja) | 密閉型圧縮機、及びこの密閉型圧縮機を備えた冷凍サイクル装置 | |
WO2018189827A1 (ja) | 密閉型圧縮機及び冷凍サイクル装置 | |
WO2017212598A1 (ja) | 密閉型圧縮機及び空気調和機 | |
JP2023077785A (ja) | 電動圧縮機及び製造方法 | |
JP2013231442A (ja) | 密閉型圧縮機、及びこの密閉型圧縮機を備えた冷凍サイクル装置 | |
JP5688903B2 (ja) | 冷凍サイクル装置 | |
JP5322701B2 (ja) | 密閉型圧縮機、及びこれを備えた冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13841784 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013841784 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013841784 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14432165 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |