WO2014045982A1 - Coating device and coating method - Google Patents

Coating device and coating method Download PDF

Info

Publication number
WO2014045982A1
WO2014045982A1 PCT/JP2013/074610 JP2013074610W WO2014045982A1 WO 2014045982 A1 WO2014045982 A1 WO 2014045982A1 JP 2013074610 W JP2013074610 W JP 2013074610W WO 2014045982 A1 WO2014045982 A1 WO 2014045982A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
slit
temperature
coating liquid
coating solution
Prior art date
Application number
PCT/JP2013/074610
Other languages
French (fr)
Japanese (ja)
Inventor
健児 林田
北村 義之
洋 川竹
大霜 征彦
幸一 村尾
Original Assignee
東レエンジニアリング株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社, 東レ株式会社 filed Critical 東レエンジニアリング株式会社
Priority to CN201380048511.4A priority Critical patent/CN104661759B/en
Priority to KR1020157006929A priority patent/KR102110628B1/en
Publication of WO2014045982A1 publication Critical patent/WO2014045982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/001Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work incorporating means for heating or cooling the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1015Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1042Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material provided with means for heating or cooling the liquid or other fluent material in the supplying means upstream of the applying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles

Definitions

  • the present invention relates to a coating apparatus and a coating method for applying a coating liquid onto a substrate by discharging the coating liquid from a slit formed in a base.
  • a coating device provided with a die in which a slit for discharging the coating solution is formed (for example, see Patent Document 1).
  • This coating apparatus includes a tank for storing the coating liquid and a pump for supplying the coating liquid in the tank to the slit of the base.
  • the slit is formed long along the width direction of the substrate.
  • the coating liquid is discharged onto the surface of the substrate by discharging the coating liquid from the slit while moving the base horizontally with respect to the substrate placed on the stage.
  • a thin film (coating film) can be formed.
  • the resistance of the resin piping from the pump to the base and the slit in the base prevents the pump from starting operation.
  • a delay occurs in the flow of the coating liquid and the discharge operation of the coating liquid from the slit, and this delay affects the coating quality by reducing the coating thickness at the start of coating.
  • the resistance increases at the slit in the base, and the internal pressure increases. Due to this increase in internal pressure, the slit, which is an elongated linear shape, is deformed into an elongated drum shape, and the film thickness of the coating liquid ejected from the central part in the longitudinal direction (width direction) of the slit becomes thicker than the film thickness at the end part. As a result, the film thickness varies in the width direction, and the film thickness accuracy is greatly reduced.
  • a coating solution having a high viscosity has a higher coating speed (transfer of the die) than a coating solution having a low viscosity.
  • a coating solution having a low viscosity has a higher coating speed (transfer of the die) than a coating solution having a low viscosity.
  • the resistance of the flow path can be reduced, and it is possible to suppress the occurrence of the delay as described above and the decrease in the film thickness accuracy in the width direction.
  • the flow path resistance can be reduced by increasing the pipe diameter to the die without lowering the supply speed of the coating solution, and further increasing the slit gap (parallel gap width). And it becomes possible to suppress the fall of the film thickness precision of the width direction by generation
  • the coating time increases and productivity is impaired.
  • the pipe diameter to the base is increased, for example, when it is necessary to bend the pipe into a U shape, it is necessary to set the radius of curvature to be large, and the joint for the pipe is also increased. It is necessary, and the equipment from the pump to the base becomes large. If the gap between the cap slits is too large to reduce the channel resistance, the coating solution will not be discharged uniformly from the slits, and the film thickness accuracy in the width direction of the coating film formed on the substrate will be reduced. Decreases, and the coating quality is significantly reduced.
  • the above problems occur when the viscosity of the coating solution increases. Therefore, if the coating solution is heated to increase the temperature and decrease the viscosity, the above problem can be avoided. Furthermore, when the viscosity is lowered, the coating speed can be improved in order to obtain the same film thickness. However, if the coating solution is not heated uniformly and there is uneven viscosity due to uneven temperature, the coating solution will not be uniformly discharged in the width direction from the slit, the film thickness accuracy in the width direction will be reduced, and the coating quality will be impaired. End up.
  • an object of the present invention is to form a thin film (coating film) with a coating solution with high accuracy and at a high speed even when a coating solution having a relatively high viscosity is applied to the substrate. is there.
  • the present invention includes a tank for storing a coating liquid and a base in which a slit for discharging the coating liquid supplied from the tank is formed, and the coating liquid is discharged onto the substrate by discharging the coating liquid from the slit.
  • a coating apparatus for coating wherein the coating liquid supplied from the tank is heated, and before the coating liquid heated by the temperature rising section is discharged from the slit, the coating liquid And a temperature-equalizing section that equalizes the temperature.
  • the viscosity of the coating liquid discharged from the slit is lowered by raising the temperature of the coating liquid supplied from the tank.
  • the resistance of the flowing coating liquid can be reduced.
  • the coating liquid discharged from the slit has a temperature difference (temperature unevenness) in the longitudinal direction of the slit, the film thickness unevenness due to the viscosity unevenness occurs.
  • the viscosity of the coating liquid can be made uniform by making the temperature of the coating liquid uniform, so that a coating film having a uniform thickness can be formed on the substrate. it can. As a result, the coating film can be formed on the substrate with high accuracy. Furthermore, it becomes possible to apply at higher speed by lowering the viscosity.
  • the soaking part is a flow path through which the coating liquid heated by the heating means and the temperature raising part flows, and the cross section of the flow path perpendicular to the flow direction of the coating liquid is narrowed in at least one direction.
  • a heat transfer channel wherein the heat generated by the heating means is transferred to the coating solution flowing through the heat transfer channel, and the temperature of the coating solution heated by the temperature raising unit is increased. It is preferable to make it uniform.
  • the coating liquid heated by the temperature raising unit flows through the heat transfer channel having a narrow channel cross section, and the heat generated by the heating means is applied to the coating solution flowing through the heat transfer channel.
  • the heat transfer flow path is a flow path different from the slit, and an enlarged space flow path for storing a coating liquid is provided between the heat transfer flow path and the slit.
  • the coating liquid having a uniform temperature can be distributed more uniformly while temporarily maintaining the temperature by accumulating in the expansion space flow path, and the coating liquid can be distributed from the expansion space flow path to the slit.
  • the liquid can be discharged. For this reason, a coating film can be formed more accurately and uniformly on a substrate.
  • the slit that becomes the first slit, the first manifold that is connected to the first slit, the second manifold, and the second slit that connects the first manifold and the second manifold are formed in the base.
  • the second slit is formed in the base as the heat transfer channel, and the heating means heats the base.
  • the base is provided with a temperature-equalizing portion, the temperature of the coating liquid is made uniform in the base, and the coating liquid with the uniform temperature is discharged from the first slit.
  • the present invention is performed by a coating apparatus having a base in which a slit for discharging a coating liquid supplied from a tank is formed, and the coating liquid is applied to a substrate by discharging the coating liquid from the slit.
  • the coating method is characterized in that the temperature of the coating solution supplied from the tank is raised, and the temperature of the coating solution is made uniform before discharging the heated coating solution from the slit. To do. According to the present invention, it is possible to achieve the same effects as the coating apparatus.
  • the viscosity of the coating liquid discharged from the slit is lowered by raising the temperature of the coating liquid supplied from the tank.
  • the resistance of the flowing coating liquid can be reduced, and before discharging the heated coating liquid from the slit, the temperature of the coating liquid is made uniform to make the viscosity uniform at a low value, Thereby, a coating film having a uniform thickness can be formed on the substrate at a high speed. As a result, it is possible to form the coating film on the substrate with high accuracy and with high productivity by high-speed coating.
  • FIG. 1 is a schematic view showing an embodiment of a coating apparatus 1 of the present invention.
  • the coating apparatus 1 includes a stage 2 on which a substrate W such as glass can be placed, a base 3 in which a slit 21 is formed, and a horizontal movement (X-direction movement) of the base 3 with respect to the substrate W on the stage 2. And a driving device 4 that freely and independently performs vertical movement (movement in the Z direction).
  • the coating apparatus 1 further includes a tank 9 for storing the coating liquid, and a liquid feeding means including a pump 8 for supplying the coating liquid in the tank 9 to the base 3 as a liquid supply unit. Between the pump 8 and the base 3, a resin pipe (tube) 17 that constitutes the flow path of the coating liquid is installed.
  • the coating liquid in the tank 9 is at room temperature (the temperature in the room where the coating apparatus 1 is installed).
  • coats with this coating device 1 is a liquid with comparatively high viscosity at normal temperature.
  • the coating liquid include a polyimide solution for a flattening film, a partition wall dispersion containing glass particles that form partition walls of a plasma display back plate, and the like.
  • the comparatively high viscosity here means 100 mPas or more.
  • the pump 8 supplies the coating liquid in the tank 9 to the base 3, and the base 3 is lowered vertically by the driving device 4 so that a parallel clearance between the tip 23 and the substrate W is established.
  • a thin film (coating film) M is formed on the substrate W by discharging the coating liquid from the slit 21 while moving the base 3 horizontally, and the coating liquid is applied. can do.
  • die 3 turns into an application
  • the coating apparatus 1 includes a control device 5 that controls the operation of each part of the coating device 1, and the control device 5 performs the coating operation of discharging the coating liquid onto the substrate W in addition to the movement of the base 3. Control.
  • FIG. 2 is a schematic explanatory diagram illustrating the configuration of the base 3 and the liquid supply unit, and the base 3 is cut in the middle of the longitudinal direction, and the inside of the base is shown by a cross section orthogonal to the longitudinal direction. Note that the longitudinal direction of the base 3 coincides with the width direction.
  • the slit 21 formed inside the base 3 is long in the width direction of the base 3, and is opened at the front end portion 23 which is the front end of the base 3 (lower end of the base 3).
  • the gap amount B of the slit 21 is constant along the width direction of the base 3.
  • the width direction of the base 3 is a horizontal direction (Y direction) orthogonal to the application direction (X direction), and the gap amount B of the slit 21 is a dimension obtained by measuring the slit 21 in the X direction.
  • the entire base 3 is made of metal and has high thermal conductivity.
  • the slit 21 has an elongated shape when viewed in the Z direction, which is the flow direction of the coating liquid, and is long in the width direction (Y direction) and narrow in the coating direction (X direction).
  • the slit 21 is connected to the manifold 11 formed inside the base 3. Similarly to the slit 21, the manifold 11 is also formed long in the width direction.
  • the coating liquid is discharged from the tip of the die 3 through the manifold 11 and the slit 21. That is, the front end portion 23 which is an opening at the lower end of the slit 21 serves as a discharge port for the coating liquid.
  • the tip portion 23 of the base 3 where the slit 21 is open is horizontal and is formed linearly over the entire length in the width direction.
  • the upstream side (tank 9 side) of the channel 3 for flowing the coating liquid is provided in the base 3.
  • a two manifold 12 and a second slit 22 are also formed. That is, the flow path 10 formed in the base 3 includes a first slit which is the slit 21 having a discharge port for the coating liquid, a first manifold 11 connected to the first slit 21, the second manifold 12, and the like.
  • a second slit 22 connecting the first manifold 11 and the second manifold 12 is provided.
  • the formation positions in these caps 3 are the second manifold 12, the second slit 22, the first manifold 11, and the first slit 21 in this order from the upstream side through which the coating liquid flows. It becomes a step slit structure.
  • the second manifold 12 is formed long along the width direction of the base 3 and is constituted by a space having a circular cross section as shown in FIG. 3.
  • the second manifold 12 is formed along the width direction of the base 3.
  • the cross-sectional shape is the same. That is, the second manifold 12 is formed of a cylindrical space (hole).
  • the second slit 22 is opened to each of the second manifold 12 and the first manifold 11 and is configured as a flow path connecting the two.
  • the second slit 22 When the second slit 22 is viewed in the Z direction, which is the flow direction of the coating liquid, the second slit 22 has an elongated shape, and this elongated shape is the shape of the flow path cross section orthogonal to the flow direction of the coating liquid. .
  • This channel cross section is long in the width direction (Y direction) and narrow in the application direction (X direction).
  • the second slit 22 has the same width as the second manifold 12. Thereby, the coating liquid is sent in the Z direction from the second manifold 12 to the first manifold 11 in the second slit 22.
  • the first manifold 11 is formed long along the width direction of the base 3 as described above, and in the present embodiment, the first manifold 11 has the same shape and the same size as the second manifold 12. As will be described later, the first manifold 11 and the second manifold 12 have an action of widening the coating liquid (an action of distributing the liquid evenly in the width direction), but upstream of the first manifold 11. Since the expansion of the coating liquid is substantially achieved by the second manifold 12 positioned, the first manifold 11 may be configured to have a smaller volume than the second manifold 12.
  • the 1st slit 21 is formed long along the width direction of the nozzle
  • the cross-sectional shapes of the channels perpendicular to the (Z direction) are the same and have the same width dimension.
  • the pressure loss with respect to the flow of a coating liquid becomes large and the coating liquid becomes difficult to flow, so that the flow path cross section of the 1st slit 21 and the 2nd slit 22 becomes small.
  • the first slit 21 is the second slit 22.
  • the cross-section of the flow path perpendicular to the flow direction of the coating liquid may be smaller, particularly narrow in the coating direction (X direction) (the gap amount B of the slit 21 may be smaller).
  • the pipe 17 extending from the pump 8 is in fluid communication with a supply port 18 provided in the base 3 shown in FIG. 3, and a supply hole 19 extending from the supply port 18 to the second manifold 12 is connected to the base 18. 3 is formed.
  • the supply hole 19 is opened in the second manifold 12, and the coating liquid is supplied to the second manifold 12.
  • the coating liquid supplied to the second manifold 12 is widened in the width direction, and then flows in the order of the second slit 22, the first manifold 11, and the first slit 21, and is discharged onto the substrate W.
  • the coating apparatus 1 of this embodiment includes a temperature raising unit 30 that raises the temperature of the coating solution supplied from the tank 9 by the pump 8, and a temperature equalizing unit 40 that equalizes the temperature of the coating solution. And.
  • the temperature equalizing unit 40 makes the temperature of the coating solution uniform before discharging the coating solution heated by the temperature raising unit 30 from the first slit 21.
  • the temperature raising unit 30 includes one or a plurality of temperature raising units 31, and in the present embodiment, the temperature raising unit 30 includes three temperature raising units 31.
  • Each of the temperature raising units 31 includes a flow path 32 through which the coating liquid that is connected to the pipe 17 and sent from the pipe 17 flows, a heater that heats the coating liquid flowing through the flow path 32, and a heat insulating material that covers all or part of the heater. Etc.
  • These temperature raising units 31 are continuously installed in the longitudinal direction of the flow path 32, and are provided adjacent to the base 3. Each temperature raising unit 31 heats the flow path 32 from the outside, thereby transferring heat to the coating liquid flowing in the flow path 32 to raise the temperature.
  • each temperature raising unit 31 is controlled by the control device 5, and the temperature raising unit 30 raises the temperature of the coating liquid at room temperature T0 to a required temperature T1 of 30 to 50 ° C., for example.
  • the required temperature T1 is determined by coating specifications such as the type and viscosity of the substrate W and the coating liquid, and the discharge amount of the coating liquid.
  • an insufficient temperature raising unit 31 can be added or an excessive temperature raising unit 31 can be removed. . That is, the number of the temperature raising units 31 can be changed so that the temperature raising unit 30 can have the amount of heat necessary for raising the temperature of the coating liquid to the required temperature T1. Then, the heated coating liquid is sent into the base 3 from the supply port 18 connected to the flow path 32.
  • the temperature equalizing unit 40 includes a heating unit that heats the base 3 and a heat transfer flow path that is formed as part of a flow path through which the coating liquid flows inside the base 3.
  • the heating means includes a plurality of heaters 41 (divided heaters), and the heat transfer channel includes the second slit 22.
  • Each heater 41 heats the base 3 to apply heat to the coating liquid flowing through the flow path 10 formed inside the base 3.
  • Each heater 41 is controlled by the control device 5, and the temperature equalizing unit 40 equalizes the temperature of the coating liquid heated to the required temperature T 1 by the temperature increasing unit 30 over the width direction (Y direction) of the base 3. (Hereinafter also referred to as soaking).
  • a plurality of heaters 41 are provided side by side along the width direction (Y direction) of the base 3 in order to equalize the temperature of the coating solution.
  • the heater 41 is attached to the base 3 such that the base 3 is sandwiched from both sides in the X direction.
  • a temperature sensor (not shown) is provided in each part of the base 3, in particular, the wall part 14 on both sides of the second slit 22, and based on the detection signal of this temperature sensor, the control device 5
  • the individual heaters 41 are controlled so that the wall portion 14 has a uniform temperature along the Y direction, and further, the base 3 has a uniform temperature as a whole. Thereby, it becomes possible to maintain the nozzle
  • the base 3 (wall part 14) is maintained at a uniform temperature by the heater 41, and the temperature of the coating liquid flowing through the second slit 22, which is a heat transfer channel, is changed to the base 3 (wall By bringing the temperature close to the temperature of the part 14), it becomes possible to equalize the temperature of the coating solution. That is, heat transfer is performed so that the temperature of the base 3 (wall portion 14) and the temperature of the coating solution are the same.
  • the second slit 22 is a flow path for flowing the coating liquid heated by the temperature raising unit 30, and the flow path cross section orthogonal to the flow direction (Z direction) of the coating liquid is one direction X
  • This is a heat transfer channel that narrows in the direction, and the coating liquid that flows through the second slit 22 (heat transfer channel) through the base 3 (the walls 14 on both sides) through the heat generated by the heater 41.
  • the temperature of the coating solution heated by the temperature raising unit 30 is made uniform to the inside of the coating solution.
  • “The cross section of the flow path perpendicular to the flow direction (Z direction) of the coating solution is narrow in the X direction, which is one direction” means that the cross sectional dimension of the flow path in the X direction is small. In other words, it means that the gap amount of the second slit 22 is small.
  • the heater 41 and the control device 5 cause the wall portion 14 around at least the second slit 22 of the base 3 to have a uniform temperature in the width direction of the base 3, and from the wall portion 14, With respect to the coating liquid flowing through the two slits 22 (heat transfer flow path), heat transfer is performed in the X direction in which the flow path cross section perpendicular to the flow direction of the coating liquid is narrow. As a result, heat is transferred to the coating solution that is thin in the X direction, so that no temperature distribution occurs in the X direction due to heat conduction in the coating solution. That is, the temperature is equalized to the inside of the coating solution.
  • the temperature of the coating liquid can be made more uniform by reducing the gap amount.
  • the temperature of the coating liquid passing through the second slit 22 can be made uniform within a range of ⁇ 0.2 ° C.
  • the second manifold 12 exists on the upstream side of the second slit 22, and exists as an enlarged space channel that accumulates the coating liquid flowing in from the supply hole 19 and widens in the width direction. This contributes to feeding the coating solution uniformly in the width direction toward the manifold 11.
  • the second manifold 12 also serves to maintain the temperature of the coating liquid heated by the temperature raising unit 30.
  • the coating liquid flowing in the first slit 21 can also receive heat from the heater 41 in the base 3, and thus has a function of equalizing the temperature of the coating liquid to the inside as in the second slit 22.
  • the first slit 21 and the first manifold 11 are mainly provided to perform other functions. That is, the first manifold 11 can temporarily store the coating liquid that has been heated to the inside of the coating liquid by the second slit 22 and has a uniform viscosity. In particular, the flow path is narrowed by the first slit 21. Thereby, the inside of the first manifold 11 can be filled with the coating liquid.
  • the pressure of the coating liquid in the first manifold 11 (pressure in the first manifold 11) is made uniform, and the pressure of the coating liquid discharged from the first slit 21 is made uniform over the entire length of the base 3 in the width direction. , The discharge accuracy in the width direction can be increased.
  • the second slit 22 is a heat transfer channel, and this heat transfer channel is functionally different from the first slit 21 which is a coating solution discharge channel having a coating solution discharge port. It is a flow path. That is, the second slit 22 that is a heat transfer channel is a channel that plays a role different from the first slit 21 for discharging the coating liquid.
  • the first manifold 11 is interposed between the second slit 22 and the first slit as an enlarged space channel that accumulates the coating liquid and widens it in the width direction.
  • the coating apparatus 1 even when the coating liquid having a relatively high viscosity is applied to the substrate W, the coating liquid supplied from the tank 9 is raised by the temperature raising unit 30. By heating, the viscosity of the coating liquid discharged from the first slit 21 can be lowered, and the resistance of the flowing coating liquid can be reduced without increasing the cross-sectional area of the pipe 17 and the gap amount B of the slit 21. Is possible.
  • the coating liquid discharged from the first slit 21 has a temperature difference (temperature unevenness) in the longitudinal direction of the first slit 21, the viscosity unevenness occurs.
  • the temperature of the coating solution is made uniform by the temperature equalizing unit 40 before the coating solution heated by the temperature raising unit 30 is discharged from the first slit 21. Therefore, the coating film having a uniform thickness can be formed on the substrate W by making the viscosity uniform at a low value. As a result, the coating film can be formed on the substrate W with high accuracy and uniformity.
  • coating can be performed at a higher speed, and as a result, it is possible to form a coating film on the substrate W accurately and uniformly at a high speed. Become.
  • the temperature equalizing unit 40 is a channel through which the coating liquid heated by the heater 41 and the temperature raising unit 30 flows, and is a channel cross section orthogonal to the flow direction (Z direction) of the coating solution.
  • the temperature of the coating liquid heated by the unit 30 is made uniform to the inside, thereby realizing a uniform viscosity up to the inside of the coating liquid.
  • the temperature of the coating solution immediately before the coating is performed is uniform. Accordingly, the viscosity of the coating solution can be lowered and uniformized to the inside. Then, the temperature of the coating solution is made uniform at the base 3, whereby the coating solution is discharged from the first slit 21 with a low and uniform viscosity, and as a result, a coating film can be formed at a high speed.
  • the coating method for coating the substrate W with the coating apparatus 1 raises the temperature of the coating liquid supplied from the tank 9 and discharges the heated coating liquid from the first slit 21. Before, the temperature of this coating solution is made uniform. In particular, in the present embodiment, the heat generated by the heater 41 is transmitted to the coating liquid flowing through the second slit 22 which is a heat transfer channel, and the temperature and viscosity of the heated coating liquid are made uniform.
  • the temperature is raised by raising the temperature of the coating liquid from room temperature by the temperature raising unit 30, thereby reducing the viscosity of the coating liquid from the first slit 21 having a small slit width.
  • the supply speed of the coating liquid from the pump 8 may be increased while increasing the moving speed of the base 3.
  • the heater since the heater is not provided in the pump 8, the tank 9, and the piping from the pump 8 to the temperature rising part 30, the case where the heater is provided in the whole including the tank 9 etc. Cost (initial cost and running cost) can be reduced as compared with equipment.
  • the heating means provided in the temperature equalizing unit 40 includes the divided heaters 41 divided into a plurality of parts, and the output of each heater 41 is individually controlled by the control device 5. Even if the heat dissipation characteristics are different in each part in the width direction, the base 3 can be maintained at a uniform temperature. Further, even if dissolved air is foamed by raising the temperature of the coating solution by the temperature raising unit 30, an air vent hole (not shown) is provided in the upper part of the flow path 10 (second manifold 12) in the base 3. It is also possible to remove the bubbles generated in the temperature raising unit 30 from here.
  • the embodiments disclosed herein are illustrative and non-restrictive in every respect.
  • the scope of rights of the present invention is not limited to the above-described embodiments, but includes all modifications within the scope equivalent to the configurations described in the claims.
  • the coating apparatus may be configured so that the coating operation is performed by moving the stage 2 on which the substrate W is placed with respect to a certain base 3.
  • a manifold and a slit should just be multistage
  • the most downstream first manifold and the most downstream first slit mainly have a function of stably discharging the coating liquid, and the upstream side (pump 8 side) manifold and slit are It has the function of soaking.
  • the shape of the cross section perpendicular to the width direction of each manifold may be any shape such as a circle, a semicircle, a polygon, or a combination of a quarter circle and a right triangle.
  • the cross-sectional shape orthogonal to the width direction of the manifold may be changed along the width direction.
  • the heater 41 is attached to the side surface of the base 3 in the temperature equalizing unit 40 has been described.
  • the heater 41 may be attached to the upper part of the base 3 or the like.

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention forms a coating film on a substrate with good precision and at high speed even when coating a coating solution of relatively high viscosity on the substrate. Specifically, the coating device (1) is provided with a tank (9) for storing the coating solution and a nozzle (3) in which a slit (21) for discharging the coating solution supplied from the tank (9) is formed. The coating solution is coated on the substrate by discharging the coating solution from the slit (21). The coating device (1) is provided with a temperature-raising unit (30) for raising the temperature of the coating solution supplied from the tank (9) and a temperature-homogenizing unit (40) for homogenizing the temperature of the coating solution, the temperature of which has been raised by the temperature-raising unit, prior to discharging the coating solution from the slit (21).

Description

塗布装置及び塗布方法Coating apparatus and coating method
 本発明は、口金に形成されているスリットから塗布液を吐出することにより基板に対して塗布液を塗布する塗布装置及び塗布方法に関する。 The present invention relates to a coating apparatus and a coating method for applying a coating liquid onto a substrate by discharging the coating liquid from a slit formed in a base.
 ガラス基板やフィルム等の基板に対して塗布液を塗布する装置として、塗布液を吐出するスリットが形成された口金を備えている塗布装置が知られている(例えば、特許文献1参照)。この塗布装置は、塗布液を溜めるタンクと、このタンク内の塗布液を口金のスリットまで供給するためのポンプとを備えている。
 スリットは基板の幅方向に沿って長く形成されており、例えば、ステージ上に載置した基板に対して口金を水平移動させながら、スリットから塗布液を吐出することで、基板の表面に塗布液の薄膜(塗膜)を形成することができる。
As a device for applying a coating solution to a substrate such as a glass substrate or a film, there is known a coating device provided with a die in which a slit for discharging the coating solution is formed (for example, see Patent Document 1). This coating apparatus includes a tank for storing the coating liquid and a pump for supplying the coating liquid in the tank to the slit of the base.
The slit is formed long along the width direction of the substrate. For example, the coating liquid is discharged onto the surface of the substrate by discharging the coating liquid from the slit while moving the base horizontally with respect to the substrate placed on the stage. A thin film (coating film) can be formed.
 このような塗布装置を用いて、粘度が比較的高い塗布液を基板に対して塗布開始する場合、ポンプから口金までの樹脂製配管及び口金内のスリットにおける抵抗により、ポンプの動作開始に対して塗布液の流れ及びスリットからの塗布液の吐出動作に遅延が生じ、この遅延により塗布開始時に塗膜厚さが低下して塗布品質に影響を及ぼす。 When using such a coating apparatus to start application of a coating solution having a relatively high viscosity to the substrate, the resistance of the resin piping from the pump to the base and the slit in the base prevents the pump from starting operation. A delay occurs in the flow of the coating liquid and the discharge operation of the coating liquid from the slit, and this delay affects the coating quality by reducing the coating thickness at the start of coating.
 また、粘度が比較的高い塗布液を高速で塗布するために、ポンプからの塗布液の供給速度を高くすると、口金内のスリットで抵抗が大きくなり、内圧が高くなる。この内圧の高まりによって、細長い直線形状であるスリットが細長い太鼓状へと変形し、スリットの長手方向(幅方向)中央部から吐出した塗布液による膜厚が、端部の膜厚よりも厚くなって、膜厚が幅方向に異なる結果となり、膜厚の精度が大幅に低下してしまう。さらに、粘度の高い塗布液と粘度の低い塗布液とでそれぞれ同じ厚さの塗膜を形成するためには、粘度の高い塗布液の方が粘度の低い塗布液よりも塗布速度(口金の移動速度)を低くしなければ、このような塗膜を形成することができないという原理的な問題もある。
 したがって、粘度が比較的高い塗布液を基板に対して塗布する場合、塗布品質の確保を第1優先とすると、塗布液の供給速度を低くし、口金の移動速度を低くする必要があると考えられる。塗布液の供給速度(塗布液の流速)を低くすれば、流路の抵抗を小さくすることができ、前記のような遅延の発生や幅方向の膜厚精度の低下を抑制することが可能となる。
 また、他の手段として、塗布液の供給速度を低くしないで口金までの配管径を大きくし、さらに、スリットの間隙量(平行なすきまの幅)を大きくすることにより、流路の抵抗を小さくし、前記のような遅延の発生やスリットの変形による幅方向の膜厚精度の低下を抑制することが可能となる。
Further, if the supply speed of the coating liquid from the pump is increased in order to apply a coating liquid having a relatively high viscosity at a high speed, the resistance increases at the slit in the base, and the internal pressure increases. Due to this increase in internal pressure, the slit, which is an elongated linear shape, is deformed into an elongated drum shape, and the film thickness of the coating liquid ejected from the central part in the longitudinal direction (width direction) of the slit becomes thicker than the film thickness at the end part. As a result, the film thickness varies in the width direction, and the film thickness accuracy is greatly reduced. Furthermore, in order to form a coating film having the same thickness with a coating solution having a high viscosity and a coating solution having a low viscosity, a coating solution having a high viscosity has a higher coating speed (transfer of the die) than a coating solution having a low viscosity. There is also a principle problem that such a coating film cannot be formed unless the speed is reduced.
Therefore, when applying a coating liquid having a relatively high viscosity to the substrate, it is considered necessary to lower the supply speed of the coating liquid and to lower the moving speed of the die if the first priority is to ensure the coating quality. It is done. If the supply speed of the coating liquid (the flow speed of the coating liquid) is lowered, the resistance of the flow path can be reduced, and it is possible to suppress the occurrence of the delay as described above and the decrease in the film thickness accuracy in the width direction. Become.
As another means, the flow path resistance can be reduced by increasing the pipe diameter to the die without lowering the supply speed of the coating solution, and further increasing the slit gap (parallel gap width). And it becomes possible to suppress the fall of the film thickness precision of the width direction by generation | occurrence | production of the above delays or a deformation | transformation of a slit.
特開2000-157906号公報JP 2000-157906 A
 しかし、前記のとおり、塗布液の供給速度を遅くし、口金の移動速度を遅くした場合、塗布時間が増加することになり、生産性が損なわれてしまう。
 また、前記のとおり、口金までの配管径を大きくすると、例えば、配管をU字形に曲げる必要がある場合にその曲率半径を大きく設定する必要があり、また、配管のためのジョイント等も大きくする必要があり、ポンプから口金までの設備が大型化してしまう。そして、流路抵抗を小さくするために口金のスリットの間隙量を大きくし過ぎると、スリットから塗布液が均一に吐出されなくなってしまい、基板上に形成される塗膜の幅方向の膜厚精度が低下し、塗布品質を著しく低下させる。
 以上の問題は塗布液の粘度が高くなることによって発生する。したがって塗布液を加熱し温度を高くして粘度を低くすれば、以上の問題は回避される。さらに粘度が低下することにより、同じ膜厚さを得るために、塗布速度を向上させることができるという効果も生じる。ただし、塗布液が均一に加熱されず、温度むらにより粘度むらが存在すると、スリットから幅方向に塗布液が均一に吐出されなくなり、幅方向の膜厚精度が低下し、塗布品質が損なわれてしまう。
However, as described above, when the supply speed of the coating liquid is slowed down and the moving speed of the die is slowed down, the coating time increases and productivity is impaired.
Further, as described above, when the pipe diameter to the base is increased, for example, when it is necessary to bend the pipe into a U shape, it is necessary to set the radius of curvature to be large, and the joint for the pipe is also increased. It is necessary, and the equipment from the pump to the base becomes large. If the gap between the cap slits is too large to reduce the channel resistance, the coating solution will not be discharged uniformly from the slits, and the film thickness accuracy in the width direction of the coating film formed on the substrate will be reduced. Decreases, and the coating quality is significantly reduced.
The above problems occur when the viscosity of the coating solution increases. Therefore, if the coating solution is heated to increase the temperature and decrease the viscosity, the above problem can be avoided. Furthermore, when the viscosity is lowered, the coating speed can be improved in order to obtain the same film thickness. However, if the coating solution is not heated uniformly and there is uneven viscosity due to uneven temperature, the coating solution will not be uniformly discharged in the width direction from the slit, the film thickness accuracy in the width direction will be reduced, and the coating quality will be impaired. End up.
 そこで、本発明の目的は、粘度が比較的高い塗布液を基板に対して塗布する場合であっても、塗布液による薄膜(塗膜)を基板上に精度よく、しかも高速で形成することにある。 Accordingly, an object of the present invention is to form a thin film (coating film) with a coating solution with high accuracy and at a high speed even when a coating solution having a relatively high viscosity is applied to the substrate. is there.
 本発明は、塗布液を溜めるタンクと、このタンクから供給された塗布液を吐出するスリットが形成されている口金とを備え、当該スリットから塗布液を吐出することにより基板に対して塗布液を塗布する塗布装置であって、前記タンクから供給された前記塗布液を昇温させる昇温部と、前記昇温部によって昇温させた塗布液を前記スリットから吐出する前に、当該塗布液の温度を均一化させる均温部と、を備えていることを特徴とする。 The present invention includes a tank for storing a coating liquid and a base in which a slit for discharging the coating liquid supplied from the tank is formed, and the coating liquid is discharged onto the substrate by discharging the coating liquid from the slit. A coating apparatus for coating, wherein the coating liquid supplied from the tank is heated, and before the coating liquid heated by the temperature rising section is discharged from the slit, the coating liquid And a temperature-equalizing section that equalizes the temperature.
 本発明によれば、粘度が比較的高い塗布液を基板に対して塗布する場合であっても、タンクから供給された塗布液を昇温させることにより、スリットから吐出する塗布液の粘度を下げ、流れる塗布液の抵抗を小さくすることができる。しかも、スリットから吐出する塗布液に、そのスリットの長手方向について温度差(温度むら)が生じている場合、粘度むらによる膜厚むらが発生してしまうが、本発明によれば、昇温させた塗布液をスリットから吐出する前に、この塗布液の温度を均一化させることにより粘度も低い値で均一化させることができるので、基板上に均一な厚さの塗膜を形成することができる。この結果、塗膜を基板上に精度よく形成することが可能となる。さらに粘度が低くなることによって、より高速で塗布することも可能となる。 According to the present invention, even when a coating liquid having a relatively high viscosity is applied to the substrate, the viscosity of the coating liquid discharged from the slit is lowered by raising the temperature of the coating liquid supplied from the tank. The resistance of the flowing coating liquid can be reduced. Moreover, when the coating liquid discharged from the slit has a temperature difference (temperature unevenness) in the longitudinal direction of the slit, the film thickness unevenness due to the viscosity unevenness occurs. Before discharging the applied coating liquid from the slit, the viscosity of the coating liquid can be made uniform by making the temperature of the coating liquid uniform, so that a coating film having a uniform thickness can be formed on the substrate. it can. As a result, the coating film can be formed on the substrate with high accuracy. Furthermore, it becomes possible to apply at higher speed by lowering the viscosity.
 また、前記均温部は、加熱手段と、前記昇温部によって昇温させた塗布液を流す流路であって、塗布液の流れ方向に直交する流路断面が少なくとも一方向に狭くなっている熱伝達用流路と、を有し、前記加熱手段により発生させた熱を、前記熱伝達用流路を流れる塗布液へ伝達させ、前記昇温部によって昇温させた塗布液の温度を均一化させるのが好ましい。
 この場合、昇温部によって昇温させた塗布液は、流路断面が狭くなっている熱伝達用流路を流れ、この熱伝達用流路を流れる塗布液に、加熱手段により発生させた熱を流路断面が狭くなっている一方向に伝達させ、塗布液の温度を塗布液内部まで均一化させる。このように、流路断面が狭くなる熱伝達用流路を塗布液が流れる際に、熱伝達が行われることから、塗布液の温度を幅方向のみならず、内部まで均一化させやすい。
The soaking part is a flow path through which the coating liquid heated by the heating means and the temperature raising part flows, and the cross section of the flow path perpendicular to the flow direction of the coating liquid is narrowed in at least one direction. A heat transfer channel, wherein the heat generated by the heating means is transferred to the coating solution flowing through the heat transfer channel, and the temperature of the coating solution heated by the temperature raising unit is increased. It is preferable to make it uniform.
In this case, the coating liquid heated by the temperature raising unit flows through the heat transfer channel having a narrow channel cross section, and the heat generated by the heating means is applied to the coating solution flowing through the heat transfer channel. Is transmitted in one direction in which the cross section of the flow path is narrowed, and the temperature of the coating liquid is made uniform to the inside of the coating liquid. As described above, since heat transfer is performed when the coating liquid flows through the heat transfer channel having a narrow channel cross section, it is easy to make the temperature of the coating solution uniform not only in the width direction but also inside.
 また、前記熱伝達用流路は、前記スリットとは異なる流路であり、前記熱伝達用流路と前記スリットとの間には、塗布液を溜める拡大空間流路が設けられているのが好ましい。
 この場合、温度を均一化した塗布液を、一旦、拡大空間流路に溜めて温度を保ちつつ、より均一に分配することができ、そして、この塗布液を、拡大空間流路からスリットへと流して吐出させることができる。このため、塗膜を基板上により精度よく均一に形成することができる。
The heat transfer flow path is a flow path different from the slit, and an enlarged space flow path for storing a coating liquid is provided between the heat transfer flow path and the slit. preferable.
In this case, the coating liquid having a uniform temperature can be distributed more uniformly while temporarily maintaining the temperature by accumulating in the expansion space flow path, and the coating liquid can be distributed from the expansion space flow path to the slit. The liquid can be discharged. For this reason, a coating film can be formed more accurately and uniformly on a substrate.
 また、前記口金内に、第一スリットとなる前記スリット、この第一スリットと繋がる第一マニホールド、第二マニホールド、これら第一マニホールドと第二マニホールドとを連結している第二スリットとが形成されており、前記第二スリットが前記熱伝達用流路として前記口金内に形成され、前記加熱手段は、前記口金を加熱するのが好ましい。
 この場合、口金に均温部が設けられた構成となり、口金において塗布液の温度を均一化させ、温度が均一化した塗布液を第一スリットから吐出する。
Further, the slit that becomes the first slit, the first manifold that is connected to the first slit, the second manifold, and the second slit that connects the first manifold and the second manifold are formed in the base. Preferably, the second slit is formed in the base as the heat transfer channel, and the heating means heats the base.
In this case, the base is provided with a temperature-equalizing portion, the temperature of the coating liquid is made uniform in the base, and the coating liquid with the uniform temperature is discharged from the first slit.
 また、本発明は、タンクから供給された塗布液を吐出するスリットが形成されている口金を備えた塗布装置によって行われ、当該スリットから塗布液を吐出することにより基板に対して塗布液を塗布する塗布方法であって、前記タンクから供給された前記塗布液を昇温させ、この昇温させた塗布液を前記スリットから吐出する前に、当該塗布液の温度を均一化させることを特徴とする。
 本発明によれば、前記塗布装置と同様の作用効果を奏することが可能となる。
In addition, the present invention is performed by a coating apparatus having a base in which a slit for discharging a coating liquid supplied from a tank is formed, and the coating liquid is applied to a substrate by discharging the coating liquid from the slit. The coating method is characterized in that the temperature of the coating solution supplied from the tank is raised, and the temperature of the coating solution is made uniform before discharging the heated coating solution from the slit. To do.
According to the present invention, it is possible to achieve the same effects as the coating apparatus.
 本発明によれば、粘度が比較的高い塗布液を基板に対して塗布する場合であっても、タンクから供給された塗布液を昇温させることにより、スリットから吐出する塗布液の粘度を下げ、流れる塗布液の抵抗を小さくすることができ、また、この昇温させた塗布液をスリットから吐出する前に、この塗布液の温度を均一化させることにより粘度も低い値で均一化させ、これにより基板上に均一な厚さの塗膜を高速で形成することができる。この結果、塗膜を基板上に精度よく均一に、しかも高速塗布による高い生産性で形成することが可能となる。 According to the present invention, even when a coating liquid having a relatively high viscosity is applied to the substrate, the viscosity of the coating liquid discharged from the slit is lowered by raising the temperature of the coating liquid supplied from the tank. The resistance of the flowing coating liquid can be reduced, and before discharging the heated coating liquid from the slit, the temperature of the coating liquid is made uniform to make the viscosity uniform at a low value, Thereby, a coating film having a uniform thickness can be formed on the substrate at a high speed. As a result, it is possible to form the coating film on the substrate with high accuracy and with high productivity by high-speed coating.
本発明の塗布装置の実施の一形態を示す概略図である。It is the schematic which shows one Embodiment of the coating device of this invention. 口金及び液供給部等の構成を説明する概略説明図であり、口金の長手方向に直交する断面により口金内部を示している。It is a schematic explanatory drawing explaining the structure of a nozzle | cap | die, a liquid supply part, etc., The inside of a nozzle | cap | die is shown by the cross section orthogonal to the longitudinal direction of a nozzle | cap | die. 口金の長手方向に直交する断面図である。It is sectional drawing orthogonal to the longitudinal direction of a nozzle | cap | die.
 以下、本発明の実施の形態を図面に基づいて説明する。
〔塗布装置の構成について〕
 図1は、本発明の塗布装置1の実施の一形態を示す概略図である。この塗布装置1は、ガラス等の基板Wを載置可能なステージ2と、スリット21が内部に形成されている口金3と、ステージ2上の基板Wに対する口金3の水平移動(X方向移動)と垂直移動(Z方向移動)とを独立して自在に行わせる駆動装置4とを備えている。また、この塗布装置1は、液供給部として、塗布液を溜めるタンク9と、タンク9内の塗布液を口金3へ供給するためのポンプ8等からなる送液手段とを更に備えている。ポンプ8と口金3との間には、塗布液の流路を構成する樹脂製の配管(チューブ)17が設置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[About the configuration of the coating device]
FIG. 1 is a schematic view showing an embodiment of a coating apparatus 1 of the present invention. The coating apparatus 1 includes a stage 2 on which a substrate W such as glass can be placed, a base 3 in which a slit 21 is formed, and a horizontal movement (X-direction movement) of the base 3 with respect to the substrate W on the stage 2. And a driving device 4 that freely and independently performs vertical movement (movement in the Z direction). The coating apparatus 1 further includes a tank 9 for storing the coating liquid, and a liquid feeding means including a pump 8 for supplying the coating liquid in the tank 9 to the base 3 as a liquid supply unit. Between the pump 8 and the base 3, a resin pipe (tube) 17 that constitutes the flow path of the coating liquid is installed.
 本実施形態では、タンク9内の塗布液は常温(塗布装置1が設置されている室内の温度)にある。また、この塗布装置1によって塗布を行う塗布液は、常温で、比較的粘度の高い液体である。塗布液としては例えば、平坦化膜用のポリイミド溶液、プラズマディスプレイ背面板の隔壁を形成するガラス粒子を含有した隔壁用分散液等がある。ここでいう比較的高い粘度とは、100mPas以上をいう。 In the present embodiment, the coating liquid in the tank 9 is at room temperature (the temperature in the room where the coating apparatus 1 is installed). Moreover, the coating liquid which apply | coats with this coating device 1 is a liquid with comparatively high viscosity at normal temperature. Examples of the coating liquid include a polyimide solution for a flattening film, a partition wall dispersion containing glass particles that form partition walls of a plasma display back plate, and the like. The comparatively high viscosity here means 100 mPas or more.
 この塗布装置1によれば、ポンプ8がタンク9内の塗布液を口金3へと供給し、駆動装置4により口金3を垂直に下降させて先端部23と基板Wとの間の平行すきまが所定の値となるようにした後に、口金3を水平移動させながら、スリット21から塗布液を吐出することにより、基板W上に塗布液による薄膜(塗膜)Mを形成し、塗布液を塗布することができる。このため、口金3の移動方向が塗布方向(X方向)となる。
 また、この塗布装置1は、塗布装置1の各部の動作を制御する制御装置5を備えており、制御装置5は、上記の口金3の移動の他、塗布液を基板Wに吐出する塗布動作の制御を行う。
According to this coating apparatus 1, the pump 8 supplies the coating liquid in the tank 9 to the base 3, and the base 3 is lowered vertically by the driving device 4 so that a parallel clearance between the tip 23 and the substrate W is established. After the predetermined value is reached, a thin film (coating film) M is formed on the substrate W by discharging the coating liquid from the slit 21 while moving the base 3 horizontally, and the coating liquid is applied. can do. For this reason, the moving direction of the nozzle | cap | die 3 turns into an application | coating direction (X direction).
In addition, the coating apparatus 1 includes a control device 5 that controls the operation of each part of the coating device 1, and the control device 5 performs the coating operation of discharging the coating liquid onto the substrate W in addition to the movement of the base 3. Control.
 図2は、口金3及び前記液供給部等の構成を説明する概略説明図であり、口金3を長手方向の途中で切断し、その長手方向に直交する断面により口金内部を示している。なお、口金3の長手方向は、幅方向と一致する。口金3の内部に形成されている前記スリット21は、その口金3の幅方向に長く、口金3の先端(口金3の下端)である先端部23で開口している。スリット21の間隙量Bは、口金3の幅方向に沿って一定である。なお、口金3の幅方向は、塗布方向(X方向)と直交する水平方向(Y方向)であり、スリット21の間隙量Bは、スリット21をX方向に測定した寸法である。口金3の全体は、金属製であり、高い熱伝導性を有している。 FIG. 2 is a schematic explanatory diagram illustrating the configuration of the base 3 and the liquid supply unit, and the base 3 is cut in the middle of the longitudinal direction, and the inside of the base is shown by a cross section orthogonal to the longitudinal direction. Note that the longitudinal direction of the base 3 coincides with the width direction. The slit 21 formed inside the base 3 is long in the width direction of the base 3, and is opened at the front end portion 23 which is the front end of the base 3 (lower end of the base 3). The gap amount B of the slit 21 is constant along the width direction of the base 3. The width direction of the base 3 is a horizontal direction (Y direction) orthogonal to the application direction (X direction), and the gap amount B of the slit 21 is a dimension obtained by measuring the slit 21 in the X direction. The entire base 3 is made of metal and has high thermal conductivity.
 スリット21は、塗布液の流れ方向であるZ方向に見て細長い形状となっており、幅方向(Y方向)に長く、塗布方向(X方向)に狭い。また、スリット21は、口金3の内部に形成されているマニホールド11と繋がっている。マニホールド11も、スリット21と同様に、幅方向に長く形成されている。
 このマニホールド11及びスリット21を通じて塗布液が口金3の先端から吐出される。つまり、スリット21の下端の開口部である先端部23が、塗布液の吐出口となる。スリット21が開口している口金3の先端部23は、水平であり、幅方向全長にわたって直線状に形成されている。
The slit 21 has an elongated shape when viewed in the Z direction, which is the flow direction of the coating liquid, and is long in the width direction (Y direction) and narrow in the coating direction (X direction). The slit 21 is connected to the manifold 11 formed inside the base 3. Similarly to the slit 21, the manifold 11 is also formed long in the width direction.
The coating liquid is discharged from the tip of the die 3 through the manifold 11 and the slit 21. That is, the front end portion 23 which is an opening at the lower end of the slit 21 serves as a discharge port for the coating liquid. The tip portion 23 of the base 3 where the slit 21 is open is horizontal and is formed linearly over the entire length in the width direction.
 また、口金3内には、塗布液を流すための流路10として、前記マニホールド(第一マニホールド)11及びスリット(第一スリット)21以外に、これらの上流側(タンク9側)に、第二マニホールド12及び第二スリット22も形成されている。つまり、口金3内に形成されている流路10は、塗布液の吐出口を有する前記スリット21である第一スリット、この第一スリット21と繋がる第一マニホールド11、前記第二マニホールド12、これら第一マニホールド11と第二マニホールド12とを連結している第二スリット22を有している。これらの口金3内における形成位置は、塗布液が流れる上流側から順に、第二マニホールド12、第二スリット22、第一マニホールド11、第一スリット21であり、この構成により、二段マニホールド/二段スリット構造となる。 In addition to the manifold (first manifold) 11 and the slit (first slit) 21, the upstream side (tank 9 side) of the channel 3 for flowing the coating liquid is provided in the base 3. A two manifold 12 and a second slit 22 are also formed. That is, the flow path 10 formed in the base 3 includes a first slit which is the slit 21 having a discharge port for the coating liquid, a first manifold 11 connected to the first slit 21, the second manifold 12, and the like. A second slit 22 connecting the first manifold 11 and the second manifold 12 is provided. The formation positions in these caps 3 are the second manifold 12, the second slit 22, the first manifold 11, and the first slit 21 in this order from the upstream side through which the coating liquid flows. It becomes a step slit structure.
 第二マニホールド12は、口金3の幅方向に沿って長く形成されており、図3に示すように、断面円形の空間により構成されており、本実施形態では、口金3の幅方向に沿って断面形状は同じにしている。つまり、第二マニホールド12は円柱形状の空間(孔)からなる。 The second manifold 12 is formed long along the width direction of the base 3 and is constituted by a space having a circular cross section as shown in FIG. 3. In the present embodiment, the second manifold 12 is formed along the width direction of the base 3. The cross-sectional shape is the same. That is, the second manifold 12 is formed of a cylindrical space (hole).
 第二スリット22は、第二マニホールド12と第一マニホールド11とにそれぞれ開口しており、両者を結ぶ流路として構成されている。第二スリット22を塗布液の流れ方向であるZ方向に見ると、第二スリット22は細長い形状となっており、この細長い形状が、塗布液の流れ方向に直交する流路断面の形状となる。この流路断面は、幅方向(Y方向)に長く、塗布方向(X方向)に狭い。そして、第二スリット22は、第二マニホールド12と同じ幅寸法を有している。これにより、第二スリット22では塗布液が、第二マニホールド12から第一マニホールド11へと向かって、Z方向に送られる。 The second slit 22 is opened to each of the second manifold 12 and the first manifold 11 and is configured as a flow path connecting the two. When the second slit 22 is viewed in the Z direction, which is the flow direction of the coating liquid, the second slit 22 has an elongated shape, and this elongated shape is the shape of the flow path cross section orthogonal to the flow direction of the coating liquid. . This channel cross section is long in the width direction (Y direction) and narrow in the application direction (X direction). The second slit 22 has the same width as the second manifold 12. Thereby, the coating liquid is sent in the Z direction from the second manifold 12 to the first manifold 11 in the second slit 22.
 第一マニホールド11は、前記のとおり、口金3の幅方向に沿って長く形成されており、本実施形態では、第一マニホールド11は、第二マニホールド12と同じ形状及び同じ大きさとしている。なお、第一マニホールド11および第二マニホールド12は、後述のとおり、塗布液を拡幅する作用(幅方向に均等に液を分配する作用)を有しているが、第一マニホールド11よりも上流に位置する第二マニホールド12によって塗布液の拡幅はほぼ達成されるため、第一マニホールド11の方が第二マニホールド12よりも容積が小さくなるように構成されていてもよい。 The first manifold 11 is formed long along the width direction of the base 3 as described above, and in the present embodiment, the first manifold 11 has the same shape and the same size as the second manifold 12. As will be described later, the first manifold 11 and the second manifold 12 have an action of widening the coating liquid (an action of distributing the liquid evenly in the width direction), but upstream of the first manifold 11. Since the expansion of the coating liquid is substantially achieved by the second manifold 12 positioned, the first manifold 11 may be configured to have a smaller volume than the second manifold 12.
 そして、第一スリット21は、前記のとおり、口金3の幅方向に沿って長く形成されており、本実施形態では、第一スリット21は、第二スリット22と比べて塗布液の流れ方向(Z方向)に直交する流路断面形状が同じであり、同じ幅寸法を有する構成としている。なお、第一スリット21および第二スリット22の流路断面が小さくなるほど塗布液の流れに対する圧力損失が大きくなり、塗布液が流れにくくなる。そこで、トータルの圧力損失を高くせずに、塗布液を均一に吐出し、また、後述する均温化の効果をほどよく得られるようにするために、第一スリット21は、第二スリット22よりも塗布液の流れ方向に直交する流路断面が小さくなる、特に塗布方向(X方向)に狭くなる(スリット21の間隙量Bが小さくなる)ように構成されていてもよい。 And as above-mentioned, the 1st slit 21 is formed long along the width direction of the nozzle | cap | die 3, and in this embodiment, the 1st slit 21 is the flow direction (the coating liquid flow compared with the 2nd slit 22). The cross-sectional shapes of the channels perpendicular to the (Z direction) are the same and have the same width dimension. In addition, the pressure loss with respect to the flow of a coating liquid becomes large and the coating liquid becomes difficult to flow, so that the flow path cross section of the 1st slit 21 and the 2nd slit 22 becomes small. Therefore, in order to uniformly discharge the coating liquid without increasing the total pressure loss and to obtain a temperature equalizing effect which will be described later, the first slit 21 is the second slit 22. Alternatively, the cross-section of the flow path perpendicular to the flow direction of the coating liquid may be smaller, particularly narrow in the coating direction (X direction) (the gap amount B of the slit 21 may be smaller).
 そして、ポンプ8から延びる配管17は、図3に示す口金3に設けられている供給口18に流体的に連通しており、この供給口18から第二マニホールド12へと延びる供給孔19が口金3内に形成されている。
 そして、供給孔19は、第二マニホールド12内で開口しており、塗布液は第二マニホールド12へ供給される。第二マニホールド12へ供給された塗布液はここで幅方向に拡幅され、その後、第二スリット22、第一マニホールド11、第一スリット21の順に流れ、基板Wに対して吐出される。
The pipe 17 extending from the pump 8 is in fluid communication with a supply port 18 provided in the base 3 shown in FIG. 3, and a supply hole 19 extending from the supply port 18 to the second manifold 12 is connected to the base 18. 3 is formed.
The supply hole 19 is opened in the second manifold 12, and the coating liquid is supplied to the second manifold 12. The coating liquid supplied to the second manifold 12 is widened in the width direction, and then flows in the order of the second slit 22, the first manifold 11, and the first slit 21, and is discharged onto the substrate W.
 本実施形態の塗布装置1は、図2に示すように、タンク9からポンプ8によって供給された塗布液を昇温させる昇温部30と、この塗布液の温度を均一化させる均温部40とを備えている。均温部40は、昇温部30によって昇温させた塗布液を第一スリット21から吐出する前に、その塗布液の温度を均一化させる。 As shown in FIG. 2, the coating apparatus 1 of this embodiment includes a temperature raising unit 30 that raises the temperature of the coating solution supplied from the tank 9 by the pump 8, and a temperature equalizing unit 40 that equalizes the temperature of the coating solution. And. The temperature equalizing unit 40 makes the temperature of the coating solution uniform before discharging the coating solution heated by the temperature raising unit 30 from the first slit 21.
 昇温部30は、一つ又は複数の昇温ユニット31を備えており、本実施形態では、三つの昇温ユニット31を備えている。昇温ユニット31それぞれは、前記配管17と接続されて配管17から送られる塗布液が流れる流路32、この流路32を流れる塗布液を加熱するヒータ、ヒータの全て又は一部を覆う断熱材等を備えている。これら昇温ユニット31は、流路32の長手方向に連続して設置されており、また、口金3に隣接して設けられている。各昇温ユニット31は、流路32を外側から加熱することにより、その流路32の内部を流れる塗布液に熱を伝達し、昇温させる。 The temperature raising unit 30 includes one or a plurality of temperature raising units 31, and in the present embodiment, the temperature raising unit 30 includes three temperature raising units 31. Each of the temperature raising units 31 includes a flow path 32 through which the coating liquid that is connected to the pipe 17 and sent from the pipe 17 flows, a heater that heats the coating liquid flowing through the flow path 32, and a heat insulating material that covers all or part of the heater. Etc. These temperature raising units 31 are continuously installed in the longitudinal direction of the flow path 32, and are provided adjacent to the base 3. Each temperature raising unit 31 heats the flow path 32 from the outside, thereby transferring heat to the coating liquid flowing in the flow path 32 to raise the temperature.
 各昇温ユニット31のヒータは制御装置5によって制御されており、昇温部30は、常温T0にある塗布液を、例えば30~50℃の所要温度T1まで昇温させる。所要温度T1は、基板W及び塗布液の種類や粘度、塗布液の吐出量等の塗布仕様によって決定される。さらに、塗布液の温度を所要温度T1まで効率良く昇温させるために、本実施形態では、不足する昇温ユニット31を追加したり、又は、過剰な昇温ユニット31の取り外しを行うことができる。つまり、塗布液の温度を所要温度T1まで昇温させるために必要な熱量を昇温部30が有することができるように、昇温ユニット31の数を変更可能な構成としている。そして、昇温させた塗布液は、流路32と接続している供給口18から口金3内部に送られる。 The heater of each temperature raising unit 31 is controlled by the control device 5, and the temperature raising unit 30 raises the temperature of the coating liquid at room temperature T0 to a required temperature T1 of 30 to 50 ° C., for example. The required temperature T1 is determined by coating specifications such as the type and viscosity of the substrate W and the coating liquid, and the discharge amount of the coating liquid. Furthermore, in order to efficiently raise the temperature of the coating liquid to the required temperature T1, in this embodiment, an insufficient temperature raising unit 31 can be added or an excessive temperature raising unit 31 can be removed. . That is, the number of the temperature raising units 31 can be changed so that the temperature raising unit 30 can have the amount of heat necessary for raising the temperature of the coating liquid to the required temperature T1. Then, the heated coating liquid is sent into the base 3 from the supply port 18 connected to the flow path 32.
 均温部40は、口金3を加熱する加熱手段と、口金3内部に塗布液が流れる流路の一部として形成されている熱伝達用流路とを備えている。本実施形態に係る加熱手段は、複数のヒータ41(分割ヒータ)からなり、熱伝達用流路は、第二スリット22からなる。
 各ヒータ41は、口金3を加熱することにより、口金3内部に形成されている流路10を流れる塗布液に熱を与える。各ヒータ41は制御装置5によって制御されており、均温部40は、昇温部30によって所要温度T1まで昇温させた塗布液の温度を、口金3の幅方向(Y方向)にわたって均一化(以下、均温化ともいう)させる機能を有している。
The temperature equalizing unit 40 includes a heating unit that heats the base 3 and a heat transfer flow path that is formed as part of a flow path through which the coating liquid flows inside the base 3. The heating means according to the present embodiment includes a plurality of heaters 41 (divided heaters), and the heat transfer channel includes the second slit 22.
Each heater 41 heats the base 3 to apply heat to the coating liquid flowing through the flow path 10 formed inside the base 3. Each heater 41 is controlled by the control device 5, and the temperature equalizing unit 40 equalizes the temperature of the coating liquid heated to the required temperature T 1 by the temperature increasing unit 30 over the width direction (Y direction) of the base 3. (Hereinafter also referred to as soaking).
 均温部40では、塗布液を均温化するために、ヒータ41は、口金3の幅方向(Y方向)に沿って並べて複数設けられている。また、口金3をX方向両側から挟むようにして、ヒータ41は口金3に取り付けられている。
 なお、口金3の各部、特に第二スリット22の両側にある壁部14には温度センサ(図示せず)が設けられており、この温度センサの検知信号に基づいて、制御装置5は、両側の壁部14がY方向に沿って均一な温度となるように、さらには、口金3が全体として均一な温度となるように個々のヒータ41を制御する。これにより、口金3(壁部14)を幅方向(Y方向)全長にわたって同じ温度に維持することが可能となる。
In the temperature equalizing section 40, a plurality of heaters 41 are provided side by side along the width direction (Y direction) of the base 3 in order to equalize the temperature of the coating solution. The heater 41 is attached to the base 3 such that the base 3 is sandwiched from both sides in the X direction.
A temperature sensor (not shown) is provided in each part of the base 3, in particular, the wall part 14 on both sides of the second slit 22, and based on the detection signal of this temperature sensor, the control device 5 The individual heaters 41 are controlled so that the wall portion 14 has a uniform temperature along the Y direction, and further, the base 3 has a uniform temperature as a whole. Thereby, it becomes possible to maintain the nozzle | cap | die 3 (wall part 14) at the same temperature over the width direction (Y direction) full length.
 この均温部40によれば、ヒータ41により口金3(壁部14)を均一な温度に維持し、熱伝達用流路である第二スリット22を流れる塗布液の温度を、口金3(壁部14)の温度に近づけることで、塗布液を均温化することが可能となる。すなわち、口金3(壁部14)の温度と、塗布液の温度とを同じ温度とするように、熱伝達が行われる。 According to this temperature equalizing section 40, the base 3 (wall part 14) is maintained at a uniform temperature by the heater 41, and the temperature of the coating liquid flowing through the second slit 22, which is a heat transfer channel, is changed to the base 3 (wall By bringing the temperature close to the temperature of the part 14), it becomes possible to equalize the temperature of the coating solution. That is, heat transfer is performed so that the temperature of the base 3 (wall portion 14) and the temperature of the coating solution are the same.
 このように、第二スリット22は、昇温部30によって昇温させた塗布液を流す流路であって、塗布液の流れ方向(Z方向)に直交する流路断面が一方向であるX方向に狭くなっている熱伝達用流路であり、ヒータ41により発生させた熱を、口金3(両側の壁部14)を通じて、この第二スリット22(熱伝達用流路)を流れる塗布液へX方向に伝達させ、昇温部30によって昇温させた塗布液の温度を塗布液内部まで均一化させる。
 なお、「塗布液の流れ方向(Z方向)に直交する流路断面が一方向であるX方向に狭くなっている」とは、流路のX方向の断面寸法が小さくなっていることであり、さらに言い換えると、第2スリット22の間隙量が小さくなっていることを意味する。
As described above, the second slit 22 is a flow path for flowing the coating liquid heated by the temperature raising unit 30, and the flow path cross section orthogonal to the flow direction (Z direction) of the coating liquid is one direction X This is a heat transfer channel that narrows in the direction, and the coating liquid that flows through the second slit 22 (heat transfer channel) through the base 3 (the walls 14 on both sides) through the heat generated by the heater 41. The temperature of the coating solution heated by the temperature raising unit 30 is made uniform to the inside of the coating solution.
“The cross section of the flow path perpendicular to the flow direction (Z direction) of the coating solution is narrow in the X direction, which is one direction” means that the cross sectional dimension of the flow path in the X direction is small. In other words, it means that the gap amount of the second slit 22 is small.
 さて、前記のとおり、ヒータ41及び制御装置5により、口金3のうちの少なくとも第二スリット22の周囲の壁部14を、口金3の幅方向に均一な温度とし、この壁部14から、第二スリット22(熱伝達用流路)を流れる塗布液に対して、塗布液の流れ方向に直交する流路断面が狭くなっているX方向について、熱伝達を行わせる。これにより、X方向に薄くなっている塗布液に対して熱伝達されることになるので、塗布液内の熱伝導によりX方向に温度分布が生じない。すなわち塗布液の内部まで均温化される。
 なお、昇温部30の流路32や第二マニホールド12のような比較的流路断面が大きい部分では、流路断面外側の壁面から塗布液に熱伝達されても、流路断面内にある塗布液の外側部から中央部まで熱伝導しにくく、塗布液が均温化されにくい。
 これに対し、第二スリット22において、間隙量を小さくすることで、塗布液の温度をより内部まで均一化することができる。例えば、第二スリット22を通過する塗布液の温度を、±0.2℃の範囲内に均一化することができる。
As described above, the heater 41 and the control device 5 cause the wall portion 14 around at least the second slit 22 of the base 3 to have a uniform temperature in the width direction of the base 3, and from the wall portion 14, With respect to the coating liquid flowing through the two slits 22 (heat transfer flow path), heat transfer is performed in the X direction in which the flow path cross section perpendicular to the flow direction of the coating liquid is narrow. As a result, heat is transferred to the coating solution that is thin in the X direction, so that no temperature distribution occurs in the X direction due to heat conduction in the coating solution. That is, the temperature is equalized to the inside of the coating solution.
Note that, in a portion having a relatively large channel cross section such as the channel 32 of the temperature raising unit 30 or the second manifold 12, even if heat is transferred from the wall surface outside the channel cross section to the coating liquid, the channel cross section It is difficult to conduct heat from the outer part to the central part of the coating solution, and the coating solution is less likely to be soaked.
On the other hand, in the second slit 22, the temperature of the coating liquid can be made more uniform by reducing the gap amount. For example, the temperature of the coating liquid passing through the second slit 22 can be made uniform within a range of ± 0.2 ° C.
 なお、第二マニホールド12は、第二スリット22の上流側にあって、供給孔19から流入する塗布液を溜めて幅方向に拡幅する拡大空間流路として存在し、第二スリット22から第一マニホールド11に向かって幅方向に均一に塗布液を送るのに貢献している。また、この第二マニホールド12は、昇温部30によって昇温させた塗布液の温度を維持する役割も担う。 The second manifold 12 exists on the upstream side of the second slit 22, and exists as an enlarged space channel that accumulates the coating liquid flowing in from the supply hole 19 and widens in the width direction. This contributes to feeding the coating solution uniformly in the width direction toward the manifold 11. The second manifold 12 also serves to maintain the temperature of the coating liquid heated by the temperature raising unit 30.
 また、第一スリット21内を流れる塗布液についても、ヒータ41からの熱を口金3内で受けることができるので、第二スリット22と同様に、塗布液を内部まで均温化させる機能を有しているが、第一スリット21及び第一マニホールド11は、主として、他の機能を発揮させるために設けられている。
 すなわち、第一マニホールド11は、第二スリット22によって塗布液の内部まで均温化されて粘度も均一となった塗布液を一旦溜めることができ、特に、第一スリット21により流路が絞られることにより、第一マニホールド11内を塗布液で充満状態とすることができる。これにより、第一マニホールド11内の塗布液の圧力(第一マニホールド11内の圧力)を均一化させ、第一スリット21から吐出させる塗布液の圧力を、口金3の幅方向全長にわたって均一化させ、幅方向の吐出精度を高くすることができる。
Further, the coating liquid flowing in the first slit 21 can also receive heat from the heater 41 in the base 3, and thus has a function of equalizing the temperature of the coating liquid to the inside as in the second slit 22. However, the first slit 21 and the first manifold 11 are mainly provided to perform other functions.
That is, the first manifold 11 can temporarily store the coating liquid that has been heated to the inside of the coating liquid by the second slit 22 and has a uniform viscosity. In particular, the flow path is narrowed by the first slit 21. Thereby, the inside of the first manifold 11 can be filled with the coating liquid. Thereby, the pressure of the coating liquid in the first manifold 11 (pressure in the first manifold 11) is made uniform, and the pressure of the coating liquid discharged from the first slit 21 is made uniform over the entire length of the base 3 in the width direction. , The discharge accuracy in the width direction can be increased.
 このように、第二スリット22は熱伝達用流路であり、この熱伝達用流路は、塗布液の吐出口を有する塗布液吐出用流路である第一スリット21とは機能的に異なる流路である。つまり、熱伝達用流路である第二スリット22は、塗布液吐出用の第一スリット21とは別の役割を担う流路である。そして、第二スリット22と第一スリットとの間に、塗布液を溜めて幅方向に拡幅する拡大空間流路として前記第一マニホールド11が介在している。 Thus, the second slit 22 is a heat transfer channel, and this heat transfer channel is functionally different from the first slit 21 which is a coating solution discharge channel having a coating solution discharge port. It is a flow path. That is, the second slit 22 that is a heat transfer channel is a channel that plays a role different from the first slit 21 for discharging the coating liquid. The first manifold 11 is interposed between the second slit 22 and the first slit as an enlarged space channel that accumulates the coating liquid and widens it in the width direction.
 以上の本実施形態に係る塗布装置1によれば、粘度が比較的高い塗布液を基板Wに対して塗布する場合であっても、タンク9から供給された塗布液を昇温部30によって昇温させることにより、第一スリット21から吐出する塗布液の粘度を下げることができ、配管17の断面積及びスリット21の間隙量Bを大きくしなくても、流れる塗布液の抵抗を小さくすることが可能となる。
 しかも、第一スリット21から吐出する塗布液に、その第一スリット21の長手方向について温度差(温度むら)が生じている場合には、粘度むらが生じるので基板W上の塗膜の厚さにむらが発生してしまうが、本発明によれば、昇温部30により昇温させた塗布液を第一スリット21から吐出する前に、均温部40によって、この塗布液の温度を均一化させるので、粘度が低い値で均一になることにより、基板W上に均一な厚さの塗膜を形成することができる。この結果、塗膜を基板W上に精度よく均一に形成することが可能となる。また塗布液の温度を高めて粘度を低くすることにより、より高速で塗布が行なえることになり、その結果、塗膜を基板W上に精度よく均一に、しかも高速で形成することが可能となる。
According to the coating apparatus 1 according to the above-described embodiment, even when the coating liquid having a relatively high viscosity is applied to the substrate W, the coating liquid supplied from the tank 9 is raised by the temperature raising unit 30. By heating, the viscosity of the coating liquid discharged from the first slit 21 can be lowered, and the resistance of the flowing coating liquid can be reduced without increasing the cross-sectional area of the pipe 17 and the gap amount B of the slit 21. Is possible.
In addition, when the coating liquid discharged from the first slit 21 has a temperature difference (temperature unevenness) in the longitudinal direction of the first slit 21, the viscosity unevenness occurs. However, according to the present invention, the temperature of the coating solution is made uniform by the temperature equalizing unit 40 before the coating solution heated by the temperature raising unit 30 is discharged from the first slit 21. Therefore, the coating film having a uniform thickness can be formed on the substrate W by making the viscosity uniform at a low value. As a result, the coating film can be formed on the substrate W with high accuracy and uniformity. In addition, by increasing the temperature of the coating solution and reducing the viscosity, coating can be performed at a higher speed, and as a result, it is possible to form a coating film on the substrate W accurately and uniformly at a high speed. Become.
 特に本実施形態では、均温部40は、ヒータ41と、昇温部30によって昇温させた塗布液を流す流路であって、塗布液の流れ方向(Z方向)に直交する流路断面がX方向に狭くなっている第二スリット22(熱伝達用流路)を有しており、ヒータ41により発生させた熱を、第二スリット22を流れる塗布液の内部まで伝達させ、昇温部30によって昇温させた塗布液の温度を内部まで均一化させ、それによって塗布液の内部まで均一な粘度を実現している。
 このように、塗布液の流れ方向に直交する流路断面が狭くなる第二スリット22を塗布液が流れる際に、熱伝達が行われることから、塗布を行なわせる直前の塗布液の温度を均一化することができ、それによって塗布液の粘度を低く内部まで均一化することが可能となる。
 そして、口金3において塗布液の温度を均一化させ、それによって低く均一な粘度で塗布液が第一スリット21から吐出され、その結果高速で塗膜を形成することが可能となる。
In particular, in the present embodiment, the temperature equalizing unit 40 is a channel through which the coating liquid heated by the heater 41 and the temperature raising unit 30 flows, and is a channel cross section orthogonal to the flow direction (Z direction) of the coating solution. Has a second slit 22 (heat transfer channel) that is narrow in the X direction, and heat generated by the heater 41 is transferred to the inside of the coating liquid flowing through the second slit 22 to raise the temperature. The temperature of the coating liquid heated by the unit 30 is made uniform to the inside, thereby realizing a uniform viscosity up to the inside of the coating liquid.
Thus, since the heat transfer is performed when the coating solution flows through the second slit 22 where the flow path cross section perpendicular to the flow direction of the coating solution is narrow, the temperature of the coating solution immediately before the coating is performed is uniform. Accordingly, the viscosity of the coating solution can be lowered and uniformized to the inside.
Then, the temperature of the coating solution is made uniform at the base 3, whereby the coating solution is discharged from the first slit 21 with a low and uniform viscosity, and as a result, a coating film can be formed at a high speed.
 そして、この塗布装置1によって、基板Wに対して塗布液を塗布する塗布方法は、タンク9から供給された塗布液を昇温させ、この昇温させた塗布液を第一スリット21から吐出する前に、この塗布液の温度を均一化させる方法である。特に、本実施形態では、ヒータ41により発生させた熱を、熱伝達用流路である第二スリット22を流れる塗布液へ伝達し、昇温させた塗布液の温度と粘度を均一化させる。 The coating method for coating the substrate W with the coating apparatus 1 raises the temperature of the coating liquid supplied from the tank 9 and discharges the heated coating liquid from the first slit 21. Before, the temperature of this coating solution is made uniform. In particular, in the present embodiment, the heat generated by the heater 41 is transmitted to the coating liquid flowing through the second slit 22 which is a heat transfer channel, and the temperature and viscosity of the heated coating liquid are made uniform.
 また、本実施形態に係る塗布装置1によれば、昇温部30によって、塗布液の温度を常温よりも高めることにより、その粘度を低下させ、スリット幅の小さい第一スリット21からの塗布液の低圧吐出が可能となり、高い塗布速度で薄い膜厚による塗布液の塗布が可能となる。なお、塗布速度を高めるためには、口金3の移動速度を高くしつつ、ポンプ8からの塗布液の供給速度を高くすればよい。
 さらに、この塗布装置1によれば、ポンプ8、タンク9、及び、ポンプ8から昇温部30までの配管にヒータを設けていないことから、タンク9等を含む全体にヒータを設けた場合の設備よりも、コスト(イニシャルコスト及びランニングコスト)の低減化が可能となる。
Moreover, according to the coating apparatus 1 which concerns on this embodiment, the temperature is raised by raising the temperature of the coating liquid from room temperature by the temperature raising unit 30, thereby reducing the viscosity of the coating liquid from the first slit 21 having a small slit width. Thus, it is possible to apply a coating solution with a thin film thickness at a high coating speed. In order to increase the coating speed, the supply speed of the coating liquid from the pump 8 may be increased while increasing the moving speed of the base 3.
Furthermore, according to this coating apparatus 1, since the heater is not provided in the pump 8, the tank 9, and the piping from the pump 8 to the temperature rising part 30, the case where the heater is provided in the whole including the tank 9 etc. Cost (initial cost and running cost) can be reduced as compared with equipment.
 また、本実施形態では、均温部40が備えている加熱手段は、複数に分割されている分割ヒータ41からなり、制御装置5によって各ヒータ41の出力が個別に制御されるため、口金3の幅方向の各部分において放熱の特性が異なる場合であっても、口金3を均一の温度に維持することが可能となる。
 また、昇温部30により、塗布液の温度を上げることにより溶存空気の発泡が生じても、口金3内の流路10(第二マニホールド12)の上部にエア抜き孔(図示せず)を設け、ここから昇温部30内で発生した気泡を抜くようにしてもよい。
Further, in the present embodiment, the heating means provided in the temperature equalizing unit 40 includes the divided heaters 41 divided into a plurality of parts, and the output of each heater 41 is individually controlled by the control device 5. Even if the heat dissipation characteristics are different in each part in the width direction, the base 3 can be maintained at a uniform temperature.
Further, even if dissolved air is foamed by raising the temperature of the coating solution by the temperature raising unit 30, an air vent hole (not shown) is provided in the upper part of the flow path 10 (second manifold 12) in the base 3. It is also possible to remove the bubbles generated in the temperature raising unit 30 from here.
 今回開示した実施形態はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
 例えば、上述の実施形態では、固定状態にあるステージ2(図1参照)に対して、口金3が移動することで塗布動作が行われる場合について説明したが、これとは反対に、固定状態にある口金3に対して、基板Wを載せたステージ2が移動することで塗布動作が行われるように構成した塗布装置であってもよい。
The embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of rights of the present invention is not limited to the above-described embodiments, but includes all modifications within the scope equivalent to the configurations described in the claims.
For example, in the above-described embodiment, the case where the application operation is performed by moving the base 3 with respect to the stage 2 (see FIG. 1) in the fixed state has been described. The coating apparatus may be configured so that the coating operation is performed by moving the stage 2 on which the substrate W is placed with respect to a certain base 3.
 また、前記実施形態では、口金3内に、二段マニホールド構造、二段スリット構造を形成した場合について説明したが、マニホールド及びスリットは、多段であればよく、三段以上であってもよい。そして、最も下流側の第一マニホールド及び最も下流側の第一スリットは、塗布液を安定して吐出させる機能を主として有しており、これよりも上流側(ポンプ8側)のマニホールド及びスリットは、均温化の機能を有している。
 また、各マニホールドの幅方向に直交する断面での形状は、円形のほか、半円、多角形、1/4円と直角三角形を組み合わせたもの等、いかなる形状であってもよい。またマニホールドの幅方向に直交する断面形状は、幅方向に沿って変えてもよい。この場合、幅方向の中央部の断面積を両端部の断面積よりも大きくすることが好ましい。
 また、前記実施形態では、均温部40において、ヒータ41を口金3の側面に取り付ける場合について説明したが、ヒータ41は、口金3の上部等にも取り付けられていてもよい。
Moreover, although the said embodiment demonstrated the case where the 2 steps | paragraph manifold structure and the 2 step | paragraph slit structure were formed in the nozzle | cap | die 3, a manifold and a slit should just be multistage | paragraphs and may be three or more steps | paragraphs. The most downstream first manifold and the most downstream first slit mainly have a function of stably discharging the coating liquid, and the upstream side (pump 8 side) manifold and slit are It has the function of soaking.
Further, the shape of the cross section perpendicular to the width direction of each manifold may be any shape such as a circle, a semicircle, a polygon, or a combination of a quarter circle and a right triangle. The cross-sectional shape orthogonal to the width direction of the manifold may be changed along the width direction. In this case, it is preferable to make the cross-sectional area of the center part in the width direction larger than the cross-sectional areas of both end parts.
In the embodiment, the case where the heater 41 is attached to the side surface of the base 3 in the temperature equalizing unit 40 has been described. However, the heater 41 may be attached to the upper part of the base 3 or the like.
 1:塗布装置  3:口金  9:タンク  11:第一マニホールド(拡大空間流路)  12:第二マニホールド  21:第一スリット(スリット)  22:第二スリット(熱伝達用流路)  23:先端部  30:昇温部  40:均温部  41:ヒータ(加熱手段)  W:基板 1: coating device 3: base 9: tank 11: first manifold (enlarged space channel) 12: second manifold 21: first slit (slit) 22: second slit (heat transfer channel) 23: tip 30: Temperature rising part 40: Temperature equalizing part 41: Heater (heating means) W: Substrate

Claims (5)

  1.  塗布液を溜めるタンクと、このタンクから供給された塗布液を吐出するスリットが形成されている口金と、を備え、当該スリットから塗布液を吐出することにより基板に対して塗布液を塗布する塗布装置であって、
     前記タンクから供給された前記塗布液を昇温させる昇温部と、
     前記昇温部によって昇温させた塗布液を前記スリットから吐出する前に、当該塗布液の温度を均一化させる均温部と、
     を備えていることを特徴とする塗布装置。
    A coating for storing a coating solution and a base having a slit for discharging the coating solution supplied from the tank, and applying the coating solution to the substrate by discharging the coating solution from the slit A device,
    A temperature raising unit for raising the temperature of the coating solution supplied from the tank;
    A temperature equalizing unit that equalizes the temperature of the coating solution before discharging the coating solution heated by the heating unit from the slit;
    An applicator characterized by comprising:
  2.  前記均温部は、加熱手段と、前記昇温部によって昇温させた塗布液を流す流路であって、塗布液の流れ方向に直交する流路断面が少なくとも一方向に狭くなっている熱伝達用流路と、を有し、前記加熱手段により発生させた熱を、前記熱伝達用流路を流れる塗布液へ伝達させ、前記昇温部によって昇温させた塗布液の温度を均一化させる請求項1に記載の塗布装置。 The temperature-equalizing unit is a channel through which the coating liquid heated by the heating unit and the temperature raising unit flows, and the channel cross section perpendicular to the flow direction of the coating solution is narrowed in at least one direction. A flow path for transmission, and the heat generated by the heating means is transferred to the coating liquid flowing through the flow path for heat transmission, so that the temperature of the coating liquid heated by the temperature raising unit is made uniform. The coating device according to claim 1 to be made.
  3.  前記熱伝達用流路は、前記スリットとは異なる流路であり、
     前記熱伝達用流路と前記スリットとの間には、塗布液を溜める拡大空間流路が設けられている請求項2に記載の塗布装置。
    The heat transfer channel is a channel different from the slit,
    The coating apparatus according to claim 2, wherein an enlarged space channel for storing a coating liquid is provided between the heat transfer channel and the slit.
  4.  前記口金内に、第一スリットとなる前記スリット、この第一スリットと繋がる第一マニホールド、第二マニホールド、これら第一マニホールドと第二マニホールドとを連結している第二スリットとが形成されており、
     前記第二スリットが前記熱伝達用流路として前記口金内に形成され、
     前記加熱手段は、前記口金を加熱する請求項2又は3に記載の塗布装置。
    In the base, the slit serving as the first slit, the first manifold connected to the first slit, the second manifold, and the second slit connecting the first manifold and the second manifold are formed. ,
    The second slit is formed in the base as the heat transfer channel,
    The coating apparatus according to claim 2, wherein the heating unit heats the base.
  5.  タンクから供給された塗布液を吐出するスリットが形成されている口金を備えた塗布装置によって行われ、当該スリットから塗布液を吐出することにより基板に対して塗布液を塗布する塗布方法であって、
     前記タンクから供給された前記塗布液を昇温させ、
     この昇温させた塗布液を前記スリットから吐出する前に、当該塗布液の温度を均一化させることを特徴とする塗布方法。
    A coating method is performed by a coating apparatus having a base in which a slit for discharging a coating liquid supplied from a tank is formed, and the coating liquid is applied to a substrate by discharging the coating liquid from the slit. ,
    Raise the temperature of the coating solution supplied from the tank,
    A coating method characterized in that the temperature of the coating solution is made uniform before discharging the heated coating solution from the slit.
PCT/JP2013/074610 2012-09-24 2013-09-12 Coating device and coating method WO2014045982A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380048511.4A CN104661759B (en) 2012-09-24 2013-09-12 Apparatus for coating and coating method
KR1020157006929A KR102110628B1 (en) 2012-09-24 2013-09-12 Coating device and coating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012209288A JP6125783B2 (en) 2012-09-24 2012-09-24 Coating apparatus and coating method
JP2012-209288 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014045982A1 true WO2014045982A1 (en) 2014-03-27

Family

ID=50341296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074610 WO2014045982A1 (en) 2012-09-24 2013-09-12 Coating device and coating method

Country Status (5)

Country Link
JP (1) JP6125783B2 (en)
KR (1) KR102110628B1 (en)
CN (1) CN104661759B (en)
TW (1) TWI594806B (en)
WO (1) WO2014045982A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668150A (en) * 2015-03-09 2015-06-03 浙江长兴森大竹木制品有限公司 Curtain coating device of automatic curtain coating machine
WO2017145675A1 (en) * 2016-02-26 2017-08-31 東レエンジニアリング株式会社 Coating apparatus and coating method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735161B1 (en) * 2014-07-08 2015-06-17 中外炉工業株式会社 Coating apparatus and method for improving the same
JP6385864B2 (en) * 2015-03-18 2018-09-05 株式会社東芝 Nozzle and liquid supply device
KR102096609B1 (en) * 2016-03-31 2020-04-02 단국대학교 천안캠퍼스 산학협력단 Dynamic 3D lamination system can be coated for right angle and curved surface pattern
JP6655479B2 (en) * 2016-06-22 2020-02-26 東レ株式会社 Coating device and coating device
KR20200011038A (en) 2020-01-10 2020-01-31 장신 Seedling growth dedicated port and seedling growth method using the dedicated port
CN113926666B (en) * 2020-06-29 2023-03-10 上海德沪涂膜设备有限公司 Slit coating film forming method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288453A (en) * 1999-04-05 2000-10-17 Toppan Printing Co Ltd Coating device
JP2003154302A (en) * 2001-11-21 2003-05-27 Dainippon Printing Co Ltd Coating device
JP2003170098A (en) * 2001-12-06 2003-06-17 Shimadzu Corp Slit coater
JP2005028212A (en) * 2003-07-07 2005-02-03 Seiko Epson Corp Method and equipment for discharging droplet, device and manufacturing method therefor, and electronic equipment
JP2009082791A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Die coater, mouth piece for die coater, die-coating method employing die coater, and optical element and liquid crystal display prepared by using die coater

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157906A (en) 1998-11-25 2000-06-13 Canon Inc Sheet coating method and sheet coating device and production of color filter
JP2001009342A (en) * 1999-06-28 2001-01-16 Dainippon Printing Co Ltd Die head
JP2001029861A (en) * 1999-07-21 2001-02-06 Dainippon Printing Co Ltd Die head
JP2003159557A (en) * 2001-11-27 2003-06-03 Fuji Photo Film Co Ltd Coating method and coating equipment
JP2006175415A (en) * 2004-12-24 2006-07-06 Sony Corp Die head, coater and method of producing cell electrode
JP2007190456A (en) * 2006-01-17 2007-08-02 Konica Minolta Medical & Graphic Inc Manufacturing apparatus for laminated body
TW200831189A (en) * 2007-01-17 2008-08-01 Himax Display Inc Coating apparatus and nozzle
JP5138058B2 (en) * 2011-03-07 2013-02-06 東レ株式会社 Cleaning member and applicator cleaning method, cleaning device, and display member manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288453A (en) * 1999-04-05 2000-10-17 Toppan Printing Co Ltd Coating device
JP2003154302A (en) * 2001-11-21 2003-05-27 Dainippon Printing Co Ltd Coating device
JP2003170098A (en) * 2001-12-06 2003-06-17 Shimadzu Corp Slit coater
JP2005028212A (en) * 2003-07-07 2005-02-03 Seiko Epson Corp Method and equipment for discharging droplet, device and manufacturing method therefor, and electronic equipment
JP2009082791A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Die coater, mouth piece for die coater, die-coating method employing die coater, and optical element and liquid crystal display prepared by using die coater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668150A (en) * 2015-03-09 2015-06-03 浙江长兴森大竹木制品有限公司 Curtain coating device of automatic curtain coating machine
WO2017145675A1 (en) * 2016-02-26 2017-08-31 東レエンジニアリング株式会社 Coating apparatus and coating method
JP2017148769A (en) * 2016-02-26 2017-08-31 東レ株式会社 Coating device and coating method

Also Published As

Publication number Publication date
CN104661759B (en) 2017-11-28
TWI594806B (en) 2017-08-11
KR102110628B1 (en) 2020-05-13
JP2014061501A (en) 2014-04-10
CN104661759A (en) 2015-05-27
TW201420211A (en) 2014-06-01
KR20150060704A (en) 2015-06-03
JP6125783B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6125783B2 (en) Coating apparatus and coating method
US8393177B2 (en) Glass flow management by thermal conditioning
US10232399B2 (en) Slot coater having fluid control unit
US9434632B2 (en) Glass forming apparatus and method
JP2016182576A (en) Slit nozzle, coating method, and coating applicator
TW200528404A (en) Apparatus and drawing tank for producing thin panes of glass
KR20140042739A (en) Application element, device and method for applying a layer of a viscous material onto a substrate
TW201518080A (en) Apparatus and method for forming the outer layers of a glass laminate sheet
JP2009028685A (en) Die coating device
JP2018114487A (en) Coating apparatus and coating method
CN207240641U (en) Through type discharge hole structure and waterproofing membrane production equipment
JP2012082092A (en) Method and apparatus for manufacturing multicore tape fiber strand
KR101715699B1 (en) Slot coater having fluid control means
JP6188525B2 (en) Coating device
KR101699944B1 (en) Active material coating equipment and Active material distributor applied for the same
KR20150037160A (en) Dispenser for uniformity of flow
CN109836054B (en) Resin coating device for optical fiber and method for manufacturing optical fiber
CN111312628B (en) Baking equipment applied in display panel manufacturing process
TW202028131A (en) Glass manufacturing apparatus and methods
JP2012071339A (en) Nozzle, cooling device and cooling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006929

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840107

Country of ref document: EP

Kind code of ref document: A1