WO2014044062A1 - 双相柱膜蛋白质微反应器及其应用 - Google Patents

双相柱膜蛋白质微反应器及其应用 Download PDF

Info

Publication number
WO2014044062A1
WO2014044062A1 PCT/CN2013/076942 CN2013076942W WO2014044062A1 WO 2014044062 A1 WO2014044062 A1 WO 2014044062A1 CN 2013076942 W CN2013076942 W CN 2013076942W WO 2014044062 A1 WO2014044062 A1 WO 2014044062A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
exchange material
membrane protein
microreactor
protein
Prior art date
Application number
PCT/CN2013/076942
Other languages
English (en)
French (fr)
Inventor
张丽华
赵群
杨开广
梁玉
梁振
张玉奎
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US14/429,670 priority Critical patent/US20150231592A1/en
Publication of WO2014044062A1 publication Critical patent/WO2014044062A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/0079Monolith-base structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00849Materials of construction comprising packing elements, e.g. glass beads

Definitions

  • the invention relates to a two-phase column membrane protein microreactor, which can realize sample pretreatment process of membrane protein in situ enrichment, pH replacement, reduction, alkylation and enzymatic hydrolysis, and is combined with separation and detection system, ie Separation and identification of membrane protein hydrolysates can be achieved.
  • the cell membrane is the hub of the cell's external barrier and the exchange of substances inside and outside the cell. It isolates the cell from the surrounding environment and maintains the stability of the cell's environment.
  • the cell membrane proteome plays an important role in performing functions such as intracellular and extracellular material exchange, cell recognition and immune response, signal transduction and regulation, and energy transfer.
  • One third of the proteins in eukaryotes are integrated on the membrane.
  • Membrane proteins also play a significant role in drug research, with approximately 70% of the known and ongoing drug targets being membrane proteins. However, due to the high hydrophobicity of membrane proteins, their solubility and enzymatic efficiency are poor, which poses a challenge to the current common proteomics technology.
  • Formic acid is a good membrane protein solubilizer, and the subsequent enzymatic hydrolysis usually uses the chemical cleavage agent cyanogen bromide or acidic gastric enzyme.
  • cyanogen bromide is a highly toxic reagent and can only be cleaved at methionine, resulting in a large peptide segment, which is not conducive to mass spectrometry.
  • Pepsin is a non-specific proteolytic enzyme. Therefore, when searching for mass spectrometry data, the list of theoretical enzyme fragments is too large, the server for data retrieval is high, the data retrieval time is too long, and the data retrieval is false. The high positive rate seriously affects the identification of membrane proteins.
  • the trypsin is highly specific.
  • the peptide fragments obtained after digestion are moderate in size and the molecular mass is between 500-3000 Da. It is very suitable for the detection range of mass spectrometry and is the most widely used proteolytic enzyme in protein identification. Therefore, combining the strong solvating power of formic acid with the specific digestion of trypsin is important for membrane protein analysis.
  • the object of the present invention is to develop a two-phase column membrane protein microreactor (Fig. 1), by which a membrane protein sample is enriched, and the sample is not diluted, and the recovery rate is high and convenient.
  • Fig. 1 In-situ realization of the environmental acid and alkaline substitution of the membrane protein sample ensures compatibility under acidic conditions under enzymatic hydrolysis under alkaline conditions (Fig. 2).
  • the sample pretreatment process is performed in situ in the capillary column to enable online, automated operation of membrane protein sample pretreatment.
  • Including a hollow container sequentially filling an anion exchange material, a cation exchange material, or sequentially in a hollow container
  • the hollow container is a cylindrical, conical or disc-shaped container, and the inner cavity of the hollow container is radially transverse
  • the cross-section diameter is 50 ⁇ ⁇ -5 cm.
  • the container is: 20-1000 ⁇ ⁇ pipette tip, 1-20 ml solid phase extraction (SPE) tube, 1_20 ml syringe needle, 50-500 ⁇ ⁇ inner diameter capillary or syringe filter chamber.
  • SPE solid phase extraction
  • the plunger is an integral column plunger or a sieve plate with a pore size of 3 nm to 20 ⁇ m synthesized in situ in the microreactor.
  • An anion exchange material and a cation exchange material are contained in the same container;
  • the cation exchange material is a strong cation exchange material containing a sulfonic acid group and/or a phosphoric acid group, or a weak cation exchange material containing a carboxyl group;
  • the anion exchange material is a strong anion exchange material containing a quaternary ammonium group, or contains a secondary amine and / or a weak anion exchange material of a tertiary amine group; the material may be a particulate material or a monolithic material.
  • the combination of cation and anion exchange materials can be: strong cation exchange materials and strong anion materials; strong cation exchange materials and weak anion exchange materials; weak cation exchange materials and strong anion exchange materials; weak cation exchange materials and weak anion exchange materials.
  • the enzymatic peptide of the membrane protein is eluted from the microreactor with a 200-2000 mM salt solution, and the eluate is collected, separated by liquid chromatography, mass spectrometry, ultraviolet or fluorescence detection. The device is tested.
  • the acidic solution having a pH of 1-7 may be formic acid, trifluoroacetic acid, trichloroacetic acid or acetic acid solution;
  • the surfactant is sodium dodecyl sulfate, sodium deoxycholate, Triton X-100, chaps, Rapigest SF, or NP-40d ;
  • the detergent may be urea, thiourea, or guanidine hydrochloride;
  • the alkaline solution having a pH greater than 7-14 may be an ammonium hydrogencarbonate buffered saline solution, a phosphate buffered saline solution, or a tris-hydroxymethylaminomethane buffered saline solution;
  • the solvent for dissolving the protein may be an acidic solvent having a pH of 1-7, or an alkaline solvent having a pH greater than 7-14; if it is trapped under acidic conditions, the filling sequence is: the cation of the carrier liquid inflow end is cation Exchange material, the outflow end of the carrier liquid is an anion exchange material;
  • the filling sequence is: the inflow end of the carrier liquid is an anion exchange material, and the outflow end of the carrier liquid is a cation exchange material. If trapped under acidic conditions, the pH is replaced with an alkaline solution having a pH greater than 7-14, and the solution concentration ranges from 1 to 100 mM;
  • the pH is replaced with an acidic solution having a pH of 1-7, and the solution concentration ranges from 1-100 mM.
  • the reducing agent is dithiothreitol (DTT), trichloroethyl phosphate (TCEP) or ⁇ -mercaptoethanol; the concentration is 1-200 mM.
  • the alkylating agent is iodoacetic acid or iodoacetamide; the concentration is 1-200 mM ;
  • the enzymatic hydrolysis of the protein under alkaline conditions with a pH greater than 7-14 selects one or more of trypsin, endopeptidase Arg- (:, endopeptidase lys-C, chymotrypsin or elastase;
  • the dosage is 1/100 -1/10 of the mass of the protein sample;
  • the pepsin or cyanogen bromide reagent is selected for enzymatic hydrolysis of the protein under acidic conditions of pH 1-7; the amount is 1/100 -1/10 of the mass of the protein sample.
  • the salt solution is an ammonium hydrogencarbonate solution, a sodium chloride solution, an ammonium acetate solution, a phosphate solution, or a tris buffer solution.
  • the subsequent membrane protein reduction, alkylation, and enzymatic hydrolysis processes are carried out in situ in the microreactor.
  • acid, alkaline replacement membrane protein sample dissolved in formic acid solution, and trapped in a two-phase column membrane protein microreactor, into the l-50mM ammonium bicarbonate buffer, can be convenient, high recovery rate
  • the microreactor solution system is replaced by an alkaline environment, thereby facilitating the subsequent reduction, alkylation and enzymatic hydrolysis of membrane proteins.
  • the acid and alkaline replacement process of the reaction system is simple and rapid, while maintaining high recovery of the sample.
  • the preparation of the two-phase column membrane protein microreactor is simple.
  • a two-phase column membrane protein microreactor can be prepared by sequentially filling two ion exchange packings having orthogonal properties or an ion exchange bulk material having an orthogonal nature in situ sequential synthesis retention mechanism.
  • the protein sample can be dissolved in acid, alkaline and protein sample processing by using two kinds of ion exchange materials with orthogonal properties in the same container and feeding the corresponding pH buffer. A replacement between alkali and acid is required, and the pH state of the replacement process can be detected by using a pH test paper.
  • the membrane protein sample is compatible with both formic acid solubilization and trypsin digestion without dilution.
  • the invention uses a formic acid solubilized membrane protein with a volume fraction of 90%, and after diluting to a formic acid concentration to 1%, the membrane protein sample is trapped on a two-phase column, and an ammonium hydrogencarbonate buffer solution is introduced to replace the pH value with 7- 8. The buffer conditions required for subsequent reduction, alkylation, and trypsin digestion of membrane proteins are satisfied.
  • Sample pretreatment time is short.
  • the invention is based on the in-situ sample pretreatment of the microreactor, and no other transfer, freeze-drying and the like process is required, and the whole sample pretreatment time can be controlled within 2-4 hours.
  • Figure 1 is a schematic diagram of a two-phase column membrane protein microreactor.
  • 1 carrier liquid outflow end; 2: hydrophilic plug; 3: strong anion exchange packing; 4: strong cation exchange packing; 5: carrier liquid inflow end;
  • FIG. 2 is a sample pretreatment flow diagram of a two-phase column membrane protein microreactor.
  • 7 Membrane protein sample
  • 8 Formic acid solution membrane protein sample
  • 9 Displacement pH value 7-8, and complete reduction, alkylation and protein trypsin enzymatic hydrolysis process.
  • Figure 3 shows the sample retention of the two-phase column membrane protein microreactor by SDS-PAGE, acid loading, and displacement from pH to alkaline.
  • a mixture of acidic, neutral, and basic proteins BSA, Myo, Cyt C was used as a sample.
  • Band 1 Marker
  • Band 2 BSA, Myo, Cyt C three proteins;
  • Strip 3 loading effluent of a two-phase column membrane protein microreactor
  • strip 4 loading effluent of a SCX microreactor
  • strip 5 effluent of a two-phase column membrane protein microreactor pH displacement
  • Strip 6 The effluent of the SCX microreactor pH displacement.
  • FIG. 4 The peak area of the desalting of the reversed-phase trap column was used to evaluate the recovery of the microreactor sample pretreatment.
  • A free solution enzymatic hydrolysis of BSA, Myo, Cyt C protein solution, standard curve of reversed desalting peak area of enzymatic hydrolysate;
  • B 4 ⁇ g of equal concentration of BSA, Myo, Cyt C protein is dissolved with formic acid, The recovery of the resulting enzymatically produced product after pretreatment of the biphasic membrane protein microreactor sample.
  • a hydrophilic monolithic plunger 2 was synthesized in situ in a 200 rn i.d. capillary.
  • the procedure was as follows: (1) Capillary pretreatment. The capillary was separately washed with a 1 M sodium hydroxide solution, water, a 1 M hydrochloric acid solution, water, methanol, and then dried at 70 ° C under nitrogen; then, ⁇ -MAPS
  • the microreactor was used with a two-pass and reversed-phase separation column (inner diameter 75 ⁇ ⁇ id, length 17 cm, containing 2 cm needle, The packing is American Philomox, Luna C18 (2), 5 ⁇ m, 100 A) in series, combined with mass spectrometry, one-dimensional liquid phase separation and mass spectrometry identification of the enzymatic peptide.
  • samples were pretreated with the above samples (mixtures of equal masses of BSA, Myo, Cyt C) by conventional free solution enzymatic hydrolysis.
  • the 10 mM IAA solution was subjected to alkylation of the protein, and the reaction was protected from light for 30 min at room temperature. Subsequently, 2 mg/mL trypsin in 5 mM ammonium bicarbonate solution was introduced, and the ends of the capillary were sealed by liquid at 37 ° C for 2 h.
  • the microreactor was exchanged with a two-pass and strong cation exchange trap column and a reverse phase separation column (inner diameter 75 ⁇ ⁇ id, length 17 cm, containing 2 cm needle, packing for the American Philomon, Luna C18 (2 ), 5 ⁇ m, 100 A) in series, and combined with mass spectrometry, two-dimensional liquid phase separation and mass spectrometry identification of the enzymatic peptide of mouse meningeal protein.
  • R RHPYFYAPELLYYANKYNGVFQECCQAEDK.
  • G K VHKECCHGDLLECADDRADLAK.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及一种可实现反应体系酸碱性置换的双相柱膜蛋白质微反应器,该微反应器以阳离子交换材料和阴离子交换材料作为固定相,将两种固定相顺序填充于同一容器内,可实现膜蛋白质样品原位捕集、pH置换、还原、烷基化、酶解的样品预处理过程。该装置具有回收率高、简单、高效、快速等优点。

Description

双相柱膜蛋白质微反应器及其应用 技术领域
本发明涉及一种双相柱膜蛋白质微反应器, 可实现膜蛋白质原位富集、 pH置换、 还原、 烷基化、 酶解的样品预处理过程, 并且与分离、 检测系统联用, 即可实现对膜蛋白质酶解产 物的分离、 鉴定。
背景技术
细胞膜是细胞对外界的屏障和细胞内外物质交换的枢纽, 它将细胞与周围环境隔离开, 维持细胞内环境的稳定。 细胞膜蛋白质组对执行细胞内外物质交换、 细胞识别与免疫应答、 信号传导和调控以及能量传递等功能起着重要作用。 真核生物中 1/3的蛋白均整合在膜上。 膜蛋白质在药物研究中也起着相当重要的作用,在已知的和正在研究的药物靶标中大约有 70% 为膜蛋白质。 然而, 由于膜蛋白质疏水性强, 导致其溶解性和酶解效率较差, 对目前通用的 蛋白质组学技术提出了挑战。
甲酸是一种很好的膜蛋白质增溶剂, 后续的酶解通常采用化学裂解剂溴化氰或酸性胃蛋 白酶。 然而, 溴化氰是一种剧毒试剂, 且只能在甲硫氨酸处裂解, 产生的肽段较大, 不利于 质谱检测。 胃蛋白酶是一种非特异性的蛋白质水解酶, 因此在质谱数据检索时, 产生的理论 酶切肽段列表太大, 对用于数据检索的服务器要求高, 数据检索时间过长, 数据检索的假阳 性率高, 严重地影响了膜蛋白质的鉴定。胰蛋白酶专一性强, 酶切后得到的肽片段大小适中, 分子质量在 500-3000 Da之间, 非常适合质谱的检测范围, 是蛋白质鉴定中应用最多的蛋白 水解酶。 因此, 将甲酸的强溶解能力和胰蛋白酶的特异性酶切相结合, 对于膜蛋白质分析有 着重要意义。
目前, 有文献通过将甲酸溶解后的膜蛋白质溶液, 用碳酸氢铵调节 PH至 pH=8后, 进行 后续的蛋白质的酶角军 (Cruz, S. D. , Xenarios, I. , Langridge, J. , Vi lbois, F. , Parone, P. A. , Martinou, J. C. , J. Biol. Chem. 2003, 42, 41566 - 41571. )。 这种方法的问题在 于: 一、 操作不方便; 二、 膜蛋白质的浓度被严重稀释; 三、 酸、 碱性置换过程易造成膜蛋 白质的再次析出; 四、 离心管内进行操作, 内壁吸附损失较大; 五、 无法实现在线分析。
发明内容
为了解决上述问题, 本发明的目的在于发展一种双相柱膜蛋白质微反应器 (图 1 ), 通过 该微反应器富集膜蛋白质样品, 在不稀释样品的前提下, 便捷、 高回收率、 原位地实现膜蛋 白质样品所处环境酸、 碱性的置换, 确保酸性条件下溶解和碱性条件下酶解的兼容 (图 2)。 此外, 该样品预处理过程均在毛细管柱原位进行, 可实现膜蛋白质样品预处理的在线、 自动 化操作。
为实现上述目的, 本发明采用的技术方案为:
双相柱膜蛋白质微反应器:
包括中空的容器, 于中空的容器内顺次填充阴离子交换材料、 阳离子交换材料、 或顺次 填充阳离子交换材料、 阴离子交换材料, 于中空的容器内部空腔的一端或两端设置有柱塞; 所述中空的容器为圆柱、圆锥或圆盘形容器,中空容器的内部空腔径向横截面直径为 50 μ ιιι-5 cm。
容器为: 20-1000 μ ΐ移液器枪头, 1-20 ml 固相萃取 (SPE) 管, 1_20 ml注射器针管, 50-500 μ πι内径毛细管或注射器滤膜腔体。
柱塞是在微反应器内原位合成的整体柱柱塞或孔径为 3 nm-20 μ m的筛板。
同一容器内包含阴离子交换材料、 阳离子交换材料;
阳离子交换材料为含有磺酸基团和 /或磷酸基团的强阳离子交换材料、或含有羧基基团的 弱阳离子交换材料; 阴离子交换材料为含有季铵基团的强阴离子交换材料、 或含有仲胺和 / 或叔胺基团的弱阴离子交换材料; 材料可以是颗粒材料或者整体材料。
阳、 阴离子交换材料的搭配可以是: 强阳离子交换材料和强阴离子材料; 强阳离子交换 材料和弱阴离子交换材料; 弱阳离子交换材料和强阴离子交换材料; 弱阳离子交换材料和弱 阴离子交换材料。
所述双相柱膜蛋白质微反应器的应用:
1 ) 在带有柱塞的横截面直径为 50 m-5 cm的圆柱、 圆锥或圆盘形容器内顺次填充阴、 阳离子交换材料或阳、 阴离子交换材料;
2)采用 pH为 1-7的酸性溶液或 pH为大于 7-14的溶有质量或体积浓度为 1%_30%的表面 活性剂或去垢剂的碱性溶液溶解膜蛋白质样品, 将样品溶液通过微反应器实现膜蛋白质的原 位捕集;
3) 然后, 通入 pH为大于 7-14的碱性溶液或 pH为 1-7的酸性溶液进行微反应器内溶液 体系的 PH值的置换;
4)之后, 用还原剂进行蛋白质的还原, 随后用烷基化试剂进行蛋白质的烷基化处理, 最 后在 pH为大于 7-14的碱性条件下进行蛋白质的酶解或 pH为 1-7的酸性条件下进行蛋白质的 酶解;
5)酶解完成后,用 200-2000 mM的盐溶液将膜蛋白质的酶解肽段从微反应器上洗脱下来, 收集洗脱液, 用液相色谱法分离, 质谱、 紫外或荧光检测器进行检测。
pH为 1-7的酸性溶液可为甲酸、 三氟乙酸、 三氯乙酸或醋酸溶液;
表面活性剂为十二烷基磺酸钠、 脱氧胆酸钠、 Triton X- 100、 chaps, Rapigest SF、 或 NP-40d; 去垢剂可为尿素、 硫脲、 或盐酸胍;
pH为大于 7-14的碱性溶液可为碳酸氢铵缓冲盐溶液、 磷酸缓冲盐溶液、 或三羟甲基氨 基甲烷缓冲盐溶液;
溶解蛋白质的溶剂可以是 pH为 1-7的酸性溶剂, 也可以是 pH为大于 7-14的碱性溶剂; 如果是酸性条件下捕集, 则填装顺序为: 载流液流入端为阳离子交换材料, 载流液流出 端为阴离子交换材料;
如果是碱性条件下捕集, 则填装顺序为: 载流液流入端为阴离子交换材料, 载流液流出 端为阳离子交换材料。 若在酸性条件下捕集,则用 pH为大于 7-14的碱性溶液置换 pH值,溶液浓度范围在 1-100 mM之间;
若在碱性条件下捕集, 则用 pH为 1-7的酸性溶液置换 pH值, 溶液浓度范围在 1-100 mM 之间。
还原剂为二硫苏糖醇(DTT)、 磷酸三氯乙酯(TCEP)或 β _巯基乙醇; 浓度为 1-200 mM。 烷基化试剂为碘代乙酸或碘乙酰胺; 浓度为 1-200 mM;
pH为大于 7-14的碱性条件下进行蛋白质的酶解选择胰蛋白酶、 内肽酶 Arg- (:、 内肽酶 lys-C,胰凝乳蛋白酶或弹性蛋白酶中的一种或几种; 用量为蛋白质样品质量的 1/100 -1/10;
PH为 1-7的酸性条件下进行蛋白质的酶解选择胃蛋白酶或溴化氰试剂;用量为蛋白质样 品质量的 1/100 -1/10。 盐溶液为碳酸氢铵溶液、 氯化钠溶液、 乙酸铵溶液、 磷酸盐溶液、 或三羟甲基氨基甲烷缓冲盐溶液。
膜蛋白质捕集于微反应器后, 后续的膜蛋白质的还原、 烷基化、 酶解过程均在微反应器 内原位进行。
1、 双相柱膜蛋白质微反应器的构建: 在一根毛细管中, 原位合成整体材料作为柱塞, 然后顺次填装强阴离子交换材料和强阳离子交换材料作为微反应器的固定相。
2、 酸、 碱性的置换: 膜蛋白质样品溶解于甲酸溶液, 并捕集于双相柱膜蛋白质微反应 器后, 通入 l-50mM碳酸氢铵缓冲液, 可便捷、 高回收率地将微反应器溶液体系置换为碱性环 境, 从而有利于后续膜蛋白质的还原、 烷基化及酶解过程。 反应体系酸、 碱性置换过程简单、 快速, 同时可保持样品的高回收率。
本发明具有如下优点:
1. 双相柱膜蛋白质微反应器的制备简单。在同一容器中, 顺序填装保留机理具有正交性 质的两种离子交换填料或原位顺序合成保留机理具有正交性质的离子交换整体材料, 即可制 得双相柱膜蛋白质微反应器。
2.操作方便、快捷。利用在同一容器内填装保留机理具有正交性质的两种离子交换材料, 通入相应 pH值的缓冲液, 即可方便、 高回收率地实现蛋白质样品溶解酸、碱性和蛋白质样品 处理所需碱、 酸性间的置换, 并且用 pH试纸即可检测置换过程中 pH的状态。
3. 高回收率。 采用两种保留机理正交的离子交换材料, 可保证膜蛋白质样品在 pH置换 过程中, 很好地保留在微反应器中。 从而, 避免 pH值置换过程中, 因膜蛋白质保留行为的变 化造成的损失 (图 3)。 此外, 整个样品预处理过程均在微反应器内原位进行, 避免了转移、 试管内壁吸附等造成的损失, 回收率高 (图 4)。
4. 利用双相柱膜蛋白质微反应器, 在膜蛋白质样品无需稀释的情况下, 实现了膜蛋白质 的甲酸溶解和胰蛋白酶酶切两种策略的兼容。 本发明使用体积分数为 90%的甲酸溶解膜蛋白 质, 稀释至甲酸浓度至 1%后, 将膜蛋白质样品捕集于双相柱上, 通入碳酸氢铵缓冲液, 将 pH 值置换到 7-8, 满足后续膜蛋白质的还原、 烷基化及胰蛋白酶酶切过程所需缓冲条件。
5. 样品预处理时间短。 本发明基于微反应器的原位样品预处理, 无需其他的转移、 冻干 等过程, 整个样品预处理时间可控制在 2-4小时内。 附图说明
图 1为双相柱膜蛋白质微反应器示意图。 1 : 载流液流出端; 2: 亲水性柱塞; 3: 强 阴离子交换填料; 4: 强阳离子交换填料; 5: 载流液流入端;
图 2为双相柱膜蛋白质微反应器的样品预处理流程图。 7 : 膜蛋白质样品; 8: 甲酸溶 解膜蛋白质样品; 9: 置换 pH值于 7-8, 并完成还原、烷基化及蛋白质的胰蛋白酶酶解过程。
图 3为 SDS-PAGE评价双相柱膜蛋白质微反应器, 酸性上样、 置换 pH至碱性过程中的样 品保留情况。以酸性、中性、碱性蛋白质 BSA、 Myo、 Cyt C的混合物作为样品。条带 1 : Marker; 条带 2: BSA、 Myo、 Cyt C三个蛋白质;
条带 3: 双相柱膜蛋白质微反应器的上样流出液; 条带 4: SCX微反应器的上样流出液; 条带 5: 双相柱膜蛋白质微反应器 pH置换的流出液; 条带 6: SCX微反应器 pH置换的流出液。
图 4 用反相捕集柱除盐的峰面积评价微反应器样品预处理的回收率。 A: 自由溶液酶解 等浓度的 BSA、 Myo、 Cyt C蛋白溶液, 酶解产物的反相除盐峰面积的标准曲线; B: 4 μ g等 浓度 BSA、 Myo、 Cyt C蛋白用甲酸溶解, 经双相柱膜蛋白质微反应器样品预处理后, 所得酶 解产物的回收率。
具体实施方式
1. 双相柱膜蛋白质微反应器的制备: 按图 1所示, 在 200 rn i. d.毛细管中, 原位合 成亲水性整体柱塞 2, 步骤如下: (1 ) 毛细管预处理。 将毛细管分别用浓度为 1M的氢氧化钠 溶液、 水、 浓度为 1M的盐酸溶液、 水、 甲醇冲洗, 然后 70°C下氮气吹干; 然后, 将 γ -MAPS
( Y -甲基丙烯酸氧丙基三甲氧基硅烷) 的无水甲醇溶液 (体积比 1 : 1 ) 灌入毛细管内, 用硅 胶将两端密封后,在室温下静置反应 24 h。反应结束后,用无水甲醇将毛细管内残留的 Y -MAPS 冲洗干净, 室温下氮气吹干。 (2 ) 亲水性柱塞的制备。 称取 PEGDA (聚乙二醇二丙烯酸酯) 0. 1500 g, AIBN (偶氮二异丁氰) 0. 0015 g, 正丙醇 0. 3500 g, 混勾得到聚合溶液, 吹氮 气 30 s, 以除去其中的氧气, 将预处理过的毛细管一端浸入聚合溶液中, 聚合溶液通过毛细 虹吸作用吸入预处理过的毛细管中约 5 cm后, 用硅胶将两端密封, 放入水浴锅中 50°C反应 24 小时。 柱塞合成后, 顺序填装 2 厘米的强阴离子交换填料 3 (日本东曹达, TSK-GEL SuperQ-5PW, 10 μ m, 1000 A )和 2 厘米的强阳离子交换填料 4 (日本东曹达, TSK-GEL SP-5PW,
Figure imgf000005_0001
2. 评价双相柱膜蛋白质微反应器的样品预处理的效率: 以酸、 中、 碱性三种标准蛋白 BSA、 Myo、 Cyt C的混合物作为样品。 用体积分数为 90%的甲酸溶液等质量浓度溶解, 90°C下 热变性 10 min后, 将上述溶液稀释至甲酸浓度为 1% (体积分数), 以满足强阳离子交换填料 的解离条件。随后,将蛋白质样品捕集于微反应器,用 5 mM碳酸氢铵缓冲液置换 pH值于 7. 5。 继而, 通入 100 mM二硫苏糖醇(DTT)溶液, 在室温下反应 30 min进行蛋白质的还原处理后, 通入 10 mM碘乙酰胺 (IAA) 溶液, 室温下避光反应 30 min后进行蛋白质的烷基化处理。 最 后, 通入 2 mg/mL的胰蛋白酶的 5 mM碳酸氢铵溶液, 液封住毛细管两端, 37°C酶解 1_2小时。 酶解结束后, 将微反应器用二通与反相分离柱 (内径 75 μ ιιι i. d. , 长 17cm, 含 2cm的喷针, 填料为美国菲罗门, Luna C18 (2), 5 μ m, 100 A) 串连, 与质谱联用, 对酶解肽段进行一 维液相分离、 质谱鉴定。 作为对照组, 我们用常规自由溶液酶解的方法对上述样品 (等质量 BSA、 Myo、 Cyt C的 混合物) 进行样品预处理。 首先, 用 lmL碳酸氢铵缓冲液 (50 mM, pH 8 ) 溶解 1 mg BSA、 Myo、 Cyt C的混合物 (三种蛋白按等质量比混合), 90°C下热变性 10 min后, 加入 10 mM二 硫苏糖醇 (DTT) 溶液, 56 °C下, 反应 2h进行蛋白质的还原处理。 随后, 通入 25 mM碘乙酰 胺 (IAA) 溶液, 室温下避光反应 30 min进行蛋白质的烷基化处理。 最后, 加入 25 μ g的胰 蛋白酶 (溶于 50 mM碳酸氢铵溶液, pH 8 ) 进行蛋白质的酶解。 37°C酶解 12小时后, 加入终 体积为 1%的甲酸溶液终止酶解。 从双相柱膜蛋白质微反应器和自由溶液的样品预处理结果看, 采用以上两种策略, 蛋白 质的还原、 烷基化效率 (表 1 ) 及酶解效率 (表 2 ) 都是相当的。
3. 基于双相柱膜蛋白质微反应器的鼠脑膜蛋白质样品的分析: 用体积分数为 90%的甲酸 溶解鼠脑膜蛋白质样品, 90°C下热变性 10 min后, 将上述溶液稀释至甲酸浓度为 1% (体积 分数), 以满足强阳离子交换填料的解离条件。 随后, 将膜蛋白质样品捕集于微反应器, 用 5 mM碳酸氢铵缓冲液置换 pH值于 7. 5, 通入 100 mM DTT溶液进行蛋白质的还原处理, 在室温 下反应 30 min后, 通入 10 mM IAA溶液进行蛋白质的烷基化处理, 室温下避光反应 30 min。 随后, 通入 2 mg/mL的胰蛋白酶的 5 mM碳酸氢铵溶液, 液封住毛细管两端, 37°C酶解 2h。 酶解结束后, 将微反应器用二通与强阳离子交换捕集柱和反相分离柱 (内径 75 μ πι i. d., 长 17cm, 含 2cm的喷针, 填料为美国菲罗门, Luna C18 (2), 5 μ m, 100 A) 串连, 并与质 谱联用, 对鼠脑膜蛋白质的酶解肽段进行二维液相分离、 质谱鉴定。
4. 数据分析: 对采集的谱图进行数据库检索和数据分析。 从结果看, 鉴定到 975个蛋白 group, 对应于 3841条非冗余肽段。 其中, 416个膜蛋白质, 其比例占鉴定到的总蛋白质的 43%。 此外, 鉴定到 103条跨膜肽段。
表 1 BSA的双相柱膜蛋白质微反应器较自由溶液的还原、 烷基化结果 双相柱微反应器的酶解产物 自由溶液的酶解产物
K. VASLRETYGDMADCCEK. Q R. ETYGDMADCCEK. Q
K. VASLRETYGDMADCCEKQEPER. N K. YNGVFQECCQAEDK. G
R. ETYGDMADCCEK. Q K. YNGVFQECCQAEDKGACLLPK. I
R. ETYGDMADCCEKQEPER. N K. VHKECCHGDLLECADDR. A
R. RHPYFYAPELLYYANKYNGVFQECCQAEDK. G K. VHKECCHGDLLECADDRADLAK. Y K. YNGVFQECCQAEDK. G K. ECCHGDLLECADDR. A
K. YNGVFQECCQAEDKGACLLPK. I K. ECCHGDLLECADDRADLAK. Y
K. VHKECCHGDLLECADDRADLAK. Y K. EYEATLEECCAK. D
K. ECCHGDLLECADDR. A K. EYEATLEECCAKDDPHACYSTVFDK. L
K. ECCHGDLLECADDRADLAK. Y R. CCTKPESER. M
K. LKECCDKPLLEK. S K. CCTESLVNR. R
K. EYEATLEECCAK. D K. CCAADDKEACFAVEGPK. L
K. EYEATLEECCAKDDPHACYSTVFDK. L
R. CCTKPESER. M
K. CCTESLVNR. R
R. CCTKPESERMPCTEDYLSL I LNR. L
K. TVMENFVAFVDKCCAADDKEACFAVEGPK. L
K. CCAADDKEACFAVEGPK. L
双相柱膜蛋白质微反应器较自由溶液的酶解结果
Figure imgf000007_0001

Claims

权 利 要 求 书
1. 双相柱膜蛋白质微反应器, 其特征在于:
包括中空的容器, 于中空的容器内顺次填充阴离子交换材料、 阳离子交换材料、 或顺次 填充阳离子交换材料、 阴离子交换材料, 于中空的容器内部空腔的一端或两端设置有柱塞; 所述中空的容器为圆柱、圆锥或圆盘形容器,中空容器的内部空腔径向横截面直径为 50 μ m-5
CITlo
2. 根据权利要求 1所述的双相柱膜蛋白质微反应器, 其特征在于: 容器为: 20-1000 μ 1 移液器枪头, 1-20 ml 固相萃取 (SPE) 管, 1_20 ml注射器针管, 50-500 μ m内径毛细管或 注射器滤膜腔体。
3. 根据权利要求 1所述的双相柱膜蛋白质微反应器, 其特征在于: 柱塞是在微反应器内 原位合成的整体柱柱塞或孔径为 3 nm-20 μ m的筛板。
4. 根据权利要求 1所述的双相柱膜蛋白质微反应器, 其特征在于: 同一容器内包含阴离 子交换材料、 阳离子交换材料;
阳离子交换材料为含有磺酸基团和 /或磷酸基团的强阳离子交换材料、或含有羧基基团的 弱阳离子交换材料; 阴离子交换材料为含有季铵基团的强阴离子交换材料、 或含有仲胺和 / 或叔胺基团的弱阴离子交换材料; 材料可以是颗粒材料或者整体材料。
5. 根据权利要求 1或 4所述的双相柱膜蛋白质微反应器, 其特征在于: 阳、 阴离子交换 材料的搭配可以是: 强阳离子交换材料和强阴离子材料; 强阳离子交换材料和弱阴离子交换 材料; 弱阳离子交换材料和强阴离子交换材料; 弱阳离子交换材料和弱阴离子交换材料。
6. 一种权利要求 1所述双相柱膜蛋白质微反应器的应用, 其特征在于:
1 ) 在带有柱塞的横截面直径为 50 μ ιιι-5 cm的圆柱、 圆锥或圆盘形容器内顺次填充阴、 阳离子交换材料或阳、 阴离子交换材料;
2 )采用 pH为 1-7的酸性溶液或 pH为大于 7-14的溶有质量或体积浓度为 1%_30%的表面 活性剂或去垢剂的碱性溶液溶解膜蛋白质样品, 将样品溶液通过微反应器实现膜蛋白质的原 位捕集;
3 ) 然后, 通入 pH为大于 7-14的碱性溶液或 pH为 1-7的酸性溶液进行微反应器内溶液 体系的 pH值的置换;
4)之后, 用还原剂进行蛋白质的还原, 随后用烷基化试剂进行蛋白质的烷基化处理, 最 后在 pH为大于 7-14的碱性条件下进行蛋白质的酶解或 pH为 1-7的酸性条件下进行蛋白质的 酶解;
5 )酶解完成后,用 200-2000 mM的盐溶液将膜蛋白质的酶解肽段从微反应器上洗脱下来, 收集洗脱液, 用液相色谱法分离, 质谱、 紫外或荧光检测器进行检测。
7. 根据权利要求 6所述的应用, 其特征在于: pH为 1-7的酸性溶液可为甲酸、 三氟乙 酸、 三氯乙酸或醋酸溶液;
表面活性剂为十二烷基磺酸钠、 脱氧胆酸钠、 Triton X-100 , chaps , Rapigest SF、 或 NP-40d; 去垢剂可为尿素、 硫脲、 或盐酸胍;
pH为大于 7-14的碱性溶液可为碳酸氢铵缓冲盐溶液、 磷酸缓冲盐溶液、 或三羟甲基氨 基甲烷缓冲盐溶液;
溶解蛋白质的溶剂可以是 pH为 1-7的酸性溶剂, 也可以是 pH为大于 7-14的碱性溶剂; 如果是酸性条件下捕集, 则填装顺序为: 载流液流入端为阳离子交换材料, 载流液流出 端为阴离子交换材料;
如果是碱性条件下捕集, 则填装顺序为: 载流液流入端为阴离子交换材料, 载流液流出 端为阳离子交换材料。
8.根据权利要求 6所述的应用,其特征在于:若在酸性条件下捕集,则用 pH为大于 7-14 的碱性溶液置换 pH值, 溶液浓度范围在 1-100 mM之间;
若在碱性条件下捕集, 则用 pH为 1-7的酸性溶液置换 pH值, 溶液浓度范围在 1-100 mM 之间。
9. 根据权利要求 6所述的应用, 其特征在于:
还原剂为二硫苏糖醇(DTT)、 磷酸三氯乙酯(TCEP)或 β _巯基乙醇; 浓度为 1-200 mM。 烷基化试剂为碘代乙酸或碘乙酰胺; 浓度为 1-200 mM;
pH为大于 7-14的碱性条件下进行蛋白质的酶解选择胰蛋白酶、 内肽酶 Arg- (:、 内肽酶 lys-C,胰凝乳蛋白酶或弹性蛋白酶中的一种或几种; 用量为蛋白质样品质量的 1/100 -1/10;
PH为 1-7的酸性条件下进行蛋白质的酶解选择胃蛋白酶或溴化氰试剂;用量为蛋白质样 品质量的 1Λ00 -1/10。 盐溶液为碳酸氢铵溶液、 氯化钠溶液、 乙酸铵溶液、 磷酸盐溶液、 或三羟甲基氨基甲烷缓冲盐溶液。
10. 根据权利要求 6所述的应用, 其特征在于: 膜蛋白质捕集于微反应器后, 后续的膜 蛋白质的还原、 烷基化、 酶解过程均在微反应器内原位进行。
PCT/CN2013/076942 2012-09-20 2013-06-07 双相柱膜蛋白质微反应器及其应用 WO2014044062A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,670 US20150231592A1 (en) 2012-09-20 2013-06-07 Dual phase column membrane protein micro-reactor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210349969.0A CN103665098B (zh) 2012-09-20 2012-09-20 双相柱膜蛋白质微反应器及其应用
CN201210349969.0 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014044062A1 true WO2014044062A1 (zh) 2014-03-27

Family

ID=50303959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076942 WO2014044062A1 (zh) 2012-09-20 2013-06-07 双相柱膜蛋白质微反应器及其应用

Country Status (3)

Country Link
US (1) US20150231592A1 (zh)
CN (1) CN103665098B (zh)
WO (1) WO2014044062A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866317B (zh) * 2016-03-31 2018-06-29 南方科技大学 集成蛋白质前处理和多肽高pH值反相分级的蛋白质组反应器及其应用
CN107478472B (zh) * 2016-06-07 2021-01-26 中国科学院大连化学物理研究所 一种用于蛋白质样品预处理装置中的高温变性和还原器
CN111208243B (zh) * 2018-11-21 2022-05-17 中国科学院大连化学物理研究所 一种基于阴离子交换色谱柱的sumo化肽段的富集方法
CN115184526A (zh) * 2022-05-31 2022-10-14 南方科技大学 一种基于混合模式填料的少量细胞蛋白质组学反应器及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236003A (zh) * 2010-04-27 2011-11-09 复旦大学 一种毛细管固相微反应器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2106612C (en) * 1993-09-21 2001-02-06 Diana Pliura Displacement chromatography process
DE4342132C1 (de) * 1993-12-10 1994-11-03 Octapharma Ag Verfahren zur Herstellung virusinaktivierte Vitamin K abhängige Plasmakomponenten sowie Protein C und Protein S enthaltender Mittel durch Membran-Chromatographie
US20080119637A1 (en) * 2006-11-21 2008-05-22 Gjerde Douglas T Pipette tip column, resin and method of use for extracting an analyte
CN103189390A (zh) * 2010-11-01 2013-07-03 帝斯曼知识产权资产管理有限公司 单一单元离子交换色谱抗体纯化
CN102101018B (zh) * 2011-02-16 2013-02-27 华东理工大学 一种级联高压电渗泵

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236003A (zh) * 2010-04-27 2011-11-09 复旦大学 一种毛细管固相微反应器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO, QIAN: "Study of the Thermal Expansion Pump for Capillary HPLC and New Methodologies for Protein Micro-separation", SCIENCE-ENGINEERING (A), CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 January 2012 (2012-01-15), pages B014 - 26 *
ZOU, HANFA ET AL.: "Recent developments in preparation of monolithic columns and their applications in proteomic analysis", CHINESE JOURNAL OF CHROMATOGRAPHY, vol. 27, no. 5, September 2009 (2009-09-01), pages 526 - 536 *

Also Published As

Publication number Publication date
CN103665098B (zh) 2015-08-05
CN103665098A (zh) 2014-03-26
US20150231592A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
Bie et al. Precision imprinting of glycopeptides for facile preparation of glycan-specific artificial antibodies
Dmitrienko et al. Homogeneous liquid–liquid microextraction of organic compounds
Guzman et al. The use of selective adsorbents in capillary electrophoresis‐mass spectrometry for analyte preconcentration and microreactions: A powerful three‐dimensional tool for multiple chemical and biological applications
JP7055634B2 (ja) 標識化グリコシルアミンの迅速調製およびそれを生成するグリコシル化生体分子の分析方法
WO2014044062A1 (zh) 双相柱膜蛋白质微反应器及其应用
CN102604008B (zh) 一种培氟沙星表面分子印迹聚合物的制备方法以及应用
Zhu et al. Frontal affinity chromatography combined on-line with mass spectrometry: a tool for the binding study of different epidermal growth factor receptor inhibitors
CN103502807B (zh) 用于样本制备的方法和装置
CN104316628B (zh) 分子拥挤试剂和离子液体为致孔剂制备印迹整体柱的方法
CN101294930A (zh) 一种整体型固定化pH梯度的制备方法及其应用
CN105518452B (zh) 标记糖链样品的调制方法
Ribeiro et al. Recent stationary phase‐based fractionation strategies in proteomic analysis
Zhao et al. A practical approach to enrich intact tryptic N-glycopeptides through size exclusion chromatography and hydrophilicity (SELIC) using an acrylamide-agarose composite gel system
CN103630613B (zh) 分离并检测罗氟司特及其中间体的方法
CN103232613B (zh) 双亲性寡肽对聚甲基丙烯酸甲酯微流控芯片表面改性方法
CN105606724A (zh) 一种用高效液相色谱法测定醋酸赖氨酸中有关物质的方法
KR20200043990A (ko) 크로마토그래피용 담체, 리간드 고정 담체, 크로마토그래피 칼럼, 표적 물질의 정제 방법 및 크로마토그래피용 담체의 제조 방법
Krenkova et al. Macroporous cryogel based spin column with immobilized concanavalin A for isolation of glycoproteins
CN103267842A (zh) 检测中成药违法添加双氯芬酸的免疫胶体金方法
CN103769060A (zh) 用于清除细菌内毒素、dna和肽聚糖的吸附剂和制备方法及用途
CN103990298B (zh) 一种外表面亲水性大孔有机-无机杂化整体柱的制备方法
Andac et al. Molecularly imprinted cryogels for human serum albumin depletion
KR20180132069A (ko) 당쇄를 조제하는 방법
CN104502499B (zh) 一种异构体的高效液相检测方法
CN103923217A (zh) 6-氨基己酸纤维素酯及其合成方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429670

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840066

Country of ref document: EP

Kind code of ref document: A1