WO2014042241A1 - シート状物の製造方法及びこの製造方法より得られるシート状物 - Google Patents

シート状物の製造方法及びこの製造方法より得られるシート状物 Download PDF

Info

Publication number
WO2014042241A1
WO2014042241A1 PCT/JP2013/074833 JP2013074833W WO2014042241A1 WO 2014042241 A1 WO2014042241 A1 WO 2014042241A1 JP 2013074833 W JP2013074833 W JP 2013074833W WO 2014042241 A1 WO2014042241 A1 WO 2014042241A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
pva
fiber
polyurethane
base material
Prior art date
Application number
PCT/JP2013/074833
Other languages
English (en)
French (fr)
Inventor
現 小出
俊一郎 中井
智 柳澤
西村 誠
貴大 土本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014535602A priority Critical patent/JP5880721B2/ja
Priority to CN201380047851.5A priority patent/CN104619909B/zh
Priority to KR1020157008233A priority patent/KR102131678B1/ko
Priority to US14/427,744 priority patent/US10301770B2/en
Priority to EP13836539.0A priority patent/EP2896741B1/en
Publication of WO2014042241A1 publication Critical patent/WO2014042241A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0009Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/10Properties of the materials having mechanical properties
    • D06N2209/105Resistant to abrasion, scratch
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/06Building materials
    • D06N2211/063Wall coverings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • D06N2211/106Footwear
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/14Furniture, upholstery
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/24Personal care
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the present invention reduces the amount of organic solvent used in the manufacturing process by using water-dispersed polyurethane as the binder resin, and in an environmentally friendly sheet-like material, achieves both good flexibility and high-grade appearance quality,
  • the present invention relates to a method for producing a sheet-like material having good wear resistance.
  • a sheet-like material mainly composed of a fibrous base material and polyurethane has excellent characteristics not found in natural leather and is widely used for various applications.
  • a leather-like sheet-like material using a polyester-based fibrous base material is excellent in light resistance, and therefore its use has been expanded year by year for clothing, chair upholstery, automobile interior materials, and the like.
  • the obtained fibrous base material is mixed with water which is a non-solvent of polyurethane or an organic solvent / water mixed solution.
  • water which is a non-solvent of polyurethane or an organic solvent / water mixed solution.
  • the organic solvent that is a solvent for such polyurethane a water-miscible organic solvent such as N, N-dimethylformamide (DMF) is used.
  • DMF N, N-dimethylformamide
  • PVA polyvinyl alcohol
  • the former water-dispersed polyurethane impregnation step uses PVA having a saponification degree of 98% and a polymerization degree of 500, but since the polymerization degree is low, the dropping into the water-dispersed polyurethane liquid is suppressed. It was something that could not be done. And when PVA melt
  • the present invention relates to an environment-friendly sheet-like manufacturing method that reduces the use of organic solvents in the manufacturing process, and provides a sheet that has both an elegant appearance with napping and a soft texture and has good wear resistance.
  • a method for producing a product is provided.
  • the sheet-like material manufacturing method of the present invention is a sheet-like material manufacturing method characterized in that the following steps a, b, and c are performed in this order.
  • a. A step of imparting 0.1 to 50% by mass of PVA having a saponification degree of 98% or more and a polymerization degree of 800 to 3500 to the fibrous base material based on the mass of fibers contained in the fibrous base material, b. Providing a water-dispersible polyurethane to the fibrous base material to which the PVA is applied, c.
  • the fibrous base material in the steps a, b and c is mainly composed of ultrafine fibers or ultrafine fiber expression type fibers having an average single fiber diameter of 0.3 to 7 ⁇ m.
  • the fibrous base material is mainly composed of ultrafine fibers as a component
  • a step of expressing the ultrafine fibers from the ultrafine fiber-expressing fibers before applying the polyvinyl alcohol is performed, and the fibrous base material is
  • an ultrafine fiber-expressing fiber is a main constituent
  • the polyvinyl alcohol is removed and at the same time, the ultrafine fiber-expressing fiber is removed from the ultrafine fiber-expressing fiber. It is a manufacturing method which performs the process of expressing a fiber.
  • the step of developing ultrafine fibers is a step of treating with an alkaline aqueous solution.
  • the fibrous base material in the steps a, b, and c comprises an ultrafine fiber having an average single fiber diameter of 0.3 to 7 ⁇ m as a main constituent, It is a manufacturing method which passes through the process of expressing an ultrafine fiber from the fibrous base material which uses an ultrafine fiber expression type fiber as a main structural component before the process a.
  • the fibrous base material in the steps a, b, and c comprises ultrafine fibers having an average single fiber diameter of 0.3 to 7 ⁇ m as a main constituent, After providing water-dispersible polyurethane to a fibrous base material containing an ultrafine fiber-expressing fiber as a main constituent before step a and expressing the ultrafine fiber from the fibrous base material provided with the water-dispersible polyurethane This is a production method through the step a (with reinforcing polyurethane).
  • the fibrous base material in the steps a, b and c has an ultrafine fiber-expressing fiber as a main constituent, and after the step c, the ultrafine fiber is used.
  • This is a production method through a step of expressing ultrafine fibers having an average single fiber diameter of 0.3 to 7 ⁇ m from a fibrous base material containing expression type fibers as a main constituent.
  • the tensile strength of the PVA is 400 to 800 kg / cm 2 .
  • the fibrous base material is intertwined with ultrafine fibers or ultrafine fiber-expressing fibers having an average single fiber diameter of 0.3 to 7 ⁇ m and woven fabric and / or knitted fabric. It is integrated.
  • the density of the sheet material obtained by the method for producing a sheet material of the present invention is 0.2 to 0.7 g / cm 3 .
  • the sheet-like material manufacturing method of the present invention is a sheet-like material manufacturing method characterized in that the following steps a, b, and c are performed in this order.
  • a. A step of imparting 0.1 to 50% by mass of PVA having a saponification degree of 98% or more and a polymerization degree of 800 to 3500 to the fibrous base material based on the mass of fibers contained in the fibrous base material, b. Providing a water-dispersible polyurethane to the fibrous base material to which the PVA is applied, c.
  • PVA is removed, in the vicinity of the surface layer of the fibrous base material to which a large amount of PVA has adhered, a large gap is formed between the fiber and the polyurethane, and the surface appearance of the sheet-like material that has undergone the napping process becomes a bundle.
  • the fibrous base material is an ultrafine fiber having an average single fiber diameter of 0.3 to 7 ⁇ m or an ultrafine fiber expression type fiber as a main constituent
  • the fibrous base material is When using ultrafine fibers as the main constituent, performing the step of expressing the ultrafine fibers from the ultrafine fiber-expressing fibers before applying PVA, and the fibrous base material using the ultrafine fiber-expressing fibers as the main constituent
  • a process of developing ultrafine fibers from the ultrafine fiber-expressing fibers is performed.
  • the timing of sea removal treatment may be selected according to the desired characteristics of the obtained sheet-like material.
  • the fibrous base material of the sheet-like material obtained by the present invention uses an ultrafine fiber expression type fiber, and the ultrafine fiber expressed from the ultrafine fiber expression type fiber is a main constituent.
  • the fiber can be made ultrafine by passing through the subsequent ultrafine fiber process, and an elegant surface appearance can be obtained.
  • the average single fiber diameter of the ultrafine fiber obtained from the ultrafine fiber-expressing type fiber through the fiber ultrafine process is 0.3 to 7 ⁇ m.
  • the average single fiber diameter is set to 7 ⁇ m or less, more preferably 6 ⁇ m or less, and even more preferably 5 ⁇ m or less, it is possible to obtain a sheet-like product having excellent flexibility and napping quality.
  • the average single fiber diameter is set to 0.3 ⁇ m or more, more preferably 0.7 ⁇ m or more, and even more preferably 1 ⁇ m or more, the bundle of fibers at the time of napping such as coloring after dyeing or grinding with sandpaper is used. Excellent dispersibility and ease of handling.
  • the fiber constituting the fibrous base material used in the present invention is not particularly limited.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid; 6-nylon and 66-nylon, etc.
  • Fibers made of polyamide, acrylic, polyethylene, polypropylene, and melt-spinnable thermoplastic resins such as thermoplastic cellulose can be used.
  • polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance. Further, from the viewpoint of environmental consideration, fibers obtained from recycled raw materials and plant-derived raw materials are preferable.
  • the fibrous base material may be configured by mixing fibers of different materials.
  • the ultrafine fiber-expressing type fiber As the ultrafine fiber-expressing type fiber, (a) a two-component thermoplastic resin having different solvent solubility is used as a sea component and an island component, and the sea component is dissolved and removed using a solvent or the like to remove the island component from the ultrafine fiber. Adopting sea-island type fibers and (b) peelable composite fibers that split two components of thermoplastic resin radially or in multiple layers on the fiber cross section and split each component into ultrafine fibers. can do.
  • the sea-island type fibers can be preferably used also from the viewpoint of the flexibility and texture of the sheet-like material because an appropriate void can be imparted between the island components, that is, between the ultrafine fibers, by removing the sea components. .
  • sea-island type fiber for example, a sea-island type composite base is used, and a sea-island type composite fiber in which two components of the sea component and the island component are arranged and spun together; There are mixed spinning fibers.
  • Sea-island type composite fibers are preferably used from the viewpoint that ultrafine fibers having a uniform fineness can be obtained, and that a sufficiently long ultrafine fiber is obtained and contributes to the strength of the sheet-like material.
  • the island component of the sea-island fiber is not particularly limited.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polylactic acid; polyamides such as 6-nylon and 66-nylon; acrylics; polyethylenes; polypropylenes And fibers made of melt-spinnable thermoplastic resin such as thermoplastic cellulose can be used.
  • polyester fibers are preferably used from the viewpoints of strength, dimensional stability, and light resistance. Further, from the viewpoint of environmental consideration, fibers obtained from recycled raw materials and plant-derived raw materials are preferable.
  • the fibrous base material may be configured by mixing fibers of different materials.
  • the island component of the sea-island fiber may be the same as the fiber constituting the fibrous base material.
  • Sea-island type fiber ultrafine treatment can be performed by immersing the sea-island type fiber in a solvent and squeezing the solution.
  • a solvent for dissolving the sea component an organic solvent such as toluene or trichloroethylene is used when the sea component is polyethylene, polypropylene or polystyrene, and an alkali such as sodium hydroxide is used when the sea component is a copolymerized polyester or polylactic acid.
  • An aqueous solution can be used.
  • hot water can be used. From the viewpoint of environmental considerations of the process, a sea removal treatment with an aqueous alkali solution such as sodium hydroxide or hot water is preferable.
  • the sea component of the sea-island fiber is not particularly limited, and for example, polyethylene; polypropylene; polystyrene; copolymer polyester obtained by copolymerization with sodium sulfoisophthalate or polyethylene glycol, and polylactic acid; PVA can be used.
  • polyethylene polypropylene
  • polystyrene polystyrene
  • copolymer polyester obtained by copolymerization with sodium sulfoisophthalate or polyethylene glycol
  • polylactic acid PVA
  • a copolyester or polylactic acid obtained by copolymerizing alkali-decomposable sodium sulfoisophthalate or polyethylene glycol that can be decomposed without using an organic solvent, and hot water-soluble PVA are preferable. .
  • the cross-sectional shape of the fiber constituting the fibrous base material is not particularly limited, and may be a round cross-section, but adopts a polygonal shape such as an ellipse, a flat shape, and a triangular shape, or a deformed cross-section shape such as a sector shape and a cross shape. Also good.
  • the average single fiber diameter of the fibers constituting the fibrous base material is preferably 0.3 to 20 ⁇ m.
  • the thickness is more preferably 0.7 to 15 ⁇ m, particularly preferably 1 to 7 ⁇ m.
  • the woven fabric, knitted fabric, non-woven fabric and the like can be adopted as the form of the fibrous base material of the present invention. Especially, since the surface appearance of the sheet-like material at the time of surface raising treatment is favorable, a nonwoven fabric is preferably used.
  • the non-woven fabric may be either a short-fiber non-woven fabric or a long-fiber non-woven fabric, but the long-fiber non-woven fabric has fewer fibers facing the thickness direction of the sheet-like material when raised, than the short-fiber non-woven fabric. Is low and the surface appearance tends to be inferior, short fiber nonwoven fabrics are preferably used.
  • the fiber length of the short fiber in the short fiber nonwoven fabric is preferably 25 to 90 mm. By setting the fiber length to 25 mm or more, a sheet-like material having excellent abrasion resistance can be obtained by entanglement. In addition, when the fiber length is 90 mm or less, a sheet-like material having excellent texture and quality can be obtained.
  • the fiber length is more preferably 30 to 80 mm.
  • Needle punch or water jet punch can be employed as a method of entanglement of non-woven fibers or fiber bundles.
  • the non-woven fabric has a structure in which bundles of ultrafine fibers (ultrafine fiber bundles) are intertwined. Since the ultrafine fibers are entangled in a bundle state, the strength of the sheet-like material is improved.
  • the nonwoven fabric of such an embodiment can be obtained by causing the ultrafine fibers to develop after entanglement of the ultrafine fiber-expressing fibers in advance.
  • the ultrafine fiber or the ultrafine fiber bundle constitutes a non-woven fabric
  • it may be intertwined with the woven fabric or the knitted fabric for the purpose of improving the strength.
  • plain weave, twill weave, satin weave, etc. are mentioned, and plain weave is preferably used from the viewpoint of cost.
  • plain weave is preferably used from the viewpoint of cost.
  • circular knitting, tricot, Russell and the like can be mentioned.
  • the average single fiber diameter of the fibers constituting the woven or knitted fabric is preferably 0.3 to 20 ⁇ m.
  • the PVA applied to the fibrous base material has a saponification degree of 98% or more and a polymerization degree of 800 to 3500.
  • degree of saponification 98% or more, it is possible to prevent PVA from dissolving in the water-dispersed polyurethane liquid when the water-dispersed polyurethane is applied.
  • PVA is dissolved in the water-dispersed polyurethane liquid, not only is the effect sufficient to protect the surface of the ultrafine fibers constituting napped fibers, but also the water-dispersed polyurethane liquid in which PVA is dissolved is used as a fibrous base.
  • PVA is taken into the polyurethane and it becomes difficult to remove the PVA later. Therefore, the adhesive state between the polyurethane and the fibers cannot be stably controlled, and the texture becomes hard.
  • the solubility of PVA in water varies depending on the degree of polymerization.
  • the degree of polymerization is less than 800, PVA is dissolved in the water-dispersed polyurethane liquid when water-dispersed polyurethane is applied.
  • the polymerization degree of PVA is larger than 3,500, the viscosity of the PVA aqueous solution becomes high, and when the fibrous base material is impregnated with the PVA aqueous solution, it cannot be penetrated into the fibrous base material.
  • PVA preferably has a viscosity of 10 to 50 mPa ⁇ s at 20 ° C. in a 4% by mass aqueous solution.
  • a viscosity of 10 to 50 mPa ⁇ s at 20 ° C. in a 4% by mass aqueous solution.
  • an appropriate migration structure can be obtained inside the fibrous base material during drying, and a balance of physical properties such as flexibility, surface appearance, and abrasion resistance of the sheet-like material can be obtained.
  • the fibrous base material can be easily impregnated by setting it to 50 mPa ⁇ s or less, more preferably 40 mPa ⁇ s or less.
  • the glass transition temperature of PVA is preferably 70 to 100 ° C.
  • the glass transition temperature is preferably 70 to 100 ° C.
  • the glass transition temperature By setting the glass transition temperature to 70 ° C. or higher, more preferably 75 ° C. or higher, softening in the drying process can be prevented, the dimensional stability of the fibrous base material can be obtained, and the surface appearance of the sheet-like material can be deteriorated. Can be suppressed.
  • the glass transition temperature to 100 ° C. or lower, more preferably 95 ° C. or lower, it is possible to prevent the fiber base material from becoming too hard and deterioration in process passability.
  • the melting point of PVA is preferably 200 to 250 ° C.
  • the melting point is preferably 200 to 250 ° C.
  • the melting point By setting the melting point to 200 ° C. or higher, more preferably 210 ° C. or higher, softening in the drying process can be prevented, dimensional stability of the fibrous base material can be obtained, and deterioration of the surface appearance of the sheet-like material can be suppressed. Can do.
  • the melting point to 250 ° C. or lower, more preferably 240 ° C. or lower, it is possible to prevent the fiber base material from becoming too hard and the process passability from being deteriorated.
  • the tensile strength of the PVA film is preferably 400 to 800 kg / cm 2 .
  • the tensile strength is a value obtained by measuring a 100 ⁇ m thick PVA film in an atmosphere of a temperature of 20 ° C. and a humidity of 65%.
  • the amount of PVA applied to the fibrous base material is 0.1 to 50% by mass, preferably 1 to 45% by mass, based on the fiber mass of the fibrous base material.
  • the method for imparting PVA to the fibrous base material is not particularly limited, and various methods commonly used in this field can be adopted.
  • PVA is dissolved in water, impregnated into the fibrous base material, and dried by heating.
  • the method to do is preferable from a viewpoint which can provide uniformly. If the temperature is too low, the drying time is required to be long. If the temperature is too high, the PVA is insolubilized and cannot be dissolved and removed later. Therefore, drying is preferably performed at 80 to 160 ° C.
  • the temperature is more preferably 110 to 150 ° C.
  • the drying time is usually 1 to 20 minutes, preferably 1 to 10 minutes, more preferably 1 to 5 minutes from the viewpoint of processability.
  • a preferable temperature for the heat treatment is 80 to 180 ° C.
  • a more preferable temperature is 100 ° C. to 160 ° C.
  • water-dispersed polyurethane is applied to the fibrous base material to which PVA is applied.
  • the water dispersion-type polyurethane provided before a sea removal process aims at reinforcement, you may provide to the fiber base material to which PVA is not provided.
  • the water-dispersed polyurethane to be applied to the fibrous base material after PVA is preferably 1 to 80% by mass with respect to the fibrous base material, but the purpose is mainly the durability of the product (especially wear resistance). If the amount is too small, the physical properties, durability, etc. of the obtained sheet-like material cannot withstand practical use, so 2-50% by mass is more preferred.
  • the fibrous base material in the steps a, b, and c is mainly composed of ultrafine fibers having an average single fiber diameter of 0.3 to 7 ⁇ m.
  • the water-dispersible polyurethane is applied to the fibrous base material, and after the ultrafine fibers are expressed from the fibrous base material to which the water-dispersible polyurethane has been applied,
  • the water-dispersed polyurethane may be applied to the same type or different types of water-dispersed polyurethane.
  • the water-dispersed polyurethane includes (I) a forced emulsification type polyurethane that is forcibly dispersed and stabilized using a surfactant, and (II) a hydrophilic structure in the polyurethane molecular structure, and a surfactant is present.
  • the self-emulsifying type polyurethane can be dispersed / stabilized in water without being used, but any of them may be used in the present invention.
  • the method for applying the water-dispersible polyurethane to the fibrous base material is not particularly limited, but a method of impregnating and applying the water-dispersible polyurethane liquid to the fibrous base material, solidifying, and heating and drying can be uniformly applied. Therefore, it is preferable.
  • the polyurethane liquid can be coagulated by dry coagulation, wet heat coagulation, wet coagulation, or a combination thereof by impregnating and applying a polyurethane liquid to a fibrous base material.
  • the concentration of the water-dispersible polyurethane liquid is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, from the viewpoint of storage stability of the water-dispersible polyurethane liquid. It is.
  • the polyurethane liquid used in the present invention may contain a water-soluble organic solvent in an amount of 40% by mass or less based on the polyurethane liquid in order to improve storage stability and film forming property. From this point, the content of the organic solvent is preferably 1% by mass or less.
  • water-dispersed polyurethane liquid used in the present invention those having heat-sensitive coagulation properties are preferable.
  • polyurethane can be uniformly applied in the thickness direction of the fibrous base material.
  • heat-sensitive coagulation refers to the property that when a polyurethane liquid is heated, the fluidity of the polyurethane liquid decreases and solidifies when it reaches a certain temperature (thermal coagulation temperature).
  • a polyurethane liquid is applied to a fibrous base material, and then solidified by dry coagulation, wet heat coagulation, wet coagulation, or a combination thereof, and dried to give polyurethane to the fibrous base material.
  • the heat-sensitive coagulation temperature of the water-dispersed polyurethane liquid is preferably 40 to 90 ° C.
  • the heat-sensitive coagulation temperature is preferably 40 to 90 ° C.
  • a thermal coagulant may be added as appropriate in order to set the thermal coagulation temperature as described above.
  • heat-sensitive coagulants include inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, and calcium chloride; radical reactions such as sodium persulfate, potassium persulfate, ammonium persulfate, azobisisobutyronitrile, and benzoyl peroxide are initiated. Agents and the like.
  • the wet heat coagulation temperature is preferably equal to or higher than the heat sensitive coagulation temperature of polyurethane, and is preferably 40 to 200 ° C.
  • the wet heat solidification temperature is preferably 40 ° C. or higher, more preferably 80 ° C. or higher, the time to solidification of the polyurethane can be shortened to further suppress the migration phenomenon.
  • the wet heat coagulation temperature is set to 200 ° C. or lower, more preferably 160 ° C. or lower, it is possible to prevent thermal degradation of polyurethane and PVA.
  • the wet coagulation temperature is not less than the heat-sensitive coagulation temperature of polyurethane and is preferably 40 to 100 ° C.
  • the dry solidification temperature and the drying temperature are preferably 80 to 180 ° C.
  • the dry solidification temperature and the drying temperature are preferably 80 to 180 ° C.
  • the productivity is excellent.
  • the dry coagulation temperature and the drying temperature is set to 180 ° C. or lower, more preferably 160 ° C. or lower, it is possible to prevent thermal degradation of polyurethane and PVA.
  • polyurethane used in the present invention a polyurethane obtained by a reaction of a polymer diol, an organic diisocyanate and a chain extender is preferable.
  • the polymer diol is not particularly limited.
  • polycarbonate-based, polyester-based, polyether-based, silicone-based, and fluorine-based diols can be used, and a copolymer obtained by combining these may be used.
  • polycarbonate-based and polyether-based diols are preferably used.
  • polycarbonate and polyester are preferably used.
  • polycarbonate-based and polyester-based diols are more preferable, and polycarbonate-based diols are particularly preferably used.
  • the polycarbonate diol can be produced by a transesterification reaction between an alkylene glycol and a carbonate ester, or a reaction between phosgene or chloroformate ester and an alkylene glycol.
  • the alkylene glycol is not particularly limited.
  • ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10 -Linear alkylene glycol such as decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-methyl-1,8-octanediol, etc.
  • Branched alkylene glycols alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
  • alicyclic diols such as 1,4-cyclohexanediol
  • aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
  • Either a polycarbonate diol obtained from a single alkylene glycol or a copolymerized polycarbonate diol obtained from two or more types of alkylene glycols may be used.
  • polyester-based diol examples include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
  • the low molecular weight polyol is not particularly limited, and examples thereof include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethyl.
  • -1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1 , 4-diol, and cyclohexane-1,4-dimethanol can be used.
  • addition products obtained by adding various alkylene oxides to bisphenol A can also be used.
  • the polybasic acid is not particularly limited, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, One type or two or more types selected from terephthalic acid and hexahydroisophthalic acid may be mentioned.
  • the polyether diol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols obtained by combining them.
  • the number average molecular weight of the polymer diol used in the present invention is preferably 500 to 4000.
  • strength as a polyurethane is maintainable by making a number average molecular weight into 4000 or less, More preferably, 3000 or less.
  • the organic diisocyanate is not particularly limited. These may be used, and these may be used in combination. Among these, aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate and isophorone diisocyanate are preferably used from the viewpoint of light resistance.
  • the chain extender is not particularly limited, and amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be used. Moreover, the polyamine obtained by making polyisocyanate and water react can also be used as a chain extender.
  • a crosslinking agent may be used in combination for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance and the like.
  • the cross-linking agent may be an external cross-linking agent added as a third component to the polyurethane, or may be an internal cross-linking agent that introduces a reaction point that becomes a cross-linked structure in advance in the polyurethane molecular structure.
  • an internal cross-linking agent it is preferable to use an internal cross-linking agent from the viewpoint that the cross-linking points can be formed more uniformly in the polyurethane molecular structure and the reduction in flexibility can be reduced.
  • crosslinking agent a compound having an isocyanate group, an oxazoline group, a carbodiimide group, an epoxy group, a melamine resin, a silanol group, or the like can be used.
  • the crosslinking proceeds excessively, the polyurethane tends to harden and the texture of the sheet-like material also tends to harden. Therefore, those having a silanol group are preferably used in terms of the balance between reactivity and flexibility.
  • the polyurethane used in the present invention preferably has a hydrophilic group in the molecular structure.
  • a hydrophilic group in the molecular structure By having a hydrophilic group in the molecular structure, the dispersion / stability of the water-dispersed polyurethane can be improved.
  • hydrophilic group examples include a cation system such as a quaternary amine salt, an anion system such as a sulfonate and carboxylate, a nonionic system such as polyethylene glycol, a combination of a cationic system and a nonionic system, and an anionic system and a nonionic system. Any hydrophilic group of the combination of systems can be employed. Of these, nonionic hydrophilic groups that are free from yellowing caused by light and harmful effects caused by a neutralizing agent are particularly preferably used.
  • a neutralizing agent is required.
  • the neutralizing agent is a tertiary amine such as ammonia, triethylamine, triethanolamine, triisopropanolamine, trimethylamine and dimethylethanolamine.
  • amines are generated and volatilized by heat during film formation and drying, and released outside the system. For this reason, in order to suppress the release of air and the deterioration of the working environment, it is essential to introduce a device for recovering volatile amines.
  • the amine does not volatilize by heating and remains in the final product sheet, it may be discharged to the environment when the product is incinerated.
  • the anionic hydrophilic group neutralizing agent is an alkali metal such as sodium hydroxide, potassium hydroxide or calcium hydroxide, or a hydroxide of an alkaline earth metal
  • the polyurethane part is wetted with water.
  • alkalinity in the case of a nonionic hydrophilic group, since a neutralizing agent is not used, there is no need to worry about deterioration due to hydrolysis of polyurethane.
  • the water-dispersed polyurethane used in the present invention is optionally made of various additives, for example, pigments such as carbon black, flame retardants such as phosphorus, halogen, silicone and inorganic, phenol, sulfur and phosphorus.
  • Antioxidants such as benzotriazoles, benzophenones, salicylates, cyanoacrylates and oxalic acid anilides, light stabilizers such as hindered amines and benzoates, and hydrolysis resistance of polycarbodiimides Stabilizers, plasticizers, antistatic agents, surfactants, thickeners, softeners, water repellents, coagulation regulators, dyes, preservatives, antibacterial agents, deodorants, cellulose particles, fillers such as microballoons , And inorganic particles such as silica and titanium oxide.
  • an inorganic system such as sodium bicarbonate, an organic system such as 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], etc.
  • a foaming agent may be contained.
  • the content ratio of polyurethane to the sheet-like material of the present invention is preferably 1 to 80% by mass.
  • the ratio of the polyurethane is preferably 1% by mass or more, more preferably 5% by mass or more, it is possible to obtain sheet strength and prevent the fibers from falling off.
  • the blending ratio of polyurethane is 80% by mass or less, more preferably 70% by mass or less, it is possible to prevent the texture from becoming hard and to obtain good napped quality.
  • the content ratio of polyurethane to the sheet-like material is the sum thereof.
  • the water-dispersed polyurethane to be applied to the fibrous base material before the ultrafine fiber is preferably 1 to 30% by mass with respect to the fibrous base material. Further, it is a reinforcement of the fibrous base material, and if it is applied too much, the texture of the obtained sheet-like material becomes hard, so 2 to 20% by mass is more preferable.
  • the fiber ultrafine treatment (sea removal treatment) of the sea-island fiber can be performed by immersing the sea-island fiber in a solvent and squeezing the solution.
  • a solvent for dissolving the sea component an organic solvent such as toluene or trichloroethylene is used when the sea component is polyethylene, polypropylene or polystyrene, and an alkali such as sodium hydroxide is used when the sea component is a copolyester or polylactic acid.
  • An aqueous solution can be used. Further, when the sea component is PVA, hot water can be used. From the viewpoint of environmental considerations of the process, a sea removal treatment with an aqueous alkali solution such as sodium hydroxide or hot water is preferable.
  • a flexible sheet-like material is obtained by removing PVA from the polyurethane-added sheet.
  • the method for removing PVA is not particularly limited, but for example, it is preferable to dissolve and remove the sheet by immersing the sheet in hot water at 60 to 100 ° C. and squeezing with a mangle if necessary.
  • a PVA is applied to a fibrous base material having an ultrafine fiber-expressing fiber as a main constituent, polyurethane is applied, and when PVA is removed from a sheet after the polyurethane is applied, the ultrafine fiber is simultaneously removed with PVA. You may pass through the process of making an ultrafine fiber express from an expression type fiber.
  • the method for producing a sheet-like product of the present invention may include a step of half-cutting in the thickness direction after applying water-dispersed polyurethane to at least a fibrous base material provided with PVA.
  • the PVA is largely adhered to the surface layer of the fibrous base material and is less adhered to the inner layer by migration.
  • a small amount of water-dispersed polyurethane adheres to the side with a large amount of PVA, and a large amount of water-dispersed polyurethane to a side with a small amount of PVA.
  • a sheet-like material having an attached structure is obtained.
  • the surface on which a large amount of PVA is adhered (the surface on which less water-dispersed polyurethane adheres) is used as the napped surface of the sheet-like material, there is a gap between the polyurethane and the ultrafine fibers constituting the napped by the addition of PVA. Is generated, the degree of freedom is given to the fibers constituting the nap, the surface texture becomes flexible, and a good appearance quality and soft touch can be obtained.
  • the raised hair is short because the fibers constituting the raised hair are strongly held by the polyurethane.
  • a good appearance quality with a dense feeling is obtained, and the wear resistance is also good.
  • production efficiency can be improved by including the process of half-cutting in the sheet thickness direction.
  • the sheet-like material may be raised to form napped on the surface.
  • the method for forming napping is not particularly limited, and various methods that are usually performed in this field, such as buffing with sandpaper or the like, can be used.
  • the napped length is preferably 0.2 to 1 mm.
  • silicone or the like may be applied as a lubricant to the polyurethane-applied sheet-like material before the raising treatment.
  • a lubricant By applying a lubricant, raising by surface grinding becomes possible easily, and the surface quality becomes very good, which is preferable.
  • an antistatic agent may be applied before the raising treatment, which is a preferred embodiment because the application of the antistatic agent makes it difficult for grinding powder generated from the sheet-like material to be deposited on the sandpaper by grinding.
  • the sheet can be dyed.
  • a dyeing method various methods commonly used in this field can be adopted. However, since the sheet-like material can be softened by giving a stagnation effect simultaneously with the dyeing of the sheet-like material, a liquid dyeing machine is used. The method used is preferred.
  • the dyeing temperature is preferably 80 to 150 ° C., although it depends on the type of fiber. By setting the dyeing temperature to 80 ° C. or higher, more preferably 110 ° C. or higher, it is possible to efficiently dye the fibers. On the other hand, the deterioration of the polyurethane can be prevented by setting the dyeing temperature to 150 ° C. or lower, more preferably 130 ° C. or lower.
  • the dye used in the present invention may be selected in accordance with the type of fiber constituting the fibrous base material, and is not particularly limited.
  • a disperse dye can be used for a polyester fiber, and a polyamide fiber. If so, an acid dye or a metal-containing dye can be used, and further a combination thereof can be used. When dyed with disperse dyes, reduction washing may be performed after dyeing.
  • a dyeing assistant during dyeing.
  • a dyeing assistant By using a dyeing assistant, the uniformity and reproducibility of dyeing can be improved.
  • a finishing agent treatment using, for example, a softener such as silicone, an antistatic agent, a water repellent, a flame retardant, a light proofing agent, and an antibacterial agent can be performed.
  • the density of the sheet-like material of the present invention is preferably 0.2 to 0.7 g / cm 3 .
  • the density is preferably 0.2 to 0.7 g / cm 3 .
  • Viscosity of PVA aqueous solution The viscosity at 20 ° C. of a 4 mass% PVA aqueous solution was measured by the rotational viscometer method described in 3.11.1 of JIS K6726 (1994) polyvinyl alcohol test method.
  • the average single fiber diameter was obtained by taking a scanning electron microscope (SEM) photograph of the surface of a fibrous base material or sheet-like material at a magnification of 2000 times, randomly selecting 100 fibers, and the single fiber diameter. was calculated by calculating the average value.
  • SEM scanning electron microscope
  • the outer circumference circle diameter of the irregular cross section was calculated as the single fiber diameter.
  • the number of samplings corresponding to each existing number ratio is selected and calculated to be a total of 100. did.
  • the fibers of the reinforcing woven fabric or knitted fabric are excluded from the sampling target in the measurement of the average single fiber diameter.
  • the surface appearance of the sheet-like material is 5 as follows by visual and sensory evaluation, with 20 adult men and 10 adult women each in good health as a total of 20 evaluators. A stepped evaluation was performed, and the highest evaluation was defined as the surface appearance. As for the surface appearance, Grade 3 to Grade 5 were good. Grade 5: There is uniform fiber napping, the fiber dispersion state is good, and the appearance is good. Grade 4: Evaluation between grade 5 and grade 3. Third grade: The dispersion state of the fibers is slightly poor, but there are fiber nappings and the appearance is reasonably good. Second grade: An evaluation between the third grade and the first grade. First grade: Overall, the dispersion state of the fibers is very poor, or the fibers are long and the appearance is poor.
  • Example 1-1 (Nonwoven fabric for fibrous base materials) Polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate was used as the sea component, and polyethylene terephthalate was used as the island component, with a composite ratio of 45 mass% sea component and 55 mass% island component. / 1 filament, sea island type composite fiber having an average single fiber diameter of 17 ⁇ m was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the nonwoven fabric for fibrous base material is immersed in a 10 g / L sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 30 minutes to obtain a sea removal sheet from which sea components of sea-island type composite fibers have been removed. It was. The average single fiber diameter on the surface of the sea removal sheet was 3 ⁇ m.
  • PVA having a saponification degree of 99% and a polymerization degree of 1400 (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet having a PVA adhesion amount of 10 mass% with respect to the fiber mass of the seawater-removed sheet.
  • the seawater sheet provided with the above PVA is impregnated with the above polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further at 150 ° C.
  • a polyurethane-coated sheet was obtained so that the amount of polyurethane adhered to the fiber mass of the nonwoven fabric was 30% by mass.
  • the PVA removal sheet is cut in half in the thickness direction, and the surface opposite to the half-cut surface is brushed by grinding using a 240 mesh endless sandpaper, then dyed with disperse dye using a circular dyeing machine, and then reduced and washed. To obtain a sheet.
  • the surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-2 (Fabric base fabric) A 84 dtex / 36 filament polyethylene terephthalate fiber was used for both warp and weft, and a plain fabric for a fibrous base material having a warp density of 123 / 2.54 cm and a warp density of 98 / 2.54 cm was woven.
  • the fabric to which the above PVA is applied is impregnated with the above polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further at a temperature of 150 ° C.
  • a sheet provided with polyurethane was obtained so that the amount of polyurethane adhered to the fiber mass of the nonwoven fabric was 10% by mass.
  • the surface of the sheet from which the PVA was removed was brushed by grinding using a 320 mesh endless sandpaper, then dyed with a disperse dye using a circular dyeing machine and subjected to reduction cleaning to obtain a sheet.
  • the surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-3 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 1100 (NM-11, manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the above-described PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-attached sheet having a PVA adhesion amount of 15 mass% with respect to the fiber mass of the seawater-removed sheet.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-4 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 2600 (NH-26 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the above PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet in which the amount of PVA adhered to the fiber mass of the seawater-removed sheet was 5 mass%.
  • Example 1-5 Nonwoven fabric for fibrous base materials
  • the sea component polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used.
  • the sea component is 20% by mass and the island component is 80% by mass.
  • the obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the nonwoven fabric for fibrous base material was treated in the same manner as in Example 1-1 to obtain a sea removal sheet from which sea components of the sea-island composite fibers were removed.
  • the average single fiber diameter on the surface of the sea removal sheet was 4.4 ⁇ m.
  • a polyurethane-applied sheet was obtained in the same manner as in Example 1-1.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-6 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • a polyurethane-applied sheet was obtained in the same manner as in Example 1-1.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-7 (Nonwoven fabric for fibrous base materials)
  • the sea component polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used.
  • the sea component is 20% by mass and the island component is 80% by mass.
  • / 1 filament sea island type composite fiber having an average single fiber diameter of 30 ⁇ m was obtained.
  • the obtained sea-island type composite fiber is cut into a fiber length of 51 mm to form a staple, a fiber web is formed through a card and a cross wrap, and a PET 84 dtex-72 filament on both sides of the web is a strong twisted yarn having a twist of 2000 T / m.
  • the plain woven fabric used was laminated and made into a nonwoven fabric by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the nonwoven fabric for fibrous base material was treated in the same manner as in Example 1-1 to obtain a sea removal sheet from which sea components of the sea-island composite fibers were removed.
  • the average single fiber diameter on the surface of the sea removal sheet was 4.4 ⁇ m.
  • a polyurethane-applied sheet was obtained in the same manner as in Example 1-1.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-8 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 1000 (PVA110 manufactured by Kuraray Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the above-described PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-attached sheet having a PVA adhesion amount of 15 mass% with respect to the fiber mass of the seawater-removed sheet.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-9 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 1400 (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the above-described PVA liquid, and was heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-applied sheet having a PVA adhesion amount of 10% by mass with respect to the fiber mass of the seawater-removed sheet.
  • the seawater sheet provided with the above PVA is impregnated with the above-mentioned polyurethane liquid, dried with hot air at a drying temperature of 120 ° C. for 8 minutes, and further subjected to dry heat treatment at a temperature of 150 ° C. for 2 minutes, whereby a nonwoven fabric fiber is obtained.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 1-1 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • PVA having a saponification degree of 87% and a polymerization degree of 500 (GL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1.
  • the obtained sheet-like material is not uniformly applied due to partial dissolution of PVA in the water-dispersed polyurethane liquid, the surface appearance is poor in the state of fiber dispersion, and there is no dull feeling of denseness, The texture was hard.
  • Example 1-2 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 500 (NL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared in an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1.
  • the obtained sheet-like material is not uniformly applied due to partial dissolution of PVA in the water-dispersed polyurethane liquid, the surface appearance is poor in the state of fiber dispersion, and there is no dull feeling of denseness, The texture was hard.
  • Example 1-3 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for a fibrous base material as in Example 1-1 was used.
  • Example 1-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 1-1.
  • the obtained sheet-like material was soft in texture, but because of too much PVA, the fiber was not sufficiently gripped by polyurethane, the surface appearance was too long and the wear was poor, and the wear resistance was poor Met.
  • Example 1-4 A sheet-like material was obtained in the same manner as in Example 1-1 except that the PVA liquid was not prepared and the PVA was not applied or removed. The texture of the obtained sheet was hardened. Further, the surface appearance was poor with no raised hairs.
  • Table 1 shows the evaluation results of the sheet-like materials obtained in Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4.
  • Example 2-1 (Nonwoven fabric for fibrous base materials) Polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate was used as the sea component, and polyethylene terephthalate was used as the island component, with a composite ratio of 45 mass% sea component and 55 mass% island component. / 1 filament, sea island type composite fiber having an average single fiber diameter of 17 ⁇ m was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • PVA having a saponification degree of 99% and a polymerization degree of 1400 (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the nonwoven fabric for a fibrous base material is impregnated with the above PVA liquid, and heated and dried at a temperature of 140 ° C. for 10 minutes.
  • the adhesion amount of PVA to the island component mass of the sea-island fiber of the nonwoven fabric for a fibrous base material is 10 mass. % PVA application sheet was obtained.
  • the sheet provided with the above PVA is impregnated with the above polyurethane liquid, treated in a humid and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further at a temperature of 150 ° C.
  • a sheet provided with polyurethane was obtained so that the amount of polyurethane adhered to the mass of the island component of the nonwoven fabric was 30% by mass.
  • the sheet from which the PVA was removed was immersed in a 10 g / L sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 30 minutes to obtain a sea removal sheet from which sea components of the sea-island composite fibers were removed. .
  • the average single fiber diameter on the surface of the sea removal sheet was 3 ⁇ m.
  • the sea removal sheet is cut in half in the thickness direction, and the surface opposite to the half-cut surface is brushed by grinding using a 240 mesh endless sandpaper, then dyed with disperse dye using a circular dyeing machine, and reduced and washed. To obtain a sheet.
  • the surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-2 (Nonwoven fabric for fibrous base materials)
  • the sea component polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used.
  • / 1 filament sea island type composite fiber having an average single fiber diameter of 30 ⁇ m was obtained.
  • the obtained sea-island type composite fiber was cut into a fiber length of 51 mm to be a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the sheet from which the PVA was removed was subjected to a fiber ultrafine treatment in the same manner as in Example 2-1, to obtain a seawater-removed sheet from which sea components of the sea-island type composite fibers were removed.
  • the average single fiber diameter on the surface of the sea removal sheet was 4.4 ⁇ m.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-3 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • Example 2-1 In the same manner as in Example 2-1, except that the PVA liquid similar to that in Example 2-1 was used and the amount of PVA adhered was changed by adjusting the squeezing after impregnation, the sea-island fiber of the nonwoven fabric for fibrous base material was used. A PVA-added sheet having a PVA adhesion amount of 20% by mass relative to the island component mass was obtained.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-4 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 1100 (NM-11, manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the nonwoven fabric for a fibrous base material is impregnated with the above PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes.
  • the adhesion amount of PVA to the island component mass of the sea-island fiber of the nonwoven fabric for a fibrous base material is 15 mass. % PVA application sheet was obtained.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-5 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 2600 (NH-26 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the nonwoven fabric for fibrous base material is impregnated with the above PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes, and the adhesion amount of PVA to the island component mass of the sea island fiber of the nonwoven fabric for fibrous base material is 5 mass. % PVA application sheet was obtained.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-6 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • the nonwoven fabric for fibrous base material provided with the above PVA is impregnated with the above polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and By performing a dry heat treatment at a temperature of 150 ° C. for 2 minutes, a sheet provided with polyurethane so that the amount of polyurethane attached to the mass of the island component of the nonwoven fabric was 30% by mass was obtained.
  • the sheet provided with the polyurethane was immersed in a 10 g / L sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 40 minutes to remove PVA and remove the sea components of the sea-island composite fibers.
  • a sea removal sheet was obtained.
  • the average single fiber diameter on the surface of the sea removal sheet was 3 ⁇ m.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-7 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • the seawater sheet provided with the above PVA is impregnated with the above-mentioned polyurethane liquid, dried with hot air at a drying temperature of 120 ° C. for 8 minutes, and further subjected to dry heat treatment at a temperature of 150 ° C. for 2 minutes, whereby a nonwoven fabric fiber is obtained.
  • the sheet from which the PVA was removed was subjected to a fiber ultrafine treatment in the same manner as in Example 2-1, to obtain a seawater-removed sheet from which sea components of the sea-island type composite fibers were removed.
  • the average single fiber diameter on the surface of the sea removal sheet was 3 ⁇ m.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 2-1 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • PVA having a saponification degree of 87% and a polymerization degree of 500 (GL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1.
  • the obtained sheet-like material is not uniformly applied due to partial dissolution of PVA in the water-dispersed polyurethane liquid, the surface appearance is poor in the state of fiber dispersion, and there is no dull feeling of denseness, The texture was hard.
  • Example 2-2 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 500 (NL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared in an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1.
  • the obtained sheet-like material is not uniformly applied due to partial dissolution of PVA in the water-dispersed polyurethane liquid, the surface appearance is poor in the state of fiber dispersion, and there is no dull feeling of denseness, The texture was hard.
  • Example 2-3 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 2-1 was used.
  • Example 2-1 In the same manner as in Example 2-1, except that the PVA liquid similar to that in Example 2-1 was used and the amount of PVA adhered was changed by adjusting the squeezing after impregnation, the sea-island fiber of the nonwoven fabric for fibrous base material was used. A PVA-added sheet having a PVA adhesion amount of 55% by mass relative to the island component mass was obtained.
  • Example 2-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 2-1.
  • the obtained sheet-like material was soft in texture, but because of too much PVA, the fiber was not sufficiently gripped by polyurethane, the surface appearance was too long and the wear was poor, and the wear resistance was poor Met.
  • Example 2-4 A sheet-like material was obtained in the same manner as in Example 2-1, except that the preparation of the PVA liquid and the addition / removal of PVA were not performed. The texture of the obtained sheet was hardened. Further, the surface appearance was poor with no raised hairs.
  • Table 2 shows the evaluation results of the sheet-like materials obtained in Examples 2-1 to 2-7 and Comparative Examples 2-1 to 2-4.
  • Example 3-1 (Nonwoven fabric for fibrous base materials) Polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate was used as the sea component, and polyethylene terephthalate was used as the island component, with a composite ratio of 45 mass% sea component and 55 mass% island component. / 1 filament, sea island type composite fiber having an average single fiber diameter of 17 ⁇ m was obtained. The obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching. The nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • the nonwoven fabric for fibrous base material is impregnated with the first-stage polyurethane liquid, treated for 5 minutes in a humid heat atmosphere at a temperature of 100 ° C., then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and further 150
  • a first-stage polyurethane-applied sheet was obtained so that the amount of the first-stage polyurethane adhered to the mass of the island component of the nonwoven fabric was 3% by mass.
  • the polyurethane-coated sheet was immersed in a 10 g / L sodium hydroxide aqueous solution heated to a temperature of 95 ° C. and treated for 30 minutes to obtain a sea removal sheet from which sea components of the sea-island composite fibers were removed.
  • the average single fiber diameter on the surface of the sea removal sheet was 3 ⁇ m.
  • PVA having a saponification degree of 99% and a polymerization degree of 1400 (NM-14 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet having a PVA adhesion amount of 10 mass% with respect to the fiber mass of the seawater-removed sheet.
  • the seawater-free sheet provided with the above PVA is impregnated with the above-mentioned second-stage polyurethane liquid, treated in a moist and hot atmosphere at a temperature of 100 ° C. for 5 minutes, then dried with hot air at a drying temperature of 120 ° C. for 5 minutes, and By performing a dry heat treatment at a temperature of 150 ° C. for 2 minutes, a sheet provided with the second-stage polyurethane was obtained so that the adhesion amount of the second-stage polyurethane with respect to the fiber mass of the nonwoven fabric was 30% by mass.
  • the PVA-removed sheet is cut in half in the thickness direction, and the surface opposite to the half-cut surface is brushed by grinding using a 240 mesh endless sandpaper, and then dyed with a disperse dye using a circular dyeing machine and reduced. Washing was performed to obtain a sheet. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 3-2 (Nonwoven fabric for fibrous base materials)
  • the sea component polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used, and as the island component, polyethylene terephthalate is used.
  • the sea component is 20% by mass and the island component is 80% by mass.
  • the obtained sea-island type composite fiber was cut into a fiber length of 51 mm to form a staple, a fiber web was formed through a card and a cross wrapper, and a nonwoven fabric was formed by needle punching.
  • the nonwoven fabric thus obtained was immersed in hot water at a temperature of 98 ° C. for 2 minutes to shrink and dried at a temperature of 100 ° C. for 5 minutes to obtain a nonwoven fabric for a fibrous base material.
  • a first-stage polyurethane-added sheet was obtained in the same manner as Example 3-1.
  • a sea removal sheet was obtained in the same manner as in Example 3-1.
  • the average single fiber diameter on the surface of the sea removal sheet was 4.4 ⁇ m.
  • a second-stage polyurethane-added sheet was obtained in the same manner as Example 3-1.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 3-3 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 3-1 was used.
  • a first-stage polyurethane-added sheet was obtained in the same manner as Example 3-1.
  • PVA having a saponification degree of 99% and a polymerization degree of 1100 (NM-11, manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the PVA liquid and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-attached sheet having a PVA adhesion amount of 15% by mass with respect to the fiber mass of the seawater-free sheet.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 3-4 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 3-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 2600 (NH-26 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 3-5 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 3-1 was used.
  • a first-stage polyurethane-added sheet was obtained in the same manner as Example 3-1.
  • the seawater sheet provided with the above PVA is impregnated with the above-mentioned polyurethane liquid, dried with hot air at a drying temperature of 120 ° C. for 8 minutes, and further subjected to dry heat treatment at a temperature of 150 ° C. for 2 minutes, whereby a nonwoven fabric fiber is obtained.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1. The surface appearance of the obtained sheet-like material was good, had a soft texture, and had good wear resistance.
  • Example 3-1 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 3-1 was used.
  • PVA having a saponification degree of 87% and a polymerization degree of 500 (GL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet having a PVA adhesion amount of 10 mass% with respect to the fiber mass of the seawater-removed sheet.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1.
  • the obtained sheet-like material is not uniformly applied due to partial dissolution of PVA in the water-dispersed polyurethane liquid, the surface appearance is poor in the state of fiber dispersion, and there is no dull feeling of denseness, The texture was hard.
  • Example 3-2 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 3-1 was used.
  • PVA having a saponification degree of 99% and a polymerization degree of 500 (NL-05 manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared in an aqueous solution having a solid content of 10% by mass to obtain a PVA liquid.
  • the seawater-removed sheet was impregnated with the PVA liquid, and heat-dried at a temperature of 140 ° C. for 10 minutes to obtain a PVA-coated sheet having a PVA adhesion amount of 10 mass% with respect to the fiber mass of the seawater-removed sheet.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1.
  • the obtained sheet-like material is not uniformly applied due to partial dissolution of PVA in the water-dispersed polyurethane liquid, the surface appearance is poor in the state of fiber dispersion, and there is no dull feeling of denseness, The texture was hard.
  • Example 3-3 (Nonwoven fabric for fibrous base materials) The same nonwoven fabric for fibrous base material as in Example 3-1 was used.
  • Example 3-1 (Half-cut, brushed, dyed, reduced cleaning) A sheet was obtained in the same manner as in Example 3-1.
  • the obtained sheet-like material was soft in texture, but because of too much PVA, the fiber was not sufficiently gripped by polyurethane, the surface appearance was too long and the wear was poor, and the wear resistance was poor Met.
  • Example 3-4 A sheet-like material was obtained in the same manner as in Example 3-1, except that the preparation of the PVA liquid and the addition / removal of PVA were not performed. The texture of the obtained sheet was hardened. Further, the surface appearance was poor with no raised hairs.
  • Table 3 shows the evaluation results of the sheet-like materials obtained in Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-4.
  • the sheet-like materials obtained in Examples 3-1 to 3-5 all had a good surface appearance, a soft texture, and good wear resistance.
  • most of the sheet-like materials obtained in Comparative Examples 3-1 to 3-4 had a poor surface appearance, and most of them had a hard texture.
  • the sheet-like material obtained by the present invention includes furniture, chairs and wall materials, interior materials having a very elegant appearance as a skin material such as seats, ceilings and interiors in vehicle interiors such as automobiles, trains and aircraft, shirts, Jackets, casual shoes, sports shoes, uppers and trims for shoes such as men's shoes and women's shoes, bags, belts, wallets, etc., clothing materials used for some of them, wiping cloth, polishing cloth, CD curtains, etc. It can be suitably used as an industrial material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

 環境に配慮した製造工程により、従来両立することができなかった立毛を有する優美な外観と柔軟な風合いを達成し、さらに良好な耐摩耗性を有するシート状物の製造方法を提供すること。 本発明のシート状物の製造方法は、次のa、b、cの工程をこの順に行うことを特徴とするシート状物の製造方法。 a.繊維質基材にケン化度が98%以上、かつ重合度が800~3500であるポリビニルアルコールを繊維質基材に含まれる繊維質量に対し0.1~50質量%付与する工程、 b.該ポリビニルアルコールが付与された繊維質基材に水分散型ポリウレタンを付与する工程、 c.該水分散型ポリウレタンを付与した繊維質基材から、ポリビニルアルコールを除去する工程。

Description

シート状物の製造方法及びこの製造方法より得られるシート状物
 本発明は、バインダー樹脂に水分散型ポリウレタンを用いることで、製造工程における有機溶剤の使用量を少なくし、環境に配慮したシート状物において、良好な柔軟性と高級な外観品位を両立し、かつ良好な耐摩耗性を有するシート状物の製造方法に関するものである。
 主として繊維質基材とポリウレタンからなるシート状物は、天然皮革にない優れた特徴を有しており、種々の用途に広く利用されている。とりわけ、ポリエステル系繊維質基材を用いた皮革様シート状物は、耐光性に優れているため、衣料や椅子張りおよび自動車内装材用途等にその使用が年々広がってきた。
 かかるシート状物を製造するにあたっては、繊維質基材にポリウレタンの有機溶剤溶液を含浸せしめた後、得られた繊維質基材を、ポリウレタンの非溶媒である水または有機溶剤/水の混合溶液中に浸漬してポリウレタンを湿式凝固せしめる工程が、一般的に採用されている。かかるポリウレタンの溶媒である有機溶剤としては、N,N-ジメチルホルムアミド(DMF)等の水混和性有機溶剤が用いられており、例えば、不織布にポリビニルアルコール(以下、「PVA」とも表す。)を付与した後、DMF溶媒のポリウレタンを含浸してDMFの45%水溶液中で湿式凝固させた後、熱水でPVAを除去する工程が提案されている(特許文献1参照)。しかしながら、一般的に有機溶剤は、人体や環境への有害性が高いことから、シート状物の製造に際しては有機溶剤を使用しない手法が強く求められている。
 その具体的な解決手段として、例えば、従来の有機溶剤タイプのポリウレタンに代えて、水中にポリウレタンを分散させた水分散型ポリウレタンを用いる方法が検討されている。しかしながら、繊維質基材に水分散型ポリウレタンを含浸し、付与したシート状物は、風合いが硬くなるという課題がある。この課題の主な要因は、ポリウレタンが繊維質基材の繊維と強く接着することである。このような課題を解消するための検討として、従来の有機溶剤タイプのポリウレタンを適用した製造工程と同様に、繊維とポリウレタンの接着を部分的に阻害し、繊維とポリウレタンの間に空隙を作るために、繊維質基材に予めPVAを付与し、その後ポリウレタンを付与し、次いでPVAを除去する方法が提案されている(特許文献2参照。)。ここで、PVAは水溶性であるため、繊維質基材にPVAを付与した後に水に濡らすと、PVAは溶解・脱落するものであり、そのような水に濡らす工程として特許文献2では、(i)水分散型ポリウレタンの含浸工程と、(ii)アルカリ水溶液による繊維の極細化工程が挙げられている。後者の繊維の極細化工程での脱落は、アルカリ水溶液中にホウ砂を添加することで抑制している。他方、前者の水分散型ポリウレタンの含浸工程については、ケン化度98%かつ重合度500のPVAを用いているが、重合度が低いために、水分散型ポリウレタン液への脱落は抑制することはできないものであった。そして、水分散型ポリウレタン液内にPVAが溶解すると、ポリウレタンと繊維の接着状態を安定して制御することができず、シート状物の風合いは硬くなる課題があった。
特開2002-30579号広報 特開2003-096676号公報
 本発明は、製造工程における有機溶剤の使用を少なくして環境に配慮したシート状物の製造方法において、立毛を有する優美な外観と柔軟な風合いを両立し、且つ良好な耐摩耗性を有するシート状物の製造方法を提供するものである。
 本発明のシート状物の製造方法は、次のa、b、cの工程をこの順に行うことを特徴とするシート状物の製造方法である。
a.繊維質基材にケン化度が98%以上、かつ重合度が800~3500であるPVAを繊維質基材に含まれる繊維質量に対し0.1~50質量%付与する工程、
b.該PVAが付与された繊維質基材に水分散型ポリウレタンを付与する工程、
c.該水分散型ポリウレタンを付与した繊維質基材から、PVAを除去する工程。
 本発明のシート状物の製造方法の好ましい態様によれば、前記工程a、b、cの繊維質基材が平均単繊維直径0.3~7μmの極細繊維または極細繊維発現型繊維を主構成成分とし、前記繊維質基材が極細繊維を主構成成分とする場合において、前記ポリビニルアルコールを付与する前に極細繊維発現型繊維から前記極細繊維を発現させる工程を行い、前記繊維質基材が極細繊維発現型繊維を主構成成分とする場合において、前記ポリビニルアルコールを除去した後に、または前記水分散型ポリウレタンを付与した後に前記ポリビニルアルコールを除去するのと同時に、前記極細繊維発現型繊維から極細繊維を発現させる工程を行う製造方法である。
 本発明のシート状物の製造方法の好ましい態様によれば、極細繊維を発現する工程がアルカリ水溶液で処理する工程である。
 本発明のシート状物の製造方法の好ましい態様によれば、前記工程a、b、cの段階における繊維質基材が平均単繊維直径0.3~7μmの極細繊維を主構成成分とし、前記工程aの前に、極細繊維発現型繊維を主構成成分とする繊維質基材から極細繊維を発現させる工程を経る製造方法である。
 本発明のシート状物の製造方法の好ましい態様によれば、前記工程a,b,cの段階における繊維質基材が平均単繊維直径0.3~7μmの極細繊維を主構成成分とし、前記工程aの前に極細繊維発現型繊維を主構成成分とする繊維質基材に水分散型ポリウレタンを付与し、前記水分散型ポリウレタンを付与した繊維質基材から前記極細繊維を発現させた後に、前記工程aを経る製造方法である(補強用ポリウレタン付)。
 本発明のシート状物の製造方法の好ましい態様によれば、前記工程a,b,cの段階における繊維質基材が極細繊維発現型繊維を主構成成分とし、前記工程cの後に、極細繊維発現型繊維を主構成成分とする繊維質基材から、平均単繊維直径が0.3~7μmの極細繊維を発現させる工程を経る製造方法である。
 本発明のシート状物の製造方法の好ましい態様によれば、前記PVAの抗張力が400~800kg/cmである。
 本発明のシート状物の製造方法の好ましい態様によれば、繊維質基材が、平均単繊維直径0.3~7μmの極細繊維または極細繊維発現型繊維と織物および/または編物とが絡合一体化している。
 本発明のシート状物の製造方法により得られるシート状物の密度は0.2~0.7g/cmである。
 本発明によれば、環境に配慮した製造工程であっても、従来両立することができなかった優美な外観と柔軟な風合いを達成し、さらに良好な耐摩耗性を有するシート状物を得ることができる。
 本発明のシート状物の製造方法は、次のa、b、cの工程をこの順に行うことを特徴とするシート状物の製造方法である。
a.繊維質基材にケン化度が98%以上、かつ重合度が800~3500であるPVAを繊維質基材に含まれる繊維質量に対し0.1~50質量%付与する工程、
b.該PVAが付与された繊維質基材に水分散型ポリウレタンを付与する工程、
c.該水分散型ポリウレタンを付与した繊維質基材から、PVAを除去する工程。
 本発明のシート状物の製造方法では、a、b、cの工程をこの順に行うことで、PVAが付与された繊維質基材に水分散型ポリウレタンを付与することとなり、繊維とポリウレタンとが直接接着している面積を少なくすることができる。これにより、繊維を把持するポリウレタンの力を低下させてシート状物の風合いを柔軟とすることができる。また、繊維質基材にPVAを付与し、乾燥すると、PVAのマイグレーションが発生する。すなわち、PVA水溶液を繊維質基材に付与し、加熱乾燥すると水中のPVAが水の移動に引きつられて繊維質基材の表層に集中的に付着する、いわゆるマイグレーション現象が発生し、繊維質基材の表層に多く付着して内層に少なく付着する状態となる。PVAをマイグレーションさせることによって、その後に付与する水分散型ポリウレタンは繊維質基材の内層に主に付着することとなる。そして、PVAを除去すると、PVAが多く付着していた繊維質基材の表層近傍では、繊維とポリウレタンの間に空隙が大きく生じ、立毛工程を経たシート状物の表面外観は立毛が束にならずに均一にさばけた優美な外観となる。
 本発明のシート状物の製造方法の好ましい態様によれば、繊維質基材が平均単繊維直径0.3~7μmの極細繊維または極細繊維発現型繊維を主構成成分とし、繊維質基材が極細繊維を主構成成分とする場合において、PVAを付与する前に極細繊維発現型繊維から前記極細繊維を発現させる工程を行い、繊維質基材が極細繊維発現型繊維を主構成成分とする場合において、PVAを除去した後に、または水分散型ポリウレタンを付与した後にPVAを除去するのと同時に、前記極細繊維発現型繊維から極細繊維を発現させる工程を経る製造方法である。PVAを付与する前もしくは除去した後に、すなわちPVAの存在しない状態で極細繊維を発現させる工程を行うことで、より確実にPVAの脱落を防ぐことができる。PVAの脱落を防ぐことにより、本発明におけるPVA付与の実効を得ることができる。またさらに、脱落したPVAが水分散型ポリウレタン液に混入したり固形状態でシート状物に残るなどしてシート状物の風合いが固くなってしまうのを防ぐことができる。また、水分散型ポリウレタンを付与した後であれば、PVAのポリウレタンへの混入を防げるため、PVAを除去するのと同時に極細繊維を発現させる工程を行う態様でも同様の効果を得ることができる。
 PVAを付与する前に極細繊維を発現させる工程(脱海処理)を経た場合は、極細化された極細繊維の周囲にPVAが付着し、その後水分散型ポリウレタンが付着して、さらにPVAを除去することとなり、水分散型ポリウレタンが極細繊維を把持する面積が少なくなってシート状物の風合いは柔軟となる。一方、脱海処理をPVA除去後もしくは水分散型ポリウレタンを付与した後であればPVA除去と同時に行うと、ポリウレタンと極細繊維間に、PVAを除去したことに起因する空隙と、脱海された海成分に起因する空隙の両方が生成するため、極細繊維を直接ポリウレタンが把持する面積がさらに少なくなり、シート状物の風合いは柔軟となる。前者と後者を比較すると、前者の方が極細繊維を把持するポリウレタンの接着面積は大きいことから、シート状物に対する水分散型ポリウレタンの付着量はより少なくても耐摩耗性等の物理特性を維持することができる。後者は極細繊維と水分散型ポリウレタンの間の空隙は大きいことから、より柔軟な風合いを得ることができる。さらには、PVAを付与する前に脱海処理を施す場合は、脱海処理の前に補強のための水分散型ポリウレタンを付与してもよい。そうすることで、脱海処理時のシート状物の形態変化を少なくすることができる。以上のように、得られるシート状物の所望の特性に応じて、脱海処理のタイミングを選択してよい。
 本発明によって得られるシート状物の繊維質基材は、極細繊維発現型繊維を用い、極細繊維発現型繊維より発現した極細繊維を主な構成成分とすることが好ましい。極細繊維発現型繊維を用いることにより、その後の繊維極細化工程を経ることで、繊維を極細化でき、優美な表面外観を得ることができる。
 極細繊維発現型繊維から繊維極細化工程を経て得られる極細繊維の平均単繊維直径は、0.3~7μmである。平均単繊維直径を7μm以下、より好ましくは6μm以下、更に好ましくは5μm以下とすることにより、優れた柔軟性や立毛品位のシート状物を得ることができる。一方、平均単繊維直径を0.3μm以上、より好ましくは0.7μm以上、更に好ましくは1μm以上とすることにより、染色後の発色性やサンドペーパーなどによる研削など立毛処理時の束状繊維の分散性に優れ、さばけ易さにも優れる。
 本発明で用いられる繊維質基材を構成する繊維としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル;6-ナイロンや66-ナイロンなどのポリアミド;アクリル;ポリエチレン;ポリプロピレン;および熱可塑性セルロースなどの溶融紡糸可能な熱可塑性樹脂などからなる繊維を用いることができる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステル繊維を用いることが好ましい。また、環境配慮の観点から、リサイクル原料、植物由来原料から得られる繊維であることが好ましい。さらに、繊維質基材は異なる素材の繊維が混合して構成されていてもよい。
 前記極細繊維発現型繊維としては、(a)溶剤溶解性の異なる2成分の熱可塑性樹脂を海成分と島成分とし、海成分を溶剤などを用いて溶解除去することによって島成分を極細繊維とする海島型繊維や、(b)2成分の熱可塑性樹脂を繊維断面に放射状または多層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維などを採用することができる。なかでも、海島型繊維は、海成分を除去することによって島成分間、すなわち極細繊維間に適度な空隙を付与することができるので、シート状物の柔軟性や風合いの観点からも好ましく用いられる。
 前記海島型繊維には、例えば、海島型複合用口金を用い、海成分と島成分の2成分を相互配列して紡糸する海島型複合繊維;海成分と島成分の2成分を混合して紡糸する混合紡糸繊維などがある。均一な繊度の極細繊維が得られる点、また十分な長さの極細繊維が得られシート状物の強度にも資する点からは、海島型複合繊維が好ましく用いられる。
 海島型繊維の島成分としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリ乳酸などのポリエステル;6-ナイロンや66-ナイロンなどのポリアミド;アクリル;ポリエチレン;ポリプロピレン;および熱可塑性セルロースなどの溶融紡糸可能な熱可塑性樹脂などからなる繊維を用いることができる。中でも、強度、寸法安定性および耐光性の観点から、ポリエステル繊維を用いることが好ましい。また、環境配慮の観点から、リサイクル原料、植物由来原料から得られる繊維であることが好ましい。さらに、繊維質基材は異なる素材の繊維が混合して構成されていてもよい。
 海島型繊維の島成分としては、上記の繊維質基材を構成する繊維と同様であってよい。
 海島型繊維の繊維極細化処理(脱海処理)は、溶剤中に海島型繊維を浸漬し、搾液することによって行うことができる。海成分を溶解する溶剤としては、海成分がポリエチレン、ポリプロピレンまたはポリスチレンの場合にはトルエンやトリクロロエチレンなどの有機溶剤を用い、海成分が共重合ポリエステルまたはポリ乳酸の場合には水酸化ナトリウムなどのアルカリ水溶液を用いることができる。また、海成分がPVAの場合は熱水を用いることができる。工程の環境配慮の観点からは、水酸化ナトリウムなどのアルカリ水溶液や、熱水での脱海処理が好ましい。
 海島型繊維の海成分としては、特に限定されないが、例えば、ポリエチレン;ポリプロピレン;ポリスチレン;スルホイソフタル酸ナトリウムやポリエチレングリコールなどを共重合した共重合ポリエステルおよびポリ乳酸;PVAなどを用いることができる。なかでも、環境配慮の観点から、有機溶剤を使用せずに分解可能なアルカリ分解性のスルホイソフタル酸ナトリウムやポリエチレングリコールなどを共重合した共重合ポリエステルまたはポリ乳酸、熱水溶解性のPVAが好ましい。
 繊維質基材を構成する繊維の横断面形状は、特に限定されず、丸断面でもよいが、楕円、扁平および三角などの多角形や、扇形および十字型などの異形断面のものを採用してもよい。
 本発明において、繊維質基材を構成する繊維の平均単繊維直径は、0.3~20μmであることが好ましい。平均単繊維直径は細いほど優れた柔軟性や立毛品位のシート状物を得ることができ、一方、平均単繊維直径は太いほど染色後の発色性やサンドペーパーなどによる研削など立毛処理時の束状繊維の分散性とさばけ易さに優れることから、より好ましくは0.7~15μm、特に好ましくは1~7μmである。
 本発明の繊維質基材の形態は、織物、編物および不織布等を採用することができる。中でも、表面起毛処理した際のシート状物の表面外観が良好であることから、不織布が好ましく用いられる。
 不織布は、短繊維不織布および長繊維不織布のいずれでもよいが、長繊維不織布は起毛した際の立毛となるシート状物の厚さ方向を向く繊維が短繊維不織布よりも少なくなり、立毛の緻密感が低くなって表面外観が劣る傾向にあることから、短繊維不織布が好ましく用いられる。
 前記短繊維不織布における短繊維の繊維長は、25~90mmであることが好ましい。繊維長を25mm以上とすることにより、絡合により耐摩耗性に優れたシート状物を得ることができる。また、繊維長を90mm以下とすることにより、風合いや品位に優れたシート状物を得ることができる。繊維長は、より好ましくは30~80mmである。
 不織布の繊維あるいは繊維束を絡合させる方法としては、ニードルパンチやウォータージェットパンチを採用することができる。
 本発明において、極細繊維からなる繊維質基材が不織布の場合、その不織布は極細繊維の束(極細繊維束)が絡合してなる構造を有するものであることが好ましい態様である。極細繊維が束の状態で絡合していることによって、シート状物の強度が向上する。かかる態様の不織布は、極細繊維発現型繊維同士をあらかじめ絡合した後に極細繊維を発現させることによって得ることができる。
 極細繊維あるいはその極細繊維束が不織布を構成する場合、その内部に強度を向上させるなどの目的で、織物や編物と絡合一体化していてもよい。例えば、織物の場合、平織、綾織および朱子織等が挙げられ、コスト面から平織が好ましく用いられる。また、編物の場合は、丸編、トリコットおよびラッセル等が挙げられる。かかる織物や編物を構成する繊維の平均単繊維直径としては、0.3~20μmが好ましい。
 本発明の態様において、繊維質基材に付与するPVAは、ケン化度が98%以上でかつ重合度が800~3500である。ケン化度を98%以上とすることで、水分散型ポリウレタンを付与する際に水分散型ポリウレタン液内にPVAが溶解するのを防ぐことができる。水分散型ポリウレタン液内にPVAが溶解すると、立毛を構成する極細繊維の表面を保護するのに十分な効果が得られないだけでなく、さらにPVAが溶解した水分散型ポリウレタン液を繊維質基材に付与する際、ポリウレタン内部にPVAが取り込まれ、後にPVAを除去することが困難となるため、安定的にポリウレタンと繊維の接着状態を制御できず、風合いは硬くなる。
 また、PVAは重合度によって水への溶解性が変化し、重合度が800より小さい場合、水分散型ポリウレタンを付与する際に、水分散型ポリウレタン液にPVAが溶解する。PVAの重合度が3500より大きい場合は、PVA水溶液の粘度が高くなり、繊維質基材にPVA水溶液を含浸する際に、繊維質基材内部に浸透させることができない。
 本発明において、PVAは4質量%水溶液の20℃における粘度が10~50mPa・sであることが好ましい。粘度がこの範囲であることで、乾燥時に繊維質基材内部で適度なマイグレーション構造を得ることができ、シート状物の柔軟性と表面外観、耐摩耗性等の物理特性のバランスを得られる。粘度を10mPa・s以上、より好ましくは15mPa・s以上とすることで、極端なマイグレーション構造となるのを抑えることができる。一方、50mPa・s以下、より好ましくは40mPa・s以下とすることで、繊維質基材に含浸しやすくさせることができる。
 本発明において、PVAのガラス転移温度は70~100℃であることが好ましい。ガラス転移温度を70℃以上、より好ましくは75℃以上とすることで、乾燥工程での軟化を防ぎ、繊維質基材の寸法安定性を得ることができ、シート状物の表面外観の悪化を抑えることができる。また、ガラス転移温度を100℃以下、より好ましくは95℃以下とすることで、繊維質基材が硬くなりすぎ工程通過性が悪化するのを防ぐことができる。
 本発明において、PVAの融点は200~250℃であることが好ましい。融点を200℃以上、より好ましくは210℃以上とすることで、乾燥工程での軟化を防ぎ、繊維質基材の寸法安定性を得ることができ、シート状物の表面外観の悪化を抑えることができる。また、融点を250℃以下、より好ましくは240℃以下とすることで、繊維質基材が硬くなりすぎ工程通過性が悪化するのを防ぐことができる。
 本発明において、PVAのフィルムの抗張力は400~800kg/cmであることが好ましい。抗張力を400kg/cm以上、より好ましくは450kg/cm以上とすることで、工程通過における寸法変化を抑え、シート状物の表面外観の悪化を抑えることができる。抗張力を800kg/cm以下、より好ましくは750kg/cm以下とすることで、PVA付与シートが硬くなりすぎず、工程通過時の挫屈シワ等の発生を抑えることができる。なお、ここでいう抗張力とは、PVAの100μm厚フィルムを温度20℃湿度65%雰囲気下で測定した値である。
 繊維質基材へのPVAの付与量は、繊維質基材の繊維質量に対し、0.1~50質量%であり、好ましくは1~45質量%である。付与量を0.1質量%以上とすることにより、柔軟性と風合いの良好なシート状物が得られ、50質量%以下とすることにより、加工性が良く、耐摩耗性等の物理特性が良好なシート状物が得られる。
 本発明において、繊維質基材にPVAを付与する方法としては、特に限定はなく、当分野で通常用いる各種方法を採用できるが、PVAを水に溶解させ、繊維質基材に含浸し加熱乾燥する方法が、均一に付与できる観点から好ましい。乾燥温度は、温度が低すぎると乾燥時間が長く必要となり、温度が高すぎるとPVAが不溶化して、後で溶解除去することができなくなるため、80~160℃で乾燥することが好ましく、乾燥温度はさらに好ましくは110~150℃である。乾燥時間は、通常1~20分、加工性の観点から、好ましくは1~10分、より好ましくは1~5分である。また、PVAをより不溶化するために、乾燥後に熱処理を行ってもよい。熱処理の好ましい温度は80~180℃である。熱処理することで、PVAの不溶化とPVAの熱劣化が同時に進行するため、より好ましい温度は100℃~160℃である。
 本発明の好ましい様態において、PVAが付与された繊維質基材に水分散型ポリウレタンを付与する。なお、脱海工程前に付与する水分散型ポリウレタンは補強を目的としているため、PVAが付与されていない繊維質基材へ付与してもよい。
 PVA付与後の繊維質基材に付与する水分散型ポリウレタンは、繊維質基材に対する含有比率で1~80質量%であることが好ましいが、目的は主に製品の耐久性(特に耐摩耗性)付与であり、少なすぎると得られるシート状物の物理特性、耐久性等が実用に耐えないことから、より好ましくは2~50質量%である。
 また、前記工程a、b、cの段階における繊維質基材が平均単繊維直径0.3~7μmの極細繊維を主構成成分とし、前記工程aの前に極細繊維発現型繊維を主構成成分とする繊維質基材に水分散型ポリウレタンを付与し、前記水分散型ポリウレタンを付与した繊維質基材から前記極細繊維を発現させた後に、前記工程aを経る場合において、水分散型ポリウレタンは繊維の極細化工程の前後でそれぞれ付与することになるが、その水分散型ポリウレタンは同じ種類を適用してもよいし、異なるものを適用してもよい。
 前記水分散型ポリウレタンは、(I)界面活性剤を用いて強制的に分散・安定化させる強制乳化型ポリウレタンと、(II)ポリウレタン分子構造中に親水性構造を有し、界面活性剤が存在しなくても水中に分散・安定化する自己乳化型ポリウレタンに分類されるが、本発明ではいずれを用いてもよい。
 繊維質基材に水分散型ポリウレタンを付与する方法としては、特に限定はないが、水分散型ポリウレタン液を繊維質基材に含浸・塗布し、凝固後、加熱乾燥する方法が均一に付与できるため、好ましい。
 本発明の好ましい態様においては、ポリウレタン液を、繊維質基材に含浸、塗布等し、乾式凝固、湿熱凝固、湿式凝固、あるいはこれらの組み合わせによりポリウレタンを凝固させることができる。
 水分散型ポリウレタン液の濃度(水分散型ポリウレタン液に対するポリウレタンの含有量)は、水分散型ポリウレタン液の貯蔵安定性の観点から、10~50質量%が好ましく、より好ましくは15~40質量%である。
 また、本発明に用いるポリウレタン液は、貯蔵安定性や製膜性向上のために、水溶性有機溶剤をポリウレタン液に対して40質量%以下含有していてもよいが、製膜環境の保全等の点から、有機溶剤の含有量は1質量%以下とすることが好ましい。
 また、本発明で用いられる水分散型ポリウレタン液としては、感熱凝固性を有するものが好ましい。感熱凝固性を有する水分散型ポリウレタン液を用いることにより、繊維質基材の厚み方向に均一にポリウレタンを付与することができる。
 本発明において、感熱凝固性とは、ポリウレタン液を加熱した際に、ある温度(感熱凝固温度)に達するとポリウレタン液の流動性が減少し、凝固する性質のことを言う。ポリウレタン付きシート状物の製造においてはポリウレタン液を繊維質基材に付与後、それを乾式凝固、湿熱凝固、湿式凝固、あるいはこれらの組み合わせにより凝固させ、乾燥することにより繊維質基材にポリウレタンを付与する。感熱凝固性を示さない水分散型ポリウレタン液を凝固させる方法としては乾式凝固が工業的な生産において現実的であるが、その場合、繊維質基材の表層にポリウレタンが集中するマイグレーション現象が発生し、ポリウレタン付きシート状物の風合いは硬化する傾向にある。その場合は、水分散型ポリウレタン液の粘度を増粘剤で調整することで、マイグレーションを防ぐことができる。また、感熱凝固性を示す水分散型ポリウレタン液の場合も、増粘剤を加え乾式凝固することでマイグレーションを防ぐことができる。
 水分散型ポリウレタン液の感熱凝固温度は、40~90℃であることが好ましい。感熱凝固温度を40℃以上とすることにより、ポリウレタン液の貯蔵時の安定性が良好となり、操業時のマシンへのポリウレタンの付着等を抑制することができる。また、感熱凝固温度を90℃以下とすることにより、繊維質基材中でのポリウレタンのマイグレーション現象を抑制することができる。
 本発明のひとつの態様において、感熱凝固温度を前記のとおりとするために、適宜感熱凝固剤を添加してもよい。感熱凝固剤としては例えば、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウムおよび塩化カルシウム等の無機塩;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、アゾビスイソブチロニトリル、および過酸化ベンゾイル等のラジカル反応開始剤などが挙げられる。
 前記湿熱凝固の温度は、ポリウレタンの感熱凝固温度以上とすることが好ましく、40~200℃であることが好ましい。湿熱凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、ポリウレタンの凝固までの時間を短くしてマイグレーション現象をより抑制することができる。一方、湿熱凝固の温度を200℃以下、より好ましくは160℃以下とすることにより、ポリウレタンやPVAの熱劣化を防ぐことができる。
 前記湿式凝固の温度は、ポリウレタンの感熱凝固温度以上とし、40~100℃とすることが好ましい。熱水中での湿式凝固の温度を40℃以上、より好ましくは80℃以上とすることにより、ポリウレタンの凝固までの時間を短くしてマイグレーション現象をより抑制することができる。
 前記乾式凝固の温度および乾燥温度は、80~180℃であることが好ましい。乾式凝固温度および乾燥温度を80℃以上、より好ましくは90℃以上とすることにより、生産性に優れる。一方、乾式凝固温度および乾燥温度を180℃以下、より好ましくは160℃以下とすることにより、ポリウレタンやPVAの熱劣化を防ぐことができる。
 本発明で用いられるポリウレタンとしては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるものが好ましい。
 前記ポリマージオールとしては、特に限定されないが、例えば、ポリカーボネート系、ポリエステル系、ポリエーテル系、シリコーン系およびフッ素系のジオールを採用することができ、これらを組み合わせた共重合体を用いてもよい。耐加水分解性の観点からは、ポリカーボネート系およびポリエーテル系のジオールが好ましく用いられる。また、耐光性と耐熱性の観点からは、ポリカーボネート系およびポリエステル系が好ましく用いられる。さらに、耐加水分解性と耐熱性と耐光性のバランスの観点からは、ポリカーボネート系とポリエステル系のジオールがより好ましく、特に好ましくはポリカーボネート系のジオールが好ましく用いられる。
 前記ポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルのエステル交換反応、あるいはホスゲンまたはクロル蟻酸エステルとアルキレングリコールとの反応などによって製造することができる。
 前記アルキレングリコールとしては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールなどの直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオールなどの分岐アルキレングリコール、1,4-シクロヘキサンジオールなどの脂環族ジオール、ビスフェノールAなどの芳香族ジオール、グリセリン、トリメチロールプロパン、およびペンタエリスリトールなどが挙げられる。それぞれ単独のアルキレングリコールから得られるポリカーボネート系ジオールでも、2種類以上のアルキレングリコールから得られる共重合ポリカーボネート系ジオールのいずれでも良い。
 前記ポリエステル系ジオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。
 前記低分子量ポリオールとしては、特に限定されないが、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、およびシクロヘキサン-1,4-ジメタノールから選ばれる一種または二種以上を使用することができる。また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。
 また、前記多塩基酸としては、特に限定されないが、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸から選ばれる一種または二種以上が挙げられる。
 前記ポリエーテル系ジオールとしては、特に限定されないが、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびそれらを組み合わせた共重合ジオールを挙げることができる。
 本発明に用いられるポリマージオールの数平均分子量は、500~4000であることが好ましい。数平均分子量を500以上、より好ましくは1500以上とすることにより、風合いが硬くなるのを防ぐことができる。また、数平均分子量を4000以下、より好ましくは3000以下とすることにより、ポリウレタンとしての強度を維持することができる。
 前記有機ジイソシアネートとしては、特に限定されないが、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族系ジイソシアネートや、ジフェニルメタンジイソシアネート、およびトリレンジイソシアネート等の芳香族系ジイソシアネートが挙げられ、またこれらを組み合わせて用いてもよい。中でも、耐光性の観点から、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネートおよびイソフォロンジイソシアネート等の脂肪族系ジイソシアネートが好ましく用いられる。
 前記鎖伸長剤としては、特に限定されないが、エチレンジアミンおよびメチレンビスアニリン等のアミン系の鎖伸長剤、およびエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水を反応させて得られるポリアミンを鎖伸長剤として用いることもできる。
 ポリウレタンには、所望により、耐水性、耐摩耗性および耐加水分解性等を向上する目的で架橋剤を併用してもよい。架橋剤は、ポリウレタンに対し、第3成分として添加する外部架橋剤でもよく、またポリウレタン分子構造内に予め架橋構造となる反応点を導入する内部架橋剤でもよい。本発明においては、ポリウレタン分子構造内により均一に架橋点を形成でき、柔軟性の減少を軽減できる点から、内部架橋剤を用いることが好ましい。
 前記架橋剤としては、イソシアネート基、オキサゾリン基、カルボジイミド基、エポキシ基、メラミン樹脂、およびシラノール基などを有する化合物を用いることができる。ただし、架橋が過剰に進むとポリウレタンが硬化してシート状物の風合いも硬くなる傾向にあるため、反応性と柔軟性とのバランスの点ではシラノール基を有するものが好ましく用いられる。
 また、本発明で用いられるポリウレタンは、分子構造内に親水性基を有していることが好ましい。分子構造内に親水性基を有することで、水分散型ポリウレタンとしての分散・安定性を向上させることができる。
 前記親水性基としては例えば、4級アミン塩等のカチオン系、スルホン酸塩やカルボン酸塩等のアニオン系、ポリエチレングリコール等のノニオン系、およびカチオン系とノニオン系の組み合わせ、およびアニオン系とノニオン系の組み合わせのいずれの親水性基も採用することができる。なかでも、光による黄変や中和剤による弊害の懸念のないノニオン系の親水性基が特に好ましく用いられる。
 なお、アニオン系の親水性基の場合は、中和剤が必要となり、例えば、前記中和剤がアンモニア、トリエチルアミン、トリエタノールアミン、トリイソプロパノールアミン、トリメチルアミンおよびジメチルエタノールアミン等の第3級アミンである場合は、製膜や乾燥時の熱によってアミンが発生・揮発し、系外へ放出される。そのため、大気放出や作業環境の悪化を抑制するために、揮発するアミンを回収する装置の導入が必須となる。また、アミンは加熱によって揮発せずに最終製品であるシート状物中に残留した場合、製品の焼却時等に環境へ排出されることも考えられる。これに対し、ノニオン系の親水性基の場合は、中和剤を使用しないためアミン回収装置を導入する必要はなく、アミンのシート状物中への残留の心配もないため、好ましく用いることができる。
 また、前記アニオン系親水性基の中和剤が水酸化ナトリウム、水酸化カリウムおよび水酸化カルシウム等のアルカリ金属、またはアルカリ土類金属の水酸化物等である場合、ポリウレタン部分が水に濡れるとアルカリ性を示すこととなるが、ノニオン系の親水性基の場合は中和剤を使用しないため、ポリウレタンの加水分解による劣化を心配する必要もない。
 本発明に用いられる水分散型ポリウレタンは、所望により各種の添加剤、例えば、カーボンブラックなどの顔料、リン系、ハロゲン系、シリコーン系および無機系などの難燃剤、フェノール系、イオウ系およびリン系などの酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系およびオキザリックアシッドアニリド系などの紫外線吸収剤、ヒンダードアミン系やベンゾエート系などの光安定剤、ポリカルボジイミドなどの耐加水分解安定剤、可塑剤、帯電防止剤、界面活性剤、増粘剤、柔軟剤、撥水剤、凝固調整剤、染料、防腐剤、抗菌剤、消臭剤、セルロース粒子、マイクロバルーン等の充填剤、およびシリカや酸化チタン等の無機粒子などを含有していてもよい。また、繊維とポリウレタンの間の空隙をさらに大きくするために、炭酸水素ナトリウムなどの無機系、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等の有機系発泡剤を含有してもよい。
 本発明のシート状物に対するポリウレタンの含有比率は、1~80質量%であることが好ましい。ポリウレタンの比率を1質量%以上、より好ましくは5質量%以上とすることにより、シート強度を得るとともに繊維の脱落を防ぐことができる。また、ポリウレタンの配合比率を80質量%以下、より好ましくは70質量%以下とすることにより、風合いが硬くなることを防ぎ、良好な立毛品位を得ることができる。なお、本発明で、補強のために付与する水分散型ポリウレタンを、繊維の極細化工程の前に付与した場合は、前記シート状物に対するポリウレタンの含有比率は、その合計である。
 補強用ポリウレタン付の態様における、繊維の極細化前の繊維質基材に付与する水分散型ポリウレタンは、繊維質基材に対する含有比率で1~30質量%であることが好ましいが、目的は主に繊維質基材の補強であり、多く付与しすぎると、得られるシート状物の風合いは硬くなることから、より好ましくは2~20質量%である。
 次に、補強用に水分散型ポリウレタンが付与された繊維質基材は、極細繊維発現型繊維から極細繊維を発現させる繊維極細化処理(脱海処理)を行う。海島型繊維の繊維極細化処理(脱海処理)は、溶剤中に海島型繊維を浸漬し、搾液することによって行うことができる。海成分を溶解する溶剤としては、海成分がポリエチレン、ポリプロピレンまたはポリスチレンの場合にはトルエンやトリクロロエチレンなどの有機溶剤を用い、海成分が共重合ポリエステルやポリ乳酸の場合には水酸化ナトリウムなどのアルカリ水溶液を用いることができる。また、海成分がPVAの場合は熱水を用いることができる。工程の環境配慮の観点からは、水酸化ナトリウムなどのアルカリ水溶液や、熱水での脱海処理が好ましい。
 本発明の好ましい態様では、ポリウレタン付与後のシートから、PVAを除去することにより、柔軟なシート状物を得る。PVAを除去する方法は特に限定されないが、例えば、60~100℃の熱水にシートを浸漬し、必要に応じてマングル等で搾液することにより、溶解除去することが好ましい態様である。また、極細繊維発現型繊維を主構成成分とした繊維質基材に、PVAを付与した後にポリウレタンを付与し、ポリウレタン付与後のシートからPVAを除去する場合は、PVAの除去と同時に、極細繊維発現型繊維から極細繊維を発現させる工程を経てもよい。
 本発明のシート状物の製造方法においては、少なくともPVAを付与した繊維質基材に水分散型ポリウレタンを付与した後において、厚み方向に半裁する工程を含んでもよい。上記したように、PVAを付与する工程では、マイグレーションによってPVAが繊維質基材の表層に多く付着し内層に少なく付着している。その後、水分散型ポリウレタンを付与してから厚み方向に半裁することにより、PVA付着量が多い側には水分散型ポリウレタンは少なく付着し、PVA付着量が少ない側には水分散型ポリウレタンは多く付着する構造のシート状物が得られる。PVAが多く付着していた面(水分散型ポリウレタン付着が少ない面)をシート状物の立毛面とした場合、PVAが付与されていたことによって、ポリウレタンと立毛を構成する極細繊維の間に空隙が大きく生じ、立毛を構成する繊維に自由度が与えられ、表面の風合いが柔軟となり、良好な外観品位と柔らかなタッチが得られる。逆に、PVAが少なく付着していた面(水分散型ポリウレタン付着が多い面)をシート状物の立毛面とした場合、立毛を構成する繊維はポリウレタンに強く把持されることによって立毛長は短いが、緻密感のある良好な外観品位が得られ、さらには耐摩耗性が良好となる。さらに、シート厚み方向に半裁する工程を含むことにより、生産効率を向上させることができる。
 本発明では、シート状物の少なくとも一面を起毛処理して表面に立毛を形成させてもよい。立毛を形成する方法は、特に限定されず、サンドペーパー等によるバフィング等、当分野で通常行われる各種方法を用いることができる。立毛長は短すぎると優美な外観が得られにくく、長すぎると、ピリングが発生しやすくなる傾向にあることから、立毛長は0.2~1mmであることが好ましい。
 また、本発明のひとつの態様において、起毛処理の前に、ポリウレタン付与シート状物に滑剤としてシリコーン等を付与してもよい。滑剤を付与することにより、表面研削による起毛が容易に可能となり、表面品位が非常に良好となるため好ましい。また、起毛処理の前に帯電防止剤を付与してもよく、帯電防止剤の付与により、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくなるため好ましい態様である。
 本発明のひとつの態様において、シート状物は、染色することができる。染色方法としては、当分野で通常用いられる各種方法を採用することができるが、シート状物の染色と同時に揉み効果を与えてシート状物を柔軟化することができることから、液流染色機を用いる方法が好ましい。
 染色温度は、繊維の種類にもよるが、80~150℃であることが好ましい。染色温度を80℃以上、より好ましくは110℃以上とすることにより、繊維への染着を効率良く行わせることができる。一方、染色温度を150℃以下、より好ましくは130℃以下とすることにより、ポリウレタンの劣化を防ぐことができる。
 本発明で用いられる染料は、繊維質基材を構成する繊維の種類にあわせて選択すればよく、特に限定されないが、例えば、ポリエステル系繊維であれば分散染料を用いることができ、ポリアミド系繊維であれば酸性染料や含金染料を用いることができ、更にそれらの組み合わせを用いることができる。分散染料で染色した場合は、染色後に還元洗浄を行ってもよい。
 また、染色時に染色助剤を使用することも好ましい態様である。染色助剤を用いることにより、染色の均一性や再現性を向上させることができる。また、染色と同浴または染色後に、例えば、シリコーン等の柔軟剤、帯電防止剤、撥水剤、難燃剤、耐光剤および抗菌剤等を用いた仕上げ剤処理を施すことができる。
 このようにして得られた本発明のシート状物の密度は0.2~0.7g/cmであることが好ましい。密度が0.2g/cm以上、より好ましくは0.3g/cm以上とすることにより、表面外観が緻密となり高級な品位を発現させることができる。一方、密度を0.7g/cm以下、より好ましくは0.6g/cm以下とすることにより、シート状物の風合いが硬くなるのを防ぐことができる。
 次に、本発明のシート状物の製造方法を、実施例により更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
 [評価方法]
 (1)PVA水溶液の粘度
 JISK6726(1994)ポリビニルアルコール試験方法の3.11.1記載の回転粘度計法により、4質量%PVA水溶液の20℃の粘度を測定した。
 (2)PVAの抗張力
 10質量%PVA水分散液を5cm×10cm×1cmのポリエチレン製トレーに入れ、8時間25℃で風乾後、120℃の温度の熱風乾燥機で2時間熱処理して厚さ100μmのPVA乾式膜を得た。このPVA乾式膜について、JISL1096(2010)8.14.1記載のA法(ストリップ法)に従い、引張試験機にて抗張力を測定した。
 (3)平均単繊維直径
 平均単繊維直径は、繊維質基材またはシート状物表面の走査型電子顕微鏡(SEM)写真を倍率2000倍で撮影し、繊維をランダムに100本選び、単繊維直径を測定して平均値を計算することで算出した。
 繊維質基材またはシート状物を構成する繊維が異形断面の場合は、異形断面の外周円直径を単繊維直径として算出した。また、円形断面と異形断面が混合している場合、単繊維直径が大きく異なるものが混合している場合等は、それぞれの存在本数比率に応じたサンプリング数を計100本となるように選び算出した。ただし、繊維質基材に補強用の織物や編物が挿入されているような場合には、当該補強用の織物や編物の繊維は、平均単繊維直径の測定においてサンプリング対象からは除外した。
 (4)シート状物の剛軟度
 JISL1096(2010)8.21.1記載のA法(45°カンチレバー法)に基づき、タテ方向とヨコ方向へそれぞれ2cm×15cmの試験片を作成し、45°の斜面を有する水平台に置き、試験片を滑らせて試験片の一端の中央点が斜面と接したときのスケールを読んだ。試験片5枚での平均値を求め、剛軟度とした。
 (5)シート状物の表面外観
 シート状物の表面外観は、健康状態の良好な成人男性と成人女性各10名ずつ、計20名を評価者として、目視と官能評価によって下記のように5段階評価し、最も多かった評価を表面外観とした。表面外観は、3級~5級を良好とした。
 5級:均一な繊維の立毛があり、繊維の分散状態は良好で、外観は良好である。
 4級:5級と3級の間の評価である。
 3級:繊維の分散状態はやや良くない部分があるが、繊維の立毛はあり、外観はまずまず良好である。
 2級:3級と1級の間の評価である。
 1級:全体的に繊維の分散状態は非常に悪い、または繊維の立毛が長く、外観は不良である。
 (6)シート状物の耐摩耗性評価
 ナイロン6からなる直径0.4mmのナイロン繊維を繊維の長手方向に垂直に長さ11mmに切ったものを100本そろえて束とし、この束を直径110mmの円内に6重の同心円状に97個(中心に1個、直径17mmの円に6個、直径37mmの円に13個、直径55mmの円に19個、直径74mmの円に26個、直径90mmの円に32個、それぞれの円において等間隔に)配置した円形ブラシ(ナイロン糸9700本)を用い、荷重8ポンド(約3629g)、回転速度65rpm、回転回数50回の条件で、シート状物の円形サンプル(直径45mm)の表面を摩耗せしめ、その前後のサンプルの質量変化を測定し、5サンプルの平均値を摩耗減量とした。
 [実施例1-1]
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分45質量%、島成分55質量%の複合比率で、島数36島/1フィラメント、平均単繊維直径17μmの海島型複合繊維を得た。得られた海島型複合繊維を繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により、不織布とした。このようにして得られた不織布を、98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (繊維極細化(脱海))
 上記の繊維質基材用不織布を95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して30分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は3μmであった。
 (PVA液の調製)
ケン化度99%、重合度1400のPVA(日本合成化学株式会社製NM-14)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、感熱凝固剤として過硫酸アンモニウム(APS)2質量部を加え、水によって全体を固形分20質量%に調製し、水分散型ポリウレタン液を得た。感熱凝固温度は72℃であった。
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 上記のポリウレタンを付与したシートを、95℃に加熱した水中に浸漬して10分処理を行い、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 上記のPVA除去シートを厚さ方向に半裁し、半裁面と反対の表面を240メッシュのエンドレスサンドペーパーを用いた研削によって起毛処理した後、サーキュラー染色機を用いて分散染料により染色し還元洗浄を行い、シート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-2]
 (繊維質基材用平織物)
 タテ糸、ヨコ糸ともに84dtex/36フィラメントのポリエチレンテレフタレート繊維を用い、タテ密度123本/2.54cm、ヨコ密度98本/2.54cmの繊維質基材用平織物を製織した。
 (PVA液の調製)
 実施例1-1と同様のPVA液を用いた。
 (PVAの付与)
 上記の織物に、実施例1-1と同様の上記PVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、織物の繊維質量に対するPVA質量が20質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様のポリウレタン液を用いた。
 (ポリウレタンの付与)
 上記のPVAを付与した織物に、上記のポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対するポリウレタンの付着量が10質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 上記のポリウレタンを付与したシートを、95℃に加熱した水中に浸漬して10分処理を行い、付与したPVAを除去したシートを得た。
 (起毛・染色・還元洗浄)
 上記のPVAを除去したシートの表面を320メッシュのエンドレスサンドペーパーを用いた研削によって起毛処理した後、サーキュラー染色機を用いて分散染料により染色し還元洗浄を行い、シート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-3]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
 ケン化度99%、重合度1100のPVA(日本合成化学株式会社製NM-11)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が15質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-4]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
ケン化度99%、重合度2600のPVA(日本合成化学株式会社製NH-26)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が5質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-5]
 (繊維質基材用不織布)
海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分20質量%、島成分80質量%の複合比率で、島数16島/1フィラメント、平均単繊維直径30μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により不織布とした。このようにして得られた不織布を98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (繊維極細化(脱海))
 上記の繊維質基材用不織布を実施例1-1と同様にして処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、4.4μmであった。
 (PVA液の調製)
 実施例1-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例1-1と同様にして、PVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-6]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
 実施例1-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例1-1と同様のPVA液を用い、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例1と同様にして、脱海シートの繊維質量に対するPVAの付着量が20質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-7]
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分20質量%、島成分80質量%の複合比率で、島数16島/1フィラメント、平均単繊維直径30μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ウェブの両面に、PETの84dtex-72フィラメント、撚り数2000T/mの強撚糸使いの平織物を積層し、ニードルパンチ処理により不織布とした。このようにして得られた不織布を98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (繊維極細化(脱海))
 上記の繊維質基材用不織布を実施例1-1と同様にして処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、4.4μmであった。
 (PVA液の調製)
 実施例1-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例1-1と同様にして、PVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例1-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-8]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
 ケン化度99%、重合度1000のPVA(クラレ株式会社製PVA110)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が15質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、不織布の繊維質重量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例1-9]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
 ケン化度99%、重合度1400のPVA(日本合成化学株式会社製NM-14)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、増粘剤(サンノプコ株式会社製SNシックナー612)を10質量部を加え、水によって全体をポリウレタン固形分20質量%に調製し、水分散型ポリウレタン液を得た。
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリウレタン液を含浸させ、乾燥温度120℃の温度で8分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [比較例1-1]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
ケン化度87%、重合度500のPVA(日本合成化学株式会社製GL-05)を固形分10質量%の水溶液に調製してPVA液を得た。
 (PVAの付与)
 上記の脱海シートを用いて実施例1-1と同様にして、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物は、PVAが水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
 [比較例1-2]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
ケン化度99%、重合度500のPVA(日本合成化学株式会社製NL-05)を固形分10質量%の水溶液に調製してPVA液を得た。
 (PVAの付与)
 上記の脱海シートを用いて、実施例1-1と同様にして、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物は、PVAが水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
 [比較例1-3]
 (繊維質基材用不織布)
 実施例1-1と同様の繊維質基材用不織布を用いた。
 (繊維極細化(脱海))
 実施例1-1と同様にして、上記の繊維質基材用不織布から脱海シートを得た。
 (PVA液の調製)
 実施例1-1と同様のPVA液を用いた。
 (PVAの付与)
 含浸後の絞りを調節してPVAの付着量を変更した以外は実施例1-1と同様にして、脱海シートの繊維質量に対するPVAの付着量が55質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例1-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例1-1と同様にして、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例1-1と同様にして、付与したPVAを除去したシートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例1-1と同様にしてシート状物を得た。得られたシート状物は、風合いは柔軟であったが、PVAが多すぎたためにポリウレタンによる繊維の把持が不十分で、表面外観は立毛が長すぎて不良となり、また耐摩耗性は悪いものであった。
 [比較例1-4]
 PVA液の調製、PVAの付与・除去を行わない以外は実施例1-1と同様にしてシート状物を得た。得られたシート状物の風合いは硬くなった。また、表面外観は立毛がなく、不良であった。
 実施例1-1~1-9、及び比較例1-1~1-4で得られたシート状物の評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1-1~1-9で得られたシート状物は、いずれも表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。一方、比較例1-1~1-4で得られたシート状物は、ほとんどのものが表面外観は不良で、ほとんどのものが風合いは硬いものであった。
 [実施例2-1]
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分45質量%、島成分55質量%の複合比率で、島数36島/1フィラメント、平均単繊維直径17μmの海島型複合繊維を得た。得られた海島型複合繊維を繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により、不織布とした。このようにして得られた不織布を、98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (PVA液の調製)
 ケン化度99%、重合度1400のPVA(日本合成化学株式会社製NM-14)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の海島繊維の島成分質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、感熱凝固剤として過硫酸アンモニウム(APS)2質量部を加え、水によって全体を固形分20質量%に調製し、水分散型ポリウレタン液を得た。感熱凝固温度は、72℃であった。
 (ポリウレタンの付与)
 上記のPVAを付与したシートに、上記のポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の島成分質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 上記のポリウレタンを付与したシートを、95℃に加熱した水中に浸漬して10分処理を行い、付与したPVAを除去したシートを得た。
 (繊維極細化(脱海))
 上記のPVAを除去したシートを95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して30分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、3μmであった。
 (半裁・起毛・染色・還元洗浄)
 上記の脱海シートを厚さ方向に半裁し、半裁面と反対の表面を240メッシュのエンドレスサンドペーパーを用いた研削によって起毛処理した後、サーキュラー染色機を用いて分散染料により染色し還元洗浄を行い、シート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例2-2]
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分20質量%、島成分80質量%の複合比率で、島数16島/1フィラメント、平均単繊維直径30μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により不織布とした。このようにして得られた不織布を98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (PVA液の調製)
 実施例2-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例2-1と同様にして、PVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 上記のPVAを除去したシートに対して、実施例2-1と同様にして繊維極細化処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、4.4μmであった。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例2-3]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 実施例2-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例2-1と同様のPVA液を用い、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例2-1と同様にして、繊維質基材用不織布の海島繊維の島成分質量に対するPVAの付着量が20質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 実施例2-1と同様にして、脱海シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例2-4]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 ケン化度99%、重合度1100のPVA(日本合成化学株式会社製NM-11)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の海島繊維の島成分質量に対するPVAの付着量が15質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 実施例2-1と同様にして、脱海シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例2-5]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 ケン化度99%、重合度2600のPVA(日本合成化学株式会社製NH-26)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の繊維質基材用不織布に上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の海島繊維の島成分質量に対するPVAの付着量が5質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 実施例2-1と同様にして、脱海シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例2-6]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 実施例2-1と同様のPVA液を用いた。
 (PVAの付与)
 上記の繊維質基材用不織布に実施例2-1で得た上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、繊維質基材用不織布の島成分質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 上記のPVAを付与した繊維質基材用不織布に、上記のポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の島成分質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去、繊維極細化(脱海))
 上記のポリウレタンを付与したシートを、95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して40分間処理を行い、PVAの除去、そして海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は3μmであった。ここで、PVAの除去と脱海とは同時に行われる。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
[実施例2-7]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 実施例2-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例2-1と同様にして、PVA付与シートを得た。
 (ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、増粘剤(サンノプコ株式会社製SNシックナー612)を10質量部を加え、水によって全体をポリウレタン固形分20質量%に調製し、水分散型ポリウレタン液を得た。
 (ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリウレタン液を含浸させ、乾燥温度120℃の温度で8分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 上記のPVAを除去したシートに対して、実施例2-1と同様にして繊維極細化処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、3μmであった。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [比較例2-1]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 ケン化度87%、重合度500のPVA(日本合成化学株式会社製GL-05)を固形分10質量%の水溶液に調製してPVA液を得た。
 (PVAの付与)
 上記のPVA液を用いた以外は実施例2-1と同様にしてPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 実施例2-1と同様にして、脱海シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物は、PVAが水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
 [比較例2-2]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 ケン化度99%、重合度500のPVA(日本合成化学株式会社製NL-05)を固形分10質量%の水溶液に調製してPVA液を得た。
 (PVAの付与)
 上記のPVA液を用いた以外は実施例2-1と同様にしてPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 実施例2-1と同様にして、脱海シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物は、PVAが水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
 [比較例2-3]
 (繊維質基材用不織布)
 実施例2-1と同様の繊維質基材用不織布を用いた。
 (PVA液の調製)
 実施例2-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例2-1と同様のPVA液を用い、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例2-1と同様にして、繊維質基材用不織布の海島繊維の島成分質量に対するPVAの付着量が55質量%のPVA付与シートを得た。
 (ポリウレタン液の調製)
 実施例2-1と同様の水分散型ポリウレタン液を用いた。
 (ポリウレタンの付与)
 実施例2-1と同様にして、ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例2-1と同様にして、PVA除去シートを得た。
 (繊維極細化(脱海))
 実施例2-1と同様にして、脱海シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例2-1と同様にしてシート状物を得た。得られたシート状物は、風合いは柔軟であったが、PVAが多すぎたためにポリウレタンによる繊維の把持が不十分で、表面外観は立毛が長すぎて不良となり、また耐摩耗性は悪いものであった。
 [比較例2-4]
 PVA液の調製、PVAの付与・除去を行わない以外は実施2-1と同様にしてシート状物を得た。得られたシート状物の風合いは硬くなった。また、表面外観は立毛がなく、不良であった。
 実施例2-1~2-7、及び比較例2-1~2-4で得られたシート状物の評価結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例2-1~2-7で得られたシート状物は、いずれも表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。一方、比較例2-1~2-4で得られたシート状物は、ほとんどのものが表面外観は不良で、ほとんどのものが風合いは硬いものであった。
 [実施例3-1]
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分45質量%、島成分55質量%の複合比率で、島数36島/1フィラメント、平均単繊維直径17μmの海島型複合繊維を得た。得られた海島型複合繊維を繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により、不織布とした。このようにして得られた不織布を、98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (1段目ポリウレタン液の調製)
 ポリオールにポリテトラメチレングリコールを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリエーテル系強制乳化型ポリウレタン液の固形分100質量部に対して、感熱凝固剤として硫酸マグネシウム2質量部を加え、水によって全体を固形分20質量%に調製し、水分散型ポリウレタン液を得た。感熱凝固温度は、64℃であった。
 (1段目ポリウレタンの付与)
 上記の繊維質基材用不織布に、上記の1段目ポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の島成分質量に対する1段目ポリウレタンの付着量が3質量%となるように1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 上記のポリウレタン付与シートを95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して30分間処理を行い、海島型複合繊維の海成分を除去した脱海シートを得た。脱海シート表面の平均単繊維直径は、3μmであった。
 (PVA液の調製)
 ケン化度99%、重合度1400のPVA(日本合成化学株式会社製NM-14)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、感熱凝固剤として過硫酸アンモニウム(APS)2質量部を加え、水によって全体を固形分20質量%に調製し、水分散型ポリウレタン液を得た。感熱凝固温度は、72℃であった。
 (2段目ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記の2段目ポリウレタン液を含浸させ、100℃の温度の湿熱雰囲気下で5分間処理後、乾燥温度120℃の温度で5分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対する2段目ポリウレタンの付着量が30質量%となるように2段目ポリウレタンを付与したシートを得た。
 (PVAの除去)
 上記の2段目ポリウレタンを付与したシートを、95℃に加熱した水中に浸漬して10分処理を行い、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 上記のPVAを除去したシートを厚さ方向に半裁し、半裁面と反対の表面を240メッシュのエンドレスサンドペーパーを用いた研削によって起毛処理した後、サーキュラー染色機を用いて分散染料により染色し還元洗浄を行い、シート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例3-2]
 (繊維質基材用不織布)
 海成分として、5-スルホイソフタル酸ナトリウムを8mol%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分20質量%、島成分80質量%の複合比率で、島数16島/1フィラメント、平均単繊維直径30μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理により不織布とした。このようにして得られた不織布を98℃の温度の湯中に2分間浸漬させて収縮させ、100℃の温度で5分間乾燥させ、繊維質基材用不織布とした。
 (1段目ポリウレタン液の調製)
 実施例3-1と同様の1段目ポリウレタンを用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして脱海シートを得た。脱海シート表面の平均単繊維直径は、4.4μmであった。
 (PVA液の調製)
 実施例3-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例3-1と同様にしてPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 実施例3-1と同様の2段目ポリウレタン液を用いた。
 (2段目ポリウレタンの付与)
 実施例3-1と同様にして2段目ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例3-1と同様にしてPVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例3-3]
 (繊維質基材用不織布)
 実施例3-1と同様の繊維質基材用不織布を用いた。
 (1段目用ポリウレタン液の調製)
 実施例3-1と同様の1段目ポリウレタン液を用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして脱海シートを得た。
 (PVA液の調製)
 ケン化度99%、重合度1100のPVA(日本合成化学株式会社製NM-11)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が15質量%のPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 実施例3-1と同様の2段目ポリウレタン液を用いた。
 (2段目ポリウレタンの付与)
 実施例3-1と同様にして、2段目ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例3-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例3-4]
 (繊維質基材用不織布)
 実施例3-1と同様の繊維質基材用不織布を用いた。
 (1段目用ポリウレタン液の調製)
 実施例3-1と同様の1段目ポリウレタン液を用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして、1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして、脱海シートを得た。
 (PVA液の調製)
 ケン化度99%、重合度2600のPVA(日本合成化学株式会社製NH-26)を固形分10質量%の水溶液に調製し、PVA液を得た。
 (PVAの付与)
 上記の脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が5質量%のPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 実施例3-1と同様の2段目ポリウレタン液を用いた。
 (2段目ポリウレタンの付与)
 実施例3-1と同様にして、2段目ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例3-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [実施例3-5]
 (繊維質基材用不織布)
 実施例3-1と同様の繊維質基材用不織布を用いた。
 (1段目用ポリウレタン液の調製)
 実施例3-1と同様の1段目ポリウレタン液を用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして脱海シートを得た。
 (PVA液の調製)
 実施例3-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例3-1と同様にしてPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 ポリオールにポリヘキサメチレンカーボネートを適用し、イソシアネートにジシクロヘキシルメタンジイソシアネートを適用したポリカーボネート系自己乳化型ポリウレタン液の固形分100質量部に対して、増粘剤(サンノプコ株式会社製SNシックナー612)を10質量部を加え、水によって全体をポリウレタン固形分20質量%に調製し、水分散型ポリウレタン液を得た。
 (2段目ポリウレタンの付与)
 上記のPVAを付与した脱海シートに、上記のポリウレタン液を含浸させ、乾燥温度120℃の温度で8分間熱風乾燥させ、さらに150℃の温度で2分間乾熱処理を行うことにより、不織布の繊維質量に対するポリウレタンの付着量が30質量%となるようにポリウレタンを付与したシートを得た。
 (PVAの除去)
 実施例3-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物の表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。
 [比較例3-1]
 (繊維質基材用不織布)
 実施例3-1と同様の繊維質基材用不織布を用いた。
 (1段目ポリウレタン液の調製)
実施例3-1と同様の1段目ポリウレタンを用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして、1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして、脱海シートを得た。
 (PVA液の調製)
 ケン化度87%、重合度500のPVA(日本合成化学株式会社製GL-05)を固形分10質量%の水溶液に調製してPVA液を得た。
 (PVAの付与)
 上記の脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 実施例3-1と同様の2段目ポリウレタン液を用いた。
 (2段目ポリウレタンの付与)
 実施例3-1と同様にして、2段目ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例3-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物は、PVAが水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
 [比較例3-2]
 (繊維質基材用不織布)
 実施例3-1と同様の繊維質基材用不織布を用いた。
 (1段目ポリウレタン液の調製)
 実施例3-1と同様の1段目ポリウレタンを用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして、1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして、脱海シートを得た。
 (PVA液の調製)
 ケン化度99%、重合度500のPVA(日本合成化学株式会社製NL-05)を固形分10質量%の水溶液に調製してPVA液を得た。
 (PVAの付与)
 上記の脱海シートに上記のPVA液を含浸させ、140℃の温度で10分間加熱乾燥を行い、脱海シートの繊維質量に対するPVAの付着量が10質量%のPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 実施例3-1と同様の2段目ポリウレタン液を用いた。
 (2段目ポリウレタンの付与)
 実施例3-1と同様にして、2段目ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例3-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物は、PVAが水分散型ポリウレタン液に一部溶解したことによって均一な付与状態とならず、表面外観は繊維の分散状態が悪く、立毛の緻密感がない不良であり、風合いは硬いものであった。
 [比較例3-3]
 (繊維質基材用不織布)
 実施例3-1と同様の繊維質基材用不織布を用いた。
 (1段目ポリウレタン液の調製)
実施例3-1と同様の1段目ポリウレタンを用いた。
 (1段目ポリウレタンの付与)
 実施例3-1と同様にして、1段目ポリウレタン付与シートを得た。
 (繊維極細化(脱海))
 実施例3-1と同様にして、脱海シートを得た。
 (PVA液の調製)
 実施例3-1と同様のPVA液を用いた。
 (PVAの付与)
 実施例3-1と同様のPVA液を用い、含浸後の絞りを調節してPVAの付着量を変更した以外は実施例3-1と同様にして、脱海シートの繊維質量に対するPVAの付着量が55質量%のPVA付与シートを得た。
 (2段目ポリウレタン液の調製)
 実施例3-1と同様の2段目ポリウレタン液を用いた。
 (2段目ポリウレタンの付与)
 実施例3-1と同様にして、2段目ポリウレタン付与シートを得た。
 (PVAの除去)
 実施例3-1と同様にして、PVA除去シートを得た。
 (半裁・起毛・染色・還元洗浄)
 実施例3-1と同様にしてシート状物を得た。得られたシート状物は、風合いは柔軟であったが、PVAが多すぎたためにポリウレタンによる繊維の把持が不十分で、表面外観は立毛が長すぎて不良となり、また耐摩耗性は悪いものであった。
 [比較例3-4]
 PVA液の調製、PVAの付与・除去を行わない以外は実施例3-1と同様にしてシート状物を得た。得られたシート状物の風合いは硬くなった。また、表面外観は立毛がなく、不良であった。
 実施例3-1~3-5、及び比較例3-1~3-4で得られたシート状物の評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例3-1~3-5で得られたシート状物は、いずれも表面外観は良好で、柔軟な風合いを有し、耐摩耗性も良好であった。一方、比較例3-1~3-4で得られたシート状物は、ほとんどのものが表面外観は不良で、ほとんどのものが風合いは硬いものであった。
 本発明により得られるシート状物は、家具、椅子および壁材や、自動車、電車および航空機などの車輛室内における座席、天井および内装などの表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、研磨布およびCDカーテン等の工業用資材として好適に用いることができる。

Claims (9)

  1.  次のa、b、cの工程をこの順に行うことを特徴とするシート状物の製造方法。
     a.繊維質基材にケン化度が98%以上、かつ重合度が800~3500であるポリビニルアルコールを繊維質基材に含まれる繊維質量に対し0.1~50質量%付与する工程、
     b.該ポリビニルアルコールが付与された繊維質基材に水分散型ポリウレタンを付与する工程、
     c.該水分散型ポリウレタンを付与した繊維質基材から、ポリビニルアルコールを除去する工程。
  2.  前記工程a、b、cの繊維質基材が平均単繊維直径0.3~7μmの極細繊維または極細繊維発現型繊維を主構成成分とし、前記繊維質基材が極細繊維を主構成成分とする場合において、前記ポリビニルアルコールを付与する前に極細繊維発現型繊維から前記極細繊維を発現させる工程を行い、前記繊維質基材が極細繊維発現型繊維を主構成成分とする場合において、前記ポリビニルアルコールを除去した後に、または前記水分散型ポリウレタンを付与した後に前記ポリビニルアルコールを除去するのと同時に、前記極細繊維発現型繊維から極細繊維を発現させる工程を行うことを特徴とする請求項1記載のシート状物の製造方法。
  3.  極細繊維を発現する工程がアルカリ水溶液で処理する工程であることを特徴とする請求項2記載のシート状物の製造方法。
  4.  前記工程a、b、cの段階における繊維質基材が平均単繊維直径0.3~7μmの極細繊維を主構成成分とし、前記工程aの前に、極細繊維発現型繊維を主構成成分とする繊維質基材から極細繊維を発現させる工程を経ることを特徴とする請求項1~3のいずれか記載のシート状物の製造方法。
  5.  前記工程a、b、cの段階における繊維質基材が平均単繊維直径0.3~7μmの極細繊維を主構成成分とし、前記工程aの前に極細繊維発現型繊維を主構成成分とする繊維質基材に水分散型ポリウレタンを付与し、前記水分散型ポリウレタンを付与した繊維質基材から前記極細繊維を発現させた後に、前記工程aを経ることを特徴とする請求項1~3のいずれか記載のシート状物の製造方法。
  6.  前記工程a、b、cの段階における繊維質基材が極細繊維発現型繊維を主構成成分とし、前記工程cの後もしくは同時に、前記極細繊維発現型繊維を主構成成分とする繊維質基材から、平均単繊維直径が0.3~7μmの極細繊維を発現させる工程を経ることを特徴とする1~3のいずれか記載のシート状物の製造方法。
  7.  前記ポリビニルアルコールの抗張力が400~800kg/cm2であることを特徴とする請求項1~6のいずれか記載のシート状物の製造方法。
  8.  繊維質基材が、平均単繊維直径0.3~7μmの極細繊維または極細繊維発現型繊維と織物および/または編物とが絡合一体化してなることを特徴とする請求項1~7のいずれか記載のシート状物の製造方法。
  9.  請求項1~8のいずれか記載の製造方法により得られるシート状物であって、密度が
    0.2~0.7g/cm3であることを特徴とするシート状物。
PCT/JP2013/074833 2012-09-14 2013-09-13 シート状物の製造方法及びこの製造方法より得られるシート状物 WO2014042241A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014535602A JP5880721B2 (ja) 2012-09-14 2013-09-13 シート状物の製造方法及びこの製造方法より得られるシート状物
CN201380047851.5A CN104619909B (zh) 2012-09-14 2013-09-13 片状物的制造方法及利用该制造方法得到的片状物
KR1020157008233A KR102131678B1 (ko) 2012-09-14 2013-09-13 시트상물의 제조 방법 및 이 제조 방법으로부터 얻어지는 시트상물
US14/427,744 US10301770B2 (en) 2012-09-14 2013-09-13 Process for producing sheet-shaped material and sheet-shaped material obtained by said process
EP13836539.0A EP2896741B1 (en) 2012-09-14 2013-09-13 Process for manufacturing a leather-like nonwoven fabric

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-203305 2012-09-14
JP2012-203547 2012-09-14
JP2012-203441 2012-09-14
JP2012203603 2012-09-14
JP2012203547 2012-09-14
JP2012203305 2012-09-14
JP2012-203603 2012-09-14
JP2012203441 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042241A1 true WO2014042241A1 (ja) 2014-03-20

Family

ID=50278346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074833 WO2014042241A1 (ja) 2012-09-14 2013-09-13 シート状物の製造方法及びこの製造方法より得られるシート状物

Country Status (7)

Country Link
US (1) US10301770B2 (ja)
EP (1) EP2896741B1 (ja)
JP (1) JP5880721B2 (ja)
KR (1) KR102131678B1 (ja)
CN (1) CN104619909B (ja)
TW (1) TWI583847B (ja)
WO (1) WO2014042241A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031694A1 (ja) * 2014-08-28 2016-03-03 東レ株式会社 シート状物およびその製造方法
WO2019244862A1 (ja) * 2018-06-20 2019-12-26 東レ株式会社 シート状物の製造方法
WO2021125029A1 (ja) * 2019-12-20 2021-06-24 東レ株式会社 シート状物およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794774B (zh) * 2017-11-03 2019-05-03 江苏尚科聚合新材料有限公司 一种高耐磨人工皮革及其制备方法
JP2019099970A (ja) * 2017-12-07 2019-06-24 セーレン株式会社 ヌバック調布帛、及びヌバック調布帛の製造方法
KR102062215B1 (ko) * 2018-05-29 2020-01-03 삼덕통상 주식회사 닥나무 펄프를 포함하는 신발 부재

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233885A (ja) * 1985-08-02 1987-02-13 Achilles Corp 表面平滑性に富む人工皮革の製造方法
JP2002030579A (ja) 2000-07-17 2002-01-31 Toray Ind Inc 立毛調皮革様シート状物およびその製造方法
JP2002242083A (ja) * 2001-02-16 2002-08-28 Toray Ind Inc 人工皮革の製造方法
JP2002294572A (ja) * 2001-03-30 2002-10-09 Toray Ind Inc 立毛調皮革様シート状物およびその製造方法
JP2003096676A (ja) 2001-09-25 2003-04-03 Toray Ind Inc 皮革様シート状物の製造方法
JP2003213575A (ja) * 2002-01-22 2003-07-30 Toray Ind Inc 皮革様シート状物の製造方法
JP2013234409A (ja) * 2012-05-10 2013-11-21 Toray Ind Inc シート状物およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914501A (en) * 1969-06-27 1975-10-21 Union Carbide Corp Porous products and processes therefor
JP2980261B2 (ja) 1991-07-23 1999-11-22 株式会社クラレ 繊維シート状物の製造方法
ITMI20010516A1 (it) * 2001-03-12 2002-09-12 Alcantara Spa Processo per la produzione di un tessuto non tessuto microfibroso scamosciato senza l'uso di solventi organici
JP4419549B2 (ja) * 2003-07-18 2010-02-24 東レ株式会社 極細短繊維不織布および皮革様シート状物ならびにそれらの製造方法
US7871946B2 (en) * 2003-10-09 2011-01-18 Kuraray Co., Ltd. Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
US20050118394A1 (en) 2003-11-25 2005-06-02 Kuraray Co., Ltd. Artificial leather sheet substrate and production method thereof
CN1249295C (zh) * 2004-06-17 2006-04-05 东莞市新纶纤维材料科技有限公司 海岛超细纤维针刺无纺布仿真皮的加工方法
TWI429806B (zh) 2007-03-30 2014-03-11 Kuraray Co 粒面仿皮革片材及其製法
CN101725052B (zh) * 2009-11-04 2012-06-13 烟台万华超纤股份有限公司 水性聚氨酯树脂超细纤维革及制造方法
CN102517919A (zh) 2011-12-11 2012-06-27 林炳忠 一种皮革的生产方法
CN102776602A (zh) * 2012-07-27 2012-11-14 烟台万华超纤股份有限公司 定岛超细纤维、定岛超细纤维合成革基布、服饰用绒面革、服饰用光面合成革及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233885A (ja) * 1985-08-02 1987-02-13 Achilles Corp 表面平滑性に富む人工皮革の製造方法
JP2002030579A (ja) 2000-07-17 2002-01-31 Toray Ind Inc 立毛調皮革様シート状物およびその製造方法
JP2002242083A (ja) * 2001-02-16 2002-08-28 Toray Ind Inc 人工皮革の製造方法
JP2002294572A (ja) * 2001-03-30 2002-10-09 Toray Ind Inc 立毛調皮革様シート状物およびその製造方法
JP2003096676A (ja) 2001-09-25 2003-04-03 Toray Ind Inc 皮革様シート状物の製造方法
JP2003213575A (ja) * 2002-01-22 2003-07-30 Toray Ind Inc 皮革様シート状物の製造方法
JP2013234409A (ja) * 2012-05-10 2013-11-21 Toray Ind Inc シート状物およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031694A1 (ja) * 2014-08-28 2016-03-03 東レ株式会社 シート状物およびその製造方法
JPWO2016031694A1 (ja) * 2014-08-28 2017-06-08 東レ株式会社 シート状物およびその製造方法
WO2019244862A1 (ja) * 2018-06-20 2019-12-26 東レ株式会社 シート状物の製造方法
JPWO2019244862A1 (ja) * 2018-06-20 2021-07-08 東レ株式会社 シート状物の製造方法
JP7163959B2 (ja) 2018-06-20 2022-11-01 東レ株式会社 シート状物の製造方法
WO2021125029A1 (ja) * 2019-12-20 2021-06-24 東レ株式会社 シート状物およびその製造方法
JP6904494B1 (ja) * 2019-12-20 2021-07-14 東レ株式会社 シート状物およびその製造方法

Also Published As

Publication number Publication date
CN104619909B (zh) 2017-09-22
EP2896741B1 (en) 2019-08-07
EP2896741A4 (en) 2016-06-08
EP2896741A1 (en) 2015-07-22
US10301770B2 (en) 2019-05-28
TWI583847B (zh) 2017-05-21
KR102131678B1 (ko) 2020-07-08
JPWO2014042241A1 (ja) 2016-08-18
US20150233050A1 (en) 2015-08-20
KR20150058268A (ko) 2015-05-28
JP5880721B2 (ja) 2016-03-09
TW201425685A (zh) 2014-07-01
CN104619909A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5919627B2 (ja) シート状物の製造方法
JP5958060B2 (ja) シート状物およびその製造方法
JP5880721B2 (ja) シート状物の製造方法及びこの製造方法より得られるシート状物
JP6225917B2 (ja) シート状物及びそのシート状物の製造方法
JPWO2015129602A1 (ja) シート状物およびその製造方法
JP6007900B2 (ja) シート状物およびその製造方法
JP2013112905A (ja) シート状物
CN107075793B (zh) 片状物的制造方法
JP6277591B2 (ja) シート状物およびその製造方法
JP6221538B2 (ja) シート状物およびその製造方法
JP6645432B2 (ja) シート状物およびその製造方法
JP2014163026A (ja) シート状物の製造方法およびシート状物
JP6904494B1 (ja) シート状物およびその製造方法
JP5223661B2 (ja) ポリウレタン付繊維シート状物の製造方法
JP2014019983A (ja) シート状物およびその製造方法
JP7163959B2 (ja) シート状物の製造方法
JPWO2018003666A1 (ja) 自動車のインストルメントパネル表皮材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535602

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427744

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013836539

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157008233

Country of ref document: KR

Kind code of ref document: A