JP2018114487A - Coating apparatus and coating method - Google Patents

Coating apparatus and coating method Download PDF

Info

Publication number
JP2018114487A
JP2018114487A JP2017009028A JP2017009028A JP2018114487A JP 2018114487 A JP2018114487 A JP 2018114487A JP 2017009028 A JP2017009028 A JP 2017009028A JP 2017009028 A JP2017009028 A JP 2017009028A JP 2018114487 A JP2018114487 A JP 2018114487A
Authority
JP
Japan
Prior art keywords
coating liquid
coating
width direction
manifold
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009028A
Other languages
Japanese (ja)
Other versions
JP6808505B2 (en
Inventor
賢司 北島
Kenji Kitajima
賢司 北島
元井 昌司
Masashi Motoi
昌司 元井
野村 和夫
Kazuo Nomura
和夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2017009028A priority Critical patent/JP6808505B2/en
Publication of JP2018114487A publication Critical patent/JP2018114487A/en
Application granted granted Critical
Publication of JP6808505B2 publication Critical patent/JP6808505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating apparatus that forms a coating film with uniform thickness without returning a coating liquid, which is supplied to a die, to a tank.SOLUTION: A coating apparatus 1 includes: a die 10 in which a manifold 11 long in a width direction and made of a space for storing a coating liquid, and a discharge opening 18 for discharging the coating liquid to a base material 2 via a slit 12 wide in the width direction, connected to the manifold 11, are formed; supply means 20 for supplying the coating liquid 3 to the manifold 11 from an inflow part communicating with the manifold 11; and coating liquid temperature control means 41 for controlling the temperature of the coating liquid 3 discharged to each of split areas formed by splitting a width-direction part into a plurality of areas.SELECTED DRAWING: Figure 1

Description

本発明は、基材に塗液を塗工して塗工膜を形成する塗工装置及び塗工方法に関するものである。 The present invention relates to a coating apparatus and a coating method for forming a coating film by coating a coating liquid on a substrate.

従来から、長尺状の基材に塗液を塗布するために、ポンプによって供給された塗液をダイのスリットから幅方向に塗液を吐出して均一な厚さに塗布することが行われている。例えば、特許文献1には、スラリー(塗液)の吐出作業を長時間継続して行っても、基材上に形成される塗膜層(塗工膜)の厚さを均一にする構成が記載されている。   Conventionally, in order to apply a coating solution to a long substrate, the coating solution supplied by a pump is applied in a uniform thickness by discharging the coating solution in a width direction from a slit of a die. ing. For example, Patent Document 1 has a configuration in which the thickness of a coating layer (coating film) formed on a substrate is made uniform even when slurry (coating liquid) is discharged continuously for a long time. Have been described.

特許文献1:特開2015−097198号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2015-097198

しかしながら、特許文献1記載のものは、タンクからポンプにより塗液を供給し、ダイにおける不均一な余分の塗液をダイからタンクに戻すものであるため、この戻し量に応じてポンプからの流量が変化し塗液量(塗布量)管理が困難であるという問題があった。また、タンクに戻した塗液は粘度等の性質が変化している可能性があり塗工膜の品質に影響するという問題があった。 However, since the thing of patent document 1 supplies a coating liquid with a pump from a tank, and returns the nonuniform excess coating liquid in a die to a tank from a die, the flow volume from a pump according to this return amount There is a problem that it is difficult to control the coating liquid amount (coating amount). Further, the coating liquid returned to the tank has a problem that properties such as viscosity may be changed, which affects the quality of the coating film.

本発明は、上記問題点を解決して、ダイに供給した塗液をタンクに戻すことなく均一な厚さの塗工膜を形成することを課題とする。 This invention solves the said problem and makes it a subject to form the coating film of uniform thickness, without returning the coating liquid supplied to die | dye to a tank.

上記課題を解決するために本発明は、基材に塗液を塗工して塗工膜を形成する塗工装置であって、幅方向に長く塗液を溜める空間からなるマニホールドと、当該マニホールドと繋がった当該幅方向に広いスリットを経由して塗液を前記基材に対して吐出する吐出口とが形成されたダイと、前記マニホールドに連通している流入部から前記マニホールドに塗液を供給する供給手段と、前記幅方向を複数領域に分割した分割領域毎に塗液の温度を制御する塗液温度制御手段と、を備えたことを特徴とする塗工装置を提供するものである。 In order to solve the above-mentioned problems, the present invention is a coating apparatus for coating a substrate with a coating liquid to form a coating film, the manifold including a space for storing the coating liquid long in the width direction, and the manifold The die is formed with a discharge port for discharging the coating liquid to the base material via a wide slit in the width direction connected to the manifold, and the coating liquid is supplied to the manifold from the inflow portion communicating with the manifold. The present invention provides a coating apparatus comprising: a supply means for supplying; and a coating liquid temperature control means for controlling the temperature of the coating liquid for each divided region obtained by dividing the width direction into a plurality of regions. .

この構成により、塗液温度を制御することによって塗液の粘度を変えて吐出量を変化させることができ、ダイに供給した塗液をタンクに戻すことなく均一な厚さの塗工膜を形成することができる。 With this configuration, it is possible to change the discharge volume by changing the viscosity of the coating liquid by controlling the coating liquid temperature, and form a coating film with a uniform thickness without returning the coating liquid supplied to the die to the tank can do.

前記塗液温度制御手段が、前記マニホールドの空間内に設けられた構成としてもよい。 The coating liquid temperature control means may be provided in the space of the manifold.

この構成により、スリット近傍を直接温度制御するものではないので、スリットの熱変形を伴うことなく塗液温度を制御することができる。 With this configuration, the temperature in the vicinity of the slit is not directly controlled, so that the coating liquid temperature can be controlled without accompanying thermal deformation of the slit.

前記スリットを構成する対向して配置された2つの分割体のうち、少なくとも一方の分割体における前記スリット近傍に前記塗液温度制御手段が設けられた構成としてもよい。 It is good also as a structure by which the said coating liquid temperature control means was provided in the vicinity of the said slit in at least one division body among the two division bodies arrange | positioned facing the said slit.

この構成により、吐出直前の塗液温度を制御することができ、塗液の粘度を効果的に変化させることができる。 With this configuration, the temperature of the coating liquid immediately before discharge can be controlled, and the viscosity of the coating liquid can be effectively changed.

前記2つの分割体のうちの一方に複数の加熱機構からなる塗液温度制御手段が設けられ、前記2つの分割体のうちの他方に複数の吸熱機構からなる塗液温度制御手段が設けられた構成としてもよい。 One of the two divided bodies is provided with a coating liquid temperature control means comprising a plurality of heating mechanisms, and the other of the two divided bodies is provided with a coating liquid temperature control means comprising a plurality of endothermic mechanisms. It is good also as a structure.

この構成により、吐出直前の塗液温度を幅方向において効果的に制御することができ、塗液の粘度を効果的に変化させることができる。 With this configuration, the coating liquid temperature immediately before discharge can be effectively controlled in the width direction, and the viscosity of the coating liquid can be effectively changed.

前記塗工膜の厚さを計測する塗工膜厚計測手段を備え、前記塗液温度制御手段は、当該塗工膜厚計測手段で計測した塗工膜厚に基づいて、塗液の温度を制御する構成としてもよい。 Coating film thickness measuring means for measuring the thickness of the coating film, the coating liquid temperature control means, the temperature of the coating liquid based on the coating film thickness measured by the coating film thickness measuring means It is good also as a structure to control.

この構成により、塗工膜厚に基づいて塗液の吐出量を変えることができ、塗工膜厚の均一性を向上させることができる。 With this configuration, the discharge amount of the coating liquid can be changed based on the coating film thickness, and the uniformity of the coating film thickness can be improved.

また、上記課題を解決するために本発明は、基材に塗液を塗工して塗工膜を形成する塗工方法であって、幅方向に長いダイにおける当該幅方向に長い空間からなるマニホールドに供給部から塗液を供給して塗液を溜め、当該マニホールドと繋がった当該幅方向に広いスリットを経由して、塗液を前記基材に対して吐出口から吐出するとともに、塗液温度制御手段により、前記幅方向を複数領域に分割した分割領域毎に塗液の温度を制御することを特徴とする塗工方法を提供するものである。 Moreover, in order to solve the said subject, this invention is a coating method which applies a coating liquid to a base material, and forms a coating film, Comprising: It consists of space long in the said width direction in the die | dye long in the width direction. The coating liquid is supplied to the manifold from the supply unit to accumulate the coating liquid, and the coating liquid is discharged from the discharge port to the substrate through the wide slit connected to the manifold in the width direction. The present invention provides a coating method characterized in that the temperature of the coating liquid is controlled for each divided region obtained by dividing the width direction into a plurality of regions by a temperature control means.

この構成により、塗液温度を制御することによって塗液の粘度を変えて吐出量を変化させることができ、ダイに供給した塗液をタンクに戻すことなく均一な厚さの塗工膜を形成することができる。 With this configuration, it is possible to change the discharge volume by changing the viscosity of the coating liquid by controlling the coating liquid temperature, and form a coating film with a uniform thickness without returning the coating liquid supplied to the die to the tank can do.

本発明の塗工装置及び塗工方法により、ダイに供給した塗液をタンクに戻すことなく均一な厚さの塗工膜を形成することができる。 By the coating apparatus and the coating method of the present invention, a coating film having a uniform thickness can be formed without returning the coating liquid supplied to the die to the tank.

本発明の実施例1における塗工装置の構成を説明する図である。It is a figure explaining the structure of the coating apparatus in Example 1 of this invention. 図1のa矢視の断面図である。It is sectional drawing of arrow a of FIG. 図1のb矢視の断面図である。It is sectional drawing of b arrow view of FIG. シム板15の平面図である。3 is a plan view of a shim plate 15. FIG. 本発明の実施例2におけるダイの構成を説明する図である。It is a figure explaining the structure of the die | dye in Example 2 of this invention. 図5のc矢視の断面図である。It is sectional drawing of arrow c of FIG. 本発明の実施例3における塗工装置の構成を説明する図である。It is a figure explaining the structure of the coating apparatus in Example 3 of this invention.

本発明の実施例1について、図1〜図4を参照して説明する。図1は、本発明の実施例1における塗工装置の構成を説明する図である。図2は、図1のa矢視の断面図である。図3は、図1のb矢視の断面図である。図4は、シム板15の平面図である。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating the configuration of a coating apparatus according to a first embodiment of the present invention. 2 is a cross-sectional view taken along arrow a in FIG. 3 is a cross-sectional view taken along the arrow b in FIG. FIG. 4 is a plan view of the shim plate 15.

塗工装置1は、ロールツーロールで送られる基材2に、塗液3を塗布するための装置である。この塗工装置1により塗液3を塗布して形成した塗工膜は、後工程で乾燥されて利用される。基材2上に形成される塗工膜の厚さ管理は重要である。例えば、この塗工膜が電池の極板に用いられる場合、電池の充放電量に直接影響を与えるため、塗工膜厚管理は非常に重要である。この塗工装置1によれば、後述するように、塗液3は、基材2の送り方向MDに沿って均一な厚さ(均一な塗膜量)で塗布される。なお、基材2の幅方向TDは、基材2の送り方向に直交する方向であり、図1におけるY軸方向がこれに相当する。 The coating apparatus 1 is an apparatus for applying the coating liquid 3 to the base material 2 fed by roll-to-roll. The coating film formed by applying the coating liquid 3 by the coating apparatus 1 is dried and used in a subsequent process. The thickness management of the coating film formed on the substrate 2 is important. For example, when this coating film is used for an electrode plate of a battery, the coating film thickness management is very important because it directly affects the charge / discharge amount of the battery. According to this coating apparatus 1, as will be described later, the coating liquid 3 is applied with a uniform thickness (uniform coating amount) along the feed direction MD of the substrate 2. In addition, the width direction TD of the base material 2 is a direction orthogonal to the feeding direction of the base material 2, and the Y-axis direction in FIG.

基材2の材質は特に限定するものではなく、金属箔や樹脂等様々なものを選択することができる。また、幅方向TD(Y方向)の長さは限定するものではなく、500〜1500mm等のものを選択することができる。 The material of the base material 2 is not particularly limited, and various materials such as metal foil and resin can be selected. Moreover, the length of the width direction TD (Y direction) is not limited, and things, such as 500-1500 mm, can be selected.

ここで、本発明における塗液3は、せん断速度に対する粘度変化を有している液体(すなわち、非ニュートン流体)を対象としている。塗液3がせん断速度に対する粘度変化を有しているために、後述するように、塗液温度を制御することにより粘度が変化して流速が変化する。これにより塗布する塗液量が変化する。つまり、塗液温度を制御することにより、塗布する塗液量を制御し、塗工膜厚を均一に制御することができる。 Here, the coating liquid 3 in the present invention is intended for a liquid (that is, a non-Newtonian fluid) having a viscosity change with respect to the shear rate. Since the coating liquid 3 has a change in viscosity with respect to the shear rate, as described later, the viscosity changes and the flow rate changes by controlling the coating liquid temperature. Thereby, the coating liquid amount to apply changes. That is, by controlling the coating liquid temperature, the coating liquid amount to be applied can be controlled, and the coating film thickness can be uniformly controlled.

塗工装置1は、基材2の幅方向TDに沿って長く構成されたダイ10と、このダイ10に塗液3を供給する供給手段20とを備えている。ダイ10において、その長手方向(図1におけるY軸方向)を幅方向という。ダイ10の幅方向の長さは500〜1500mm程度である。この塗工装置1では、ダイ10に対向するローラ5が設置されており、ダイ10の幅方向とローラ5の回転中心線の方向とは平行である。基材2は、このローラ5に案内され、基材2とダイ10(後述のスリット12の先端)との間隔(隙間)が一定に保たれ、この状態で塗液3の塗布が行われる。 The coating apparatus 1 includes a die 10 that is long along the width direction TD of the substrate 2 and a supply unit 20 that supplies the coating liquid 3 to the die 10. In the die 10, the longitudinal direction (the Y-axis direction in FIG. 1) is referred to as the width direction. The length of the die 10 in the width direction is about 500 to 1500 mm. In this coating apparatus 1, a roller 5 facing the die 10 is installed, and the width direction of the die 10 and the direction of the rotation center line of the roller 5 are parallel. The base material 2 is guided by this roller 5, and the space | interval (gap) between the base material 2 and die | dye 10 (tip of the slit 12 mentioned later) is kept constant, and application | coating of the coating liquid 3 is performed in this state.

実施例1におけるダイ10は、先細り形状である第一リップ13aを有する第一分割体13と、先細り形状である第二リップ14aを有する第二分割体14とを、これらの間にシム板15と塗液温度制御手段41の一部とを挟んで、組み合わせた構成からなる。図2は、図1のa矢視の断面図である。図3は、図1のb矢視の断面図であり、シム板15を、図4に示している。ダイ10は、その内部に、幅方向に長い空間からなるマニホールド11と、このマニホールド11と繋がるスリット12とが形成され、また、第一リップ13aと第二リップ14aとの間には、スリット12の解放端である吐出口18が形成されている。すなわち、第1のマニホールド11と吐出口18とは、スリット12を経由して繋がっている。この構成により、供給手段20により供給された塗液3は、先ずマニホールド11に溜められ、次に、スリット12を経由して吐出口18から吐出される。 The die 10 according to the first embodiment includes a first divided body 13 having a first lip 13a having a tapered shape and a second divided body 14 having a second lip 14a having a tapered shape, and a shim plate 15 therebetween. And a part of the coating liquid temperature control means 41. 2 is a cross-sectional view taken along arrow a in FIG. FIG. 3 is a cross-sectional view taken along the arrow b in FIG. 1, and the shim plate 15 is shown in FIG. The die 10 is formed therein with a manifold 11 having a long space in the width direction and a slit 12 connected to the manifold 11, and a slit 12 between the first lip 13a and the second lip 14a. A discharge port 18 is formed as a release end. That is, the first manifold 11 and the discharge port 18 are connected via the slit 12. With this configuration, the coating liquid 3 supplied by the supply means 20 is first stored in the manifold 11 and then discharged from the discharge port 18 via the slit 12.

塗液温度制御手段41は、図2、図3に示すように、複数の加熱機構41aがダイの幅方向に配列されていて、幅方向を複数領域に分割した分割領域毎に塗液3の温度を制御するように構成されている。各加熱機構41aは、その一部が第一分割体13と第二分割体14とにスリット15とともに挟み込まれて固定されるとともに、その大部分がマニホールド11の空間内に露出して塗液3の温度を効率的に制御することができる。また、複数の加熱機構41aが配列される塗液温度制御手段41の幅方向の寸法は後述のシム板15と同じ寸法Wを有し、幅方向と直交する長さは、マニホールド11の空間内中央付近まで到達する長さを有している。複数の加熱機構41aはペルチェ素子で構成されていて、幅方向の寸法は50〜100mm程度である。加熱機構41aの数は特に限定するものではないが、数個〜20個程度としている。この複数の加熱機構41aにより、マニホールド11の幅方向を複数領域に分割した分割領域毎に塗液3の温度を制御することができる。 As shown in FIG. 2 and FIG. 3, the coating liquid temperature control means 41 has a plurality of heating mechanisms 41a arranged in the width direction of the die, and the coating liquid temperature control means 41 is applied to each divided region obtained by dividing the width direction into a plurality of regions. It is configured to control the temperature. A part of each heating mechanism 41 a is sandwiched between the first divided body 13 and the second divided body 14 together with the slit 15 and fixed, and most of the heating mechanism 41 a is exposed in the space of the manifold 11 and is applied to the coating liquid 3. Can be controlled efficiently. The dimension of the coating liquid temperature control means 41 in which a plurality of heating mechanisms 41 a are arranged has the same dimension W as a shim plate 15 described later, and the length perpendicular to the width direction is within the space of the manifold 11. It has a length that reaches the vicinity of the center. The several heating mechanism 41a is comprised by the Peltier device, and the dimension of the width direction is about 50-100 mm. Although the number of the heating mechanisms 41a is not particularly limited, it is set to about several to twenty. With the plurality of heating mechanisms 41a, the temperature of the coating liquid 3 can be controlled for each divided region obtained by dividing the width direction of the manifold 11 into a plurality of regions.

塗液3は、せん断速度に対する粘度変化を有しており、温度によって粘度カーブが変化することがわかっている。そこで、塗液温度制御手段41(複数の加熱機構41a)で塗液3の温度を制御(具体的には、常温〜60℃の範囲で制御)することにより、塗液温度制御手段41を通過中の塗液粘度が変化し、流速が変化(塗工流量が変化)する。したがって、ダイ10の幅方向の複数領域に分割した分割領域毎に塗液の温度を制御することで不均一な塗液量を是正して、均一な厚さに塗工膜を形成することができる。 The coating liquid 3 has a viscosity change with respect to the shear rate, and it is known that the viscosity curve changes with temperature. Therefore, the temperature of the coating liquid 3 is controlled by the coating liquid temperature control means 41 (a plurality of heating mechanisms 41a) (specifically, the temperature is controlled in the range of room temperature to 60 ° C.), thereby passing through the coating liquid temperature control means 41. The coating liquid viscosity changes, and the flow rate changes (coating flow rate changes). Therefore, by controlling the temperature of the coating liquid for each of the divided areas divided into a plurality of areas in the width direction of the die 10, the uneven coating amount can be corrected and the coating film can be formed with a uniform thickness. it can.

実施例1における塗液温度制御手段41の制御は、マニホールド11の幅方向中央付近の塗液温度を低く制御し、マニホールド11の幅方向両端部付近の塗液温度を高く制御し、両端部付近の塗液量を多く制御する。これは、一般に両端部付近は塗液3の固形成分が沈殿や凝集し易く流れにくい、また、中央付近は塗液3の固形成分が沈殿や凝集がなく流れやすいためにおこる塗液量の不均一を是正するためである。 In the control of the coating liquid temperature control means 41 in the first embodiment, the coating liquid temperature near the center in the width direction of the manifold 11 is controlled to be low, the coating liquid temperature near both ends in the width direction of the manifold 11 is controlled to be high, and the vicinity of both ends. A large amount of coating liquid is controlled. In general, the solid components of the coating liquid 3 are liable to precipitate and aggregate in the vicinity of both ends, and are difficult to flow. In the vicinity of the center, the solid components of the coating liquid 3 are easy to flow without precipitation or aggregation. This is to correct the uniformity.

なお、マニホールド11の両端部において、塗液3の固形成分が沈殿や凝集し易くなる理由は、これら両端部には、マニホールド11の幅方向端面を構成する壁が存在していることから、第1のマニホールド11の中央部から供給され幅方向両側へ広がる塗液3は、両端部において流速が低下しやすく、塗液3が滞留しやすいためである。特に、粘度が高い塗液(例えば、粘度が数千から数万cP(せん断速度=1の場合))では、両端部において滞留しやすく固形成分が沈殿や凝集しやすい。 The reason why the solid component of the coating liquid 3 easily precipitates and aggregates at both ends of the manifold 11 is that the walls constituting the end surface in the width direction of the manifold 11 exist at these both ends. This is because the coating liquid 3 that is supplied from the center of one manifold 11 and spreads to both sides in the width direction tends to decrease the flow velocity at both ends, and the coating liquid 3 tends to stay. In particular, in a coating liquid having a high viscosity (for example, a viscosity of several thousand to several tens of thousands cP (when the shear rate is 1)), the solid component tends to stay at both ends, and the solid component tends to precipitate or aggregate.

スリット12は、マニホールド11と同様に幅方向に長く形成されており、スリット12の幅方向寸法は、後述するシム板15の内寸W(図4参照)によって決定され、スリット12の幅方向寸法と略同一の幅方向寸法の塗液3を、基材2上に塗布することができる。スリット12の隙間寸法(高さ寸法)は、例えば0.4〜1.5mmである。実施例1では、スリット12の隙間方向が上下方向であり、幅方向が水平方向となる姿勢でダイ10は設置されている。つまり、マニホールド11とスリット12とが水平方向に並んで配置される姿勢でダイ10は設置されている。したがって、マニホールド11に溜められている塗液3をスリット12および吐出口18を通じて基材2へと流す方向は水平方向となる。 The slit 12 is formed long in the width direction similarly to the manifold 11, and the width direction dimension of the slit 12 is determined by an inner dimension W (see FIG. 4) of a shim plate 15 to be described later. The coating liquid 3 having substantially the same width direction dimension can be applied on the substrate 2. The clearance dimension (height dimension) of the slit 12 is, for example, 0.4 to 1.5 mm. In the first embodiment, the die 10 is installed in such a posture that the gap direction of the slit 12 is the vertical direction and the width direction is the horizontal direction. That is, the die 10 is installed in a posture in which the manifold 11 and the slit 12 are arranged side by side in the horizontal direction. Therefore, the direction in which the coating liquid 3 stored in the manifold 11 flows to the base material 2 through the slit 12 and the discharge port 18 is a horizontal direction.

なお、実施例1においては、ダイ10を水平に設置して塗液3を水平方向に流すように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、ダイ10を垂直に設置して上向き又は下向きに塗液3を流すように構成してもよいし、ダイ10を水平面から傾けて設置して、斜めに塗液3を流すように構成してもよい。つまり、ダイ10の設置方向は任意に設定できる。また、ダイ10の吐出口18に対向した位置にローラ5がなくてもよい。少なくとも基材2が吐出口18に対向して配置されていればよい。 In the first embodiment, the die 10 is installed horizontally and the coating liquid 3 is allowed to flow in the horizontal direction. However, the embodiment is not necessarily limited to this, and can be changed as appropriate. For example, the die 10 may be installed vertically to allow the coating liquid 3 to flow upward or downward, or the die 10 may be installed to be inclined from a horizontal plane so that the coating liquid 3 flows obliquely. May be. That is, the installation direction of the die 10 can be arbitrarily set. Further, the roller 5 may not be provided at a position facing the discharge port 18 of the die 10. It suffices that at least the substrate 2 is disposed so as to face the discharge port 18.

ダイ10の幅方向の中央部には、流入部16が設けられており、この流入部16は、ダイ10の外部からマニホールド11へ繋がる貫通孔(流入口)からなる。供給手段20は、この流入部16に一端部が接続されている流入パイプ21と、塗液3を貯留しているタンク22と、このタンク22内の塗液3を、流入パイプ21を通じてダイ10へ供給するためのポンプ23とを有している。以上より、供給手段20は、マニホールド11に流入部16から塗液3を供給することができる。なお、実施例1では、図1に示すように、流入部16は、マニホールド11の底部17と繋がっており、この底部17から塗液3を流入させる構成としている。 An inflow portion 16 is provided at the center in the width direction of the die 10, and the inflow portion 16 includes a through hole (inflow port) connected to the manifold 11 from the outside of the die 10. The supply means 20 includes an inflow pipe 21 having one end connected to the inflow section 16, a tank 22 storing the coating liquid 3, and the coating liquid 3 in the tank 22 through the inflow pipe 21 through the die 10. And a pump 23 for supplying to the vehicle. As described above, the supply unit 20 can supply the coating liquid 3 from the inflow portion 16 to the manifold 11. In the first embodiment, as shown in FIG. 1, the inflow portion 16 is connected to the bottom portion 17 of the manifold 11, and the coating liquid 3 is allowed to flow from the bottom portion 17.

そして、マニホールド11は、供給手段20から供給された塗液3を溜めることができ、マニホールド11に溜められている塗液3を、スリット12を通って吐出口18からロールツーロールで送られる基材2に対して、塗液温度制御による粘度制御を行いながら吐出し、この基材2に対して塗液3を連続的に塗布することができる。スリット12の隙間寸法はその幅方向に一定であり、基材2上に塗布される塗液3の厚さは幅方向に一定となる。 The manifold 11 can store the coating liquid 3 supplied from the supply means 20. The coating liquid 3 stored in the manifold 11 passes through the slit 12 and is sent from the discharge port 18 by roll-to-roll. It discharges, performing the viscosity control by the coating liquid temperature control with respect to the material 2, and can apply | coat the coating liquid 3 with respect to this base material 2 continuously. The gap dimension of the slit 12 is constant in the width direction, and the thickness of the coating liquid 3 applied on the substrate 2 is constant in the width direction.

実施例1においては、塗液温度制御手段41を複数の加熱機構41aで構成した。塗液3を加熱して基材2に吐出して塗工膜を形成すると、後工程の乾燥工程における昇温時間の短縮が望める。しかしながら、必ずしも複数の加熱機構41aで塗液温度制御手段41を構成することに限定されず適宜変更が可能である。例えば、塗液温度制御手段41を冷却機能からなる複数の吸熱機構で構成してもよいし、加熱機構と吸熱機構を組み合わせて構成してもよい。 In the first embodiment, the coating liquid temperature control means 41 is composed of a plurality of heating mechanisms 41a. When the coating liquid 3 is heated and discharged onto the substrate 2 to form a coating film, it is possible to shorten the temperature raising time in the subsequent drying step. However, the coating liquid temperature control means 41 is not necessarily configured by the plurality of heating mechanisms 41a, and can be appropriately changed. For example, the coating liquid temperature control means 41 may be configured by a plurality of heat absorption mechanisms having a cooling function, or may be configured by combining a heating mechanism and a heat absorption mechanism.

塗液温度制御手段41を冷却機能からなる複数の吸熱機構で構成する場合は、ダイ10に供給される塗液3を事前に加熱しておくとよい。また逆に、液温度制御
手段41を複数の加熱機構で構成する場合は、ダイ10に供給される塗液3を事前に冷却しておくようにしてもよい。
When the coating liquid temperature control means 41 is constituted by a plurality of heat absorption mechanisms having a cooling function, the coating liquid 3 supplied to the die 10 may be heated in advance. Conversely, when the liquid temperature control means 41 is constituted by a plurality of heating mechanisms, the coating liquid 3 supplied to the die 10 may be cooled in advance.

また、実施例1においては、塗液温度制御手段41をマニホールド11の空間内に設ける構成としたが、必ずしもこれに限定されず適宜変更が可能である。例えば、第一分割体13又は第二分割体14の内部におけるマニホールド11近傍に設けてもよいし、第一分割体13及び第二分割体14双方の内部におけるマニホールド11近傍に設けてもよい。 In the first embodiment, the coating liquid temperature control means 41 is provided in the space of the manifold 11. However, the present invention is not necessarily limited to this and can be changed as appropriate. For example, it may be provided in the vicinity of the manifold 11 inside the first divided body 13 or the second divided body 14, or may be provided in the vicinity of the manifold 11 inside both the first divided body 13 and the second divided body 14.

また、実施例1においては、複数の加熱機構41aをペルチェ素子で構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、マイカヒーターや他の伝熱素子を用いてもよい。 Moreover, in Example 1, although the several heating mechanism 41a was comprised with the Peltier device, it is not necessarily limited to this, It can change suitably. For example, a mica heater or other heat transfer element may be used.

このように、マニホールド11の空間内若しくは第一分割体13又は第二分割体14の内部におけるマニホールド11近傍に設けて、スリット12から離れた場所で塗液3の温度制御を行うことにより、スリット12が熱の影響を受けることが少なく、スリット12の隙間が大きくなったり小さくなったりして塗工膜の厚さが不均一になることを防止できる。 In this way, the temperature of the coating liquid 3 is controlled at a place away from the slit 12 by being provided in the vicinity of the manifold 11 in the space of the manifold 11 or inside the first divided body 13 or the second divided body 14. 12 is less affected by heat, and it is possible to prevent the thickness of the coating film from becoming uneven due to an increase or decrease in the gap of the slit 12.

このように実施例1においては、基材に塗液を塗工して塗工膜を形成する塗工装置であって、幅方向に長く塗液を溜める空間からなるマニホールドと、当該マニホールドと繋がった当該幅方向に広いスリットを経由して塗液を前記基材に対して吐出する吐出口とが形成されたダイと、前記マニホールドに連通している流入部から前記マニホールドに塗液を供給する供給手段と、前記幅方向を複数領域に分割した分割領域毎に塗液の温度を制御する塗液温度制御手段と、を備えたことを特徴とする塗工装置により、塗液温度を制御することによって塗液の粘度を変えて吐出量を変化させることができ、ダイに供給した塗液をタンクに戻すことなく均一な厚さの塗工膜を形成することができる。 As described above, in Example 1, the coating apparatus forms a coating film by applying a coating liquid to a substrate, and is connected to a manifold including a space for storing the coating liquid long in the width direction and the manifold. In addition, a coating liquid is supplied to the manifold from a die formed with a discharge port for discharging the coating liquid to the substrate via a wide slit in the width direction and an inflow portion communicating with the manifold. The coating liquid temperature is controlled by a coating apparatus comprising: a supply unit; and a coating liquid temperature control unit that controls the temperature of the coating liquid for each of the divided regions obtained by dividing the width direction into a plurality of regions. As a result, the discharge amount can be changed by changing the viscosity of the coating liquid, and a coating film having a uniform thickness can be formed without returning the coating liquid supplied to the die to the tank.

また、実施例1においては、基材に塗液を塗工して塗工膜を形成する塗工方法であって、幅方向に長いダイにおける当該幅方向に長い空間からなるマニホールドに供給部から塗液を供給して塗液を溜め、当該マニホールドと繋がった当該幅方向に広いスリットを経由して、塗液を前記基材に対して吐出口から吐出するとともに、塗液温度制御手段により、前記幅方向を複数領域に分割した分割領域毎に塗液の温度を制御することを特徴とする塗工方法により、塗液温度を制御することによって塗液の粘度を変えて吐出量を変化させることができ、ダイに供給した塗液をタンクに戻すことなく均一な厚さの塗工膜を形成することができる。 Moreover, in Example 1, it is the coating method which forms a coating film by applying a coating liquid to a base material, and is supplied from a supply unit to a manifold having a space long in the width direction in a die long in the width direction. Supplying the coating liquid and storing the coating liquid, and discharging the coating liquid from the discharge port to the substrate via the wide slit connected to the manifold, by the coating liquid temperature control means, The coating method is characterized in that the temperature of the coating liquid is controlled for each of the divided areas obtained by dividing the width direction into a plurality of areas. By controlling the coating liquid temperature, the viscosity of the coating liquid is changed to change the discharge amount. It is possible to form a coating film having a uniform thickness without returning the coating liquid supplied to the die to the tank.

本発明の実施例2は、塗工装置のダイにおいて、スリットを構成する対向して配置された2つの分割体のうち、少なくとも一方の分割体のスリット近傍に塗液温度制御手段を設けた点で実施例1と異なる。実施例2について、図5、図6を参照して説明する。図5は、本発明の実施例2におけるダイの構成を説明する図である。図6は、図5のc矢視の断面図である。   Example 2 of the present invention is that, in the die of the coating apparatus, the coating liquid temperature control means is provided in the vicinity of the slit of at least one of the two divided bodies that constitute the slit. This is different from the first embodiment. A second embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram illustrating the configuration of a die according to the second embodiment of the present invention. 6 is a cross-sectional view taken along the arrow c in FIG.

実施例2における塗工装置101のダイ110は、塗液温度制御手段41に加えて、塗液温度制御手段151を備えている。塗液温度制御手段151は、複数の加熱機構151aと複数の吸熱機構151bとからなっている。すなわち、複数の加熱機構151aは、第一分割体13におけるスリット12の近傍に設けられている。具体的には、幅方向を複数領域に分割した分割領域毎に塗液の温度を制御するように、幅方向(Y方向)に複数の加熱機構151aを第一分割体13におけるスリット12からわずかに内部に入った場所に埋め込んでいる。すなわち、スリット12を構成する第一分割体13の表面に凹凸があると塗液3の流れが阻害され塗液量に影響するため、スリット12を構成する面が平滑になるように加熱機構151aを第一分割体13の内部に埋め込んでいる。   The die 110 of the coating apparatus 101 according to the second embodiment includes a coating liquid temperature control unit 151 in addition to the coating liquid temperature control unit 41. The coating liquid temperature control means 151 includes a plurality of heating mechanisms 151a and a plurality of heat absorption mechanisms 151b. That is, the plurality of heating mechanisms 151 a are provided in the vicinity of the slit 12 in the first divided body 13. Specifically, a plurality of heating mechanisms 151a are slightly moved from the slits 12 in the first divided body 13 in the width direction (Y direction) so as to control the temperature of the coating liquid for each divided region obtained by dividing the width direction into a plurality of regions. It is embedded in the place inside. That is, if the surface of the first divided body 13 constituting the slit 12 is uneven, the flow of the coating liquid 3 is hindered and affects the amount of the coating liquid. Therefore, the heating mechanism 151a is made so that the surface constituting the slit 12 becomes smooth. Is embedded in the first divided body 13.

また同様に、複数の吸熱機構151bは、第二分割体14におけるスリット12の近傍に設けられている。具体的には、幅方向を複数領域に分割した分割領域毎に塗液の温度を制御するように、幅方向(Y方向)に複数の吸熱機構151bを第二分割体14におけるスリット12からわずかに内部に入った場所に埋め込んでいる(図5、図6参照)。   Similarly, the plurality of heat absorbing mechanisms 151 b are provided in the vicinity of the slit 12 in the second divided body 14. Specifically, a plurality of heat absorbing mechanisms 151b are slightly moved from the slits 12 in the second divided body 14 in the width direction (Y direction) so as to control the temperature of the coating liquid for each divided region obtained by dividing the width direction into a plurality of regions. It is embedded in the place inside (see FIG. 5 and FIG. 6).

実施例2における塗液温度制御手段151の制御は、スリット12の幅方向中央付近の塗液温度を低く制御し、スリット12の幅方向両端部付近の塗液温度を高く制御して両端部付近の塗液量が多くなるように制御する。これは、一般にスリットの両端部付近は塗液3の固形成分が沈殿や凝集し易く流れにくい、また、中央付近は塗液3の固形成分が沈殿や凝集がなく流れやすいためにおこる塗液量の不均一を是正するためである。   In the control of the coating liquid temperature control means 151 in the second embodiment, the coating liquid temperature near the center in the width direction of the slit 12 is controlled to be low, and the coating liquid temperature near both ends in the width direction of the slit 12 is controlled to be high. The amount of coating liquid is controlled so as to increase. This is because the solid component of the coating liquid 3 tends to precipitate and aggregate easily and does not flow in the vicinity of both ends of the slit, and the coating liquid amount occurs near the center because the solid component of the coating liquid 3 flows easily without precipitation or aggregation. This is to correct the unevenness.

なお、実施例2においては、塗液温度制御手段41に加えて、塗液温度制御手段151を備えるように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、塗液温度制御手段41を設けずに、塗液温度制御手段151のみを設ける構成としてもよい。また、スリット12を構成する第一分割体13及び第二分割体14に塗液温度制御手段151を設けるように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、一方の分割体にのみ複数の加熱機構又は複数の吸熱機構からなる塗液温度制御手段を設けるように構成してもよい。つまり、スリット12を構成する対向して配置された2つの分割体のうち、少なくとも一方の分割体におけるスリット近傍に塗液温度制御手段が設けられればよい。   In the second embodiment, in addition to the coating liquid temperature control unit 41, the coating liquid temperature control unit 151 is provided. However, the present invention is not necessarily limited thereto, and can be changed as appropriate. For example, only the coating liquid temperature control means 151 may be provided without providing the coating liquid temperature control means 41. Moreover, although it comprised so that the coating liquid temperature control means 151 might be provided in the 1st division body 13 and the 2nd division body 14 which comprise the slit 12, it is not necessarily limited to this but can change suitably. For example, you may comprise so that the coating liquid temperature control means which consists of a some heating mechanism or a some heat absorption mechanism may be provided only in one division body. That is, it is only necessary that the coating liquid temperature control means be provided in the vicinity of the slit in at least one of the two divided bodies that constitute the slit 12 and are opposed to each other.

また、実施例2においては、スリット12を構成する面を平滑にするために、複数の加熱機構151aを第一分割体13におけるスリット12からわずかに内部に入った場所に埋め込み、複数の吸熱機構151bを第二分割体14におけるスリット12からわずかに内部に入った場所に埋め込んでいるが、必ずしもこれに限定されず適宜変更が可能である。例えば、加熱機構151a及び吸熱機構151bの表面が平滑であるなら、第一分割体13及び第二分割体14の内部に埋め込まず、スリット12を構成する面に直接設けてもよい。   Further, in Example 2, in order to smooth the surface constituting the slit 12, a plurality of heating mechanisms 151a are embedded in a place slightly inside from the slit 12 in the first divided body 13, and a plurality of heat absorption mechanisms are provided. 151b is embedded in a place slightly inside the slit 12 in the second divided body 14, but is not necessarily limited to this and can be changed as appropriate. For example, if the surfaces of the heating mechanism 151a and the endothermic mechanism 151b are smooth, they may be provided directly on the surface constituting the slit 12 without being embedded in the first divided body 13 and the second divided body 14.

ここで、塗液温度制御手段151は、スリット近傍に設けられているため、吐出する塗液温度を直接的に制御しやすい反面、前述したように、熱の影響を受けてスリットの隙間寸法が変化して塗工膜厚が不均一になる恐れがある。そのため、行き過ぎた加熱又は吸熱がないように、塗液やスリットの温度を計測しながら加熱温度又は吸熱温度を制御することが望ましい。   Here, since the coating liquid temperature control means 151 is provided in the vicinity of the slit, it is easy to directly control the coating liquid temperature to be discharged. However, as described above, the slit dimension of the slit is affected by heat. There is a possibility that the coating film thickness becomes non-uniform. Therefore, it is desirable to control the heating temperature or the endothermic temperature while measuring the temperature of the coating liquid or the slit so that there is no excessive heating or endothermic.

このように実施例2においては、スリットを構成する対向して配置された2つの分割体のうち、少なくとも一方の分割体におけるスリット近傍に前記塗液温度制御手段が設けられた構成により、吐出直前の塗液温度を制御することができ、塗液の粘度を効果的に変化させることができる。   As described above, in the second embodiment, the coating liquid temperature control means is provided in the vicinity of the slit in at least one divided body among the two divided bodies arranged opposite to each other to constitute the slit. The coating liquid temperature can be controlled, and the viscosity of the coating liquid can be effectively changed.

本発明の実施例3は、基材上へ塗布した塗液の膜厚(塗工膜厚)を測定するセンサを備えている点で実施例1と異なっている。実施例3について、図7を参照して説明する。図7は、本発明の実施例3における塗工装置の構成を説明する図である。   The third embodiment of the present invention is different from the first embodiment in that it includes a sensor that measures the film thickness (coating film thickness) of the coating liquid applied onto the substrate. A third embodiment will be described with reference to FIG. FIG. 7 is a diagram illustrating the configuration of the coating apparatus according to the third embodiment of the present invention.

図7に示すように、塗液3の膜厚(塗工膜厚)を測定するセンサ236を備えている。センサ236は、幅方向に沿って複数設けられており、幅方向に複数の膜厚計測結果を得ることができる。センサ236は、非接触式の光学式変位センサで構成している。そして、基材2上の塗液3の膜厚を、幅方向に沿って複数カ所計測し、複数の計測結果は、塗工装置201が備えている制御部(コンピュータ)37に出力される。制御部237はセンサ236からの幅方向に複数の計測結果に基づくフィードバック制御を行い、塗液温度制御手段41を調整する。つまり、幅方向における複数の塗液3の膜厚の計測結果に応じて、制御部237は、塗液温度制御手段41を構成する複数の加熱機構41aそれぞれに対して制御信号を出力し、幅方向に複数の領域に分割した分割領域毎に複数の加熱機構41aそれぞれの加熱温度を調整して塗液温度を制御する。これにより、幅方向に分割した複数の分割領域毎に塗液3の粘度が変化することにより分割領域毎に流速が変化して、塗液3の膜厚を幅方向に一定に保つことが可能となる。 As shown in FIG. 7, the sensor 236 which measures the film thickness (coating film thickness) of the coating liquid 3 is provided. A plurality of sensors 236 are provided along the width direction, and a plurality of film thickness measurement results can be obtained in the width direction. The sensor 236 is a non-contact optical displacement sensor. And the film thickness of the coating liquid 3 on the base material 2 is measured at a plurality of locations along the width direction, and a plurality of measurement results are output to a control unit (computer) 37 provided in the coating apparatus 201. The control unit 237 performs feedback control based on a plurality of measurement results in the width direction from the sensor 236 and adjusts the coating liquid temperature control means 41. That is, according to the measurement result of the film thicknesses of the plurality of coating liquids 3 in the width direction, the control unit 237 outputs a control signal to each of the plurality of heating mechanisms 41a constituting the coating liquid temperature control unit 41, and the width The coating liquid temperature is controlled by adjusting the heating temperature of each of the plurality of heating mechanisms 41a for each divided region divided into a plurality of regions in the direction. As a result, the viscosity of the coating liquid 3 changes for each of a plurality of divided areas divided in the width direction, whereby the flow velocity changes for each divided area, and the film thickness of the coating liquid 3 can be kept constant in the width direction. It becomes.

センサ236の計測結果に基づくフィードバック制御とは、具体的には、計測した塗工膜の厚さが所定値よりも小さければ、当該分割領域に該当する加熱機構41aに対して加熱温度を上昇させるように制御し、所定値よりも大きければ、当該分割領域に該当する加熱機構41aに対して加熱温度を下降させるように制御する。これにより、塗工膜厚の小さい領域に対して塗液の粘度を上げて塗液量を増やすようにできるとともに、塗工膜厚の大きい領域に対して塗液の粘度を下げて塗液量を減らすようにでき、幅方向の全域にわたって均一な塗工膜厚とすることができる。   More specifically, the feedback control based on the measurement result of the sensor 236 specifically increases the heating temperature with respect to the heating mechanism 41a corresponding to the divided region if the measured thickness of the coating film is smaller than a predetermined value. If it is larger than the predetermined value, the heating mechanism 41a corresponding to the divided area is controlled to lower the heating temperature. As a result, the viscosity of the coating liquid can be increased to increase the amount of coating liquid in a region where the coating film thickness is small, and the amount of coating liquid can be decreased by decreasing the viscosity of the coating liquid relative to a region where the coating film thickness is large. Thus, a uniform coating film thickness can be obtained over the entire region in the width direction.

ここで、加熱機構41aの配置位置及び数とセンサ236の計測位置及び計測点数とは一致していなくてもよい。センサ236の計測位置に最も近い位置における分割領域の加熱機構41aを制御するように構成すればよい。   Here, the arrangement position and the number of the heating mechanisms 41a may not coincide with the measurement position and the number of measurement points of the sensor 236. What is necessary is just to comprise so that the heating mechanism 41a of the division area in the position nearest to the measurement position of the sensor 236 may be controlled.

なお、実施例3においては、センサ236を幅方向に複数設ける構成としたが、必ずしもこれに限定されず適宜変更が可能である。例えば、ロボット等の移動手段にセンサ236を設けて、幅方向に移動させて複数ヵ所の膜厚を計測する構成としてもよい。   In the third embodiment, a plurality of sensors 236 are provided in the width direction. However, the present invention is not necessarily limited to this and can be appropriately changed. For example, a sensor 236 may be provided in a moving unit such as a robot, and the film thickness may be measured at a plurality of locations by moving in the width direction.

なお、前述した塗液温度制御手段151のようなスリット近傍に複数の加熱機構151a又は複数の吸熱機構151bが設けられた場合は、センサ236からの計測結果に基づくフィードバック制御を行い、それぞれの加熱機構151aの加熱温度又は吸熱機構151bの吸熱温度を制御して塗液温度を制御する構成としてもよい。   In addition, when a plurality of heating mechanisms 151a or a plurality of heat absorption mechanisms 151b are provided in the vicinity of the slit like the coating liquid temperature control means 151 described above, feedback control based on the measurement result from the sensor 236 is performed, and each heating is performed. It is good also as a structure which controls the coating liquid temperature by controlling the heating temperature of the mechanism 151a or the endothermic temperature of the endothermic mechanism 151b.

また、実施例3においては、センサ236を光学式変位センサで構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、センサ236をX線式膜厚計やβ線式膜厚計で構成してもよいし、超音波膜厚計で構成してもよい。X線式膜厚計やβ線式膜厚計で構成する場合は、基材2及び塗液3を挟んで投光器と受光器とを設置すればよい。   In the third embodiment, the sensor 236 is an optical displacement sensor. However, the embodiment is not necessarily limited to this and can be changed as appropriate. For example, the sensor 236 may be composed of an X-ray film thickness meter or a β-ray film thickness meter, or may be composed of an ultrasonic film thickness meter. When the X-ray film thickness meter or the β-ray film thickness meter is used, a projector and a light receiver may be installed with the base material 2 and the coating liquid 3 interposed therebetween.

このように実施例3においては、塗工膜の厚さを計測する塗工膜厚計測手段を備え、塗液温度制御手段は、当該塗工膜厚計測手段で計測した塗工膜厚に基づいて、塗液の温度を制御することにより、塗工膜厚に基づいて複数の領域毎に吐出量を変えることができ、塗工膜厚の均一性を向上させることができる。   Thus, in Example 3, the coating film thickness measuring means for measuring the thickness of the coating film is provided, and the coating liquid temperature control means is based on the coating film thickness measured by the coating film thickness measuring means. By controlling the temperature of the coating liquid, the discharge amount can be changed for each of a plurality of regions based on the coating film thickness, and the uniformity of the coating film thickness can be improved.

本発明における塗工装置及び塗工方法は、基材に塗液を塗工して塗工膜を形成する分野に広く用いることができる。 The coating apparatus and the coating method in this invention can be widely used in the field | area which applies a coating liquid to a base material and forms a coating film.

1:塗工装置 2:基材 3:塗液 5:ローラ 10:ダイ 11:マニホールド 12:スリット 13:第一分割体 13a:第一リップ 14:第二分割体 14a:第二リップ15:シム板 16:流入部 17:底部 18:吐出口20:供給手段 21:流入パイプ 22:タンク 23:ポンプ41:塗液温度制御手段 41a:加熱機構101:塗工装置 110:ダイ 151:塗液温度制御手段 151a:加熱機構 151b:吸熱機構201:塗工装置 236:センサ 237:制御部 1: Coating device 2: Base material 3: Coating liquid 5: Roller 10: Die 11: Manifold 12: Slit 13: First divided body 13a: First lip 14: Second divided body 14a: Second lip 15: Shim Plate 16: Inflow part 17: Bottom part 18: Discharge port 20: Supply means 21: Inflow pipe 22: Tank 23: Pump 41: Coating liquid temperature control means 41a: Heating mechanism 101: Coating apparatus 110: Die 151: Coating liquid temperature Control means 151a: heating mechanism 151b: endothermic mechanism 201: coating device 236: sensor 237: control unit

Claims (6)

基材に塗液を塗工して塗工膜を形成する塗工装置であって、
幅方向に長く塗液を溜める空間からなるマニホールドと、当該マニホールドと繋がった当該幅方向に広いスリットを経由して塗液を前記基材に対して吐出する吐出口とが形成されたダイと、
前記マニホールドに連通している流入部から前記マニホールドに塗液を供給する供給手段と、
前記幅方向を複数領域に分割した分割領域毎に塗液の温度を制御する塗液温度制御手段と、を備えたことを特徴とする塗工装置。
A coating apparatus that forms a coating film by applying a coating liquid to a substrate,
A die formed with a manifold formed of a space for storing the coating liquid long in the width direction, and a discharge port for discharging the coating liquid to the substrate via the wide slit in the width direction connected to the manifold;
Supply means for supplying a coating liquid to the manifold from an inflow portion communicating with the manifold;
A coating apparatus comprising: a coating liquid temperature control means for controlling the temperature of the coating liquid for each of the divided areas obtained by dividing the width direction into a plurality of areas.
前記塗液温度制御手段が、前記マニホールドの空間内に設けられたことを特徴とする請求項1に記載の塗工装置。   The coating apparatus according to claim 1, wherein the coating liquid temperature control means is provided in a space of the manifold. 前記スリットを構成する対向して配置された2つの分割体のうち、少なくとも一方の分割体における前記スリット近傍に前記塗液温度制御手段が設けられたことを特徴とする請求項1又は2に記載の塗工装置。   The said coating liquid temperature control means was provided in the said slit vicinity in at least one division body among the two division bodies arrange | positioned facing the said slit, The Claim 1 or 2 characterized by the above-mentioned. Coating equipment. 前記2つの分割体のうちの一方に複数の加熱機構からなる塗液温度制御手段が設けられ、前記2つの分割体のうちの他方に複数の吸熱機構からなる塗液温度制御手段が設けられたことを特徴とする請求項3に記載の塗工装置。   One of the two divided bodies is provided with a coating liquid temperature control means comprising a plurality of heating mechanisms, and the other of the two divided bodies is provided with a coating liquid temperature control means comprising a plurality of endothermic mechanisms. The coating apparatus according to claim 3. 前記塗工膜の厚さを計測する塗工膜厚計測手段を備え、前記塗液温度制御手段は、当該塗工膜厚計測手段で計測した塗工膜厚に基づいて、塗液の温度を制御することを特徴とする請求項1〜4のいずれかに記載の塗工装置。   Coating film thickness measuring means for measuring the thickness of the coating film, the coating liquid temperature control means, the temperature of the coating liquid based on the coating film thickness measured by the coating film thickness measuring means The coating apparatus according to claim 1, wherein the coating apparatus is controlled. 基材に塗液を塗工して塗工膜を形成する塗工方法であって、
幅方向に長いダイにおける当該幅方向に長い空間からなるマニホールドに供給部から塗液を供給して塗液を溜め、当該マニホールドと繋がった当該幅方向に広いスリットを経由して、塗液を前記基材に対して吐出口から吐出するとともに、
塗液温度制御手段により、前記幅方向を複数領域に分割した分割領域毎に塗液の温度を制御することを特徴とする塗工方法。

A coating method for forming a coating film by applying a coating liquid to a substrate,
The coating liquid is supplied from a supply unit to a manifold consisting of a space long in the width direction of the die that is long in the width direction to collect the coating liquid, and the coating liquid is passed through the wide slit in the width direction connected to the manifold. While discharging from the discharge port to the substrate,
A coating method, wherein the temperature of the coating liquid is controlled for each divided region obtained by dividing the width direction into a plurality of regions by a coating liquid temperature control means.

JP2017009028A 2017-01-21 2017-01-21 Coating equipment and coating method Active JP6808505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009028A JP6808505B2 (en) 2017-01-21 2017-01-21 Coating equipment and coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009028A JP6808505B2 (en) 2017-01-21 2017-01-21 Coating equipment and coating method

Publications (2)

Publication Number Publication Date
JP2018114487A true JP2018114487A (en) 2018-07-26
JP6808505B2 JP6808505B2 (en) 2021-01-06

Family

ID=62984982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009028A Active JP6808505B2 (en) 2017-01-21 2017-01-21 Coating equipment and coating method

Country Status (1)

Country Link
JP (1) JP6808505B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105124A (en) * 2021-04-18 2021-07-13 黄文仙 Quick even coating film device of curved surface glass
CN116060251A (en) * 2021-10-29 2023-05-05 宁德时代新能源科技股份有限公司 Coating device, coating system and coating method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985152A (en) * 1972-08-15 1974-08-15
JPS5787327A (en) * 1980-09-15 1982-05-31 Monsanto Co Extruding die blade with melting flow regulator
JPH01203073A (en) * 1988-02-05 1989-08-15 Konica Corp Applicator of magnetic recording medium
US5656116A (en) * 1994-06-03 1997-08-12 Moore Business Forms, Inc. Refinements in method and apparatus for manufacturing linerless labels
JP2001276707A (en) * 2000-03-30 2001-10-09 Konica Corp Coating apparatus and coating method
JP2007216214A (en) * 2006-01-17 2007-08-30 Hiroshima Univ Phosphorus collecting material, its manufacturing method and method for collecting phosphorus
US20080110398A1 (en) * 2003-05-30 2008-05-15 Avery Dennison Corporation Thermo-stable coating die design method and apparatus
JP2015097198A (en) * 2013-10-11 2015-05-21 東レエンジニアリング株式会社 Manufacturing apparatus and manufacturing method of battery polar plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985152A (en) * 1972-08-15 1974-08-15
JPS5787327A (en) * 1980-09-15 1982-05-31 Monsanto Co Extruding die blade with melting flow regulator
JPH01203073A (en) * 1988-02-05 1989-08-15 Konica Corp Applicator of magnetic recording medium
US5656116A (en) * 1994-06-03 1997-08-12 Moore Business Forms, Inc. Refinements in method and apparatus for manufacturing linerless labels
JP2001276707A (en) * 2000-03-30 2001-10-09 Konica Corp Coating apparatus and coating method
US20080110398A1 (en) * 2003-05-30 2008-05-15 Avery Dennison Corporation Thermo-stable coating die design method and apparatus
JP2007216214A (en) * 2006-01-17 2007-08-30 Hiroshima Univ Phosphorus collecting material, its manufacturing method and method for collecting phosphorus
JP2015097198A (en) * 2013-10-11 2015-05-21 東レエンジニアリング株式会社 Manufacturing apparatus and manufacturing method of battery polar plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105124A (en) * 2021-04-18 2021-07-13 黄文仙 Quick even coating film device of curved surface glass
CN116060251A (en) * 2021-10-29 2023-05-05 宁德时代新能源科技股份有限公司 Coating device, coating system and coating method

Also Published As

Publication number Publication date
JP6808505B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6422711B2 (en) Battery electrode plate manufacturing apparatus and method
JP6280383B2 (en) Battery plate manufacturing equipment
KR102110628B1 (en) Coating device and coating method
WO2020145204A1 (en) Apparatus and method for producing electrode plate for battery
JP2018114487A (en) Coating apparatus and coating method
KR20170045217A (en) Device for manufacturing electrode plate for cell
JP2021130066A (en) Coating applicator
JP6084480B2 (en) Battery electrode plate manufacturing apparatus and method
WO2015141391A1 (en) Battery electrode plate production device
JP2016167402A (en) Apparatus for manufacturing electrode plate for battery
JP4974580B2 (en) Die system coating apparatus and coating method
KR102699653B1 (en) Slot die coater
JP6624678B2 (en) Battery electrode plate manufacturing equipment
CN105983511A (en) A coating device and a coating method
JP6593093B2 (en) Coating apparatus, coating apparatus, and method for producing coated film web
JP6425776B1 (en) Coating apparatus and coating method
WO2020045308A1 (en) Coating device and coating method
JP6397683B2 (en) Battery plate manufacturing equipment
KR20140137812A (en) Slit nozzle and slit coating apparatus using thereof
US6495196B1 (en) Process and apparatus for profile control of direct coaters
KR102011913B1 (en) Inkjet apparatus
JP2000107668A (en) Coater and coating method
JP2016175003A (en) Coating apparatus and coating method
JP7377499B2 (en) Sheet material manufacturing method, coating film forming method, sheet material manufacturing device, and coater
JP7252584B1 (en) Thickness measuring method and thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250