WO2014042213A1 - 光学レンズ、光学レンズユニット及び撮像装置 - Google Patents

光学レンズ、光学レンズユニット及び撮像装置 Download PDF

Info

Publication number
WO2014042213A1
WO2014042213A1 PCT/JP2013/074701 JP2013074701W WO2014042213A1 WO 2014042213 A1 WO2014042213 A1 WO 2014042213A1 JP 2013074701 W JP2013074701 W JP 2013074701W WO 2014042213 A1 WO2014042213 A1 WO 2014042213A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
optical lens
lens frame
adhesive
Prior art date
Application number
PCT/JP2013/074701
Other languages
English (en)
French (fr)
Inventor
森基
阿久津大
原新一朗
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014535586A priority Critical patent/JP6102929B2/ja
Priority to US14/428,288 priority patent/US10191189B2/en
Publication of WO2014042213A1 publication Critical patent/WO2014042213A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Definitions

  • the present invention relates to a minute and thick optical lens and an optical lens unit, and an imaging device incorporating the optical lens and the like.
  • small devices such as mobile phones and endoscopes, which have solid-state image sensors such as optical fibers, CCD (Charge-Coupled Device) type image sensors, or CMOS (Complementary Metal-Oxide Semiconductor) type image sensors.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • Patent Document 1 In order to secure a bonding space, there is known one in which a tapered portion is provided in the optical axis direction on the outer periphery of the flange portion of the lens (see Patent Document 1). In addition, there is also known a technique in which an adhesive reservoir is provided on a lens frame in order to avoid adhesion peeling or adhesive sticking (see, for example, Patent Documents 2 and 3).
  • the peripheral portion located outside the optical surface such as the outer periphery of the flange portion
  • the adhesive pool portion expands as it approaches the contact portion provided for positioning in the optical axis direction with the lens frame.
  • the space for bonding is secured by inclining so as to be.
  • the lateral width in the direction perpendicular to the rear axis of the contact portion with the lens frame is narrower than in the case where the tapered portion is not provided.
  • Patent Document 1 when the shape as in Patent Document 1 is applied under a situation where downsizing is required, a sufficient size cannot be secured for the contact portion. If the abutting portion cannot be sufficiently secured, the adhesive that reaches the abutting portion from the adhesion reservoir portion may leak or protrude during bonding.
  • the size of the lens frame is also limited.
  • an adhesive having an irregular shape on the lens frame side is used. It may be difficult to secure a sufficiently large adhesive reservoir by providing a reservoir.
  • the present invention has been made in view of the above problems of the background art, and can secure a bonding space even when the space is limited and there is a spatial limitation, and can prevent adhesion peeling and adhesive sticking.
  • An object is to provide a wide-angle optical lens, an optical lens unit, and an imaging device.
  • an optical lens according to the present invention is a cylindrical optical lens, wherein the optical surface diameter of the first optical surface on the object side is d1, and the optical surface diameter of the second optical surface on the image side.
  • Is d2 and the lens diameter is D, d1 / d2 ⁇ 0.5 and d2 / D> 0.9, and a lens barrel receiving surface provided on the peripheral side of the first optical surface;
  • a bonding space forming portion disposed on the peripheral side of the lens frame receiving surface and retracted to the second optical surface side of the lens frame receiving surface.
  • the optical lens has an adhesive space forming portion for forming an adhesive reservoir and a lens frame on the first optical surface side having a relatively small optical surface diameter between the first optical surface and the second optical surface.
  • a lens frame receiving surface that is a surface to be contacted is provided, and a bonding space forming portion is provided on the peripheral side of the lens frame receiving surface.
  • this optical lens it is not necessary to provide a bonding space on the peripheral side on the second optical surface side having a relatively large optical surface diameter, and therefore the second optical surface is provided over a range close to the lens diameter. Is possible. Therefore, a small and wide-angle lens can be designed.
  • a bonding space forming part that is recessed toward the second optical surface side, when assembling to the lens frame, for example, an adhesive space is secured without providing an irregular adhesive reservoir on the lens frame side. It becomes possible.
  • the lens frame receiving surface is perpendicular to the optical axis and is provided in a ring shape around the first optical surface.
  • the lens frame can be grounded or brought into contact with the entire circumference, so that it is possible to avoid a situation where the adhesive leaks or protrudes from the gap between the lens frame receiving surfaces to the first optical surface side. .
  • the lens diameter is 0.1 mm ⁇ D ⁇ 1.0 mm.
  • the target lens is particularly small, and can be applied as, for example, an imaging device for a mobile phone or a lens for an endoscope.
  • the bonding space forming portion is formed of a first step surface provided on the peripheral side of the lens frame receiving surface and a second step surface provided on the peripheral side of the first step surface.
  • the adhesive stagnant area is secured on the second step surface while preventing the adhesive from leaking or protruding from the first step surface and preventing the adhesive from entering the lens frame receiving surface. can do.
  • the first step surface forms a shallower step than the second step surface in the bonding space forming portion.
  • the first step surface shallow, it is possible to make the adhesive difficult to enter, but to some extent, to prevent the adhesive from entering the lens frame receiving surface, and to secure a sufficient adhesive area. A strong adhesion state is obtained.
  • the step of the first step surface is 0.001 mm or more and 0.020 mm or less.
  • it is difficult to enter the adhesive on the first step surface but it is possible to secure a state where the adhesive enters to some extent. Specifically, by setting this range, it becomes easy to immerse the adhesive that has entered the bonding space forming portion over the entire circumference so that the circumference is closed.
  • edge thickness of the lens is L0 and the on-axis thickness of the lens is L, 0.1 ⁇ L0 / L ⁇ 0.7.
  • edge thickness by setting the edge thickness with respect to the size in the vertical direction within a certain range, the required optical performance can be ensured even if it is small.
  • the thickness of the gate is made close to or sufficiently larger than the edge thickness, so that the fluidity of the material in the mold part forming the gate part and the releasability at the time of molding are ensured in a good state. be able to.
  • the first optical surface is a convex surface or a flat surface
  • the second optical surface is a convex surface.
  • the required performance can be maintained by making the first optical surface convex or flat according to the application.
  • the resolution state in the air and in water can be maintained in an equivalent state by setting the first optical surface to be a flat surface.
  • the optical lens is a lens made by resin molding.
  • the formation of the bonding space forming portion can be performed more easily than in the case of glass, and can be manufactured at a lower cost than glass.
  • the optical lens is a lens manufactured by injection molding.
  • An optical lens unit includes the optical lens described above, a lens frame that accommodates the optical lens in a state in which an adhesive reservoir is formed by the bonding space forming unit in contact with the lens frame receiving surface of the optical lens, There is an adhesive portion that enters the adhesive reservoir provided between the bonding space forming portion provided on the peripheral side of the lens frame receiving surface and the lens frame and bonds the optical lens and the lens frame.
  • the lens diameter of the optical lens is D and the diameter of the lens frame is Dk, Dk / D ⁇ 1.5.
  • Dk is suitable for use as an imaging device for an endoscope.
  • the diameter of the lens frame is Dk
  • Dk is 1.5 mm or less.
  • the optical lens unit when the optical lens unit is applied to an imaging device for an endoscope, it can be used particularly for a thin endoscope such as an oviduct.
  • An imaging apparatus includes the above-described optical lens unit and an imaging element that receives light from the optical lens unit.
  • the imaging device can be applied as an imaging device for an endoscope.
  • it is required to be a small image pickup device, but by applying the image pickup device, it is possible to achieve a wide angle even if it is small in size, and the necessary optical performance is ensured, and the performance with respect to shooting is improved. It can be a high endoscope.
  • FIG. 2A is a front view of the optical lens before cutting
  • FIG. 2B is a side view thereof.
  • FIG. 3A is a diagram illustrating an imaging apparatus in which the optical lens of FIG. 1 is assembled
  • FIG. 3B is a partially enlarged view of FIG. 3A.
  • FIG. 4A is a diagram illustrating a state immediately before the optical lens is bonded
  • FIG. 4B is a diagram illustrating a state after the optical lens is bonded.
  • FIG. 1 is a side sectional view for explaining an optical lens according to a first embodiment of the present invention.
  • the optical lens 10 according to the present embodiment is a single lens that can function as an imaging lens, and is a small lens that can be incorporated into a small imaging device built in, for example, a mobile phone or an endoscope.
  • the optical lens 10 as a whole has a cylindrical rotationally symmetric shape with the optical axis AX as the central axis (excluding the gate portion).
  • the optical lens 10 is obtained by cutting a resin-molded member by injection molding at, for example, a cylindrical cut-out surface CT in the gate portion GT.
  • the shape of cut surface CT it can be set as various shapes according to the structure of the lens frame which attaches the optical lens 10.
  • FIG. 1 is a side sectional view for explaining an optical lens according to a first embodiment of the present invention.
  • the optical lens 10 according to the present embodiment is a single lens that can function as an imaging lens, and is a small lens that can be incorporated
  • the optical lens 10 is a central portion through which the optical axis AX passes and has a main body portion 10s having an optical function, and a cylindrical portion formed around the main body portion 10s. And the peripheral edge PP used for fixing are integrally formed.
  • the optical lens 10 as a whole has a first surface 10a that is a surface on the object side, a second surface 10b that is a surface on the image side, and an outer surface SSa of a side portion extending along the optical axis direction. These surfaces form an external shape.
  • the first surface 10a is on the center side through which the optical axis AX passes and is located on the outer side or outside of the first optical surface S1 that is an object-side optical surface having a circular contour, and the first optical surface S1. It is formed by an annular lens frame receiving surface 2a arranged and an annular bonding space forming surface 3a arranged on the peripheral side or outside of the lens frame receiving surface 2a.
  • the second surface 10b is arranged on the center side passing through the optical axis AX, the second optical surface S2 that is an optical surface on the image side having a circular contour, and the outer side or the outer side of the second optical surface S2.
  • An annular peripheral surface PSa is formed.
  • the first optical surface S1 and the second optical surface S2, which are surfaces performing optical functions, are both rotationally symmetric surfaces around the optical axis AX with respect to a surface perpendicular to the optical axis AX.
  • the diameter of the first surface 10a on the object side including the first optical surface S1 and the diameter of the second surface 10b on the image side including the second optical surface S2 are the same or substantially the same. That is, the outer surface SSa of the optical lens 10 has a cylindrical surface shape.
  • the main body portion 10 s is a portion on the center side passing through the optical axis AX and is a portion directly related to the optical function.
  • the first surface 10 a of the first surface 10 a is the first portion.
  • the first optical surface S1, the lens barrel receiving surface 2a, and the second optical surface S2 of the second surface 10b are provided.
  • an annular portion having a lens frame receiving surface 2 a having a lateral width du is referred to as a lens frame receiving unit 2.
  • the first optical surface S1 and the second optical surface S2 have a relatively large optical surface diameter in the second optical surface S2.
  • the peripheral portion PP of the optical lens 10 is a portion on the peripheral side away from the optical axis AX, and is a portion that is not directly related to the optical function.
  • the surface 10a has a bonding space forming surface 3a, an outer surface SSa, and a peripheral surface PSa of the second surface 10b.
  • an annular portion having the bonding space forming surface 3a is defined as the bonding space forming portion 3
  • a cylindrical portion having the outer surface SSa is defined as the outer surface portion SS
  • an annular shape having the peripheral surface PSa This portion is defined as a peripheral surface portion PS.
  • the peripheral portion PP a portion that is composed of the bonding space forming portion 3 and a portion that is connected to the bonding space forming portion 3 in the outer side surface portion SS and is in contact with the adhesive when fixed is referred to as a bonding portion SK.
  • the peripheral portion PP does not participate in the optical function, but plays an important role for alignment and fixation when the optical lens 10 is attached to another member.
  • the adhesive portion SK is a portion that is directly involved in fixing the optical lens 10.
  • the pair of side surface portions have a substantially parallel shape in the illustrated sectional view.
  • the main body 10 s has a shape that widens from the first surface 10 a toward the second surface 10 b, while the peripheral edge PP extends from the first surface 10 a to the second surface 10 b. It has a tapered triangular shape.
  • the optical surface diameter of the first optical surface S1 is d1
  • the optical surface diameter of the second optical surface S2 is d2
  • the lens diameter (maximum diameter) of the optical lens 10 is D.
  • the lens diameter D is 0.1 mm ⁇ D ⁇ 1.0 mm.
  • the optical lens 10 is a small lens and is suitable for applications such as an endoscope, and can be applied to an imaging device of an oviduct mirror having a particularly thin shape.
  • the optical lens 10 regarding the optical surface diameter d1 and the like, d1 / d2 ⁇ 0.5, and d2 / D> 0.9 The relationship is satisfied. As described above, d1 / d2 ⁇ 0.5 with respect to the optical surface diameter. That is, in the optical lens 10, the first optical surface S1 that is the object-side optical surface is the second optical surface that is the image-side optical surface. It is smaller than half of the surface S2. Thereby, the optical lens 10 is provided with the lens frame receiving surface 2a on the periphery or outside of the first optical surface S1 on the first surface 10a on the object side, and further on the periphery or outside of the lens frame receiving surface 2a. It is possible to provide the space forming surface 3a.
  • the optical lens 10 can be designed to have a relatively wide angle even if it is small.
  • the first optical surface S1 and the second optical surface S2 are both convex surfaces, that is, lenses having a certain degree of refractive power.
  • the lens frame receiving surface 2a is provided in a ring shape around the first optical surface S1, and is a plane perpendicular to the optical axis AX.
  • the lens frame receiving unit 2 functions as an alignment unit.
  • the lens frame receiving surface 2a is the most protruding surface around the first optical surface S1, and the lens frame receiving surface 2a is in contact with the lens frame or the like so that the adhesive is attached to the lens frame during bonding. It is possible to prevent the first optical surface S1 from protruding from the periphery or the outside of the receiving surface 2a.
  • the bonding space forming portion 3 is a portion for forming an adhesive pool portion that serves as a region for storing an adhesive when attached to a member such as a lens frame.
  • the bonding space forming surface 3a is more than the lens frame receiving surface 2a.
  • the second optical surface S2 is set back to the side. In other words, the lens frame receiving surface 2a protrudes closer to the first optical surface S1 than the bonding space forming surface 3a. Accordingly, as will be described in detail later, for example, as shown in FIG. 3A and the like, when the lens frame receiving surface 2a is brought into contact with the lens frame 30, an adhesion reservoir portion CP is formed by the bonding space forming portion 3. It will be.
  • the bonding space forming surface 3a which is the surface portion of the bonding space forming portion 3, includes a first step surface 4a having a lateral width ds1 provided on the peripheral side of the lens frame receiving surface 2a, and a peripheral side of the first step surface 4a. It has a two-stage structure formed by a second step surface 4b having a lateral width ds2 provided in the first step. In particular, the first step surface 4a forms a step that is shallower than the second step surface 4b.
  • the first step surface 4a is retracted by the length or depth DP1 toward the second optical surface S2 with respect to the lens frame receiving surface 2a in the optical axis direction
  • the second step surface 4b is At most, it is retracted by a length or depth DP2 (> DP1) with respect to the lens frame receiving surface 2a.
  • the length DP1 is not less than 0.001 mm and not more than 0.020 mm. That is, a step of 0.001 mm or more and 0.020 mm or less is formed by the first step surface 4a.
  • the second step surface 4b is formed by attaching an R to the end of the bonding space forming surface 3a.
  • the bonding space forming portion 3 has the bonding space forming surface 3a having the two-stage structure as described above, so that a sufficient adhesion pool can be provided when attaching the optical lens 10 to another member by bonding.
  • an adhesion area for sufficiently strengthening the adhesion state while restricting entry of the adhesive into the lens frame receiving surface 2a and suppressing leakage and protrusion of the adhesive.
  • the adhesive for example, an ultraviolet curable epoxy resin or an ultraviolet curable acrylic resin can be used.
  • the optical lens 10 is adhered to another member by curing the adhesive by ultraviolet irradiation. be able to. It is also possible to use a thermosetting adhesive.
  • the optical lens 10 is positioned when attached to another member by the annular frame receiving surface 2a provided around the first optical surface S1, which is the object-side optical surface.
  • the bonding area is secured by the bonding space forming portion 3 provided on the peripheral side of the lens frame receiving surface 2a, it is possible to maintain a good bonding state even when the lens is small when mounting by bonding. Further, it is possible to prevent the adhesive from leaking or protruding to the first optical surface S1.
  • the second optical surface S2 is passed by providing a lower limit on D / L that defines the size in the horizontal direction (in the plane perpendicular to the optical axis AX) with respect to the size in the vertical direction (optical axis direction).
  • edge thickness is L0
  • the edge thickness L0 by setting the edge thickness L0 with respect to the size of the optical lens 10 in the vertical direction (optical axis direction) within a certain range, the required optical performance can be ensured even if the optical lens 10 is small. .
  • the edge thickness L0 is reduced, it is advantageous from the viewpoint of securing the bonding space.
  • the gate thickness g can be made close to the edge thickness L0 or sufficiently larger than the edge thickness L0, the mold portion for forming the gate portion GT in producing the injection molded product as shown in FIGS. 2A and 2B. The fluidity of the resin material and the releasability at the time of molding can be ensured in a good state.
  • FIG. 3A is a diagram showing an imaging device 50 constituted by the optical lens unit 20 including the optical lens 10 of FIG. 1, and FIG. 3B is a partially enlarged view showing a region PA in FIG. 3A.
  • the imaging device 50 includes an optical lens unit 20 in which the optical lens 10 is assembled, and an imaging unit 40 that includes an imaging element 41. That is, the imaging device 50 is configured by combining the optical lens unit 20 and the imaging unit 40.
  • the optical lens unit 20 includes the above-described optical lens 10 and a lens frame 30 that holds the optical lens 10.
  • the lens frame 30 is a cylindrical body having one end open, and is provided to attach the optical lens 10 in contact with the mounting portion 31 extending in the radial direction, and light so as to hold the optical lens 10 from the periphery.
  • a side cylindrical portion 32 extending in the axis AX direction.
  • the attachment portion 31 is a disk-shaped (annular) member having a hole in the center. More specifically, the attachment portion 31 is disposed at one of both ends of the cylindrical side cylindrical portion 32 in the optical axis direction, and one end portion (object side end portion) of the cylindrical lens frame 30. This is a portion that forms the first end portion EP1 side.
  • the attachment portion 31 is a surface on the inner surface side and includes an inner peripheral surface 31 a including a contact portion TS with the optical lens 10, and a hole provided in the center which is a surface of the minimum diameter end. And a tip surface TP that defines the shape of the opening OP. More specifically, the opening OP is disposed on the center side with the optical axis AX as the center, and is defined by the distal end surface TP of the mounting portion 31, thereby forming the contour shape of the first optical surface S ⁇ b> 1 of the optical lens 10. It has the shape according to.
  • the attachment portion 31 causes the contact portion TS of the inner peripheral surface 31a to abut on the lens barrel receiving surface 2a of the first surface 10a of the optical lens 10, thereby allowing the first optical surface S1 to pass through the opening OP.
  • the optical lens 10 can be held while maintaining the state exposed to the object side.
  • the non-contact portion AS on the peripheral side of the contact portion TS in the inner peripheral surface 31a of the attachment portion 31 is a bonding space forming surface in a state where the lens frame receiving surface 2a and the contact portion TS are in contact.
  • the adhesive pool portion CP is formed in cooperation with 3a.
  • the side cylindrical portion 32 has a cylindrical inner peripheral side surface 32a extending along the outer surface portion SS of the optical lens 10 in a storage state in which the inner peripheral surface 31a of the attachment portion 31 is opposed to the first surface 10a. Yes.
  • the lateral cylindrical portion 32 supports the optical lens 10 from the lateral side by the inner peripheral side surface 32a, and performs alignment in a direction perpendicular to the optical axis AX or in the lateral direction.
  • the side cylindrical portion 32 has a gas escape portion GE formed by a groove extending along the optical axis direction in a part of the inner peripheral side surface 32a.
  • the gas escape portion GE prevents gas from remaining in the adhesive pool portion CP when the optical lens 10 is bonded, and can prevent the adhesive from flowing in an unexpected direction.
  • the lens frame 30 is positioned and fixed relative to the optical lens 10 by the peripheral edge PP of the optical lens 10.
  • the imaging unit 40 incorporates an imaging element 41 such as a CCD or CMOS. As shown in the drawing, the imaging unit 40 has the other end portion (image side end portion) disposed on the opposite side to the first end portion EP1 to which the optical lens 10 is assembled, among the both end portions EP1 and EP2 of the lens frame 30. ) On the second end portion EP2 side so as to face the second optical surface S2.
  • an imaging element 41 such as a CCD or CMOS.
  • the imaging device 50 configured as described above causes external light to be incident from the first optical surface S1 which is the object-side optical surface of the optical lens 10, and passes through the optical lens 10 to be emitted from the second optical surface S2.
  • the received light is received by the imaging unit 40, thereby functioning as an imaging device that images the external state.
  • the bonding space forming surface 3a formed on the peripheral side of the first surface 10a is formed by the first step surface 4a and the second step surface 4b described above. ing. Accordingly, when the lens frame receiving surface 2a is brought into contact with the attachment portion 31, an adhesive pool portion CP which is a bonding space is formed in two stages of a first pool portion CP1 and a second pool portion CP2.
  • the first step surface 4a of the optical lens 10 and the first portion ASA that is a part of the non-contact portion AS of the inner peripheral surface 31a of the lens frame 30 are relatively narrow or shallow regions.
  • a second pool portion which is formed with a first pool portion CP1 and is a relatively wide or deep region by the second step surface 4b and the second portion ASb which is the remaining part of the non-contact portion AS of the inner peripheral surface 31a.
  • CP2 is formed.
  • the first pool portion CP1 is formed with a step having a depth (0.001 mm or more and 0.020 mm or less) corresponding to the length DP1 in the first step surface 4a.
  • the second reservoir CP2 is formed corresponding to the shape of the second step surface 4b and the maximum length DP2.
  • FIG. 4A is a diagram illustrating an example of a state immediately before the optical lens 10 is bonded
  • FIG. 4B is a diagram illustrating a state after the optical lens 10 is bonded in the example illustrated in FIG. 4A.
  • the adhesive CCa is applied on the corner surface portion CR, which is the portion where the adhesion pool portion CP is formed, in the interior of the lens frame 30.
  • the optical lens 10 is inserted into the inside from the side of the second end EP2 (see FIG. 3A), which is one end of the lens frame 30 on the released side.
  • the optical lens 10 is pushed along the optical axis AX so that the lens frame receiving surface 2a of the optical lens 10 is brought into contact with the inner peripheral surface 31a of the lens frame 30, and the optical lens 10 is bonded.
  • a part of the adhesive CCa extends to enter the first pool portion CP1 formed by the first step surface 4a and the inner peripheral surface 31a, and the remainder of the adhesive CCa remains the second step surface 4b and the inner peripheral surface. It remains in the second reservoir CP2 formed by 31a. Since the first reservoir portion CP1 formed by inserting the optical lens 10 into the lens frame 30 is sufficiently narrow as described above, a part of the adhesive entering the first reservoir portion CP1.
  • the amount of CCa is limited and cannot reach the contact portion between the lens frame receiving surface 2a and the contact portion TS of the inner peripheral surface 31a. Even if a part of the adhesive CCa tries to extend through the first reservoir CP1, the lens frame receiving surface 2a is in close contact with the contact portion TS of the lens frame 30. By contacting, it functions as an adhesive stopper, and the adhesive CCa can be prevented from moving toward the first optical surface S1. As shown in FIG. 4B, the adhesive CCa that has been sandwiched between the non-contact part AS and the adhesive part SK of the optical lens 10 in the inner peripheral surface 31a is solidified, thereby forming the adhesive part CC. The optical lens 10 is assembled to the lens frame 30. When the adhesive CCa is, for example, an ultraviolet curable resin, the cured adhesive portion CC is formed by performing ultraviolet irradiation, and the optical lens unit 20 is manufactured.
  • the adhesive CCa is, for example, an ultraviolet curable resin
  • the cured adhesive portion CC is formed
  • the optical lens 10 has the adhesive reservoir CP on the first optical surface S1 side having a relatively small optical surface diameter between the first optical surface S1 and the second optical surface S2.
  • the bonding space forming surface 3a to be formed and the lens frame receiving surface 2a which is a surface to be brought into contact with the lens frame 30 are provided, and the bonding space forming surface 3a is further provided on the peripheral side of the lens frame receiving surface 2a. .
  • downsizing is required, for example, even when an optical element having a large flange or no flange is assembled, a sufficiently large space for bonding can be secured and peeling of the bonding can be suppressed. .
  • the lens frame receiving surface 2a is secured sufficiently large, and the adhesive CCa entering the bonding space forming surface 3a leaks or protrudes from the lens frame receiving surface 2a and adheres to the first optical surface S1. Can be suppressed. Further, the optical lens unit 20 assembled with the optical lens 10 can be applied to various optical devices that are required to be miniaturized.
  • FIG. 5 is a diagram illustrating an endoscope 100 as an example of an optical apparatus to which the imaging device 50 including the optical lens unit 20 is applied.
  • an endoscope 100 is configured by bundling a plurality of optical fibers and an optical lens unit 20 including an optical lens 10 and a lens frame 30.
  • Light from the optical lens 10 is incident from one end TA.
  • an image fiber 60 that transmits the image by propagating the light
  • an illumination fiber 70 that is an illumination system disposed around the image fiber 60
  • a sheath 80 that is disposed on the peripheral side and covers and protects the whole.
  • the imaging device 50 includes the optical lens unit 20 and the image fiber 60.
  • the imaging device 50 may include an imaging unit (not shown) on the other end side of the image fiber 60, that is, on the operation side.
  • the lens frame 30 is provided with a step portion 30 d for aligning and fixing the end portion TA of the image fiber 60 to the imaging position with respect to the optical lens 10.
  • the sheath 80 is provided with an opening OP1 on the object side so that illumination light from the light exit end 70a of the illumination fiber 70 to the object side can be irradiated, and reflected light or observation light to the optical lens 10 can be irradiated.
  • the endoscope 100 may include a medical instrument in addition to the above.
  • the endoscope 100 further includes a control device for controlling various processes on the image signal and the like from the imaging device 50 on the other end side of the image fiber 60. Omitted.
  • the illumination fiber 70 is applied as an illumination system.
  • the illumination fiber 70 can be configured to guide light from an external light source provided on the control device (not shown), but various illumination systems are available. For example, it is possible to use an LED light source.
  • the imaging device 50 has a solid-state imaging element such as a CCD or a CMOS as a part of the imaging device 50 on the distal end side, a cable or the like.
  • the present invention can be applied to various modes of transmitting signals.
  • the imaging device 50 is not limited to the imaging device of the endoscope 100 as described above, and can be applied as an imaging device of a mobile phone, for example.
  • the optical lens unit 20 assembled with the optical lens 10 is not limited to the endoscope configured using an image fiber or the like, and can be applied to various types of endoscopes other than those described above. .
  • the imaging device 50 when the diameter of the lens frame 30 is Dk, it can be assumed that Dk / D ⁇ 1.5 with respect to the lens diameter D of the optical lens 10. In this case, it is suitable for use as an imaging device incorporated in an endoscope. In particular, when the lens diameter D is 0.1 mm ⁇ D ⁇ 1.0 mm as described above, Dk is 1.5 mm or less. In this case, when applied to an endoscope imaging device, it can be applied particularly to a thin endoscope such as an oviduct.
  • the optical lens, the optical lens unit, and the imaging device according to the second embodiment will be described.
  • the optical lens and the like according to the present embodiment is a modification of the optical lens 10 and the like according to the first embodiment, and the other structures except for a part are the same as in the case of the first embodiment. Description of parts other than some of the structures is omitted.
  • FIG. 6 is a side sectional view for explaining an image pickup apparatus assembled with an optical lens according to the second embodiment of the present invention.
  • the shape of the peripheral portion PP of the optical lens 10 is different. More specifically, the bonding portion SK of the peripheral portion PP has a slope shape in which the second step surface 4b is cut out of the first step surface 4a and the second step surface 4b of the bonding space forming surface 3a. It has become. That is, in the first embodiment, the second step surface 4b is formed by adding an R, but in the present embodiment, the second step surface 4b has a slope shape, and the size of the slope is appropriately set. By adjusting, the second reservoir CP2 of the adhesive reservoir CP can be made larger, for example, more adhesive space can be taken. In addition, when the 2nd level
  • the optical lens unit 20 to which the optical lens 10 is assembled and the imaging device 50 can be applied to various devices that are required to be downsized.
  • the required bonding space can be more reliably ensured by the shape of the optical lens 10.
  • optical lens and the like according to the present embodiment is a modification of the optical lens 10 and the like according to the first embodiment, and the other structures except for a part are the same as those in the first embodiment and the like. Therefore, description of parts other than some of the structures is omitted.
  • FIG. 7 is a side cross-sectional view illustrating an imaging apparatus assembled with an optical lens according to a third embodiment of the present invention.
  • the shape of the peripheral portion PP of the optical lens 10 is different. Furthermore, the shape of the attachment portion 31 in the lens frame 30 is different.
  • the shape of the adhesive portion SK in the peripheral portion PP is different from that in the first embodiment, so that not only the region of the second reservoir portion CP2 in the adhesive reservoir portion CP is secured, but also the attachment Since the shape of the portion 31 is different, a new third reservoir CP3 can be formed as a part of the adhesive reservoir CP on the lens frame 30 side.
  • the second step surface 4b is the two surface portions of the first step surface 4a and the second step surface 4b of the bonding space forming surface 3a. It has a step shape formed by More specifically, the 2nd level
  • the slope part 5a is a surface connected to the first step surface 4a, and is a tapered surface inclined with respect to the optical axis AX.
  • the flat surface portion 5b is a surface connected to the inclined surface portion 5a, and is a flat surface perpendicular to the optical axis AX.
  • the second step surface 4b is constituted by the slope portion 5a and the flat surface portion 5b, thereby having a step shape, so that the second reservoir portion CP2 having a sufficient depth can be formed.
  • the second reservoir CP2 can have a relatively large capacity by appropriately adjusting the inclination of the inclined surface portion 5a.
  • the inner peripheral surface 31 a has a stepped shape in the attachment portion 31. More specifically, the inner peripheral surface 31a is composed of a contact portion TS that is a flat portion that contacts the lens frame receiving surface 2a of the optical lens 10 and a non-contact portion AS that does not contact.
  • the contact portion AS is stepped. More specifically, the non-contact portion AS is a first surface portion AS1 that is a flat surface portion connected to the contact portion TS and a tapered surface portion that is inclined with respect to the optical axis AX connected to the first portion AS1.
  • the second part AS2 and the third part AS3 which is a plane part connected to the second part AS2 are configured. As illustrated, the second portion AS2 and the third portion AS3 of the non-contact portion AS are closer to the object side than the contact position between the contact portion TS of the lens frame 30 and the lens frame receiving surface 2a of the optical lens 10. Alternatively, since the shape protrudes toward the observation side, a new third reservoir portion CP3 is formed as a part of the adhesive reservoir portion CP in the corner surface portion CR of the lens frame 30.
  • the front end surface TP is inclined with respect to the optical axis AX, and is a tapered surface.
  • the shape of the opening OP is defined by appropriately adjusting the angle of the tip surface TP.
  • the distal end portion TT which is the portion on the distal end side including the distal end surface TP, has a shape that bites into the inside of the lens frame 30.
  • the first optical surface S1 of the optical lens 10 exposed in the optical lens unit 20 is in a state of being retracted to the back side of the lens frame 30, and there is a possibility that external light cannot be sufficiently captured.
  • such a situation can be avoided by appropriately adjusting the taper angle of the tip surface TP which is the above-described tapered surface.
  • the optical lens unit 20 to which the optical lens 10 is assembled and the imaging device 50 can be applied to various devices that are required to be downsized.
  • the shape of the optical lens 10 but also the shape of the lens frame 30 can form a stepped portion, thereby ensuring a bonding space more reliably.
  • the new third reservoir CP3 can be formed by deforming the attachment portion 31 of the lens frame 30 in the optical axis direction, the imaging device 50 does not increase the diameter of the lens frame. It is possible to avoid an increase in diameter as a whole.
  • FIG. 8 is a diagram for explaining another example of the imaging device 50 in which the optical lens 10 is assembled.
  • the first optical surface S1 that is a surface on the object side may be a flat surface or a substantially flat surface instead of a convex surface.
  • the refractive index of the medium is different from that in air. Therefore, by setting the first optical surface S1 as a flat surface having no refractive power or a substantially flat surface having a low refractive power, it is possible to suppress the influence of image distortion caused by the difference in refractive index.
  • the said 1st Embodiment demonstrated the case where the diameter of the 1st surface 10a and the 2nd surface 10b corresponds to the lens diameter D, if the assembly
  • the outer surface portion SS the outer surface SSa does not have to be a complete cylindrical surface shape, and a slight taper or the like may be formed.
  • the diameter of the first surface 10a and the diameter of the second surface 10b may not completely match, and the diameter of the first surface 10a may be slightly smaller than the diameter of the second surface 10b. .
  • the lens frame receiving surface 2a is assumed to be a plane in order to function as an alignment surface, but the lens frame receiving part 2 having the lens frame receiving surface 2a is It may have a structure other than a plane in order to determine the alignment position.
  • the length DP1 is 0.001 mm or more and 0.020 mm or less, but the length DP1, that is, the depth of the step formed by the first step surface 4a, is determined by the adhesive CCa used. It can be appropriately changed according to the viscosity and the like.
  • the optical lens 10 is constituted by a single lens, but a plurality of lenses can be combined.
  • an adhesive reservoir may be further provided on the side of the lens frame 30.
  • the bonding portion SK is a portion formed by the bonding space forming portion 3 and an adjacent portion connected to the bonding space forming portion 3 in the outer surface portion SS, and is in contact with the adhesive when fixed.
  • the outer portion does not need to be particularly restricted, and various modes are conceivable. If there is no influence on the optical function or the like, for example, it may be bonded to the peripheral surface PS side beyond the outer surface SS.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lens Barrels (AREA)
  • Endoscopes (AREA)

Abstract

小型であって空間的制限がある場合であっても接着スペースを確保し、かつ、接着剥がれや接着剤のはみ出しを回避できる広角な光学レンズ及び光学レンズユニット並びに撮像装置を提供する。光学レンズ(10)は、第2光学面(S2)よりも光学面径が小さい第1光学面(S1)側に鏡枠受け面(2a)を設け、さらに、鏡枠受け面(2a)の周辺側に接着用空間形成面(3a)を設けている。これにより、小型化が要請される場合であっても、接着剥がれを抑制することができる。また、鏡枠受け面(2a)を十分に大きく確保して、接着剤が鏡枠受け面(2a)から漏れたりはみ出したりして第1光学面(S1)に付着することを抑制できる。また、光学レンズ(10)を組み付けた光学レンズユニット(20)は、小型化が要請される光学装置に適用可能であり、光学レンズユニット(20)で構成される撮像装置(50)は、小型の装置に適用できる。

Description

光学レンズ、光学レンズユニット及び撮像装置
 本発明は、微小で肉厚な光学レンズ及び光学レンズユニット、並びに当該光学レンズ等を組み込んだ撮像装置に関する。
 近年、例えば携帯電話や内視鏡等の小型の装置であって、光ファイバーやCCD(Charge Coupled Device)型イメージセンサーあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を有するものに適用できる微小な光学レンズや光学レンズユニットが求められている。この種の小型のレンズの鏡枠への組付けでは、空間的制限から、接着のスペースを確保することが困難となる場合があり、この場合、接着剥がれや接着剤のはみ出しを生じてしまうおそれがある。
 接着のスペースを確保するために、レンズのフランジ部外周において光軸方向にテーパー部を設けるものが知られている(特許文献1参照)。また、接着剥がれや接着剤のはみ出しを回避するため、鏡枠に接着剤溜り部を設けるものも知られている(例えば、特許文献2,3参照)。
 しかしながら、光学レンズや光学レンズユニットの小型化が要請される状況下では、フランジ部外周といったレンズのうち光学面の外側に位置する周辺部分が必ずしも十分に確保されるとは限らない。例えば特許文献1の図2等の場合、レンズの外周にテーパー部を設けるにあたって、鏡枠との光軸方向に関する位置決め用に設けられた当接部分に近づくほど接着溜り部が広がっていく形状となるように傾斜させることで接着のスペースを確保している。この場合、テーパー部を設けない場合と比較して、鏡枠との当該当接部分の後軸に垂直な方向の横幅が狭まることになる。従って、特許文献1のような形状を、小型化が要請される状況下で適用すると、当接部分について十分な大きさを確保できなくなる。当接部分が十分に確保できなくなると、接着時に接着溜り部から当接部分に達した接着剤が漏れたりはみ出したりする可能性がある。
 また、光学レンズや光学レンズユニットの小型化が要請される場合には、鏡枠の大きさにも制限が掛かることになり、例えば特許文献2,3のように鏡枠側に異形な接着剤溜り部を設けて十分に大きな接着剤溜り部を確保するといったことが困難になる可能性がある。
特開平2-66506号公報 特開2001-166192号公報 特開平8-329508号公報
 本発明は、上記背景技術の問題に鑑みてなされたものであり、小型であって空間的制限がある場合であっても接着スペースを確保し、かつ、接着剥がれや接着剤のはみ出しを回避できる広角な光学レンズ及び光学レンズユニット並びに撮像装置を提供することを目的とする。
 上記目的を達成するため、本発明に係る光学レンズは、円筒状の光学レンズであって、物体側の第1光学面の光学面径をd1とし、像側の第2光学面の光学面径をd2とし、レンズ直径をDとしたときに、d1/d2<0.5、かつ、d2/D>0.9であり、第1光学面の周辺側に設けられる鏡枠受け面と、この鏡枠受け面の周辺側において鏡枠受け面よりも第2光学面側に後退して配置されている接着用空間形成部と、を有する。
 上記光学レンズは、第1光学面と第2光学面とのうち相対的に光学面径が小さい第1光学面側に、接着剤溜り部を形成する接着用空間形成部と、鏡枠に当接させる面である鏡枠受け面とを設けており、さらに、接着用空間形成部を鏡枠受け面の周辺側に設けている。これにより、小型化が要請され、例えばフランジが大きく取れない或いはフランジが無いような場合であっても、接着用空間形成部を十分に大きく確保し、接着剥がれを抑制することができ、鏡枠受け面を十分に大きく確保し、接着用空間形成部に入り込んだ接着剤が鏡枠受け面から漏れたりはみ出したりすることを抑制できる。
 また、この光学レンズでは、相対的に光学面径が大きい第2光学面側において周辺側に接着用の空間を設ける必要がないため、第2光学面をレンズ直径に近い範囲に亘って設けることが可能である。従って、小型でかつ広角なレンズを設計できる。
 また、第2光学面側に向けて凹んで設けられる接着用空間形成部を有することで、鏡枠に組み付ける際に、例えば鏡枠側に異形な接着剤溜り部を設けることなく接着スペースを確保可能になる。
 本発明の具体的な側面又は観点では、鏡枠受け面は、光軸に垂直であって、第1光学面の周囲において輪帯状に設けられている。この場合、レンズ光学面と同時加工が可能であるため、光軸に対して高精度に垂直である輪帯状の鏡枠受け面とすることができる。このような形状とすることで、鏡枠と全周にわたり接地又は当接可能となるため、鏡枠受け面の隙間から第1光学面側に接着剤が漏れたりはみ出したりするという事態を回避できる。
 本発明の別の側面では、レンズ直径は、0.1mm≦D≦1.0mmである。この場合、対象となるレンズは、特に小型のものであり、例えば、携帯電話機の撮像装置や内視鏡のレンズとして適用可能となる。
 本発明のさらに別の側面では、接着用空間形成部は、鏡枠受け面の周辺側に設けられる第1段差面と、第1段差面の周辺側に設けられる第2段差面とで形成される。この場合、2段階の段差面のうち、第1段差面において接着剤の漏れやはみ出しを抑制し接着剤の鏡枠受け面への入り込みを防ぎつつ、第2段差面において接着剤のたまり場を確保することができる。
 本発明のさらに別の側面では、接着用空間形成部において、第1段差面は、第2段差面よりも浅い段差を形成する。この場合、第1段差面を浅くすることで、接着剤が入りにくいがある程度は入るものにでき、接着剤の鏡枠受け面への入り込みを抑制し、かつ、接着面積を確保して十分な強度の接着状態が得られる。
 本発明のさらに別の側面では、第1段差面の段差は、0.001mm以上0.020mm以下である。この場合、第1段差面において、接着剤が入りにくいがある程度は入る状態を確保できる。具体的には、この範囲とすることにより、接着用空間成形部に入り込んだ接着剤を一周が閉じるように全周にわたって浸みわたらせることが容易になる。
 本発明のさらに別の側面では、レンズ直径をDとし、レンズの軸上厚をLとしたときに、0.5≦D/L≦2.0である。この場合、縦方向のサイズに対する横方向のサイズを規定するD/Lに下限を設けることで、収差補正を確保しつつ大型化を抑制することができ、D/Lに上限を設けることで、取付けに際する接着スペースを確保することができる。
 本発明のさらに別の側面では、レンズのコバ厚をL0とし、レンズの軸上厚をLとしたときに、0.1≦L0/L≦0.7である。この場合、縦方向のサイズに対するコバ厚を一定の範囲内とすることで、小型であっても必要な光学性能を確保できる。
 本発明のさらに別の側面では、ゲートの厚みをgとし、レンズのコバ厚をL0としたときに、0.1≦L0/g≦1.2である。この場合、ゲートの厚みをコバ厚に近づけ或いはそれより十分大きくすることになるので、ゲート部を形成する金型部分での材料の流動性及び成形時の離型性を良好な状態に確保することができる。
 本発明のさらに別の側面では、第1光学面は、凸面又は平面であり、第2光学面は、凸面である。この場合、用途に応じて第1光学面を凸面又は平面とすることで、必要な性能を維持できる。例えば水中でも用いる光学レンズである場合は、第1光学面を平面とすることで空中時と水中時の解像状態を同等な状態に維持できる。
 本発明のさらに別の側面では、光学レンズは、樹脂成形によって作製されたレンズである。この場合、接着用空間形成部の形成がガラスの場合よりも簡易に行え、また、ガラスよりも安価に作製することができる。
 本発明のさらに別の側面では、光学レンズは、射出成形によって作製されたレンズである。
 本発明に係る光学レンズユニットは、上述した光学レンズと、光学レンズの鏡枠受け面と当接して、接着用空間形成部による接着溜り部を形成した状態で光学レンズを収納する鏡枠と、鏡枠受け面の周辺側に設けた接着用空間形成部と鏡枠との間に設けられる接着溜り部に入り込んで、光学レンズと鏡枠とを接着させる接着部とを有する。本発明の光学レンズを用いることで、小型でありながら接着剥がれや接着剤の光学面へのはみ出しを抑制しつつ、携帯電話機用や内視鏡用として使用可能となる程度の光学性能が確保された小型の光学レンズユニットを得ることができる。
 本発明の具体的な側面又は観点では、光学レンズのレンズ直径をDとし、鏡枠の直径をDkとしたときに、Dk/D≦1.5である。この場合、内視鏡用の撮像装置としての使用に適したものとなる。
 本発明の別の側面では、鏡枠の直径をDkとしたときに、Dkは、1.5mm以下である。この場合、光学レンズユニットを内視鏡用の撮像装置に適用するにあたって、特に卵管用のような細い内視鏡用のものとしての使用が可能となる。
 本発明に係る撮像装置は、上述した光学レンズユニットと、光学レンズユニットからの光を受ける撮像素子とを有する。本発明の光学レンズユニットを用いることで、小型であっても広角なものにでき、かつ、必要な光学性能を確保できる撮像装置を得ることができる。
 本発明の具体的な側面又は観点では、撮像装置は、内視鏡の撮像装置として適用可能である。この場合、小型の撮像装置であることが要求されるが、上記撮像装置を適用することで、小型であっても広角なものにでき、かつ、必要な光学性能を確保され、撮影に関して性能の高い内視鏡とすることができる。
本発明の第1実施形態に係る光学レンズを説明する図である。 図2Aは、カット前の光学レンズの正面図であり、図2Bは、その側面図である。 図3Aは、図1の光学レンズを組み付けた撮像装置を説明する図であり、図3Bは、図3Aの一部拡大図である。 図4Aは、光学レンズを接着する直前の状態を示す図であり、図4Bは、光学レンズを接着した後の状態を示す図である。 撮像装置を備える内視鏡の一例を示す図である。 本発明の第2実施形態に係る光学レンズを組み付けた撮像装置を説明する図である。 本発明の第3実施形態に係る光学レンズを組み付けた撮像装置を説明する図である。 光学レンズを組み付けた撮像装置の他の一例を説明する図である。
〔第1実施形態〕
 図1は、本発明の第1実施形態に係る光学レンズを説明する側断面図である。本実施形態の光学レンズ10は、結像レンズとして機能させることができる単レンズであって、例えば携帯電話機や内視鏡等に内蔵される小型の撮像装置に組込み可能な小型のものである。光学レンズ10は、全体として光軸AXを中心軸とする円柱状の回転対称形状を有している(ゲート部は除く)。また、図2A及び2Bに示すように、光学レンズ10は、射出成形によって樹脂成形された部材を、ゲート部GTのうち例えば円筒状の切出面CTにおいて切削することで得られる。なお、切出面CTの形状については、光学レンズ10を取り付ける鏡枠の構造に応じて種々の形状とすることができる。
 図1に戻って、光学レンズ10は、光軸AXが通る中心側の部分であり光学的な機能を有する本体部10sと、本体部10sの周囲に形成される筒状の部分であってアライメントや固定に利用される周縁部PPとを、一体的に形成したものである。
 全体としての光学レンズ10は、物体側の面である第1面10aと、像側の面である第2面10bと、光軸方向に沿って延びる側方部分の外側面SSaとを有し、これらの面により外観形状を形成している。これらの面のうち、第1面10aは、光軸AXが通る中心側にあり円形輪郭を有する物体側の光学面である第1光学面S1と、第1光学面S1の周辺側又は外側に配置されている環状の鏡枠受け面2aと、鏡枠受け面2aの周辺側又は外側に配置されている環状の接着用空間形成面3aとで形成されている。一方、第2面10bは、光軸AXを通る中心側にあり円形輪郭を有する像側の光学面である第2光学面S2と、第2光学面S2の周辺側又は外側に配置されている環状の周辺面PSaとで形成されている。なお、光学的な機能を果たす面である第1光学面S1及び第2光学面S2は、ともに光軸AXに垂直な面を基準とする光軸AXのまわりに回転対称な面である。また、第1光学面S1を含む物体側の第1面10aの直径と第2光学面S2を含む像側の第2面10bの直径とは一致又は略一致する。つまり、光学レンズ10の外側面SSaは、円筒面形状となっている。
 光学レンズ10のうち、本体部10sは、光軸AXを通る中心側の部分であって、直接的に光学的機能に関与する部分であり、上記の各面のうち、第1面10aの第1光学面S1と、鏡枠受け面2aと、第2面10bの第2光学面S2とを有している。ここでは、本体部10sのうち、横幅duの鏡枠受け面2aを有する環状の部分を鏡枠受け部2とする。またここで、第1光学面S1と第2光学面S2とでは、第2光学面S2のほうが相対的に光学面径の大きな面となっている。
 一方、光学レンズ10のうち、周縁部PPは、光軸AXから離れた周辺側の部分であって、直接的には光学的機能に関与しない部分であり、上記の各面のうち、第1面10aの接着用空間形成面3aと、外側面SSaと、第2面10bの周辺面PSaとを有している。ここでは、周縁部PPのうち、接着用空間形成面3aを有する環状の部分を接着用空間形成部3とし、外側面SSaを有する筒状の部分を外側面部SSとし、周辺面PSaを有する環状の部分を周辺面部PSとする。また、周縁部PPにおいて、一例として接着用空間形成部3と、外側面部SSのうち接着用空間形成部3に繋がる部分とで構成され固定時に接着剤と接する部分を、接着部分SKとする。周縁部PPは、光学的機能には関与しないが、光学レンズ10を他の部材に取り付けるにあたってアライメントや固定のために重要な役割を果たすものとなっている。特に、接着部分SKは、光学レンズ10を固定させる際に直接的に関与する部分となる。
 なお、光学レンズ10は、全体として一定又は略一定の径を保った円柱となっているため、図示の断面図において、一対の側面部分が略平行な形状となっている。光学レンズ10のうち、本体部10sは、第1面10aから第2面10bに向かって広がる形状となっているのに対して、周縁部PPは、第1面10aから第2面10bに向かって先細る三角形状となっている。
 この光学レンズ10において、第1光学面S1の光学面径をd1とし、第2光学面S2の光学面径をd2とし、光学レンズ10のレンズ直径(最大径)をDとする。例えば、外側面SSaが完全な円筒面形状となっている場合、第1面10a及び第2面10bの直径は、ともにレンズ直径Dに完全に一致する。具体的数値の一例として、レンズ直径Dは、0.1mm≦D≦1.0mmであるものとする。この場合、光学レンズ10は、小型のレンズであり、内視鏡等の用途に適し、特に細い形状を有する卵管鏡の撮像装置において適用可能となる。
 また、この光学レンズ10において、光学面径d1等に関して、
d1/d2<0.5、かつ、
d2/D>0.9
の関係が満たされているものとする。光学面径に関して上記のようにd1/d2<0.5となっている、すなわち、光学レンズ10において、物体側の光学面である第1光学面S1が像側の光学面である第2光学面S2に比べて半分以下に小さくなっている。これにより、光学レンズ10は、物体側の第1面10aにおいて、第1光学面S1の周辺又は外側に、鏡枠受け面2aを設け、さらに鏡枠受け面2aの周辺又は外側に、接着用空間形成面3aを設けることが可能となっている。また、d1/d2が小さいほど、光が広がる方向にいくので、広角の光学系を達成できる。一方、上記のようにd2/D>0.9となっている、すなわち、光学レンズ10は、像側の第2面10bにおいて、第2光学面S2が大半部分を占めており、第2光学面S2以外には周辺の僅かな部分に光学的機能を有しない周辺面PSaのみが形成されている。d2/Dが1に近いほど、レンズ外形ぎりぎりまで光が通ることになり、同じ光路であれば、小径なレンズを構成できる。以上により、光学レンズ10は、小型であっても比較的広角なものとなるように設計できる。
 なお、図示の例では、第1光学面S1及び第2光学面S2は、いずれも凸面となっている、すなわちある程度の屈折力を有するレンズであるものとする。
 鏡枠受け部2において、鏡枠受け面2aは、第1光学面S1の周囲に輪帯状に設けられており、光軸AXに垂直な平面となっている。例えば図3Aに示すように、鏡枠受け面2aが取付け時に鏡枠30等の他の部材に当接することで、鏡枠受け部2は、アライメント部として機能する。また、鏡枠受け面2aは、第1光学面S1の周囲で最も突出した面であり、鏡枠受け面2aが鏡枠等に密着した状態で当接することで、接着に際して接着剤が鏡枠受け面2aの周辺又は外部から内側の第1光学面S1にはみ出すことを抑制できる。
 接着用空間形成部3は、鏡枠等の部材に取付ける際に接着剤を溜める領域となる接着溜り部を形成するための部分であり、接着用空間形成面3aが鏡枠受け面2aよりも第2光学面S2側に後退して配置されている。言い換えると、鏡枠受け面2aは、接着用空間形成面3aよりも第1光学面S1側に突出している。これにより、詳しくは後述するが、例えば図3A等に示すように、鏡枠受け面2aを鏡枠30に当接させた際に、接着用空間形成部3によって接着溜り部CPが形成されることになる。
 また、接着用空間形成部3の表面部分である接着用空間形成面3aは、鏡枠受け面2aの周辺側に設けられる横幅ds1の第1段差面4aと、第1段差面4aの周辺側に設けられる横幅ds2の第2段差面4bとで形成される2段階構造となっている。特に、第1段差面4aは、第2段差面4bよりも浅い段差を形成するものとなっている。つまり、第1段差面4aは、光軸方向に関して、鏡枠受け面2aに対して第2光学面S2側へ長さ又は深さDP1だけ後退しているのに対し、第2段差面4bは、最大で、鏡枠受け面2aに対して長さ又は深さDP2(>DP1)だけ後退している。ここでは、一例として、長さDP1が、0.001mm以上0.020mm以下であるものとする。つまり、第1段差面4aによって0.001mm以上0.020mm以下の段差が形成されることになる。第1段差面4aでの段差をこの範囲にすることで、接着剤が入りにくいがある程度は入ることを許容する状態が確保される。なお、第2段差面4bによる段差を定める長さDP2や第2段差面4bの形状については、接着剤を留めておき意図しない方向へ広がることを抑制するのに十分な大きさを確保するように適宜設計することができる。ここでは、一例として、接着用空間形成面3aの端部にRをつけることで、第2段差面4bを形成させている。接着用空間形成部3は、以上のような2段階構造の接着用空間形成面3aを有するものとなっていることで、光学レンズ10を他の部材に接着によって取り付けるにあたって、十分な接着溜りを確保し、接着剤の鏡枠受け面2aへの入り込みを制限して接着剤の漏れやはみ出しを抑制しつつ、接着状態を十分強固にするための接着面積を確保することができる。なお、接着剤としては、例えば、紫外線硬化型エポキシ樹脂や紫外線硬化型アクリル樹脂を用いることができ、この場合、接着剤を紫外線照射により硬化することで、光学レンズ10を他の部材に接着させることができる。また、熱硬化型の接着剤を使用することも可能である。
 以上のように、光学レンズ10では、物体側の光学面である第1光学面S1の周辺に設けられた輪帯状の鏡枠受け面2aによって他の部材への取付けに際しての位置決めがなされ、この際、鏡枠受け面2aの周辺側に設けられた接着用空間形成部3によって接着領域が確保されるので、接着による取付けに際して、レンズが小型であっても、良好な接着状態を維持しつつ、第1光学面S1へ接着剤が漏れたりはみ出したりすることを抑制できるものとなっている。
 ここで、図1に示すように、光学レンズ10において、光軸AXに平行な方向に関して、光学レンズ10の軸上厚をLとしたときに、レンズ直径Dに対して、0.5≦D/L≦2.0であることが望ましい。この場合、縦方向(光軸方向)のサイズに対する横方向(光軸AXに垂直な面内の方向)のサイズを規定するD/Lに下限を設けることで、第2光学面S2を通過する軸外光線が光軸AXから離れることを抑制して収差補正を容易にしつつ、大型化を抑制することができ、D/Lに上限を設けることで、光学面S1,S2の面径差を十分に確保でき、光学レンズ10の取付けに際して接着スペースを確保することができる。
 また、コバ厚をL0としたときに、0.1≦L0/L≦0.7であることが望ましい。この場合、光学レンズ10の縦方向(光軸方向)のサイズに対するコバ厚L0を一定の範囲内とすることで、光学レンズ10が小型であっても必要な光学性能が確保された状態にできる。なお、コバ厚L0を小さくすれば、接着スペース確保の観点からは有利となる。
 また、ゲートの厚みをgとしたときに、0.1≦L0/g≦1.2であることが望ましい。この場合、ゲートの厚みgをコバ厚L0に近づけ或いはコバ厚L0よりも十分に大きくできるので、図2A及び2Bに示すような射出成形品を作製するにあたって、ゲート部GTを形成する金型部分での樹脂材料の流動性及び成形時の離型性を良好な状態に確保することができる。
 以下、上述の光学レンズ10を有する光学レンズユニットおよび当該光学レンズユニットを含む撮像装置の一例について説明する。図3Aは、図1の光学レンズ10を含む光学レンズユニット20によって構成される撮像装置50を示す図であり、図3Bは、図3Aのうち領域PAの部分について示す一部拡大図である。撮像装置50は、光学レンズ10を組み付けた光学レンズユニット20と、撮像素子41を含んで構成される撮像ユニット40とを備える。つまり、撮像装置50は、光学レンズユニット20と撮像ユニット40とを組み合わせて構成されている。
 光学レンズユニット20は、上述した光学レンズ10と、光学レンズ10を保持する鏡枠30とを有する。鏡枠30は、一端が開放された筒状体であり、光学レンズ10を当接させて取付けるために設けられて半径方向に延びる取付部31と、光学レンズ10を周囲から保持するように光軸AX方向に延びる側方筒状部32とを有する。取付部31は、中央に孔の開いた円盤状(輪帯状)の部材である。より具体的には、取付部31は、円筒状の側方筒状部32の光軸方向に関する両端のうち一方に配置され、円筒状の鏡枠30の一方の端部(物体側端部)である第1端部EP1側を形成する部分である。取付部31は、鏡枠30として見た場合に内面側の面であり光学レンズ10との当接部分TSを含む内周面31aと、最小径端の面であり中央に設けた孔となる開口部OPの形状を画成する先端面TPとを有する。より具体的には、開口部OPは、光軸AXを中心とする中央側に配置され、取付部31の先端面TPで画成されることで光学レンズ10の第1光学面S1の輪郭形状に応じた形状を有するものとなっている。また、取付部31は、光学レンズ10の第1面10aのうち鏡枠受け面2aに内周面31aの当接部分TSを当接させることで、開口部OPを介して第1光学面S1を物体側に露出させた状態に維持しつつ、光学レンズ10を保持可能としている。また、取付部31の内周面31aのうち当接部分TSの周辺側の非当接部分ASは、鏡枠受け面2aと当接部分TSとが当接した状態において、接着用空間形成面3aと協働して接着溜り部CPを形成する。
 側方筒状部32は、取付部31の内周面31aを第1面10aと対向させた収納状態において光学レンズ10の外側面部SSに沿って延びる円筒状の内周側面32aを有している。側方筒状部32は、内周側面32aにより光学レンズ10を側方側から支持し、また、光軸AXに垂直な方向又は側方に関するアライメントをしている。また、側方筒状部32は、内周側面32aの一部に光軸方向に沿って延びる溝によって形成されるガス逃げ部GEを有している。ガス逃げ部GEは、光学レンズ10の接着時において接着溜り部CPにガスを残留させないようにしており、接着剤が予期しない方向に流動することを防ぐことができる。
 以上の鏡枠30は、見方を変えると、光学レンズ10のうち周縁部PPによって、光学レンズ10との相対的な位置決め及び固定を行っている。
 撮像ユニット40には、例えばCCDやCMOS等の撮像素子41が組み込まれている。撮像ユニット40は、図示のように、鏡枠30の両端部EP1,EP2のうち、光学レンズ10が組み付けられる第1端部EP1とは反対側に配置された他方の端部(像側端部)である第2端部EP2側において、第2光学面S2に対向して設けられている。
 以上のような構成の撮像装置50は、光学レンズ10のうち物体側の光学面である第1光学面S1から外部光を入射させ、光学レンズ10内部を通過して第2光学面S2から射出される光を、撮像ユニット40において受光することにより、外部の状態を撮像する撮像装置として機能する。
 以下、撮像装置50のうち、光学レンズユニット20の作製すなわち光学レンズ10の鏡枠30への組付けに関係する構造部分について説明する。図3Bにおいて一部拡大して示すように、第1面10aの周辺側に形成される接着用空間形成面3aは、既述の第1段差面4aと、第2段差面4bとで形成されている。これに伴い、鏡枠受け面2aを取付部31に当接させる時に、接着用の空間である接着溜り部CPが第1溜り部CP1と第2溜り部CP2との2段階で形成される。具体的には、光学レンズ10の第1段差面4aと鏡枠30の内周面31aのうち非当接部分ASの一部である第1部分ASaとによって比較的狭い又は浅い領域である第1溜り部CP1が形成され、第2段差面4bと内周面31aのうち非当接部分ASの残りの一部である第2部分ASbとによって比較的広い又は深い領域である第2溜り部CP2が形成される。第1溜り部CP1は、第1段差面4aにおける長さDP1に対応する深さ(0.001mm以上0.020mm以下)の段差で形成される。また、第2溜り部CP2は、第2段差面4bの形状や最大の長さDP2に対応して形成される。
 以下、光学レンズ10の鏡枠30への組付け、すなわち接着の動作について一例を示す。図4Aは、光学レンズ10を接着する直前の状態の一例を示す図であり、図4Bは、図4Aに示す例において、光学レンズ10を接着した後の状態を示す図である。まず、図4Aに示すように、鏡枠30の内部のうち接着溜り部CPが形成される部分であるコーナー面部分CRの上に接着剤CCaを塗布する。次に、光学レンズ10を、鏡枠30のうち解放された側の一端である第2端部EP2(図3A参照)の側から内部に挿入する。その後、図4Bに示すように、光学レンズ10を光軸AXに沿って押し込むことで鏡枠30の内周面31aに光学レンズ10の鏡枠受け面2aを当接させ、光学レンズ10を接着する。この際、接着剤CCaの一部が延びて第1段差面4aと内周面31aとによって形成される第1溜り部CP1に入り込み、接着剤CCaの残りが第2段差面4bと内周面31aとによって形成される第2溜り部CP2にとどまる。光学レンズ10を鏡枠30内に挿入することで形成される第1溜り部CP1は、既述のように、十分狭いものとなっているので、第1溜り部CP1に入り込む一部の接着剤CCaの量は限られ、鏡枠受け面2aと内周面31aの当接部分TSとの当接箇所には到達し得ないものとなっている。また、仮に接着剤CCaの一部が第1溜り部CP1内を伝って延びようとする場合が生じたとしても、鏡枠受け面2aが鏡枠30の当接部分TSに密着した状態で当接することで接着剤止めとして機能し、接着剤CCaが第1光学面S1へ向かうことを抑えられる。図4Bに示すように内周面31aのうち非当接部分ASと光学レンズ10の接着部分SKとに挟持された状態となった接着剤CCaが固化することで、接着部CCが形成され、光学レンズ10が鏡枠30に組み付けられる。なお、接着剤CCaが例えば紫外線硬化性樹脂である場合、紫外線照射を行うことで、硬化した接着部CCが形成され、光学レンズユニット20が作製される。
 以上のように、本実施形態に係る光学レンズ10は、第1光学面S1と第2光学面S2とのうち相対的に光学面径が小さい第1光学面S1側に接着剤溜り部CPを形成する接着用空間形成面3aや鏡枠30に当接させる面である鏡枠受け面2aを設けており、さらに、接着用空間形成面3aを鏡枠受け面2aの周辺側に設けている。これにより、小型化が要請され、例えばフランジが大きく取れない或いはフランジが無いような光学素子を組み付ける場合であっても、接着用の空間を十分に大きく確保し、接着剥がれを抑制することができる。また、鏡枠受け面2aを十分に大きく確保して、接着用空間形成面3aに入り込んでいる接着剤CCaが鏡枠受け面2aから漏れたりはみ出したりして第1光学面S1に付着することを抑制できる。また、光学レンズ10を組み付けた光学レンズユニット20は、小型化が要請される種々の光学装置に適用可能である。
 図5は、光学レンズユニット20を含む撮像装置50を適用した光学機器の一例として、内視鏡100について示す図である。図5において、内視鏡100は、光学レンズ10と鏡枠30とで構成される光学レンズユニット20と、多数の光ファイバーを束ねて構成され光学レンズ10からの光を一方の端部TAから入射させて伝搬することで画像伝送を行うイメージファイバー60と、これらの周辺に配置される照明系である照明ファイバー70と、さらに周辺側に配置され全体を覆って保護するシース80とを備える。なお、撮像装置50は、上記光学レンズユニット20とイメージファイバー60とで構成されるが、例えばイメージファイバー60のもう一方の端部側すなわち操作側に撮像ユニット等(不図示)を有する構成にできる。また、鏡枠30には、光学レンズ10に対してイメージファイバー60の端部TAを結像位置にアライメントして固定するための段差部30dが設けられている。また、シース80には、物体側に開口OP1が設けられており、照明ファイバー70の光射出端70aから物体側への照明光を照射可能とするとともに、光学レンズ10への反射光又は観察光の入射を可能にしている。なお、内視鏡100は、上記の他、医療器具等を有するものとしてもよい。また、内視鏡100は、イメージファイバー60の他端側において、さらに撮像装置50からの画像信号等に対して各種処理の制御を行うための制御装置を有するが、ここでは、図示及び説明を省略する。
 なお、上記では照明系として照明ファイバー70を適用するものとしており、例えば不図示の制御装置側に設けた外部光源から光を導いて照明する構成にできるが、照明系としては、種々のものが適用可能であり、例えばLED光源を用いること等が可能である。
 また、上記は、撮像装置50の内視鏡への適用の一例であり、例えば内視鏡100が撮像装置50の一部としてCCDやCMOS等の固体撮像素子を先端側に有し、ケーブル等により信号送信する、種々の態様に適用できる。
 また、撮像装置50は、以上のような内視鏡100の撮像装置に限らず、例えば携帯電話機の撮像装置等として適用可能である。また、光学レンズ10を組み付けた光学レンズユニット20は、イメージファイバー等を用いて構成した上記内視鏡に場合に限らず、上記以外の種々のタイプの内視鏡に対しても適用可能である。
 撮像装置50については、鏡枠30の直径をDkとしたときに、光学レンズ10のレンズ直径Dに対して、Dk/D≦1.5であるものとすることができる。この場合、内視鏡に組み込まれる撮像装置としての使用に適したものとなる。特に、レンズ直径Dが、上述のように、0.1mm≦D≦1.0mmである場合には、Dkは、1.5mm以下となる。この場合、内視鏡用の撮像装置に適用するにあたって、特に卵管鏡といった細い内視鏡に適用可能となる。
〔第2実施形態〕
 以下、第2実施形態に係る光学レンズ、光学レンズユニット及び撮像装置について説明する。なお、本実施形態に係る光学レンズ等は、第1実施形態に係る光学レンズ10等の変形例であり、一部を除いた他の構造については、第1実施形態の場合と同様であるため、一部の構造以外の部分については、説明を省略する。
 図6は、本発明の第2実施形態に係る光学レンズを組み付けた撮像装置を説明する側断面図である。
 図示のように、本実施形態では、光学レンズ10を含む光学レンズユニット20で構成される撮像装置50において、光学レンズ10のうち、周縁部PPの形状が異なっている。より具体的には、周縁部PPの接着部分SKにおいて、接着用空間形成面3aの第1段差面4a及び第2段差面4bのうち、第2段差面4bが切り出された斜面形状を有するものとなっている。つまり、第1実施形態では、第2段差面4bがRをつけることで形成されていたが、本実施形態では、第2段差面4bが斜面形状となっており、この斜面の大きさを適宜調整することで、接着溜り部CPのうち第2溜り部CP2を例えばより大きくとることができる、すなわち接着スペースをより多くとることができる。なお、第2段差面4bを大きく取った場合、相対的に、周縁部PPのうち外側面部SSは、第1実施形態の場合よりも小さくなる。
 本実施形態の場合も、小型化が要請される場合であっても、接着用の空間を十分に大きく確保し、接着剥がれを抑制することができる。また、鏡枠受け面2aを十分に大きく確保して、接着剤が鏡枠受け面2aから漏れたりはみ出したりして光学レンズ10に付着することを抑制できる。また、光学レンズ10を組み付けた光学レンズユニット20延いては撮像装置50は、小型化が要請される種々の装置に適用可能である。特に、本実施形態の場合、光学レンズ10が有する形状によって、必要な接着スペースをより確実に確保できる。
〔第3実施形態〕
 以下、第3実施形態に係る光学レンズ、光学レンズユニット及び撮像装置について説明する。なお、本実施形態に係る光学レンズ等は、第1実施形態等に係る光学レンズ10等の変形例であり、一部を除いた他の構造については、第1実施形態等の場合と同様であるため、一部の構造以外の部分については、説明を省略する。
 図7は、本発明の第3実施形態に係る光学レンズを組み付けた撮像装置を説明する側断面図である。
 図示のように、本実施形態では、光学レンズ10を含む光学レンズユニット20で構成される撮像装置50において、光学レンズ10のうち、周縁部PPの形状が異なっている。さらに、鏡枠30のうち、取付部31の形状が異なっている。本実施形態の場合、周縁部PPのうち接着部分SKの形状が第1実施形態等の場合と異なることで、接着溜り部CPのうち第2溜り部CP2の領域を確保するだけでなく、取付部31の形状が異なることで、鏡枠30側において、新たな第3溜り部CP3を接着溜り部CPの一部として形成させることができるものとなっている。
 以下、まず、光学レンズ10の周縁部PPの形状について説明する。本実施形態の場合、周縁部PPのうち接着用空間形成部3において、接着用空間形成面3aの第1段差面4a及び第2段差面4bのうち、第2段差面4bが2つの面部分で形成される段形状となっている。より具体的には、第2段差面4bは、第1部分面として斜面部5aと、第2部分面として平面部5bとで構成されている。このうち、斜面部5aは、第1段差面4aと繋がる面であり、光軸AXに対して傾斜したテーパー状の面となっている。平面部5bは、斜面部5aと繋がる面であり、光軸AXに対して垂直な平坦面となっている。第2段差面4bは、斜面部5aと平面部5bとによって構成されることで、段差形状を有することになり、十分な深さを有する第2溜り部CP2を形成可能としている。この場合、斜面部5aの傾斜を適宜調整することで、第2溜り部CP2を比較的大きな容量とすることができる。
 次に、鏡枠30の取付部31の形状について説明する。本実施形態の場合、図示のように、取付部31において、内周面31aが段差形状を有している。より具体的に説明すると、内周面31aは、光学レンズ10の鏡枠受け面2aと当接する平面部分である当接部分TSと、当接しない非当接部分ASとで構成され、非当接部分ASが段差状になっている。より具体的には、非当接部分ASは、当接部分TSに繋がる平面部分である第1部分AS1と、第1部分AS1に繋がる光軸AXに対して傾斜したテーパー状の面部分である第2部分AS2と、第2部分AS2に繋がる平面部分である第3部分AS3とで構成されている。図示のように、非当接部分ASのうち第2部分AS2及び第3部分AS3が、鏡枠30の当接部分TSと光学レンズ10の鏡枠受け面2aとの当接位置よりも物体側又は観察側に突出した形状となっていることで、鏡枠30のコーナー面部分CRにおいて、接着溜り部CPの一部として新たな第3溜り部CP3が形成されるものとなっている。
 なお、取付部31において、先端面TPは、光軸AXに対して傾いており、テーパー状の面となっている。この先端面TPの角度が適宜調整されることで、開口部OPの形状が画定される。本実施形態の場合、見方を変えると、先端面TPを含む先端側の部分である先端部TTが鏡枠30の内部側に向かって食い込んだ形状となっているともいえる。そうなると、光学レンズユニット20において露出する光学レンズ10の第1光学面S1は、鏡枠30の奥側に引っ込んだ状態となり、外部光を十分に取り込めないおそれがある。しかし、上記したテーパー状の面である先端面TPのテーパー角度を適宜調整することにより、かかる事態を回避することができる。
 本実施形態により、小型化が要請される場合であっても、接着用の空間を十分に大きく確保し、接着剥がれを抑制することができる。また、鏡枠受け面2aを十分に大きく確保して、接着剤が鏡枠受け面2aから漏れたりはみ出したりして光学レンズ10に付着することを抑制できる。また、光学レンズ10を組み付けた光学レンズユニット20延いては撮像装置50は、小型化が要請される種々の装置に適用可能である。特に、本実施形態の場合、光学レンズ10の形状のみならず、鏡枠30の形状においても、段差部分を形成可能とすることで、より確実に接着スペースを確保することができる。また、この場合、鏡枠30の取付部31を光軸方向について変形することで、新たな第3溜り部CP3を形成可能としているため、鏡枠の直径を大きくすることがなく、撮像装置50全体として径が大きくなることを回避できる。
〔その他〕
 図8は、光学レンズ10を組み付けた撮像装置50の他の一例を説明する図であり、物体側の面である第1光学面S1は、凸面でなく平面或いは略平面としてもよい。例えば、撮像装置50を水中において用いる場合、空気中の場合とは媒質の屈折率が異なることになる。従って、第1光学面S1を、屈折力のない平面あるいは屈折力の弱い略平面とすることで、屈折率の差に起因する像の歪み等の影響を抑えることができる。
 また、上記第1実施形態では、第1面10a及び第2面10bの直径がレンズ直径Dに一致する場合について説明しているが、鏡枠等への組み付けが可能であれば、光学レンズ10の外側面部SSにおいて外側面SSaが完全な円筒面形状である必要はなく、多少のテーパー等が形成されていてもよい。例えば、第1面10aの直径と第2面10bの直径とが完全には一致せず、第1面10aの直径が第2面10bの直径よりもやや小さくなっている等であってもよい。
 また、上記では、鏡枠受け部2において、鏡枠受け面2aは、アライメントを行う面として機能するために平面であるものとしているが、鏡枠受け面2aを有する鏡枠受け部2は、アライメント位置を決めるために平面以外の構造を有するものであってもよい。
 また、上記では、長さDP1が、0.001mm以上0.020mm以下であるものとしているが、長さDP1すなわち第1段差面4aによって形成される段差の深さは、使用する接着剤CCaの粘性等に応じて適宜変更可能である。
 また、上記では、光学レンズ10を単体のレンズで構成しているが、複数のレンズを組み合わせることも可能である。
 また、鏡枠30の側においてスペースの確保が可能である場合には、鏡枠30側にさらに接着剤溜りを設けるものとしてもよい。
 また、上記では、接着部分SKを、接着用空間形成部3と、外側面部SSのうち接着用空間形成部3に繋がる隣接部分とで構成され固定時に接着剤と接する部分であるとしているが、接着する箇所については、例えば外側の部分に関しては特に規制する必要がなく、種々の態様が考えられる。光学機能への影響等がなければ、例えば外側面部SSを超えて周辺面部PS側まで接着されるものとなっても構わない。

Claims (17)

  1.  円筒状の光学レンズであって、
     物体側の第1光学面の光学面径をd1とし、像側の第2光学面の光学面径をd2とし、レンズ直径をDとしたときに、d1/d2<0.5、かつ、d2/D>0.9であり、
     前記第1光学面の周辺側に設けられる鏡枠受け面と、
     前記鏡枠受け面の周辺側において前記鏡枠受け面よりも前記第2光学面側に後退して配置されている接着用空間形成部と、を有する、光学レンズ。
  2.  前記鏡枠受け面は、光軸に垂直であって、前記第1光学面の周囲において輪帯状に設けられている、請求項1に記載の光学レンズ。
  3.  前記レンズ直径は、0.1mm≦D≦1.0mmである、請求項1及び2のいずれか一項に記載の光学レンズ。
  4.  前記接着用空間形成部は、前記鏡枠受け面の周辺側に設けられる第1段差面と、前記第1段差面の周辺側に設けられる第2段差面とで形成される、請求項1から3までのいずれか一項に記載の光学レンズ。
  5.  前記接着用空間形成部において、前記第1段差面は、前記第2段差面よりも浅い段差を形成する、請求項4に記載の光学レンズ。
  6.  前記第1段差面の段差は、0.001mm以上0.020mm以下である、請求項4及び5のいずれか一項に記載の光学レンズ。
  7.  レンズ直径をDとし、レンズの軸上厚をLとしたときに、0.5≦D/L≦2.0である、請求項1から6までのいずれか一項に記載の光学レンズ。
  8.  レンズのコバ厚をL0とし、レンズの軸上厚をLとしたときに、0.1≦L0/L≦0.7である、請求項1から7までのいずれか一項に記載の光学レンズ。
  9.  ゲートの厚みをgとし、レンズのコバ厚をL0としたときに、0.1≦L0/g≦1.2である、請求項1から8までのいずれか一項に記載の光学レンズ。
  10.  前記第1光学面は、凸面又は平面であり、前記第2光学面は、凸面である、請求項1から9までのいずれか一項に記載の光学レンズ。
  11.  樹脂成形によって作製されたレンズである、請求項1から10までのいずれか一項に記載の光学レンズ。
  12.  射出成形によって作製されたレンズである、請求項11に記載の光学レンズ。
  13.  請求項1から12までのいずれか一項に記載の光学レンズと、
     前記光学レンズの前記鏡枠受け面と当接して、接着用空間形成部による接着溜り部を形成した状態で前記光学レンズを収納する鏡枠と、
     前記鏡枠受け面の周辺側に設けた前記接着用空間形成部と前記鏡枠との間に設けられる前記接着溜り部に入り込んで、前記光学レンズと前記鏡枠とを接着させる接着部と、を有する、光学レンズユニット。
  14.  前記光学レンズのレンズ直径をDとし、前記鏡枠の直径をDkとしたときに、Dk/D≦1.5である、請求項13に記載の光学レンズユニット。
  15.  前記鏡枠の直径をDkとしたときに、Dkは、1.5mm以下である、請求項13及び14のいずれか一項に記載の光学レンズユニット。
  16.  請求項13から15までのいずれか一項に記載の光学レンズユニットと、
     前記光学レンズユニットからの光を受ける撮像素子と、を有する、撮像装置。
  17.  内視鏡の撮像装置として適用可能である、請求項16に記載の撮像装置。
PCT/JP2013/074701 2012-09-14 2013-09-12 光学レンズ、光学レンズユニット及び撮像装置 WO2014042213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014535586A JP6102929B2 (ja) 2012-09-14 2013-09-12 光学レンズ、光学レンズユニット及び撮像装置
US14/428,288 US10191189B2 (en) 2012-09-14 2013-09-12 Optical lens, optical lens unit, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-203116 2012-09-14
JP2012203116 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042213A1 true WO2014042213A1 (ja) 2014-03-20

Family

ID=50278322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074701 WO2014042213A1 (ja) 2012-09-14 2013-09-12 光学レンズ、光学レンズユニット及び撮像装置

Country Status (3)

Country Link
US (1) US10191189B2 (ja)
JP (1) JP6102929B2 (ja)
WO (1) WO2014042213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700721A (zh) * 2015-11-12 2018-10-23 赫普塔冈微光有限公司 光学元件堆叠组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566541B (zh) * 2018-08-21 2024-05-28 奥林巴斯株式会社 内窥镜装置和内窥镜的插入部
TWI728585B (zh) 2019-12-06 2021-05-21 大立光電股份有限公司 成像鏡頭與電子裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344758A (ja) * 2002-05-29 2003-12-03 Enplas Corp 固体撮像素子用広角光学系
JP2005156524A (ja) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd 光学素子の光軸検出方法
JP2005208330A (ja) * 2004-01-22 2005-08-04 Nippon Sheet Glass Co Ltd ホルダ付き成形光学部品およびその製造方法
JP2005309000A (ja) * 2004-04-20 2005-11-04 Fujinon Corp 光学ユニット
WO2009119192A1 (ja) * 2008-03-26 2009-10-01 コニカミノルタオプト株式会社 接合レンズアレイ、接合レンズ及び接合レンズアレイの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805707B2 (ja) 1988-09-01 1998-09-30 オリンパス光学工業株式会社 レンズ保持装置
US6092728A (en) * 1992-03-30 2000-07-25 Symbol Technologies, Inc. Miniature laser diode focusing module using micro-optics
JP3313265B2 (ja) 1995-06-02 2002-08-12 松下電器産業株式会社 光ピックアップ用対物レンズ取付構造
JP4482990B2 (ja) 1999-12-10 2010-06-16 株式会社ニコン レンズ保持枠及びレンズ鏡筒
JP2004344230A (ja) * 2003-05-20 2004-12-09 Olympus Corp 内視鏡撮像装置
JP3861887B2 (ja) * 2004-05-25 2006-12-27 コニカミノルタオプト株式会社 組レンズ
CN1885908B (zh) * 2005-06-24 2010-04-28 鸿富锦精密工业(深圳)有限公司 照相模组
CN102763014B (zh) * 2010-02-19 2015-05-13 柯尼卡美能达先进多层薄膜株式会社 摄像透镜单元
JP2012118403A (ja) * 2010-12-02 2012-06-21 Tamron Co Ltd プラスチックレンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344758A (ja) * 2002-05-29 2003-12-03 Enplas Corp 固体撮像素子用広角光学系
JP2005156524A (ja) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd 光学素子の光軸検出方法
JP2005208330A (ja) * 2004-01-22 2005-08-04 Nippon Sheet Glass Co Ltd ホルダ付き成形光学部品およびその製造方法
JP2005309000A (ja) * 2004-04-20 2005-11-04 Fujinon Corp 光学ユニット
WO2009119192A1 (ja) * 2008-03-26 2009-10-01 コニカミノルタオプト株式会社 接合レンズアレイ、接合レンズ及び接合レンズアレイの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700721A (zh) * 2015-11-12 2018-10-23 赫普塔冈微光有限公司 光学元件堆叠组件

Also Published As

Publication number Publication date
JPWO2014042213A1 (ja) 2016-08-18
US10191189B2 (en) 2019-01-29
US20150241607A1 (en) 2015-08-27
JP6102929B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
US9848757B2 (en) Endoscope and endoscope system
KR101409523B1 (ko) 촬상 모듈 및 촬상 모듈용 결상 렌즈
WO2011024387A1 (ja) レンズ鏡筒、撮像装置および携帯端末装置
US11347017B2 (en) Lens unit
KR20020088364A (ko) 촬상 렌즈, 촬상 장치 및 촬상 렌즈의 성형 방법
JP2007006475A (ja) 移動通信装置のカメラモジュール
JP2009210996A (ja) 撮像モジュール、撮像モジュールの製造方法、撮像モジュールの組立方法、撮像モジュールを用いた内視鏡及び撮像モジュールを用いたカプセル型内視鏡
EP1271215A2 (en) Image pickup lens system
JP2014067018A (ja) 撮像レンズおよび撮像装置
JP2012083439A (ja) 光学装置、撮像装置、及び当該光学装置に備わるレンズ同士の調芯及び固定方法
JP6102929B2 (ja) 光学レンズ、光学レンズユニット及び撮像装置
JP2009048024A (ja) レンズユニット、撮像モジュール、及び光学機器
JP2015073540A (ja) 内視鏡および内視鏡の製造方法
JP5389376B2 (ja) 内視鏡用撮像ユニット
WO2013179817A1 (ja) 電子内視鏡装置及び撮像モジュール並びに撮影レンズモールド方法
WO2013128681A1 (ja) 内視鏡
JP2002350608A (ja) 撮像レンズ、撮像装置、金型及び撮像レンズの成形方法
US20180081143A1 (en) Imaging module and method of manufacturing the same
WO2018235352A1 (ja) 内視鏡用対物光学系
JP2013012859A (ja) 撮像レンズおよび撮像モジュール
TWI447457B (zh) 鏡頭模組
EP3769136B1 (en) Image-sensor fixing structure
JP2018138983A (ja) 撮像装置
CN102595046A (zh) 免对焦相机模块
JP2009008956A (ja) 撮像レンズ体、撮像ユニット、及び該撮像ユニットを搭載した携帯型情報端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535586

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428288

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836293

Country of ref document: EP

Kind code of ref document: A1