WO2014046250A1 - 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法 - Google Patents

1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2014046250A1
WO2014046250A1 PCT/JP2013/075540 JP2013075540W WO2014046250A1 WO 2014046250 A1 WO2014046250 A1 WO 2014046250A1 JP 2013075540 W JP2013075540 W JP 2013075540W WO 2014046250 A1 WO2014046250 A1 WO 2014046250A1
Authority
WO
WIPO (PCT)
Prior art keywords
dichloro
trifluoropropene
reaction
trifluoropropane
base
Prior art date
Application number
PCT/JP2013/075540
Other languages
English (en)
French (fr)
Inventor
祥雄 西口
覚 岡本
冬彦 佐久
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2014536940A priority Critical patent/JP6183370B2/ja
Publication of WO2014046250A1 publication Critical patent/WO2014046250A1/ja
Priority to US14/663,418 priority patent/US9090530B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Definitions

  • the present invention relates to a method for producing 1,2-dichloro-3,3,3-trifluoropropene.
  • 1,2-dichloro-3,3,3-trifluoropropene has an unsaturated bond and is expected to function as a cleaning agent or refrigerant as chlorofluorocarbon (HCFC), which is more easily decomposed in the atmosphere. Yes.
  • Non-Patent Document 1 discloses a method in which 1,2,3,3,3-pentachloropropene is subjected to a liquid phase reaction with antimony trifluoride.
  • Non-Patent Document 2 discloses a method of adding antimony pentachloride and reacting 1,1,2,3,3-pentachloropropene with antimony trifluoride in a liquid phase.
  • Non-Patent Document 3 discloses a method of manufacturing by adding solid potassium hydroxide to liquid 1,2,2-trichloro-3,3,3-trifluoropropane and performing a reflux operation while heating. Has been.
  • Patent Document 1 discloses that 1,2-dichloro-3,3,3-trifluoropropene and methanol in the presence of potassium hydroxide. It is disclosed that 1-chloro-2-methoxy-3,3,3-trifluoropropene is produced upon reaction.
  • Patent Document 2 discloses that 1-chloro-3,3,3-trifluoropropyne is produced by reaction of 1,2-dichloro-3,3,3-trifluoropropene with a base. Yes.
  • Non-Patent Document 3 the reaction is performed by dispersing powdered potassium hydroxide in liquid 1,2,2-trichloro-3,3,3-trifluoropropane. Since the rate was low (48%) and the reaction was heterogeneous, it was difficult to say that it was efficient in terms of an industrial production method.
  • the present invention is as follows.
  • the reaction proceeds from 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane to propynes such as 1-chloro-3,3,3-trifluoropropyne.
  • the reaction can be stopped with an alkene compound. Therefore, side reaction products other than 1,2-dichloro-3,3,3-trifluoropropene can be suppressed, and 1,2-dichloro-3,3,3-trifluoropropene can be produced in a higher yield. Can be obtained.
  • Invention 1 is characterized in that the reaction of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane and a base is carried out in the absence of a phase transfer catalyst or a compatibilizing agent.
  • 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane in the reaction of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane with a base, 1,2-dichloro-3,3,3-trifluoropropene Side reaction products other than the above can be suppressed, and 1,2-dichloro-3,3,3-trifluoropropene can be obtained in a higher yield.
  • the base is at least one inorganic base selected from the group consisting of alkali metal alkoxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydroxides, and alkaline earth metal hydroxides; The manufacturing method of invention 1 or 2 which exists.
  • invention 4 4. The invention according to any one of inventions 1 to 3, wherein the 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane is 1,1,2-trichloro-3,3,3-trifluoropropane. Manufacturing method.
  • 1,2-dichloro-3,3,3-trifluoropropene can be obtained in a high yield by a simple method. Therefore, it is possible to provide a production method that can easily carry out 1,2-dichloro-3,3,3-trifluoropropene on an industrial scale.
  • 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane is reacted with a base in a liquid phase, and 1,2-dichloro-3,3,3- produced by the reaction is reacted.
  • the starting material of the present invention 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane, is represented by the following formula [1].
  • 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane examples include 1,1,2-trichloro-3,3,3-trifluoropropane or 1,2-dichloro -1,3,3,3-tetrafluoropropane and 1-bromo-1,2-dichloro-3,3,3-trifluoropropane.
  • 1,1,2-trichloro-3,3,3-trifluoropropane is preferably used because of its availability and usefulness of the resulting compound.
  • hydrogen chloride produced together with 1,2-dichloro-3,3,3-trifluoropropene is used industrially be able to.
  • the method for producing 1,2-dichloro-3,3,3-trifluoropropene of the present invention performs the reaction in the liquid phase.
  • the starting material of the present invention 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane, is in a liquid state at room temperature and normal pressure, and it is not necessary to add a separate solvent. Of course, it is also possible to carry out by adding a solvent.
  • a phase transfer catalyst and / or a compatibilizing agent may be generally used as an additive in order to promote the reaction between the organic phase starting material and the aqueous phase base.
  • a phase transfer catalyst and / or a compatibilizing agent can be used as an additive in addition to the solvent.
  • the method of the present invention is more preferably carried out in the absence of a phase transfer catalyst and a compatibilizing agent.
  • 1,2-dichloro-3,3,3-trifluoropropene is reacted with a base in the absence of a phase transfer catalyst and a compatibilizing agent, 1-chloro-3,3,3-trifluoro is obtained.
  • the phase transfer catalyst means “in a reaction system of an aqueous phase containing a nucleophilic anion and a nonpolar organic phase containing an organic substrate which reacts with the nucleophilic anion present in the aqueous phase and its own anion.
  • a substance having a function of promoting the reaction by reciprocating the aqueous phase and the organic phase and transferring the nucleophilic anion to the organic substrate present in the organic phase for example, a generally known crown Mention may be made of ethers, cryptands or onium salts.
  • the compatibilizing agent means “a substance that increases the compatibility by reducing the interfacial tension of mutually incompatible substances”, and examples thereof include generally known methanol, ethanol, and propanol. .
  • the base used in the reaction is preferably an alkali metal hydroxide or an alkaline earth metal hydroxide because it is economical and easy to handle.
  • the alkali metal is lithium, sodium, potassium, rubidium, or cesium
  • the alkaline earth metal is magnesium, calcium, or strontium.
  • alkali metal hydroxide or alkaline earth metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and strontium hydroxide. It is done. Of these, potassium hydroxide, sodium hydroxide, calcium hydroxide, and magnesium hydroxide are preferable, and potassium hydroxide and sodium hydroxide are particularly preferable because they are inexpensive and can be industrially obtained in large quantities.
  • Specific examples of the alkali metal alkoxide include sodium methoxide and sodium ethoxide.
  • the base used in the present invention may be used alone or in combination of two or more.
  • the amount of the base used in the present invention is required to be at least 1 mol per 1 mol of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane, and usually 1 mol or more per 1 mol of the propane.
  • the range of 10 mol or less may be appropriately selected, preferably 1 mol or more and 4 mol or less, more preferably 1 mol or more and 2 mol or less.
  • it is possible to use more than 10 moles of base per mole of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane there is no merit of using a large amount.
  • the conversion rate of the reaction may decrease.
  • unreacted 1-chloro-2-halogeno-3,3,3-trifluoropropene may be recovered during the purification operation after the reaction and recycled to the next reaction.
  • the method for producing 1,2-dichloro-3,3,3-trifluoropropene of the present invention comprises 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane in the liquid phase. Perform a reaction with a base.
  • the starting material of the present invention, 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane is in a liquid state at room temperature and normal pressure, and it is not necessary to add a separate solvent.
  • the base used in the present invention may be added as an aqueous solution by separately adding water as a solvent when the base is solid at normal temperature and pressure for ease of workability.
  • concentration of the aqueous solution may be appropriately adjusted by those skilled in the art to such an extent that the reaction proceeds sufficiently and the base is sufficiently dissolved in the solvent.
  • concentration of the aqueous solution varies depending on the compound used as the base. For example, in the case of an aqueous potassium hydroxide solution, it is usually 5% by mass to 75% by mass, preferably 10% by mass to 60% by mass, The range of mass% or more and 50 mass% or less is more preferable.
  • the produced 1,2-dichloro-3,3,3-trifluoropropene is removed from the reaction system.
  • 1,2-dichloro-3,3,3-trifluoropropene is inhibited from producing 1-chloro-3,3,3-trifluoropropyne by dehydrohalogenation reaction.
  • the concentration of 1,2-dichloro-3,3,3-trifluoropropene in the reaction system decreases. Therefore, a decrease in reaction rate can be suppressed.
  • the reaction pressure is not particularly limited, but the product 1,2-dichloro-3,3,3-trifluoropropene (standard boiling point 53.7 ° C.) is withdrawn from the reaction system as a gas. Operation under pressure is preferable, and operation under atmospheric pressure conditions is more preferable.
  • the reaction temperature is 1,2-dichloro-3,3,3-trifluoropropene (normal boiling point 53.7 ° C.), which is a product, extracted as a gas out of the reaction system. -Desirably above the boiling point of dichloro-3,3,3-trifluoropropene.
  • the reaction temperature is preferably 55 ° C or higher and 75 ° C or lower.
  • the material is not particularly limited as long as it can withstand pressure, and may be general stainless steel, glass, fluororesin, or a reaction vessel made of material lined with glass or fluororesin.
  • a pressure-resistant reaction vessel may be used, in the case of a liquefied state, the reaction proceeds without increasing the pressure in the reaction system so much that it can be carried out at normal pressure. Not so big.
  • 1,2-dichloro-3,3,3-trifluoropropene obtained by the method of the present invention exists as a liquid at normal temperature and normal pressure. Therefore, the gas obtained by the reaction of 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane with a base, ie, the produced 1,2-dichloro-3,3,3-trifluoro Propene is extracted out of the reaction system, passed through a cooled condenser to be condensed, and then subjected to further precision distillation to obtain 1,2-dichloro-3,3,3-trifluoropropene of high purity. .
  • the 1,2-dichloro-3,3,3-trifluoropropene produced is obtained as a mixture of cis and trans stereoisomers, but is purified by high-purity cis-1,2-dichloro. -3,3,3-trifluoropropene and trans-1,2-dichloro-3,3,3-trifluoropropene can be obtained.
  • 1,2-Dichloro-1-halogeno-3,3,3-trifluoropropane and 1,2-dichloro-3,3,3-trifluoropropene produced by the reaction of the base are extracted and recovered from the reaction system.
  • the produced 1,2-dichloro-3,3,3-trifluoropropene is preferably extracted continuously or semi-continuously, and can be adjusted appropriately by those skilled in the art. can do.
  • composition containing 1,1,2-trichloro-3,3,3-trifluoropropane mainly includes 1,1,2-trichloro-3,3,3-trifluoropropane. It represents a mixture of reaction products, unreacted raw materials and reaction by-products as components.
  • a composition containing 1,2-dichloro-3,3,3-trifluoropropene means a reaction product containing 1,2-dichloro-3,3,3-trifluoropropene as a main component, Represents a mixture of unreacted raw materials and reaction by-products.
  • Example 1 Example in which neither compatibilizing agent nor phase transfer catalyst is used] A 1000 ml glass reactor equipped with a gas inlet was cooled in an ice-water bath at 0 ° C., and 554.1 g (4.24 mol) of trans-1-chloro-3,3,3-trifluoropropene was charged.
  • composition When the obtained composition was analyzed by gas chromatography, the composition was 96.2% of 1,1,2-trichloro-3,3,3-trifluoropropane, and 1,1,2-trichloro-3 The yield of 3,3-trifluoropropane was 94.1%.
  • the obtained composition containing 1,2-dichloro-3,3,3-trifluoropropene was analyzed by gas chromatography, and the composition was found to be cis-1,2-dichloro-3,3,3-trifluoropropene.
  • trans-1,2-dichloro-3,3,3-trifluoropropene was 7.7%.
  • the yield of 1,2-dichloro-3,3,3-trifluoropropene (total of cis and trans isomers) was 91.1%.
  • the resulting composition containing 1,2-dichloro-3,3,3-trifluoropropene was purified by distillation to obtain cis-1,2-dichloro-3,3,3-trifluoropropene and trans-1,2 -Dichloro-3,3,3-trifluoropropene was obtained respectively.
  • Example 2 Example in which neither compatibilizing agent nor phase transfer catalyst is used
  • sodium hydroxide 4.00 mol
  • 400 g of a composition containing 1,1,2-trichloro-3,3,3-trifluoropropane was added over 5 hours.
  • introduction rate 1.3 g / min
  • 318.2 g of a composition containing 1,2-dichloro-3,3,3-trifluoropropene was obtained. Obtained.
  • the obtained composition containing 1,2-dichloro-3,3,3-trifluoropropene was analyzed by gas chromatography, and the composition was found to be cis-1,2-dichloro-3,3,3-trifluoropropene.
  • the yield of 1,2-dichloro-3,3,3-trifluoropropene (total of cis and trans isomers) was 93.4%.
  • Example 3 Example using phase transfer catalyst
  • Example 3 Example using phase transfer catalyst
  • 4.7 g of tetrabutylammonium bromide was added as a phase transfer catalyst to the reactor fed with the composition containing 1,2-dichloro-3,3,3-trifluoropropene.
  • 224.7 g of a composition containing 1,2-dichloro-3,3,3-trifluoropropene was obtained.
  • the obtained composition containing 1,2-dichloro-3,3,3-trifluoropropene was analyzed by gas chromatography, and the composition was found to be cis-1,2-dichloro-3,3,3-trifluoropropene. Is 67.5%, trans-1,2-dichloro-3,3,3-trifluoropropene is 9.8%, 1-chloro-3,3,3-trifluoropropyne is 12.5% %Met.
  • the yield of 1,2-dichloro-3,3,3-trifluoropropene (total of cis and trans isomers) was 54.1%.
  • Example 4 Example using compatibilizer
  • Composition comprising 167.5 g of methanol as a compatibilizing agent of 1,1,2-trichloro-3,3,3-trifluoropropane and an aqueous base, and 1,2-dichloro-3,3,3-trifluoropropene
  • the reaction was carried out in the same manner as in Example 1 except that the product was added to the reactor to which the product was supplied.
  • 301.9 g of a composition containing 1,2-dichloro-3,3,3-trifluoropropene was obtained. .
  • the obtained composition containing 1,2-dichloro-3,3,3-trifluoropropene was analyzed by gas chromatography, and the composition was found to be cis-1,2-dichloro-3,3,3-trifluoropropene. Is 81.1%, trans-1,2-dichloro-3,3,3-trifluoropropene is 7.1%, 1-chloro-3,3,3-trifluoropropyne is 0.1% 1-chloro-2-methoxy-3,3,3-trifluoropropene was 0.3%. The yield of 1,2-dichloro-3,3,3-trifluoropropene (total of cis and trans isomers) was 83.0%.
  • Example 5 Example using both compatibilizer and phase transfer catalyst
  • 1,2-dichloro-3,3,3- 260.4 g of a composition containing trifluoropropene was obtained.
  • the obtained composition containing 1,2-dichloro-3,3,3-trifluoropropene was analyzed by gas chromatography, and the composition was found to be cis-1,2-dichloro-3,3,3-trifluoropropene. Is 8.5%, trans-1,2-dichloro-3,3,3-trifluoropropene is 9.0%, and 1-chloro-3,3,3-trifluoropropyne is 2.9%. 1-chloro-2-methoxy-3,3,3-trifluoropropene was 1.4%. The yield of 1,2-dichloro-3,3,3-trifluoropropene (total of cis and trans isomers) was 70.9%.
  • Example 1 The results of Examples 1 to 5 are summarized in Table 1. Although 1,1,2-trichloro-3,3,3-trifluoropropane and aqueous potassium hydroxide and sodium hydroxide solutions are separated into two layers and are essentially incompatible, the phase transfer catalyst and In Example 1 and Example 2 in which no compatibilizing agent was added, the target 1,2-dichloro-3, target as compared to Examples 3 to 5 in which a phase transfer catalyst and / or a compatibilizing agent was added was used. 3,3-trifluoropropene was obtained in high yield. 1223xd: 1,2-dichloro-3,3,3-trifluoropropene Cl-TFPy: 1-chloro-3,3,3-trifluoropropyne
  • Example 6 a compound (2,3-dichloro-1,1,1,3-tetrafluoropropane) in which X is F is used as a starting compound in the formula [1], and 1,2- An example of producing dichloro-3,3,3-trifluoropropene is shown below.
  • Example 6 A 1000 ml glass reactor equipped with a gas inlet was cooled in a dry ice / acetone bath at ⁇ 78 ° C., and 901.86 g (7.90 mol) of trans-1,3,3,3-tetrafluoropropene was added to the reactor. Added to. While cooling the reactor at ⁇ 78 ° C., chlorine was introduced into the reactor at an average rate of 1.70 g / min, and light irradiation with a high-pressure mercury lamp was performed from the outside of the reactor. The raw organic material and chlorine in the reactor were stirred with a magnetic stirrer.
  • composition When the obtained composition was analyzed by gas chromatography, the composition was 98.7% of 2,3-dichloro-1,1,1,3-tetrafluoropropane (total of diastereomers), and 2,3 The yield of -dichloro-1,1,1,3-tetrafluoropropane was 96.3%.
  • the water bath temperature was raised to 75 ° C.
  • the reaction product was led out of the reactor from the gas discharge pipe, condensed in a glass cooler in which a 0 ° C. refrigerant was circulated, and then cooled in a dry ice / acetone bath. Collected in a flask. After 1.5 hours, the collection of the composition B containing 1,2-dichloro-3,3,3-trifluoropropene was completed. The product collected in the condenser outlet flask was washed with water and saturated brine in this order to obtain 109.3 g of Composition B containing 1,2-dichloro-3,3,3-trifluoropropene.
  • compositions A, B and C containing 1,2-dichloro-3,3,3-trifluoropropene were analyzed by gas chromatography. As a result, each composition was found to have cis-1,2-dichloro-3. , 3,3-trifluoropropene was 11.4%, 54.0% and 6.6%. The yield of 1,2-dichloro-3,3,3-trifluoropropene (total of cis and trans isomers) was 16.1%.
  • reaction product was cooled in a recovery trap (dry ice / acetone bath) guided to the outlet of the condenser, and 30.84 g of the liquefied reaction product was collected.
  • 1,2-dichloro-1-halogeno-3,3,3-trifluoropropane was reacted with a base in a liquid phase to produce 1,1
  • the target product 1,2-dichloro While ⁇ 3,3,3-trifluoropropene could be obtained in high yield, in the comparative example in which it was not extracted out of the reaction system, the reaction proceeded to propyne, and 1,2-dichloro-3 It can be seen that 3,3-trifluoropropene could not be recovered.
  • the case where the phase transfer catalyst and / or the compatibilizing agent is not used is more than the case where the phase transfer catalyst and / or the compatibilizing agent is used. It can be seen that the yield of 1,2-dichloro-3,3,3-trifluoropropene increases.
  • side reaction products such as 1-chloro-3,3,3-trifluoropropyne can be suppressed, and 1,2- This is considered to be because dissolution of dichloro-3,3,3-trifluoropropene in the aqueous phase is suppressed. Accordingly, 1,2-dichloro-is more selective and has a higher yield when no phase transfer catalyst and / or compatibilizer is used than when a phase transfer catalyst and / or compatibilizer is used. 3,3,3-trifluoropropene can be obtained.
  • Example 6 a compound (1,1,2-trichloro-3,3,3-trifluoropropane) in which X in the above formula [1] is Cl is shown.
  • the target compound is more used as the starting compound than when the compound (2,3-dichloro-1,1,1,3-tetrafluoropropane) in which X in Formula [1] is F is used as the starting compound.
  • the yield of 1,2-dichloro-3,3,3-trifluoropropene is high. Therefore, in the method for producing 1,2-dichloro-3,3,3-trifluoropropene of the present invention, the compound (1,1,2-trichloro-3,3) wherein X in the above formula [1] is Cl. 3,3-trifluoropropane) is preferred as a raw material compound.
  • 1,2-dichloro-3,3,3-trifluoropropene which is the subject of the present invention, is a functional material such as a heat transfer medium and a cleaning agent used in a heat pump cycle or Rankine cycle, a physiologically active substance, or a functional material. It can be used as a monomer for the body and polymer compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに、液相中で塩基を反応させ、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収しながら前記反応を行うこと、を含む1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。簡便な方法により1,2-ジクロロ-3,3,3-トリフルオロプロペンを高い収率で得ることができる。したがって、1,2-ジクロロ-3,3,3-トリフルオロプロペンを工業的規模で製造できる。

Description

1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法
 本発明は、1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法に関する。
 1,2-ジクロロ-3,3,3-トリフルオロプロペンは、不飽和結合を有し、大気中でより分解し易いフロン(HCFC: Hydrochlorofluorocarbon)として、洗浄剤や冷媒としての機能が期待されている。
 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法としては種々の方法が知られている。例えば、非特許文献1では、1,2,3,3,3-ペンタクロロプロペンを三フッ化アンチモンと液相反応させる方法が開示されている。
 また、非特許文献2では、五塩化アンチモンを添加し、1,1,2,3,3-ペンタクロロプロペンを三フッ化アンチモンと液相中で反応させる方法が開示されている。非特許文献3では、液体の1,2,2-トリクロロ-3,3,3-トリフルオロプロパンに固体状態の水酸化カリウムを加えて、加熱しながら還流操作を行うことで製造する方法が開示されている。
 1,2-ジクロロ-3,3,3-トリフルオロプロペンに関する反応として、特許文献1には、水酸化カリウム存在下で、1,2-ジクロロ-3,3,3-トリフルオロプロペンをメタノールと反応させると1-クロロ-2-メトキシ-3,3,3-トリフルオロプロペンが生成することが開示されている。
 また、特許文献2には、1,2-ジクロロ-3,3,3-トリフルオロプロペンと塩基との反応により1-クロロ-3,3,3-トリフルオロプロピンが生成することが開示されている。
米国特許第2739987号公報 国際公開2012/112827号パンフレット
A.L.Henne et al.,J.Am.Chem.Soc.,1941,p.3478-3479 A.M.Whaley et al.,J.Am.Chem.Soc.,1948,p.1026-1027 R.N.Haszeldine et al.,J.Chem.Soc.,1951,p.2495-2504
 非特許文献3に記載の製造方法は、液体状態の1,2,2-トリクロロ-3,3,3-トリフルオロプロパンに粉末状の水酸化カリウムを分散させて反応を行っているが、収率が低く(48%)、不均一反応であるため、工業的な製造方法という点で、効率的とは言い難いものであった。
 上述の様に、本発明の目的物である1,2-ジクロロ-3,3,3-トリフルオロプロペンを工業的規模で、実施容易である製造方法の確立が望まれていた。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンを、液相中において、塩基と反応させ、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収すると高い収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンが得られることを見出し、本発明に至った。
 すなわち、本発明は、以下の通りである。
[発明1]
 以下の式[1]で表される1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに、液相中で塩基を反応させ、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収しながら前記反応を行うこと、を含む1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法である。
Figure JPOXMLDOC01-appb-C000002
 発明1の構成要件によれば、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンから1-クロロ-3,3,3-トリフルオロプロピン等のプロピン類に反応進行させることを抑制し、アルケン化合物で反応を止めることができる。そのため、1,2-ジクロロ-3,3,3-トリフルオロプロペン以外の副反応生成物を抑制することができ、より高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることが可能となる。
[発明2]
 1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンと塩基との反応が、相関移動触媒または相溶化剤の非存在下で実施されることを特徴とする、発明1に記載の製造方法。尚、非存在下とは、相関移動触媒または相溶化剤が少なくとも0.01質量%以下であり、ゼロ(0)を含む。
 発明2の構成要件によれば、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンと塩基との反応において、1,2-ジクロロ-3,3,3-トリフルオロプロペン以外の副反応生成物を抑制することができ、より高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることが可能となる。
 [発明3]
 塩基が、アルカリ金属アルコキシド、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の水酸化物、及びアルカリ土類金属の水酸化物からなる群より選ばれる少なくとも1種の無機塩基である、発明1または2に記載の製造方法。
 [発明4]
 1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンが、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンである、発明1から3の何れかに記載の製造方法。
 本発明によれば、簡便な方法により1,2-ジクロロ-3,3,3-トリフルオロプロペンを高い収率で得ることができる。したがって、1,2-ジクロロ-3,3,3-トリフルオロプロペンを工業的規模で実施容易な製造方法を提供できる。
 以下、本発明につき、さらに詳細に説明する。本発明は1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに、液相中で塩基を反応させ、該反応により生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収しながら前記反応を行うことを特徴とする1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法である。
 なお、本発明の範囲は、本明細書の説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。また、本明細書において引用された全ての刊行物、例えば先行技術文献、および公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。
 本発明の出発原料である、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンは、以下に示す式[1]で表される。
Figure JPOXMLDOC01-appb-C000003
 1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンの具体的な化合物としては、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンまたは1,2-ジクロロ-1,3,3,3-テトラフルオロプロパン、1-ブロモ-1,2-ジクロロ-3,3,3-トリフルオロプロパンが挙げられる。これらの中でも、入手の容易さや、得られる化合物の有用性などから、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンが好ましく用いられる。1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを原料として用いる場合、1,2-ジクロロ-3,3,3-トリフルオロプロペンとともに生成される塩化水素を工業的に利用することができる。
 本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法は、液相中で反応を行う。本願発明の出発原料である1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンは、常温・常圧下で液体状態であり、別途溶媒を加える必要はない。勿論、溶媒を加えて実施することも可能である。
 脱ハロゲン化水素反応においては、有機相の出発原料と水相の塩基との反応を促進するため、一般に添加剤として相関移動触媒および/または相溶化剤を用いることがある。本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法においても、溶媒の他に、添加剤として相関移動触媒および/または相溶化剤を用いることもできるが、反応副生成物の生成による目的物の純度低下、及び生成された1,2-ジクロロ-3,3,3-トリフルオロプロペンの水相への溶解による1,2-ジクロロ-3,3,3-トリフルオロプロペンの回収の困難性という観点から、本発明の方法は、相関移動触媒および相溶化剤の非存在下で実施されることがより好ましい。本発明において、相間移動触媒および相溶化剤の非存在下で1,2-ジクロロ-3,3,3-トリフルオロプロペンと塩基とを反応させると、1-クロロ-3,3,3-トリフルオロプロピン等の副反応生成物を抑制することができ、さらに、生成された1,2-ジクロロ-3,3,3-トリフルオロプロペンを効率よく回収することができるため、高選択率かつ高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができる。
 ここで、相間移動触媒とは、「求核アニオンを含む水相と、これと反応する有機基質を含む非極性の有機相の反応系において、水相に存在する求核アニオンと自身のアニオンを交換し、水相と有機相とを往復して有機相に存在する有機基質に求核アニオンを移行させることにより反応を促進する機能を有する物質」を意味し、例えば、一般的に公知のクラウンエーテル、クリプタンド、又はオニウム塩を挙げることができる。また、相溶化剤とは、「互いに非相溶な物質の界面張力を低減させて相溶性を増大させる物質」を意味し、例えば、一般的に公知のメタノール、エタノール、プロパノールを挙げることができる。
 反応に用いる塩基は、経済性及び取り扱いが容易であることから、アルカリ金属の水酸化物又はアルカリ土類金属の水酸化物が好ましい。なお、ここでアルカリ金属とは、リチウム、ナトリウム、カリウム、ルビジウム、又はセシウムであり、アルカリ土類金属とは、マグネシウム、カルシウム、又はストロンチウムを指す。
 アルカリ金属の水酸化物又はアルカリ土類金属の水酸化物の、具体的な化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウムなどが挙げられる。これらのうち、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウムが好ましく、さらに安価で工業的に大量に入手できることから、水酸化カリウム、水酸化ナトリウムが特に好ましい。また、アルカリ金属アルコキシドの具体的な化合物としては、ナトリウムメトキシド、ナトリウムエトキシドなどが挙げられる。
 なお、本発明で用いる塩基は、1種類又は2種類以上を併用して使用してもよい。
 本発明で用いる塩基の量は、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパン1モルに対し、少なくとも1モルを必要とし、該プロパン1モル当たり、通常1モル以上、10モル以下の範囲を適宜選択してもよく、好ましくは1モル以上、4モル以下であり、さらに好ましくは1モル以上、2モル以下である。また、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパン1モルに対し、10モルより多く塩基を使用することも可能であるが、大量に使用するメリットはない。
 なお、本発明において、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに対して、1モルより少ない塩基を用いた場合、反応の変換率が低下することがある。その際、反応後の精製操作の際に未反応の1-クロロ-2-ハロゲノ-3,3,3-トリフルオロプロペンを回収し、次の反応にリサイクルしてもよい。
 なお、本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法は、液相中で1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンと塩基との反応を行う。本願発明の出発原料である1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンは、常温・常圧下で液体状態であり、別途溶媒を加える必要はない。
 本発明に使用される塩基は、作業性の容易さから、塩基が常温・常圧で固体の場合、溶媒として水を別途加えて水溶液として添加してもよい。また、その水溶液の濃度は、反応が充分進行する程度に、また、塩基が溶媒に充分溶解する程度に当業者により適宜調整されてもよい。具体的な水溶液の濃度は、塩基として用いる化合物により異なるが、例えば水酸化カリウム水溶液の場合、通常は5質量%以上、75質量%以下とし、10質量%以上、60質量%以下が好ましく、15質量%以上、50質量%以下の範囲がより好ましい。
 本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法においては、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外に取り出すことにより、1,2-ジクロロ-3,3,3-トリフルオロプロペンの脱ハロゲン化水素反応による1-クロロ-3,3,3-トリフルオロプロピンの生成を抑制する。また、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外に取り出すことにより、反応系の1,2-ジクロロ-3,3,3-トリフルオロプロペンの濃度が低下するため、反応速度の低下を抑制することもできる。
 反応圧力は特に限定されないが、生成物である1,2-ジクロロ-3,3,3-トリフルオロプロペン(標準沸点53.7℃)をガスとして反応系外へ抜き出すため、常圧または微加圧下の操作が好ましく、大気圧条件下での操作がより好ましい。
 反応温度は、生成物である1,2-ジクロロ-3,3,3-トリフルオロプロペン(標準沸点53.7℃)をガスとして反応系外へ抜き出すため、反応器内部の圧力における1,2-ジクロロ-3,3,3-トリフルオロプロペンの沸点以上であることが望ましい。反応を大気圧で実施する場合は、反応温度は55℃以上、75℃以下が好ましい。
 本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法では、腐食性ガスの発生がないため、常圧又は加圧下で反応を行う際、反応器の材質としては圧力に耐えるものであれば材質に特に制限はなく、一般的なステンレス、ガラス、フッ素樹脂であってもよく、または、ガラスもしくはフッ素樹脂によりライニングされた材料の反応容器を使用してもよい。
 なお、耐圧反応容器を用いてもよいが、液化状態の場合、反応系内の圧力がそれ程上がることなく反応が進行する為、常圧でも十分に実施できることから、特に耐圧反応容器を用いるメリットはそれ程大きくない。
 また、本発明の方法で得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンは、常温・常圧で液体として存在する。そのため、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンと塩基との反応により得られた気体、即ち、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して、冷却したコンデンサーに流通させて凝縮させた後、さらに精密蒸留することで高純度の1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができる。なお、生成する1,2-ジクロロ-3,3,3-トリフルオロプロペンは、シス体およびトランス体の立体異性体の混合物として得られるが、精密蒸留により高純度のシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンおよびトランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができる。1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンと塩基との反応により生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収すると、副生物である1-クロロ-3,3,3-トリフルオロプロピンの生成が顕著に抑制され、目的物である1,2-ジクロロ-3,3,3-トリフルオロプロペンが高い収率で得られることを見出した。
 なお、本発明では、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンの反応系外への抜き出しは、連続的、又は半連続的で行うことが好ましく、当業者が適宜調整することができる。
[実施例]
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施態様に限られない。ここで、組成分析値の「%」とは、反応混合物を直接ガスクロマトグラフィー(特に記述のない場合、検出器はFID)によって測定して得られた組成の「面積%」を表す。
 本実施例において、「1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを含む組成物」とは、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを主成分とする反応生成物、未反応原料および反応副生成物の混合物を表す。また、「1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物」とは、1,2-ジクロロ-3,3,3-トリフルオロプロペンを主成分とする反応生成物、未反応原料および反応副生成物の混合物を表す。
 以下の実施例1~5では、前記式[1]において、原料化合物として、XがClである化合物(1,1,2-トリクロロ-3,3,3-トリフルオロプロパン)を用い、1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造した例を示す。
[実施例1:相溶化剤および相間移動触媒をともに使用しない例]
 ガス導入口を備えた1000mlガラス製反応器を0℃の氷水浴で冷却し、トランス-1-クロロ-3,3,3-トリフルオロプロペン554.1g(4.24モル)を仕込んだ。0℃の氷水浴で冷却しながら、塩素を0.83g/minで反応器内へ導入し、反応器の外側から高圧水銀灯による光照射を行った。反応器内の原料有機物および塩素はマグネチックスターラーにて撹拌した。6時間の塩素導入後、高圧水銀灯の光照射を停止し、反応を終了した。反応終了後、反応器内の有機物を水、弱アルカリ水溶液および飽和食塩水で洗浄し、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを含む組成物836.3gを得た。
 得られた組成物をガスクロマトグラフで分析したところ、組成は、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンが96.2%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は94.1%であった。
 滴下ロート、熱電対投入用ガラス製保護管およびガス排出管を取り付けた1000mlガラス製三口丸底フラスコに、25重量パーセントの水酸化カリウム水溶液893.2g(水酸化カリウム=3.98モル)を加えた。75℃に設定したオイル浴にて反応器を加熱し、マグネチックスターラーで撹拌しながら、得られた1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを含む組成物400gを滴下した(導入速度=2.2g/min)。反応で発生した高濃度の1,2-ジクロロ-3,3,3-トリフルオロプロペンガスは、ガス排出管から連続的に反応器外へ導出され、0℃の冷媒を循環させたガラス製冷却器で凝縮した後、ドライアイス・アセトン浴で冷却したフラスコに捕集した。3時間後、1,1,2-トリクロロ-3,3,3-トリフルオロプロパン組成物を全て反応器に供給した。原料の供給を完了した後、反応器を30分間加熱し、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物の捕集を終えた。反応終了後、冷却器出口フラスコに捕集した生成物を、水、飽和食塩水の順番で洗浄し、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を314.7g得た。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物をガスクロマトグラフで分析したところ、組成は、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが84.5%であり、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが7.7%であった。1,2-ジクロロ-3,3,3-トリフルオロプロペン収率(シス体およびトランス体の合計)は91.1%であった。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を蒸留精製してシス-1,2-ジクロロ-3,3,3-トリフルオロプロペンおよびトランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンをそれぞれ得た。
[実施例2:相溶化剤および相間移動触媒をともに使用しない例]
 25重量パーセントの水酸化ナトリウム640.1g(水酸化ナトリウム=4.00モル)を用い、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンを含む組成物400gを5時間かけて滴下した(導入速度=1.3g/min)こと以外は実施例1と同様に反応を実施した結果、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を318.2g得た。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物をガスクロマトグラフで分析したところ、組成は、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが84.7%であり、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが7.8%であった。1,2-ジクロロ-3,3,3-トリフルオロプロペン収率(シス体およびトランス体の合計)は93.4%であった。
[実施例3:相間移動触媒を使用した例]
 相間移動触媒としてテトラブチルアンモニウムブロミド4.7gを、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を供給した反応器に加えたこと以外は、実施例1と同様に反応を実施した結果、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を224.7g得た。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物をガスクロマトグラフで分析したところ、組成は、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが67.5%であり、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが9.8%であり、1-クロロ-3,3,3-トリフルオロプロピンが12.5%であった。1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率(シス体およびトランス体の合計)は54.1%であった。
[実施例4:相溶化剤を使用した例]
 1,1,2-トリクロロ-3,3,3-トリフルオロプロパンと塩基水溶液との相溶化剤としてメタノール167.5gを、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を供給した反応器に加えたこと以外は、実施例1と同様に反応を実施した結果、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を301.9g得た。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物をガスクロマトグラフで分析したところ、組成は、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが81.1%であり、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが7.1%であり、1-クロロ-3,3,3-トリフルオロプロピンが0.1%であり、1-クロロ-2-メトキシ-3,3,3-トリフルオロプロペンが0.3%であった。1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率(シス体およびトランス体の合計)は83.0%であった。
[実施例5:相溶化剤および相間移動触媒をともに使用した例]
 1,1,2-トリクロロ-3,3,3-トリフルオロプロパンと塩基水溶液との相溶化剤としてメタノール167.5gを、相間移動触媒としてテトラブチルアンモニウムブロミド4.7gを、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物を供給した反応器に加えたこと以外は、実施例1と同様に反応を実施した結果、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物260.4g得た。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物をガスクロマトグラフで分析したところ、組成は、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが78.5%であり、トランス-1,2-ジクロロ-3,3,3-トリフルオロプロペンが9.0%であり、1-クロロ-3,3,3-トリフルオロプロピンが2.9%であり、1-クロロ-2-メトキシ-3,3,3-トリフルオロプロペンが1.4%であった。1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率(シス体およびトランス体の合計)は70.9%であった。
 実施例1~5の結果を表1にまとめた。1,1,2-トリクロロ-3,3,3-トリフルオロプロパンと水酸化カリウム水溶液および水酸化ナトリウム水溶液とは、二層分離し、本質的に相溶しないにも関わらず、相間移動触媒および相溶化剤を加えていない実施例1および実施例2において、相間移動触媒および/または相溶化剤を加えた実施例3乃至実施例5に比して目的とする1,2-ジクロロ-3,3,3-トリフルオロプロペンを高い収率で得た。
Figure JPOXMLDOC01-appb-T000004
    
1223xd:1,2-ジクロロ-3,3,3-トリフルオロプロペン
Cl-TFPy:1-クロロ-3,3,3-トリフルオロプロピン
 次いで、実施例6では、前記式[1]において、原料化合物として、XがFである化合物(2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン)を用い、1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造した例を示す。
[実施例6]
 ガス導入口を備えた1000mlガラス製反応器を-78℃のドライアイス・アセトン浴で冷却し、トランス-1,3,3,3-テトラフルオロプロペン901.86g(7.90モル)を反応器へ加えた。-78℃で反応器を冷却しながら、塩素を平均速度1.70g/minで反応器へ導入し、反応器の外側から高圧水銀灯による光照射を行った。反応器内の原料有機物および塩素はマグネチックスターラーにて撹拌した。反応開始から5時間30分後に、塩素導入および高圧水銀灯の光照射を停止し、反応を終了した。塩素の導入量は、560.5g(7.90モル)であった。反応終了後、反応器内の有機物を水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン(HCFC-234da)を含む組成物を1427.0g得た。得られた組成物をガスクロマトグラフで分析したところ、組成は、2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン98.7%(ジアステレオマーの合計)であり、2,3-ジクロロ-1,1,1,3-テトラフルオロプロパンの収率は96.3%であった。
 滴下ロート、熱電対投入用ガラス製保護管およびガス排出管を取り付けた2000mlガラス製三口丸底フラスコに、25重量パーセントの水酸化カリウム水溶液1464.4g(水酸化カリウム=6.52モル)、メタノール164.7gを加えた。0℃に設定した氷水浴にて反応器を冷却し、マグネチックスターラーで撹拌しながら、2,3-ジクロロ-1,1,1,3-テトラフルオロプロパンを含む組成物600gを滴下した(導入速度=3.3g/min)。
 2,3-ジクロロ-1,1,1,3-テトラフルオロプロパンを全て滴下した後、水浴温度を50℃まで上げて、反応生成物をガス排出管から反応器外へ導出させ、0℃の冷媒を循環させたガラス製冷却器で凝縮した後、ドライアイス・アセトン浴で冷却したフラスコに捕集した。1.5時間後、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物Aの捕集を終えた。冷却器出口フラスコに捕集した生成物を、水、飽和食塩水の順番で洗浄し、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物Aを107.3g得た。
 さらに水浴温度を75℃まで上げて、反応生成物をガス排出管から反応器外へ導出させ、0℃の冷媒を循環させたガラス製冷却器で凝縮した後、ドライアイス・アセトン浴で冷却したフラスコに捕集した。1.5時間後、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物Bの捕集を終えた。冷却器出口フラスコに捕集した生成物を、水、飽和食塩水の順番で洗浄し、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物Bを109.3g得た。
 反応器の釜に残った有機物を、水、飽和食塩水の順番で洗浄し、1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物Cを215.5g得た。
 得られた1,2-ジクロロ-3,3,3-トリフルオロプロペンを含む組成物A、BおよびCをガスクロマトグラフで分析したところ、各々の組成物に、シス-1,2-ジクロロ-3,3,3-トリフルオロプロペンを11.4%、54.0%および6.6%であった。1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率(シス体およびトランス体の合計)は16.1%であった。
[比較例]
 5℃の冷媒を循環させたガラス製冷却器と、-78℃に調整したドライアイス・アセトン浴のガラス製トラップおよび熱電対投入用ガラス製保護管を取り付けた500mlガラス製三口丸底フラスコに、1,1,2-トリクロロ-3,3,3-トリフルオロプロパン40.30g(0.20モル)、水酸化カリウム32.00g(0.57モル)、テトラブチルアンモニウムブロミド0.68gおよび水96.01gを仕込み、冷却しながらマグネチックスターラーにて撹拌しながら溶解させた。溶解後、水浴にて内温を30℃まで加熱し、そのまま2時間保持し反応器を冷却し、反応生成物を取り出すことなく、反応を終了した。反応生成物は、凝縮器出口に導かれた回収トラップ(ドライアイス・アセトン浴)で冷却して、液化された反応生成物30.84gを捕集した。
 得られた捕集液をガスクロマトグラフで分析したところ、反応生成物は、1,2-ジクロロ-3,3,3-トリフルオロプロペンではなく、1-クロロ-3,3,3-トリフルオロプロピンであった。得られた1-クロロ-3,3,3-トリフルオロプロピンの純度は97.6%であり、1-クロロ-3,3,3-トリフルオロプロピンの収率は74.0%であった。
 実施例1乃至実施例5と比較例とを参照すると、1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに、液相中で塩基を反応させて、生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収しながら前記反応を行うことを特徴とする本発明の方法によれば、目的生成物である1,2-ジクロロ-3,3,3-トリフルオロプロペンを高い収率で得ることができたのに対して、反応系外へ抜き出さなかった比較例ではプロピンまで反応が進行し、1,2-ジクロロ-3,3,3-トリフルオロプロペンが回収できなかったことが分かる。また、実施例1および実施例2と、実施例3乃至5を参照すると、相関移動触媒および/または相溶化剤を用いない場合のほうが相関移動触媒および/または相溶化剤を使用した場合よりも、1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率が高くなることが分かる。これは、相関移動触媒および/または相溶化剤を用いないことにより、1-クロロ-3,3,3-トリフルオロプロピン等の副反応生成物を抑制することができ、さらに、1,2-ジクロロ-3,3,3-トリフルオロプロペンの水相への溶解が抑制されためであると考えられる。したがって、相関移動触媒および/または相溶化剤を用いない場合のほうが、相関移動触媒および/または相溶化剤を使用した場合よりも、より選択率が高くかつ高収率で1,2-ジクロロ-3,3,3-トリフルオロプロペンを得ることができる。
 また、実施例1乃至実施例5と実施例6とを参照すると、前記式[1]におけるXがClである化合物(1,1,2-トリクロロ-3,3,3-トリフルオロプロパン)を原料化合物として用いたほうが、前記式[1]におけるXがFである化合物(2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン)を原料化合物として用いた場合よりも、目的化合物である1,2-ジクロロ-3,3,3-トリフルオロプロペンの収率が高い。そのため、本発明の1,2-ジクロロ-3,3,3-トリフルオロプロペンを製造する方法においては、前記式[1]におけるXがClである化合物(1,1,2-トリクロロ-3,3,3-トリフルオロプロパン)が原料化合物として好ましいことが分かる。
 本発明で対象とする1,2-ジクロロ-3,3,3-トリフルオロプロペンは、ヒートポンプサイクルまたはランキンサイクルに用いる熱伝達媒体、洗浄剤等の機能材料又は生理活性物質、機能性材料の中間体、高分子化合物のモノマーとして利用できる。

Claims (4)

  1.  以下の式[1]で表される1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンに、液相中で塩基を反応させ、
     生成した1,2-ジクロロ-3,3,3-トリフルオロプロペンを反応系外へ抜き出して回収しながら前記反応を行うこと、
    を含む1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンと塩基との反応が、相関移動触媒または相溶化剤の非存在下で実施されることを特徴とする、請求項1に記載の製造方法。
  3.  塩基が、アルカリ金属アルコキシド、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の水酸化物、及びアルカリ土類金属の水酸化物からなる群より選ばれる少なくとも1種の無機塩基である、請求項1に記載の製造方法。
  4.  前記1,2-ジクロロ-1-ハロゲノ-3,3,3-トリフルオロプロパンが、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンである、請求項1に記載の製造方法。
PCT/JP2013/075540 2012-09-21 2013-09-20 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法 WO2014046250A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014536940A JP6183370B2 (ja) 2012-09-21 2013-09-20 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
US14/663,418 US9090530B1 (en) 2012-09-21 2015-03-19 Method for producing 1,2-dichloro-3,3,3-trifluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-207928 2012-09-21
JP2012207928 2012-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/663,418 Continuation US9090530B1 (en) 2012-09-21 2015-03-19 Method for producing 1,2-dichloro-3,3,3-trifluoropropene

Publications (1)

Publication Number Publication Date
WO2014046250A1 true WO2014046250A1 (ja) 2014-03-27

Family

ID=50341550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075540 WO2014046250A1 (ja) 2012-09-21 2013-09-20 1,2-ジクロロ-3,3,3-トリフルオロプロペンの製造方法

Country Status (3)

Country Link
US (1) US9090530B1 (ja)
JP (1) JP6183370B2 (ja)
WO (1) WO2014046250A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160023968A1 (en) * 2014-07-28 2016-01-28 Central Glass Company, Limited Method for Producing 2-Chloro-1,3,3,3-Tetrafluoropropene
JP2016069369A (ja) * 2014-09-29 2016-05-09 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
JP2016141730A (ja) * 2015-02-02 2016-08-08 セントラル硝子株式会社 含フッ素オレフィンを構成成分とする共沸様組成物
US10344250B2 (en) 2014-11-21 2019-07-09 Central Glass Company, Limited Azeotropic composition having fluorine-containing olefin as constituent
JP2019112649A (ja) * 2015-02-02 2019-07-11 セントラル硝子株式会社 組成物、液体組成物、洗浄用溶剤、およびこれらの製造方法と回収方法、ならびに洗浄用溶剤を用いる洗浄方法
WO2020075727A1 (ja) * 2018-10-12 2020-04-16 セントラル硝子株式会社 液体組成物の保存方法および製品
JP2021059498A (ja) * 2019-10-03 2021-04-15 セントラル硝子株式会社 不飽和クロロフルオロカーボンの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958596B2 (ja) * 2019-07-01 2021-11-02 ダイキン工業株式会社 アルカンの製造方法
CN111500378B (zh) * 2020-07-02 2020-10-30 北京宇极科技发展有限公司 环状氢氯氟烯烃和链状氢氯氟烯烃组成的清洗剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322955A (ja) * 2000-05-16 2001-11-20 Kanto Denka Kogyo Co Ltd 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
JP2006525339A (ja) * 2003-04-29 2006-11-09 セントラル硝子株式会社 フルオロブテン誘導体およびその製造方法
JP2010215659A (ja) * 2003-10-27 2010-09-30 Honeywell Internatl Inc フルオロプロペンを製造する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739987A (en) 1956-03-27 Production of fluorine-substituted
US6548719B1 (en) * 2001-09-25 2003-04-15 Honeywell International Process for producing fluoroolefins
GB0625214D0 (en) * 2006-12-19 2007-01-24 Ineos Fluor Holdings Ltd Process
US8404907B2 (en) 2011-02-18 2013-03-26 Honeywell International Inc. Process for cis-1-chloro-3,3,3-trifluoropropene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322955A (ja) * 2000-05-16 2001-11-20 Kanto Denka Kogyo Co Ltd 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
JP2006525339A (ja) * 2003-04-29 2006-11-09 セントラル硝子株式会社 フルオロブテン誘導体およびその製造方法
JP2010215659A (ja) * 2003-10-27 2010-09-30 Honeywell Internatl Inc フルオロプロペンを製造する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASZELDINE ET AL.: "Reactions of Fluorocarbon radicals. Part V. Alternative syntheses for triflouromethylacetylene (3:3:3- trifluoropropyne) and the influence of polyfluoro-groups on adjacent hydrogen and halogen atoms", JOURNAL OF THE CHEMICAL SOCIETY, 1951, pages 2495 - 2504 *
TARRANT ET AL.: "Free radical addtions involving fluorine compounds. IV. The addition of dibromofifluoromethane to some fluoroolefins", J.AM.CHEM.SOC, vol. 77, 20 May 1955 (1955-05-20), pages 2783 - 2787 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160023968A1 (en) * 2014-07-28 2016-01-28 Central Glass Company, Limited Method for Producing 2-Chloro-1,3,3,3-Tetrafluoropropene
JP2016033128A (ja) * 2014-07-28 2016-03-10 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
US9533926B2 (en) * 2014-07-28 2017-01-03 Central Glass Company, Limited Method for producing 2-chloro-1,3,3,3-tetrafluoropropene
JP2016069369A (ja) * 2014-09-29 2016-05-09 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
US10344250B2 (en) 2014-11-21 2019-07-09 Central Glass Company, Limited Azeotropic composition having fluorine-containing olefin as constituent
JP2016141730A (ja) * 2015-02-02 2016-08-08 セントラル硝子株式会社 含フッ素オレフィンを構成成分とする共沸様組成物
US10246670B2 (en) 2015-02-02 2019-04-02 Central Glass Company, Limited Azeotrope-like composition containing fluorinated olefin as component
JP2019112649A (ja) * 2015-02-02 2019-07-11 セントラル硝子株式会社 組成物、液体組成物、洗浄用溶剤、およびこれらの製造方法と回収方法、ならびに洗浄用溶剤を用いる洗浄方法
WO2020075727A1 (ja) * 2018-10-12 2020-04-16 セントラル硝子株式会社 液体組成物の保存方法および製品
JPWO2020075727A1 (ja) * 2018-10-12 2021-09-02 セントラル硝子株式会社 液体組成物の保存方法および製品
JP7356041B2 (ja) 2018-10-12 2023-10-04 セントラル硝子株式会社 液体組成物の保存方法および製品
JP2021059498A (ja) * 2019-10-03 2021-04-15 セントラル硝子株式会社 不飽和クロロフルオロカーボンの製造方法

Also Published As

Publication number Publication date
JPWO2014046250A1 (ja) 2016-08-18
US20150191406A1 (en) 2015-07-09
JP6183370B2 (ja) 2017-08-23
US9090530B1 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP6183370B2 (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
CN107848917B (zh) 1-氯-2,3,3-三氟丙烯的制造方法
KR101869851B1 (ko) 트랜스-1-클로로-3,3,3-트리플루오로프로펜, 트랜스-1,3,3,3-테트라플루오로 프로펜, 및 1,1,1,3,3-펜타플루오로프로판을 공동으로 제조하는 통합 방법
JP5704264B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
CN107892642A (zh) 联合生产反式‑1‑氯‑3,3,3‑三氟丙烯、四氟丙烯和五氟丙烷的集成方法
WO2009052064A2 (en) Processes for synthesis of fluorinated olefins
KR20170115106A (ko) 1-클로로-2,3,3-트리플루오로프로펜의 제조 방법
JPWO2019003896A1 (ja) 2−クロロ−1,1,1,2−テトラフルオロプロパンおよび/または3−クロロ−1,1,1,2−テトラフルオロプロパンの製造方法、ならびに2,3,3,3−テトラフルオロプロペンの製造方法
CN109503315A (zh) 四氟丙烯的制备方法
JP2015515464A (ja) trans−1−クロロ−3,3,3−トリフルオロプロペン、trans−1,3,3,3−テトラフルオロプロペンおよび1,1,1,3,3−ペンタフルオロプロパンを併産するための統合プロセス
TW201010967A (en) Production method and purification method of 1,2,3,4-tetrachlorohexafluorobutane
US20120136183A1 (en) Method for preparing fluorine compounds
JP5668319B2 (ja) 2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパンの製造方法
ES2648126T3 (es) Proceso integrado para la fabricación de olefinas fluoradas
WO2017028442A1 (zh) 一种用甲基氯化镁制备2,3,3,3-四氟丙烯的方法
JP6182989B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
JP7287391B2 (ja) 含フッ素プロペンの製造方法
US10364201B2 (en) Process for the manufacture of fluorinated olefins
JP2014024821A (ja) (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
CN106316777A (zh) 一种2,3,3,3‑四氟丙烯的制备方法
TWI703114B (zh) 氟化甲烷之製造方法
WO2019168115A1 (ja) 1,2-ジクロロ-2,3,3,3-テトラフルオロプロパンの製造方法及び1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
WO2022163745A1 (ja) 3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法および1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP2017078069A (ja) フッ化メチルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838775

Country of ref document: EP

Kind code of ref document: A1