KR102096609B1 - Dynamic 3D lamination system can be coated for right angle and curved surface pattern - Google Patents

Dynamic 3D lamination system can be coated for right angle and curved surface pattern Download PDF

Info

Publication number
KR102096609B1
KR102096609B1 KR1020160039221A KR20160039221A KR102096609B1 KR 102096609 B1 KR102096609 B1 KR 102096609B1 KR 1020160039221 A KR1020160039221 A KR 1020160039221A KR 20160039221 A KR20160039221 A KR 20160039221A KR 102096609 B1 KR102096609 B1 KR 102096609B1
Authority
KR
South Korea
Prior art keywords
lamination
nozzle
dynamic
shim
sim
Prior art date
Application number
KR1020160039221A
Other languages
Korean (ko)
Other versions
KR20170112323A (en
Inventor
한관영
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Priority to KR1020160039221A priority Critical patent/KR102096609B1/en
Publication of KR20170112323A publication Critical patent/KR20170112323A/en
Application granted granted Critical
Publication of KR102096609B1 publication Critical patent/KR102096609B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 설비에 관한 것으로서, 본 발명에 따른 다이나믹 3D 라미네이션 설비는 심(SIM)을 제어하는 부분에 있어서 x축 이동과 동시에 심(SIM)의 이동속도로 레진의 출력량을 조절하여 곡선부 도포 및 직선부 도포를 자유자재로 제어할 수 있는 제어부를 포함한 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 설비이다. 따라서, 이동거리를 입력시킨 후 심(SIM) 삽입거리를 제어, 센서를 장착시켜 센싱되는 부분부터 심(SIM)의 삽입거리를 제어하는 방식을 사용함으로써 원형 부분의 슬릿 도포가 가능하게 하고, 플렉시블 디스플레이 라미네이션 뿐만 아니라 현재 사용하는 강성(rigid)용인 유리(glass)와 플라스틱 라미네이션에도 사용 가능한 다이나믹 3D 라미네이션 설비를 얻을 수 있다. 또한 이 설비로 라미네이션 한 강성(rigid) 스마트폰의 강도는 기존 슬릿으로 한 라미네이션 설비로 도포한 제품의 도포 품질 및 강도가 1.5~2배 이상 향상하는 효과를 제공하는 데에 그 특징이 있다.The present invention relates to a dynamic 3D lamination facility capable of applying a pattern of straight lines and curves, and the dynamic 3D lamination facility according to the present invention includes simultaneous movement of the seam (SIM) at the same time as the x-axis movement in the part controlling the seam (SIM). It is a dynamic 3D lamination facility that can apply straight and curved patterns including a control unit that can freely control the application of curved parts and the application of straight parts by adjusting the output amount of resin at a moving speed. Therefore, after inputting the moving distance, by using the method of controlling the insertion distance of the shim (SIM) from the sensed part by controlling the insertion distance of the shim (SIM) and mounting the sensor, it is possible to apply the slit in the circular part and be flexible. It is possible to obtain a dynamic 3D lamination facility that can be used not only for display lamination, but also for glass and plastic lamination, which is currently used for rigid. In addition, the strength of a rigid smartphone laminated with this facility is characterized by providing the effect of improving the coating quality and strength of products coated with a lamination facility with existing slits by 1.5 to 2 times or more.

Description

직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 장치 {Dynamic 3D lamination system can be coated for right angle and curved surface pattern}Dynamic 3D lamination system that can apply straight and curved patterns {Dynamic 3D lamination system can be coated for right angle and curved surface pattern}

본 발명은 이동거리를 입력시킨 후 심(SIM) 삽입거리를 제어/센서를 장착시켜 센싱되는 부분부터 심(SIM)의 삽입거리를 제어하는 방식을 사용함으로써 원형부분의 슬릿 도포가 가능하게 되었으며, 이는 플렉시블 디스플레이 라미네이션 뿐만 아니라 현재 사용하는 강성(rigid)용인 유리(glass)와 플라스틱 라미네이션에도 사용가능한 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 설비에 관한 것이다.The present invention enables the application of a slit in a circular part by using a method of controlling the insertion distance of the SIM from the sensed part by inputting a movement distance and mounting / controlling a SIM insertion distance. This relates to a dynamic 3D lamination facility that can apply straight and curved patterns that can be used not only for flexible display lamination, but also for glass and plastic lamination, which are currently used for rigid.

OLED 혹은 플렉시블 디스플레이에 적용하고 있는 라미네이션 공정에서 슬릿(Slit) 라미네이션 공정을 주로 활용하는 것이 최근의 개발 동향이다. 그러나 이러한 슬릿(Slit) 라미네이션 설비로는 한계로 지적된 것 중의 하나인 도면 1에서 OX1, X2X3 같이 좌, 우 엣지 부분에 레진이 도포가 안됨에 따라서, 강도 및 신뢰성에서 문제가 되고 있다. 이것을 보완하기 위하여 별도로 수작업 혹은 다른 공정으로 커버(Cover)하는 2중의 작업을 진행하더라도 레진의 균일성 등의 부가적인 문제가 되어 왔다. 이러한 고질적인 문제를 개선 발명하기 위하여 다음 절과 같이 다이나믹 3D 라미네이션 설비를 개발함으로서 기술발전의 한 단계를 높이는 계기가 되었다.The recent development trend is to mainly utilize the slit lamination process in the lamination process applied to OLEDs or flexible displays. However, such a slit (slit) lamination equipment, as one of the limitations pointed out in Figure 1, OX1, X2X3, as the resin is not applied to the left and right edge portions, it is a problem in strength and reliability. In order to compensate for this, even in the case of performing a double operation of covering by hand or another process separately, it has been an additional problem such as uniformity of resin. In order to improve and invent these chronic problems, the development of a dynamic 3D lamination equipment as in the next section was an opportunity to raise one step in technological development.

한국등록특허공보 제0570641호(2006.04.06)Korean Registered Patent Publication No. 0570641 (2006.04.06) 한국등록특허공보 제1147420호(2012.05.11)Korean Registered Patent Publication No. 1147420 (2012.05.11) 한국등록특허공보 제1151917호(2012.05.24)Korean Registered Patent Publication No. 1151917 (2012.05.24)

이에 본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위해 제안된 것으로, 본 발명의 목적은 이동거리를 입력시킨 후 심(SIM) 삽입거리를 제어, 센서를 장착시켜 센싱되는 부분부터 심(SIM)의 삽입거리를 제어하는 방식을 사용함으로써 원형 부분의 슬릿 도포가 가능하게 하고, 플렉시블 디스플레이 라미네이션 뿐만 아니라 현재 사용하는 강성(rigid)용인 유리(glass)와 플라스틱 라미네이션에도 사용 가능한 다이나믹 3D 라미네이션 설비를 위한 것에 그 목적이 있다. 또한 이 설비로 라미네이션 한 강성(rigid) 스마트폰의 강도는 기존 슬릿으로 한 라미네이션 설비로 도포한 제품의 도포 품질 및 강도가 1.5~2배 이상 향상하는 것에 그 목적이 있다.Accordingly, the present invention has been proposed to solve the above-mentioned problems, and the object of the present invention is to control the insertion distance of the shim (SIM) after inputting the moving distance, and install the sensor to install the sensor from the sensed shim (SIM ), It is possible to apply the slit of the circular part by using the method of controlling the insertion distance, and for the dynamic 3D lamination equipment, which can be used for glass and plastic lamination, as well as flexible display lamination. That has its purpose. In addition, the purpose of the rigid smartphone (rigid) laminated with this facility is to improve the coating quality and strength of products coated with a lamination facility using existing slits by 1.5 to 2 times or more.

상기와 같은 목적을 달성하기 위하여 본 발명의 기술적 사상에 의한 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 장치는, 심(SIM)을 제어하는 부분에 있어서 x축 이동과 동시에 심(SIM)의 이동속도로 레진의 출력량을 조절하여 곡선부 도포 및 직선부 도포를 자유자재로 제어할 수 있는 제어부를 포함하는 것을 그 기술적 구성상의 특징으로 한다.In order to achieve the above object, a dynamic 3D lamination apparatus capable of applying a pattern of straight lines and curves according to the technical idea of the present invention, simultaneously with the movement of the x-axis in the part controlling the seam (SIM), the seam (SIM) It is characterized in that it includes a control unit that can freely control the application of the curved portion and the application of the straight portion by adjusting the output amount of the resin at a moving speed of.

본 발명에 의한 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 장치는 이동거리를 입력시킨 후 심(SIM) 삽입거리를 제어, 센서를 장착시켜 센싱되는 부분부터 심(SIM)의 삽입거리를 제어하는 방식을 사용함으로써 원형 부분의 슬릿 도포가 가능하게 하고, 플렉시블 디스플레이 라미네이션 뿐만 아니라 현재 사용하는 강성(rigid)용인 유리(glass)와 플라스틱 라미네이션에도 사용 가능한 다이나믹 3D 라미네이션 설비를 얻을 수 있다. 또한 이 설비로 라미네이션 한 강성(rigid) 스마트폰의 강도는 기존 슬릿으로 한 라미네이션 설비로 도포한 제품의 도포 품질 및 강도가 1.5~2배 이상 향상하는 효과를 제공한다.The dynamic 3D lamination device capable of applying a pattern of a straight line and a curve according to the present invention controls the insertion distance of a SIM after inputting a movement distance, and mounts a sensor to detect the insertion distance of the SIM from the sensed part. By using the control method, it is possible to apply the slit of the circular portion, and it is possible to obtain a dynamic 3D lamination facility that can be used not only for flexible display lamination, but also for glass and plastic lamination, which is currently used for rigid. In addition, the strength of the rigid smartphone laminated with this facility provides the effect of improving the coating quality and strength of products coated with the lamination facility with existing slits by 1.5 to 2 times or more.

도 1은 본 발명의 일 실시예에 따른 레진 도포를 X방향, Y방향 및 곡선이 가능한 3D 라미네이션 설비를 설명하기 위한 도면.
도 2는 본 발명의 일 실시예에 따른 곡선부 라미네이션 도포 부분에 센서를 장착하여 직선과 곡선을 센서의 신호에 따라 자유롭게 조절이 되도록 한 3D 라미네이션 설비를 설명하기 위한 도면.
도 3은 도 1과 도 2에 도시된 (6) 항목을 상세히 그린 도면으로, 모터가 회전하면 심(SIM)이 원하는 방향의 좌, 우 측으로 이동함에 의해 레진도포를 곡선과 직선으로 제어하는 것을 설명하기 위한 도면.
도 4는 본 발명의 일 실시예에 따른 노즐에서 심(SIM)의 깊이 이동에 따른 윈도우상에서의 레진 도포형상을 설명하기 위한 도면.
도 5는 본 발명의 일 실시예에 따른 중앙처리장치에서 입력 제어하는 방식으로 레진 도포해야할 거리에 따라 3부분으로 나누어 심(SIM)거리의 삽입 거리를 제어하는 과정을 설명하기 위한 도면.
도 6은 중앙처리 장치에서 위치 파악 센서의 감지 신호에 따라 곡선도포, 직선도포, 곡선도파가 되도록 3개 또는 n개 영역을 심(SIM)의 삽입거리로 제어하는 설비를 설명하기 위한 도면.
1 is a view for explaining a 3D lamination equipment capable of resin application according to an embodiment of the present invention in the X direction, Y direction and curves.
FIG. 2 is a view for explaining a 3D lamination facility in which a sensor is mounted on a curved portion lamination application part according to an embodiment of the present invention to freely adjust a straight line and a curve according to a signal from a sensor.
FIG. 3 is a diagram detailing item (6) shown in FIGS. 1 and 2, and controlling the resin application in a curved line and a straight line by moving the SIM to the left and right in a desired direction when the motor rotates. Drawing for illustration.
4 is a view for explaining the resin coating shape on the window according to the depth movement of the shim (SIM) in the nozzle according to an embodiment of the present invention.
5 is a view for explaining a process of controlling the insertion distance of the seam (SIM) distance by dividing into three parts according to the distance to be applied to the resin in an input control method in a central processing apparatus according to an embodiment of the present invention.
FIG. 6 is a view for explaining a facility for controlling three or n areas with an insertion distance of a SIM to be curved, straight, and curved according to the detection signal of the position sensor in the central processing unit.

첨부한 도면을 참조하여 본 발명의 실시예들에 의한 직선 및 곡선의 패턴을 도포할 수 있는 다이나믹 3D 라미네이션 장치에 대하여 상세히 설명한다. With reference to the accompanying drawings will be described in detail with respect to the dynamic 3D lamination apparatus that can be applied to the pattern of the straight and curved lines according to embodiments of the present invention.

본 실시예에 따른 도면을 참조하면, 레진도포는 0점부터 시작하며 이 때의 노즐(5)의 밑단에 삽입되어 있는 심(61)(SIM)은 레진의 y축 도포 거리를 제어할 목적으로 노즐(5)에 삽입되어 있다. 이와 같이 노즐(5)에 삽입된 심(61)은 노즐(5)이 x축으로 이동하면서 모터(62)를 제어함으로 심(61)의 삽입거리가 제어되게 된다. 이로 인해 곡면부의 에지부분에서 곡선을 이루면서 레진도포가 이루어진다. 도 1에 도시된 것처럼 도포할 평면 기판의 직선도포부, 곡선도포부를 거리별로 입력하면 중앙처리장치가 노즐(5)의 위치에 따라 도 3에 도시된 모터(62)의 회전을 제어하여 노즐(5)에 삽입된 심(61)의 추가삽입거리를 조절하게 된다.Referring to the drawings according to this embodiment, the resin application starts from 0 point and the shim 61 (SIM) inserted at the bottom of the nozzle 5 at this time is for the purpose of controlling the y-axis coating distance of the resin. It is inserted into the nozzle 5. In this way, the shim 61 inserted into the nozzle 5 controls the insertion distance of the shim 61 by controlling the motor 62 while the nozzle 5 moves in the x-axis. Due to this, resin is applied while forming a curve at the edge portion of the curved portion. As shown in FIG. 1, if a straight line coating portion and a curved coating portion of a flat substrate to be applied are input by distance, the central processing apparatus controls the rotation of the motor 62 shown in FIG. 3 according to the position of the nozzle 5, thereby (5) to adjust the additional insertion distance of the shim 61 inserted.

반면에 도 2를 참조하면, 제어의 정밀도를 기하기 위하여 노즐(5)이 지나가는 부분 중에 곡선도포를 시작하는 시점에 위치 파악 센서(1, 2, 3, 4)가 장착되어 있어, 이 지점을 통과 할 때는 노즐(5)에 삽입된 심(61)의 삽입거리가 더 길어지므로 노즐(5)에서 나오는 레진의 양이 x축 에지 방향으로 가면 갈수록 작아짐으로 곡선형상의 도포가 이루어지게 된다.On the other hand, referring to FIG. 2, in order to obtain the precision of control, the position sensor (1, 2, 3, 4) is mounted at the point of starting the curve application among the parts where the nozzle (5) passes, and this point is When passing through, since the insertion distance of the shim 61 inserted in the nozzle 5 becomes longer, the amount of resin coming out of the nozzle 5 goes toward the x-axis edge direction and becomes smaller, so that the curved shape is applied.

도 3을 참조하면, 도 1과 도 2에서 도면부호 6번 항목에서의 심(SIM) 거리를 제어하는 방식을 표시하였다. 즉, 심(61)에 대한 조절 명령이 떨어지면 모터(62)가 헬리컬기어(63)를 회전시키며, 이 회전력을 받아 헬리컬기어(63)의 양편으로 연결된 도면부호 64의 기어가 회전하며, 이 회전력은 직선운동으로 변환되어 도면부호 65의 부재를 통해 심(61)의 삽입깊이를 조절하게 된다. 심(65)의 삽입깊이 조절은 노즐(5)이 x축으로 진행하면서 동시에 이루어지므로 도포할 부분의 패턴이 곡면을 이루게 된다.Referring to FIG. 3, in FIG. 1 and FIG. 2, a method of controlling a SIM distance in item 6 is shown. That is, when the control command for the shim 61 falls, the motor 62 rotates the helical gear 63, and the gear of reference numeral 64 connected to both sides of the helical gear 63 rotates by receiving this rotational force. Is converted to a linear motion to adjust the insertion depth of the shim 61 through the member 65. Since the insertion depth of the shim 65 is adjusted while the nozzle 5 moves along the x-axis, the pattern of the portion to be applied forms a curved surface.

도 4를 참조하면, 노즐(5)에서 심(61)의 삽입깊이에 따라 레진이 출력되는 면적이 바뀌므로 레진도포 양상이 변하게 된다. 즉 노즐(5)은 x축으로 이동하고 심(61) 삽입깊이가 다이나믹하게 변하므로 출력되는 레진형상이 변화하게 되어 원하는 곡률을 가지는 곡면도포가 가능하게 된다. 이렇게 함으로 레진도포 패턴을 직선과 곡선을 자유자재로 조절 할 수 있는 우수성을 가진다. Referring to FIG. 4, since the area in which the resin is output is changed according to the insertion depth of the shim 61 in the nozzle 5, the resin application pattern is changed. That is, since the nozzle 5 moves in the x-axis and the insertion depth of the shim 61 is changed dynamically, the output resin shape is changed, so that a curved surface having a desired curvature is possible. In this way, the resin coating pattern has the superiority to freely adjust the straight lines and curves.

도 5를 참조하면, 중앙처리장치에서 입력 제어하는 방식으로 레진 도포거리에 따라 도 3에 도시된 모터(62)를 제어함으로 도포할 반경 R의 제어가 가능하게 된다. 도 6은 중앙처리장치에서 위치 파악 센서(1, 2, 3, 4)가 위치한 부분에 노즐(5)이 온 것을 감지하여 모터(62)를 회전시킴으로 곡면의 레진도포가 되도록 한다. 이처럼 위치 파악 센서(1, 2, 3, 4)가 포함된 도 2의 시스템은 정밀성을 기하기 위하여 도 1의 시스템을 향상시킨 것이다.Referring to FIG. 5, it is possible to control the radius R to be applied by controlling the motor 62 shown in FIG. 3 according to the resin application distance in a manner that is input-controlled by the central processing unit. 6, the central processing unit detects that the nozzle 5 is in the position where the position sensors 1, 2, 3, 4 are located, and rotates the motor 62 to make resin coating on the curved surface. The system of FIG. 2 including the location sensors 1, 2, 3, 4 is an improvement of the system of FIG. 1 for precision.

Claims (4)

라미네이션 장치에 있어서,
일 방향으로 이송되며 레진을 도포하는 노즐;
상기 노즐의 양편에 삽입되며, 노즐 내부로 이동될수록 노즐에서 출력되는 레진의 폭을 협소하게 하는 심(SIM);
곡선도포를 시작하는 시점에서 노즐을 감지하는 복수의 위치 파악 센서; 및
상기 노즐이 이송되는 동안 상기 위치 파악 센서에 의해 상기 노즐이 감지되면, 상기 노즐에 대한 심의 삽입깊이를 조절하여 곡선의 패턴을 도포할 수 있도록 한 제어하는 중앙처리장치를 포함하고,
상기 심의 삽입깊이 조절을 위하여,
상기 노즐의 중간부 일측에 설치된 모터; 상기 심과 모터 사이에 연결되어 상기 모터의 회전력을 심의 삽입깊이 방향의 직선운동으로 변환해주는 헬리컬기어를 포함한 기어들의 조립체;를 더 구비하는 것을 특징으로 하는 라미네이션 장치.
In the lamination device,
A nozzle that is transferred in one direction and applies resin;
A shim inserted into both sides of the nozzle and narrowing the width of the resin output from the nozzle as it moves into the nozzle;
A plurality of position-sensing sensors that sense the nozzle at the start of curve application; And
When the nozzle is detected by the position-sensing sensor while the nozzle is being transported, it includes a central processing unit that controls the insertion depth of the shim to the nozzle so as to apply a curved pattern,
To adjust the insertion depth of the shim,
A motor installed on one side of the middle of the nozzle; A lamination device further comprising: an assembly of gears connected between the shim and the motor that includes a helical gear that converts the rotational force of the motor into a linear motion in the direction of insertion depth of the shim.
삭제delete 삭제delete 삭제delete
KR1020160039221A 2016-03-31 2016-03-31 Dynamic 3D lamination system can be coated for right angle and curved surface pattern KR102096609B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160039221A KR102096609B1 (en) 2016-03-31 2016-03-31 Dynamic 3D lamination system can be coated for right angle and curved surface pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160039221A KR102096609B1 (en) 2016-03-31 2016-03-31 Dynamic 3D lamination system can be coated for right angle and curved surface pattern

Publications (2)

Publication Number Publication Date
KR20170112323A KR20170112323A (en) 2017-10-12
KR102096609B1 true KR102096609B1 (en) 2020-04-02

Family

ID=60140487

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160039221A KR102096609B1 (en) 2016-03-31 2016-03-31 Dynamic 3D lamination system can be coated for right angle and curved surface pattern

Country Status (1)

Country Link
KR (1) KR102096609B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680282A4 (en) 2017-09-04 2020-11-25 LG Chem, Ltd. Polyimide film for flexible display device substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030222369A1 (en) 2002-05-31 2003-12-04 Nicora Scott W. Apparatus and method of extruding tubing having a variable wall thickness
JP2006515908A (en) 2003-01-21 2006-06-08 ユニバーシティ オブ サウザーン カリフォルニア Multi-nozzle assembly for wall extrusion
KR101219737B1 (en) 2011-03-29 2013-01-21 주식회사 케이씨텍 Slit nozzle of substrate coater apparatus with improved coating quality
JP2013136169A (en) 2011-12-28 2013-07-11 Brother Industries Ltd Three-dimensional shaping apparatus and three-dimensional shaping data creation program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570641B1 (en) 2003-10-31 2006-04-12 삼성에스디아이 주식회사 Lamination sheet apparatus for a plasma display panel, manufacturing method thereof and coating method of the lamination sheet
US7544266B2 (en) 2004-05-21 2009-06-09 Illinois Tool Works Inc. Process of making laminated sheet and product made by the process
KR101147420B1 (en) 2010-02-24 2012-05-22 삼성모바일디스플레이주식회사 Lamination sheet and Method for manufacturing the same
JP5901010B2 (en) * 2010-12-27 2016-04-06 株式会社Sat Solar cell collecting electrode forming apparatus and method and coating head
JP6125783B2 (en) * 2012-09-24 2017-05-10 東レエンジニアリング株式会社 Coating apparatus and coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030222369A1 (en) 2002-05-31 2003-12-04 Nicora Scott W. Apparatus and method of extruding tubing having a variable wall thickness
JP2006515908A (en) 2003-01-21 2006-06-08 ユニバーシティ オブ サウザーン カリフォルニア Multi-nozzle assembly for wall extrusion
KR101219737B1 (en) 2011-03-29 2013-01-21 주식회사 케이씨텍 Slit nozzle of substrate coater apparatus with improved coating quality
JP2013136169A (en) 2011-12-28 2013-07-11 Brother Industries Ltd Three-dimensional shaping apparatus and three-dimensional shaping data creation program

Also Published As

Publication number Publication date
KR20170112323A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
MX2018011619A (en) Electronic device and method for providing information in electronic device.
CN103717343B (en) For method and the processing unit (plant) of processing work
AU2018269298A1 (en) Absorbent article with channels and method for manufacturing thereof
CN105619817B (en) The method and system of three-dimension object is manufactured using increasing material manufacturing
KR102096609B1 (en) Dynamic 3D lamination system can be coated for right angle and curved surface pattern
WO2011031506A2 (en) Apparatus and method for precision edge finishing
CN101224643A (en) Folding device for folding-gluing machine
CN205394212U (en) Automatic deviation correction device
ITUB20152764A1 (en) Procedures for creasing and cutting sheet materials.
WO2008138542A9 (en) Sideways drift correction device
EP3160673A1 (en) Wire shaping machine for cutting blocks of natural stone material
CN103508238A (en) Glass cloth tension adjustment system and method
WO2007048960A3 (en) Method and system for limiting an aircraft control surface steering angle
US20160059492A1 (en) Feeding apparatus for forming 3d object
JP2019004055A5 (en)
US10201120B2 (en) Component mounting apparatus
WO2015131746A3 (en) A system and method for directing an object to move on an interactive surface through a defined path
JP2011025229A5 (en)
WO2018015343A3 (en) Method for securing electronic components on a flexible, particularly textile fabric
CN108217410B (en) Passenger conveyors
WO2015182332A1 (en) Tension control device
DE602006005428D1 (en) Device for sending control orders for motorized awnings with swiveling slats
JP2018503926A5 (en)
EP3431159A3 (en) Apparatus movement system, apparatus, apparatus movement control method, apparatus movement control program, and cardboard member
US20150270062A1 (en) Coil winding apparatus, and coil winding method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right