WO2014042139A1 - 酸化物焼結体およびスパッタリングターゲット - Google Patents

酸化物焼結体およびスパッタリングターゲット Download PDF

Info

Publication number
WO2014042139A1
WO2014042139A1 PCT/JP2013/074340 JP2013074340W WO2014042139A1 WO 2014042139 A1 WO2014042139 A1 WO 2014042139A1 JP 2013074340 W JP2013074340 W JP 2013074340W WO 2014042139 A1 WO2014042139 A1 WO 2014042139A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
sno
sintered body
ingazno
oxide sintered
Prior art date
Application number
PCT/JP2013/074340
Other languages
English (en)
French (fr)
Other versions
WO2014042139A8 (ja
Inventor
幸樹 田尾
守賀 金丸
旭 南部
英雄 畠
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to KR1020157006265A priority Critical patent/KR101762043B1/ko
Priority to US14/427,761 priority patent/US9905403B2/en
Priority to CN201380047313.6A priority patent/CN104619673B/zh
Publication of WO2014042139A1 publication Critical patent/WO2014042139A1/ja
Publication of WO2014042139A8 publication Critical patent/WO2014042139A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to an oxide sintered body used when a thin film transistor (TFT) oxide semiconductor thin film used for a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method, and a sputtering target. .
  • TFT thin film transistor
  • An amorphous (amorphous) oxide semiconductor used for a TFT has a higher carrier mobility than a general-purpose amorphous silicon (a-Si), has a large optical band gap, and can be formed at a low temperature. Therefore, it is expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance.
  • a-Si general-purpose amorphous silicon
  • As an oxide semiconductor composition suitable for these uses for example, an In-containing amorphous oxide semiconductor [In—Ga—Zn—O (IGZO) or the like] has been proposed.
  • a sputtering method of sputtering a sputtering target (hereinafter sometimes referred to as “target material”) made of the same material as the film is preferably used.
  • target material a sputtering target made of the same material as the film.
  • Patent Document 1 proposes a technique for suppressing abnormal discharge by reducing the average crystal grain size of crystal grains of an ITO target.
  • Patent Document 2 discloses a technique for improving the electrical conductivity of a target material and suppressing abnormal discharge during sputtering by annealing an In—Zn—O-based composite oxide in a reducing atmosphere after sintering. Proposed.
  • the sputtering target used for manufacturing the oxide semiconductor film for a display device, and the oxide sintered body that is a material thereof are desired to have a composition corresponding to the required high carrier mobility. Considering productivity and manufacturing costs, it is also important to further suppress abnormal discharge (arcing) in the sputtering process. To that end, improvement of the target material and the oxide sintered body that is the material is required. It has been.
  • An object of the present invention is to provide an oxide sintered body and a sputtering target that can stably form a film by a sputtering method while suppressing abnormal discharge.
  • the present invention provides the following oxide sintered body and sputtering target.
  • An oxide sintered body obtained by mixing and sintering zinc oxide, indium oxide, gallium oxide, and tin oxide, The relative density of the oxide sintered body is 85% or more, When the oxide sintered body is subjected to X-ray diffraction, the volume ratio of the Zn 2 SnO 4 phase to the InGaZnO 4 phase satisfies the following formulas (1) to (3), respectively. Union.
  • the ratios (atomic%) of zinc, indium, gallium, and tin to all metal elements contained in the oxide sintered body are [Zn], [In], [Ga], and [Sn], respectively.
  • ⁇ 4> The oxide sintered body according to any one of ⁇ 1> to ⁇ 3>, wherein a volume ratio of the Zn 2 SnO 4 phase to the InGaZnO 4 phase satisfies the following formula (1 ′).
  • ⁇ 7> The oxide sintered body according to any one of ⁇ 1> to ⁇ 6>, wherein an average crystal grain size of the oxide sintered body is 30 ⁇ m or less.
  • ⁇ 8> The oxide sintered body according to ⁇ 7>, wherein an average crystal grain size of the oxide sintered body is 3 ⁇ m or more.
  • ⁇ 9> A sputtering target obtained using the oxide sintered body according to any one of ⁇ 1> to ⁇ 8>, wherein the specific resistance is 1 ⁇ ⁇ cm or less.
  • an oxide sintered body capable of suppressing abnormal discharge in the formation of an oxide semiconductor film and capable of stable film formation by a sputtering method, and a sputtering target.
  • FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention.
  • FIG. 2 is a graph showing an example of a sintering process used in the production method of the present invention.
  • the inventors of the present invention can form an oxide semiconductor film that can stably form a film for a long time by suppressing abnormal discharge during sputtering, and has high carrier mobility. In order to provide an oxide sintered body for a sputtering target suitable for the above, studies have been repeated.
  • an oxide sintered body containing zinc oxide, indium oxide, gallium oxide, and tin oxide has a ratio of Zn 2 SnO 4 phase and InGaZnO 4 phase with respect to the phase structure when X-ray diffraction is performed. It has been found out that there is an effect of suppressing abnormal discharge during sputtering by controlling, and (b) the effect of suppressing the occurrence of abnormal discharge during sputtering can be further improved by increasing the relative density.
  • the oxide sintered body according to the present invention is an oxide sintered body (IGZTO) obtained by mixing and sintering zinc oxide, indium oxide, gallium oxide, and tin oxide.
  • IGZTO oxide sintered body obtained by mixing and sintering zinc oxide, indium oxide, gallium oxide, and tin oxide.
  • the formed oxide semiconductor film tends to exhibit higher carrier mobility and higher etching resistance.
  • an oxide semiconductor film having higher carrier mobility can be formed while suppressing abnormal discharge during sputtering. Can do.
  • the present invention is characterized in that when the oxide sintered body is subjected to X-ray diffraction, a main phase containing a Zn 2 SnO 4 phase and an InGaZnO 4 phase in a predetermined ratio is used.
  • the X-ray diffraction conditions in the present invention are as follows.
  • Analysis device “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions
  • Target Cu
  • Monochromatic Uses a monochrome mate (K ⁇ )
  • Target output 40kV-200mA (Continuous firing measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
  • Monochromator light receiving slit 0.6mm Scanning speed: 2 ° / min
  • Sampling width 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • a compound phase having a crystal structure described in an ICDD (International Center for Diffraction Data) card is specified.
  • the correspondence between each compound phase and the card number is as follows.
  • m in the (ZnO) m In 2 O 3 phase is an integer of 2 to 5.
  • the reason why m is defined is that ZnO exhibits an arbitrary ratio in relation to In 2 O 3 in a compound in which a ZnO phase and an In 2 O 3 phase are combined.
  • the Zn 2 SnO 4 compound (phase) is formed by bonding ZnO and SnO 2 constituting the oxide sintered body of the present invention.
  • the InGaZnO 4 compound (phase) is an oxide formed by combining In, Ga, and Zn constituting the oxide sintered body of the present invention.
  • the above compound greatly contributes to the improvement of the relative density of the oxide sintered body and the reduction of the specific resistance. As a result, a stable direct current discharge is continuously obtained, and the abnormal discharge suppression effect is improved.
  • the present invention includes the Zn 2 SnO 4 phase and InGaZnO 4 phase as a main phase.
  • the “main phase” means a compound having the highest ratio among all the compounds in which the total ratio of the Zn 2 SnO 4 phase and the InGaZnO 4 phase is detected by the X-ray diffraction.
  • the Zn 2 SnO 4 phase and InGaZnO 4 phase of the present invention include those in which In, Ga and / or Sn are dissolved in Zn 2 SnO 4 and InGaZnO 4 , respectively.
  • the compound phase (Zn 2 SnO 4 phase, InGaZnO 4 phase, In 2 O 3 phase, SnO 2 phase, and (ZnO) m In 2 O 3 phase) (m is an integer of 2 or more and 5 or less), the volume ratio of Zn 2 SnO 4 phase and InGaZnO 4 phase is (1 ) To (3) must be satisfied.
  • ratio (1) [Zn 2 SnO 4 ] + [InGaZnO 4 ] ratio ((Zn 2 SnO 4 phase + InGaZnO 4 phase) / (Zn 2 SnO 4 phase + InGaZnO 4 phase + In 2 O 3 phase + SnO 2 phase + (ZnO)) m In 2 O 3 phase; hereinafter referred to as ratio (1)) ⁇ 75% by volume (hereinafter, “volume%” of each phase is simply expressed as “%”)
  • the ratio (1) becomes small, the abnormal discharge occurrence rate becomes high, so it is necessary to set it to 75% or more, preferably 80% or more, more preferably 85% or more.
  • the upper limit is preferably as high as possible. For example, it may be 100%, but it is preferably 95% or less, more preferably 90% or less from the viewpoint of ease of production.
  • Ratio (referred to as (2): [Zn 2 SnO 4 ] ratio (Zn 2 SnO 4 phase / (Zn 2 SnO 4 phase + InGaZnO 4 phase + In 2 O 3 phase + SnO 2 phase + (ZnO) m In 2 O 3 phase)); Ratio (referred to as (2)) ⁇ 30% Even if the ratio (1) is satisfied, if the ratio (2) is small, the effect of suppressing abnormal discharge may not be sufficiently obtained. Therefore, the ratio needs to be 30% or more, preferably 40% or more. Preferably it is 50% or more, More preferably, it is 55% or more.
  • the upper limit is not particularly limited, but is preferably 90% or less, more preferably 80% or less, and still more preferably 70% or less from the viewpoint of securing the InGaZnO 4 phase.
  • ratio (3) [InGaZnO 4 ] ratio (InGaZnO 4 phase / (Zn 2 SnO 4 phase + InGaZnO 4 phase + In 2 O 3 phase + SnO 2 phase + (ZnO) m In 2 O 3 phase); hereinafter, ratio (3) ⁇ 10% Even if the ratio (1) and / or the ratio (2) is satisfied, if the ratio (3) is small, the relative density cannot be increased, and the abnormal discharge suppression effect may not be sufficiently obtained. It is necessary to make it 10% or more, preferably 12% or more, more preferably 15% or more.
  • the upper limit is not particularly limited, but is preferably 60% or less from the viewpoint of securing the Zn 2 SnO 4 phase, and more preferably 30% or less, and further preferably 25% or less from the viewpoint of ease of manufacture. It is.
  • the compound phase of the oxide sintered body of the present invention is substantially composed of Zn 2 SnO 4 phase, InGaZnO 4 phase, In 2 O 3 phase, SnO 2 phase, and (ZnO) m In 2 O 3 phase (m is 2 The integer of 5 or less is desirable, and the ratio of these compound phases in all compound phases is preferably 75% or more.
  • the In 2 O 3 phase, the SnO 2 phase, and the (ZnO) m In 2 O 3 phase (m is an integer of 2 or more and 5 or less) may not be included.
  • compound phases that can be contained include 25% or less of InGaZn 2 O 5 phase, ZnGa 2 O 4 phase, (ZnO) m In 2 O 3 phase (m is an integer of 6 or more), which are inevitably produced in production. May be included. Of these compound phases, the InGaZn 2 O 5 phase is preferably not included. In addition, the ratio of the compound phase produced
  • the relative density of the oxide sintered body of the present invention is 85% or more. Increasing the relative density of the oxide sintered body not only can further improve the effect of suppressing the occurrence of abnormal discharge, but also provides advantages such as maintaining stable discharge continuously until the target life. In order to obtain such an effect, the oxide sintered body of the present invention needs to have a relative density of at least 85%, preferably 90% or more, and more preferably 95% or more. Further, the relative density is preferably 110% or less, and more preferably 105% or less. The relative density of the oxide sintered body is determined by the Archimedes method.
  • the ratio of the content (atomic%) of each metal element (zinc, indium, gallium, tin) to the total metal elements excluding oxygen contained in the oxide sintered body is [Zn], [In], respectively. , [Ga] and [Sn], it is desirable to satisfy the following formulas (4) to (6).
  • [Zn] means the Zn content (atomic%; hereinafter referred to as “atomic%”) of all metal elements excluding oxygen (O) (Zn, In, Ga, and Sn). Is simply written as “%”).
  • [In], [Ga], and [Sn] are ratios of respective contents of In, Ga, and Sn to all metal elements (Zn, In, Ga, and Sn) excluding oxygen (O) ( Atom%).
  • the above formula (4) defines the Zn ratio ([Zn]) in all metal elements, and the Zn 2 SnO 4 phase and InGaZnO 4 phase are mainly contained in the predetermined ratios (1) to ( This is set from the viewpoint of controlling to 3). If the amount of [Zn] is too small, it becomes difficult to satisfy the ratios (1) to (3) of the compound phase, and the effect of suppressing abnormal discharge cannot be sufficiently obtained. Therefore, [Zn] is preferably 40% or more, more preferably 42% or more. On the other hand, if [Zn] becomes too high, the ratio of In, Ga, and Sn is relatively lowered, and the desired compound phase ratio cannot be obtained. Therefore, it is preferably 50% or less, more preferably 48% or less. It is.
  • the above formula (5) defines the sum of the In ratio and the Ga ratio in all metal elements ([In] + [Ga]), and the InGaZnO 4 phase is mainly composed of the predetermined ratio (1), This is set from the viewpoint of controlling in (3). If the amount of [In] + [Ga] is too small, it will be difficult to satisfy the compound phase ratios (1) and (3). Therefore, [In] + [Ga] is preferably 30% or more, more preferably 32% or more. On the other hand, when [In] + [Ga] is excessively large, the ratio (2) of the compound phase is relatively decreased, and therefore it is preferably 45% or less, more preferably 43% or less.
  • [In] is preferably 4% or more, and more preferably 5% or more. If the amount of [In] is too small, the effect of improving the relative density of the oxide sintered body and the reduction of the specific resistance cannot be achieved, and the carrier mobility of the oxide semiconductor film after film formation also decreases.
  • [Ga] is preferably 5% or more, more preferably 10% or more. If the amount of [Ga] is too small, the ratio (3) of the compound phase may be relatively lowered.
  • the above formula (6) defines the Sn ratio ([Sn]) in all metal elements, and is mainly a viewpoint for controlling the Zn 2 SnO 4 phase to the predetermined ratios (1) and (2). Is set from If the amount of [Sn] is too small, it may be difficult to satisfy the ratios (1) and (2) of the compound phase, so the content is preferably 15% or more, more preferably 16% or more. On the other hand, when the amount of [Sn] is too large, the ratio (3) of the compound phase is relatively lowered, and therefore it is preferably 25% or less, more preferably 22% or less.
  • the content of the metal element is only required to be controlled within the above range, and the oxide sintered body of the present invention may include an oxide inevitably generated in production.
  • the average crystal grain size of the oxide sintered body crystal grains In order to further enhance the effect of suppressing abnormal discharge, it is desirable to reduce the average crystal grain size of the oxide sintered body crystal grains. Specifically, a fracture surface of an oxide sintered body (or a sputtering target using the oxide sintered body) (the oxide sintered body is cut in the thickness direction at an arbitrary position, and an arbitrary surface of the cut surface is obtained.
  • the occurrence of abnormal discharge can be further suppressed by setting the average crystal grain size of the crystal grains observed by SEM (scanning electron microscope) at the position to preferably 30 ⁇ m or less.
  • a more preferable average crystal grain size is 25 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the lower limit of the average crystal grain size is not particularly limited, but if the crystal grains are made too fine, the relative density may decrease. is there.
  • the average grain size of the crystal grains is determined by observing the fracture surface structure of the oxide sintered body (or sputtering target) with an SEM (magnification: 400 times) and drawing a straight line having a length of 100 ⁇ m in any direction.
  • the number (N) of crystal grains contained therein is obtained, and the value calculated from [100 / N] is taken as the average crystal grain size on the straight line.
  • 20 straight lines are created at intervals of 20 ⁇ m or more to calculate “average crystal grain size on each straight line”, and further calculated from [sum of average crystal grain size on each straight line / 20]. The value is defined as the average grain size of the crystal grains.
  • the sputtering target obtained using the oxide sintered body of the present invention has a specific resistance of 1 ⁇ ⁇ cm or less, preferably 10 ⁇ 1 ⁇ ⁇ cm or less, more preferably 10 ⁇ 2 ⁇ ⁇ cm or less, and further preferably Is characterized by 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the specific resistance of the sputtering target is preferably 10 ⁇ 7 ⁇ ⁇ cm or more, more preferably 10 ⁇ 6 ⁇ ⁇ cm or more, and further preferably 10 ⁇ 5 ⁇ ⁇ cm or more.
  • the specific resistance of the sputtering target is determined by the four probe method.
  • the oxide sintered body of the present invention is obtained by mixing and sintering zinc oxide, indium oxide, gallium oxide, and tin oxide, and the sputtering target is obtained by processing the oxide sintered body.
  • Fig. 1 shows oxide powder obtained by (a) mixing and grinding ⁇ (b) drying and granulation ⁇ (c) preforming ⁇ (d) degreasing ⁇ (e) atmospheric sintering. The basic process until the sputtering target is obtained by bonding (f) processing ⁇ (g) the bonded body is shown.
  • the present invention is characterized in that the sintering conditions are appropriately controlled as will be described in detail below, and the other steps are not particularly limited, and usually used steps can be appropriately selected. .
  • this invention is not the meaning limited to this.
  • zinc oxide powder, indium oxide powder, gallium oxide powder, and tin oxide powder are mixed in a predetermined ratio, mixed and pulverized.
  • the purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a trace amount of impurity elements may impair the semiconductor characteristics of the oxide semiconductor film.
  • the blending ratio of each raw material powder is preferably controlled so that the ratio is within the above-described range.
  • the mixing / pulverization is preferably performed by using a ball mill and adding the raw material powder together with water.
  • the balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
  • a binder or a binder may be mixed in order to ensure the ease of the subsequent molding process.
  • preforming is performed.
  • the powder after drying and granulation is filled in a mold having a predetermined size, and preformed by a mold press. Since this preforming is performed for the purpose of improving the handleability during setting, a compact may be formed by applying a pressing force of about 0.5 to 1.0 tonf / cm 2 .
  • molding main molding is performed with CIP (cold isostatic pressure). In order to increase the relative density of the sintered body, the pressure during molding is preferably controlled to about 1 tonf / cm 2 or more.
  • the heating conditions are not particularly limited as long as the purpose of degreasing can be achieved.
  • the heating conditions may be maintained at about 500 ° C. in the atmosphere for about 5 hours.
  • the compact After degreasing, the compact is set in a graphite mold having a desired shape and (e) sintered by atmospheric sintering.
  • sintering is preferably performed at a sintering temperature of 1350 to 1600 ° C. and a holding time at the temperature of 1 to 50 hours (FIG. 2).
  • a compound phase satisfying the above ratios (1) to (3) can be obtained.
  • the sintering temperature is low, it cannot be sufficiently densified and the effect of suppressing abnormal discharge cannot be obtained.
  • the sintering temperature becomes too high, the crystal grains become coarse, the average crystal grain size of the crystal grains cannot be controlled within a predetermined range, and abnormal discharge cannot be suppressed.
  • the sintering temperature is preferably 1350 ° C. or higher, more preferably 1400 ° C. or higher, still more preferably 1500 ° C. or higher, preferably 1600 ° C. or lower, more preferably 1550 ° C. or lower, still more preferably 1500 ° C. or lower.
  • the holding time at the sintering temperature is preferably 1 hour or longer, more preferably 8 hours or longer, still more preferably 12 hours or longer, preferably 50 hours or shorter, more preferably 40 hours or shorter, still more preferably 30 hours or shorter.
  • the average heating rate (HR) up to the sintering temperature is 100 ° C./hr or less.
  • HR average heating rate
  • the average heating rate exceeds 100 ° C./hr, abnormal growth of crystal grains occurs.
  • the relative density may not be sufficiently increased.
  • a more preferable average heating rate is 80 ° C./hr or less, and further preferably 50 ° C./hr or less.
  • the lower limit of the average heating rate is not particularly limited, but is preferably 10 ° C./hr or more, more preferably 20 ° C./hr or more from the viewpoint of productivity.
  • the sintering atmosphere is preferably an oxygen gas atmosphere (for example, an air atmosphere) and an atmosphere under an oxygen gas pressure.
  • the pressure of the atmospheric gas is preferably atmospheric pressure in order to suppress evaporation of zinc oxide having a high vapor pressure.
  • the oxide sintered body obtained as described above has a relative density of 85% or more.
  • the sputtering target of the present invention is obtained by performing (f) processing ⁇ (g) bonding by a conventional method.
  • the specific resistance of the sputtering target thus obtained is also very good, and the specific resistance is generally 1 ⁇ ⁇ cm or less.
  • the molded body thus obtained was heated to 500 ° C. under atmospheric pressure at normal pressure and held at that temperature for 5 hours for degreasing.
  • the molded body thus obtained was set in a sintering furnace and sintered under the conditions (A to F) shown in Table 3.
  • the obtained sintered body was machined to finish ⁇ 100 ⁇ t5 mm, and bonded to a Cu backing plate to produce a sputtering target.
  • the sputtering target thus obtained was attached to a sputtering apparatus, and an oxide semiconductor film was formed on a glass substrate (size: 100 mm ⁇ 100 mm ⁇ 0.50 mm) by a DC (direct current) magnetron sputtering method.
  • the sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr.
  • a thin film transistor having a channel length of 10 ⁇ m and a channel width of 100 ⁇ m was manufactured using a thin film formed under these conditions.
  • the relative density was calculated by Archimedes method after sputtering after removing the target from the backing plate and polishing. A relative density of 85% or more was evaluated as acceptable (see “relative density (%)” in Table 4).
  • the relative density is a percentage value obtained by dividing the density (g / cm 3 ) measured by the Archimedes method by the theoretical density ⁇ (g / cm 3 ), and the theoretical density ⁇ is calculated as follows.
  • W 1 ZnO compounding amount [wt%]
  • W 2 In 2 O 3 compounding amount [wt%]
  • W 3 Ga 2 O 3 compounding amount [wt%]
  • W 4 SnO 2 The blending amount of [wt%].
  • the specific resistance of the sintered body was measured by the four-terminal method for the produced sputtering target.
  • the specific resistance evaluated 1 ohm * cm or less as the pass.
  • the average crystal grain size of the crystal grains is determined by the SEM (magnification: 400) of the structure of the oxide sintered body fracture surface (the oxide sintered body is cut in the thickness direction at an arbitrary position and the cut surface has an arbitrary position). And draw a straight line having a length of 100 ⁇ m in an arbitrary direction to obtain the number (N) of crystal grains included in the straight line, and calculate a value calculated from [100 / N] on the straight line. Average grain size. Similarly, 20 straight lines are created at intervals of 20 to 30 ⁇ m, the average crystal grain size on each straight line is calculated, and the value calculated from [sum of average crystal grain size on each straight line / 20] is further calculated. The average grain size of the crystal grains was used. The crystal grains were evaluated as having passed an average crystal grain size of 30 ⁇ m or less (see “Average grain size ( ⁇ m)” in Table 4).
  • Compound phase ratio The ratio of each compound phase was determined by removing the target from the backing plate after sputtering, cutting out a 10 mm square test piece, and measuring the intensity of the diffraction line by X-ray diffraction.
  • Analysis device “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions: Target: Cu Monochromatic: Uses a monochrome mate (K ⁇ ) Target output: 40kV-200mA (Continuous firing measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm Monochromator light receiving slit: 0.6mm Scanning speed: 2 ° / min Sampling width: 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • the peak of each compound phase shown in Table 1 was identified based on an ICDD (International Center for Diffraction Data) card, and the height of the diffraction peak was measured. As these peaks, peaks having high diffraction intensity in the compound phase and overlapping with peaks of other compound phases were selected as much as possible.
  • the measured values of the peak height at the designated peak of each compound phase are I [Zn 2 SnO 4 ], I [InGaZnO 4 ], I [InGaZn 2 O 5 ], I [In 2 O 3 ], and I [SnO 2, respectively.
  • the ratio of the compound phase was [Zn 2 SnO 4 ] of 30% or more, [InGaZnO 4 ] of 10% or more, and [Zn 2 SnO 4 ] + [InGaZnO 4 ] of 75% or more was evaluated as acceptable. (See “A”, “B”, and “A + B” in Table 4).
  • the sintered body is processed into a shape having a diameter of 4 inches and a thickness of 5 mm, and bonded to a backing plate to obtain a sputtering target.
  • the sputtering target thus obtained is attached to a sputtering apparatus, and DC (direct current) magnetron sputtering is performed.
  • the sputtering conditions are a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr. At this time, the number of occurrences of arcing per 100 minutes was counted, and the number of occurrences of arcing was evaluated as 2 or less (see “Abnormal Discharge Count” in Table 4).
  • no. 4 is an example in which the holding time t in the sintering process deviates from the definition of the present invention, the relative density of the sintered body is low, and the volume ratio of the compound phase ([Zn 2 SnO 4 ] phase + [InGaZnO 4 ] phase) The number of abnormal discharges was large. No.
  • an oxide sintered body capable of suppressing abnormal discharge in the formation of an oxide semiconductor film and capable of stable film formation by a sputtering method, and a sputtering target.

Abstract

 酸化亜鉛と;酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体。前記酸化物焼結体の相対密度が85%以上であり、前記酸化物焼結体をX線回折したとき、ZnSnO相とInGaZnO相が所定の割合で含まれている。

Description

酸化物焼結体およびスパッタリングターゲット
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体、およびスパッタリングターゲットに関するものである。
 TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できる。そのため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。これらの用途に好適な酸化物半導体の組成として、例えばIn含有の非晶質酸化物半導体[In-Ga-Zn-O(IGZO)など]が提案されている。
 上記酸化物半導体(膜)の形成に当たっては、当該膜と同じ材料のスパッタリングターゲット(以下、「ターゲット材」ということがある)をスパッタリングするスパッタリング法が好適に用いられている。スパッタリング法では、製品である薄膜の特性の安定化、製造の効率化のために、スパッタリング中の異常放電の防止などが重要であり、様々な技術が提案されている。
 例えば特許文献1には、ITOターゲットについて、結晶粒の平均結晶粒径を微細化することによって異常放電を抑制する技術が提案されている。
 更に特許文献2には、In-Zn-O系の複合酸化物を焼結後に還元雰囲気中でアニーリング処理することによって、ターゲット材の導電率を向上させ、スパッタリング中の異常放電を抑制する技術が提案されている。
日本国特開平7-243036号公報 日本国特許第3746094号公報
 近年の表示装置の高性能化に伴って、酸化物半導体薄膜の特性の向上や特性の安定化が要求されていると共に、表示装置の生産を一層効率化することが求められている。そのため、表示装置用酸化物半導体膜の製造に用いられるスパッタリングターゲット、およびその素材である酸化物焼結体は、要求される高いキャリア移動度に対応した組成であることが望まれているが、生産性や製造コストなどを考慮すると、スパッタリング工程での異常放電(アーキング)をより一層抑制することも重要であり、そのためにはターゲット材、およびその素材となる酸化物焼結体の改善が求められている。
 本発明は上記事情に鑑みてなされたものであり、その目的は、表示装置用酸化物半導体膜の製造に好適に用いられる酸化物焼結体、およびスパッタリングターゲットであって、酸化物半導体膜を、異常放電を抑制しつつ、スパッタリング法で安定して成膜可能な酸化物焼結体、およびスパッタリングターゲットを提供することにある。
 本発明は、以下の酸化物焼結体およびスパッタリングターゲットを提供する。
 <1> 酸化亜鉛と;酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体であって、
 前記酸化物焼結体の相対密度が85%以上であり、
 前記酸化物焼結体をX線回折したとき、Zn2SnO4相とInGaZnO4相の体積比がそれぞれ下記式(1)~(3)を満足するものであることを特徴とする酸化物焼結体。
 (Zn2SnO4相+InGaZnO4相)/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≧75体積%・・・(1)
 Zn2SnO4相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≧30体積%・・・(2)
 InGaZnO相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≧10体積%・・・(3)
 (式中、mは2以上5以下の整数を表す。)
 <2> 前記酸化物焼結体に含まれる全金属元素に対する亜鉛、インジウム、ガリウム、錫の含有量の割合(原子%)をそれぞれ、[Zn]、[In]、[Ga]、[Sn]としたとき、下記式(4)~(6)を満足するものである<1>に記載の酸化物焼結体。
 40原子%≦[Zn]≦50原子%・・・(4)
 30原子%≦([In]+[Ga])≦45原子%・・・(5)
 (ただし、[In]は4原子%以上、[Ga]は5原子%以上)
 15原子%≦[Sn]≦25原子%・・・(6)
 <3> 前記相対密度が110%以下である<1>または<2>に記載の酸化物焼結体。
 <4> 前記Zn2SnO4相とInGaZnO4相の体積比が下記式(1‘)を満足する<1>~<3>のいずれか一つに記載の酸化物焼結体。
 (Zn2SnO4相+InGaZnO4相)/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≦100体積%・・・(1‘)
 <5> 前記Zn2SnO4相の体積比が下記式(2‘)を満足する<1>~<4>のいずれか一つに記載の酸化物焼結体。
 Zn2SnO4相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≦90体積%・・・(2‘)
 <6> 前記InGaZnO4相の体積比が下記式(3‘)を満足する<1>~<5>のいずれか一つに記載の酸化物焼結体。
 InGaZnO相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≦60体積%・・・(3‘)
 <7> 前記酸化物焼結体の平均結晶粒径が30μm以下である<1>~<6>のいずれか一つに記載の酸化物焼結体。
 <8> 前記酸化物焼結体の平均結晶粒径が3μm以上である<7>に記載の酸化物焼結体。
 <9> <1>~<8>のいずれか一つに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が1Ω・cm以下であること特徴とするスパッタリングターゲット。
 <10> 前記比抵抗が10-7Ω・cm以上である<9>に記載のスパッタリングターゲット。
 本発明によれば、酸化物半導体膜の成膜における異常放電を抑制し、スパッタリング法による安定した成膜が可能な酸化物焼結体、およびスパッタリングターゲットを提供することが可能である。
図1は、本発明の酸化物焼結体、およびスパッタリングターゲットを製造するための基本的な工程を示す図である。 図2は、本発明の製造方法に用いられる焼結工程の一例を示すグラフである。
 本発明者らは、酸化物焼結体について、スパッタリング中の異常放電を抑制することで長時間の安定した成膜が可能であり、しかもキャリア移動度が高い酸化物半導体膜を成膜するのに適したスパッタリングターゲット用酸化物焼結体を提供するため、検討を重ねてきた。
 その結果、酸化亜鉛と;酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体であって、酸化物焼結体をX線回折したとき、主相としてZn2SnO4相とInGaZnO4相を所定の割合で含み、更に相対密度85%以上である構成としたときに所期の目的が達成されることを見出した。
 また上記目的の達成には、更に酸化物焼結体に含まれる金属元素の含有量を夫々適切に制御することや、平均結晶粒径を制御することも有効であることを見出した。
 詳細には、(a)酸化亜鉛、酸化インジウム、酸化ガリウム、および酸化錫を含む酸化物焼結体は、X線回折したときの相構成について、ZnSnO相とInGaZnO相の割合を制御することによってスパッタリング中の異常放電を抑制する効果があること、(b)相対密度を高めることによってスパッタリング中の異常放電の発生の抑制効果を一層向上できること、を突き止めた。そして、(c)このような相構成を有する酸化物焼結体を得るためには、酸化物焼結体に含まれる金属元素の含有量を夫々適切に制御することが望ましいこと、(d)酸化物焼結体の平均結晶粒径を微細化すると異常放電抑制に、より一層効果があること、を見出し、本発明に至った。
 本発明に係る酸化物焼結体は、酸化亜鉛と;酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体(IGZTO)である。この焼結体は、従来のIn-Ga-Zn-O(IGZO)に比べて、成膜した酸化物半導体膜が高いキャリア移動度や高い耐エッチング特性を示す傾向にある。
 更にこのような酸化物焼結体の化合物相の構成や相対密度を適切に制御することによって、スパッタリング中の異常放電を抑制しつつ、キャリア移動度が一層高い酸化物半導体膜を成膜することができる。
 次に、本発明に係る酸化物焼結体の構成について、詳しく説明する。本発明は上記酸化物焼結体をX線回折したとき、ZnSnO相、InGaZnO相を所定の割合で含む主相としたところに特徴がある。
 本発明におけるX線回折条件は、以下のとおりである。
 分析装置:理学電機製「X線回折装置RINT-1500」
 分析条件
  ターゲット:Cu
  単色化:モノクロメートを使用(Kα
  ターゲット出力:40kV-200mA
  (連続焼測定)θ/2θ走査
  スリット:発散1/2°、散乱1/2°、受光0.15mm
  モノクロメータ受光スリット:0.6mm
  走査速度:2°/min
  サンプリング幅:0.02°
  測定角度(2θ):5~90°
 この測定で得られた回折ピークについて、ICDD(International Center for Diffraction Data)カードに記載されている結晶構造を有する化合物相を特定する。各化合物相とカード番号との対応は以下の通りである。
 ZnSnO相:24-1470
 InGaZnO相:38-1104
 In相:06-0416
 SnO相:41-1445
 (ZnO)In相:20-1442(m=2)、20-1439(m=3)、20-1438(m=4)、20-1440(m=5)
 なお、(ZnO)In相のmは2~5の整数である。mを規定したのはZnO相とIn相が結合した化合物において、ZnOがInとの関係で任意の比率を示すためである。
 次に上記X線回折によって検出される本発明を特定する化合物について詳しく説明する。
 (Zn2SnO4化合物、およびInGaZnO4化合物について)
 Zn2SnO4化合物(相)は、本発明の酸化物焼結体を構成するZnOとSnO2が結合して形成されるものである。またInGaZnO4化合物(相)は、本発明の酸化物焼結体を構成するInとGaとZnが結合して形成される酸化物である。発明において上記化合物は、酸化物焼結体の相対密度の向上と比抵抗の低減に大きく寄与するものである。その結果、安定した直流放電が継続して得られ、異常放電抑制効果が向上する。
 本発明では、上記ZnSnO相とInGaZnO相を主相として含んでいる。ここで「主相」とは、ZnSnO相とInGaZnO相の合計比率が上記X線回折によって検出される全化合物中、最も比率の多い化合物を意味している。
 また本発明の上記ZnSnO相、InGaZnO相には、ZnSnO、InGaZnOに、それぞれIn、Gaおよび/またはSnが固溶しているものも含まれる。
 異常放電を抑制しつつ、スパッタリング法で安定して成膜可能な酸化物焼結体とするためには、上記X線回折で特定した上記化合物相(ZnSnO相、InGaZnO相、In相、SnO相、及び(ZnO)mIn相)(mは2以上5以下の整数)の合計に対するZnSnO相、InGaZnO相の体積比が、下記(1)~(3)を満足することが必要である。
 (1):[ZnSnO]+[InGaZnO]の比((Zn2SnO4相+InGaZnO4相)/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相;以下、比率(1)という。)≧75体積%(以下、各相の「体積%」を単に「%」と表記する)
 比率(1)が小さくなると異常放電発生率が高くなるため、75%以上とする必要があり、好ましくは80%以上、より好ましくは85%以上である。一方、上限については、性能上は高いほどよく、例えば100%であってもよいが、製造容易性の観点から好ましくは95%以下、より好ましくは90%以下である。
 (2):[ZnSnO]の比(Zn2SnO4相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相);以下、比率(2)という)≧30%
 上記比率(1)を満足していても比率(2)が小さいと、異常放電抑制効果が十分に得られないことがあるため、30%以上とする必要があり、好ましくは40%以上、より好ましくは50%以上、更に好ましくは55%以上である。一方、上限については特に限定されないが、InGaZnO4相を確保する観点から好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下である。
 (3):[InGaZnO]の比(InGaZnO相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相);以下、比率(3)という)≧10%
 上記比率(1)および/または比率(2)を満足していても比率(3)が小さいと、相対密度を高めることができず、異常放電抑制効果が十分に得られないことがあるため、10%以上とする必要があり、好ましくは12%以上、より好ましくは15%以上である。一方、上限については特に限定されないが、Zn2SnO4相を確保する観点から好ましくは60%以下であり、また製造容易性の観点からは、より好ましくは30%以下、更に好ましくは25%以下である。
 本発明の酸化物焼結体の化合物相は、実質的にZnSnO相、InGaZnO相、In相、SnO相、及び(ZnO)In相(mは2以上5以下の整数)で構成されていることが望ましく、全化合物相に占めるこれらの化合物相の割合が75%以上であることが好ましい。なお、これらの化合物相のうち、In相、SnO相、及び(ZnO)In相(mは2以上5以下の整数)は含まれていなくてもよい。他の含み得る化合物相としては製造上不可避的に生成されるInGaZn相、ZnGa相、(ZnO)In相(mは6以上の整数)などを25%以下の割合で含んでいてもよい。これらの化合物相のうち、InGaZn相は含まれていないことが好ましい。なお、不可避的に生成する化合物相の割合は、XRDによって測定できる。
 更に本発明の酸化物焼結体の相対密度は85%以上である。酸化物焼結体の相対密度を高めることによって上記異常放電の発生抑制効果を一層向上できるだけでなく、安定した放電をターゲットライフまで連続して維持するなどの利点をもたらす。このような効果を得るために本発明の酸化物焼結体は相対密度を少なくとも85%以上とする必要があり、好ましくは90%以上であり、より好ましくは95%以上である。また、相対密度は110%以下であることが好ましく、105%以下であることがより好ましい。
 酸化物焼結体の相対密度はアルキメデス法により求められるものである。
 また高いキャリア移動度と異常放電発生抑制効果を有する上記相構成の酸化物焼結体を得るためには、酸化物焼結体に含まれる金属元素の含有量を夫々適切に制御することが望ましい。
 具体的には酸化物焼結体に含まれる酸素を除く全金属元素に対する各金属元素(亜鉛、インジウム、ガリウム、錫)の含有量(原子%)の割合をそれぞれ、[Zn]、[In]、[Ga]、[Sn]としたとき、下記式(4)~(6)を満足することが望ましい。
 40原子%≦[Zn]≦50原子%・・・(4)
 30原子%≦([In]+[Ga])≦45原子%・・・(5)
 (ただし、[In]は4原子%以上、[Ga]は5原子%以上)
 15原子%≦[Sn]≦25原子%・・・(6)
 本明細書において[Zn]とは、酸素(O)を除く全金属元素(Zn、In、Ga、およびSn)に対するZnの含有量(原子%;以下、各金属元素の含有量「原子%」を単に「%」と表記する)を意味する。同様に[In]、[Ga]、および[Sn]はそれぞれ、酸素(O)を除く全金属元素(Zn、In、Ga、およびSn)に対するIn、Ga、およびSnの各含有量の割合(原子%)を意味する。
 まず、上記式(4)は、全金属元素中のZn比([Zn])を規定したものであり、主に上記ZnSnO相、InGaZnO相を上記所定の比率(1)~(3)に制御する観点から設定されたものである。[Zn]が少なすぎると、上記化合物相の比率(1)~(3)を満足することが難しくなり、異常放電抑制効果が十分に得られない。したがって[Zn]は、40%以上とすることが好ましく、より好ましくは42%以上である。一方、[Zn]が高くなりすぎると相対的にIn、Ga、Snの比率が低下してかえって所望の化合物相の比率が得られなくなることから、好ましくは50%以下、より好ましくは48%以下である。
 また上記式(5)は、全金属元素中のIn比とGa比の合計([In]+[Ga])を規定したものであり、主にInGaZnO相を上記所定の比率(1)、(3)に制御する観点から設定されたものである。[In]+[Ga]が少なすぎると上記化合物相の比率(1)、(3)を満足することが難しくなる。したがって[In]+[Ga]は、好ましくは30%以上、より好ましくは32%以上である。一方、[In]+[Ga]が多くなりすぎると、上記化合物相の比率(2)が相対的に低下するため、好ましくは45%以下、より好ましくは43%以下である。
 なお、In、およびGaはいずれも必須の元素であり、[In]は4%以上であることが好ましく、より好ましくは5%以上である。[In]が少なすぎると酸化物焼結体の相対密度向上効果や比抵抗の低減を達成できず、成膜後の酸化物半導体膜のキャリア移動度も低くなる。
 また[Ga]は5%以上であることが好ましく、より好ましくは10%以上である。[Ga]が少なすぎると上記化合物相の比率(3)が相対的に低下することがある。
 上記式(6)は、全金属元素中のSn比([Sn])を規定したものであり、主に上記ZnSnO相を上記所定の比率(1)、(2)に制御する観点から設定されたものである。[Sn]が少なすぎると、上記化合物相の比率(1)、(2)を満足することが難しくなることがあるため、好ましくは15%以上、より好ましくは16%以上である。一方、[Sn]が多すぎると上記化合物相の比率(3)が相対的に低下するため、好ましくは25%以下、より好ましくは22%以下である。
 金属元素の含有量は上記範囲内に制御されていればよく、また本発明の酸化物焼結体には、製造上不可避的に生成される酸化物を含んでもよい趣旨である。
 また異常放電抑制効果をより一層高めるためには、酸化物焼結体の結晶粒の平均結晶粒径を微細化することが望ましい。具体的には酸化物焼結体(あるいは該酸化物焼結体を用いたスパッタリングターゲット)の破断面(酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置)においてSEM(走査型電子顕微鏡)により観察される結晶粒の平均結晶粒径を好ましくは30μm以下とすることによって、異常放電の発生をより一層抑制することができる。より好ましい平均結晶粒径は25μm以下、更に好ましくは20μm以下である。一方、平均結晶粒径の下限は特に限定されないが、結晶粒を微細化させすぎると、相対密度が低下することがあるため、平均結晶粒径の好ましい下限は3μm程度、より好ましくは5μm以上である。
 結晶粒の平均結晶粒径は、酸化物焼結体(またはスパッタリングターゲット)破断面の組織をSEM(倍率:400倍)で観察し、任意の方向に100μmの長さの直線を引き、この直線内に含まれる結晶粒の数(N)を求め、[100/N]から算出される値を当該直線上での平均結晶粒径とする。本発明では20μm以上の間隔で直線を20本作成して「各直線上での平均結晶粒径」を算出し、更に[各直線上での平均結晶粒径の合計/20]から算出される値を結晶粒の平均結晶粒径とする。
 更に本発明の酸化物焼結体を用いて得られるスパッタリングターゲットは、比抵抗1Ω・cm以下であり、好ましくは10-1Ω・cm以下、より好ましくは10-2Ω・cm以下、さらに好ましくは10-3Ω・cm以下であるところに特徴がある。これにより、一層スパッタリング中での異常放電を抑制した成膜が可能となり、スパッタリングターゲットを用いた物理蒸着(スパッタリング法)を表示装置の生産ラインで効率よく行うことができる。また、スパッタリングターゲットの比抵抗は、10-7Ω・cm以上であることが好ましく、10-6Ω・cm以上であることがより好ましく、10-5Ω・cm以上であることさらに好ましい。
 スパッタリングターゲットの比抵抗は四端子法により求められるものである。
 次に、本発明の酸化物焼結体を製造する方法について説明する。
 本発明の酸化物焼結体は、酸化亜鉛と;酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られるものであり、またスパッタリングターゲットは酸化物焼結体を加工することにより製造できる。図1には、酸化物の粉末を(a)混合・粉砕→(b)乾燥・造粒→(c)予備成形→(d)脱脂→(e)大気焼結して得られた酸化物焼結体を、(f)加工→(g)ボンディグしてスパッタリングターゲットを得るまでの基本工程を示している。上記工程のうち本発明では、以下に詳述するように焼結条件を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。
 まず、酸化亜鉛粉末と;酸化インジウム粉末と;酸化ガリウム粉末と;酸化錫粉末;を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、比率が上述した範囲内となるように制御することが好ましい。
 (a)混合・粉砕は、ボールミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。この際、均一に混合する目的で分散材や、後の成形工程の容易性を確保するためにバインダーを混合してもよい。
 次に、上記工程で得られた混合粉末について例えばスプレードライヤなどで(b)乾燥・造粒を行うことが好ましい。
 乾燥・造粒後、(c)予備成形をする。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形する。この予備成形は、セットする際のハンドリング性を向上させる目的で行われるため、0.5~1.0tonf/cm2程度の加圧力を加えて成形体とすればよい。その後、CIP(冷間静水圧)で成形(本成形)を行う。焼結体の相対密度を上昇させるためには、成形時の圧力は約1tonf/cm2以上に制御することが好ましい。
 なお、混合粉末に分散材やバインダーを添加した場合には、分散材やバインダーを除去するために成形体を加熱して(d)脱脂を行うことが望ましい。加熱条件は脱脂目的が達成できれば特に限定されないが、例えば大気中、おおむね500℃程度で、5時間程度保持すればよい。
 脱脂後、所望の形状の黒鉛型に成形体をセットして(e)大気焼結にて焼結を行う。
 本発明では焼結温度:1350~1600℃、該温度での保持時間:1~50時間で焼結を行うことが好ましい(図2)。これらの温度範囲および保持時間にすることにより、上記比率(1)~(3)を満足する化合物相が得られる。また、焼結温度が低いと、十分に緻密化することができず異常放電抑制の効果が得られない。一方、焼結温度が高くなりすぎると、結晶粒が粗大化してしまい、結晶粒の平均結晶粒径を所定の範囲に制御できなくなり、異常放電を抑制できなくなる。したがって焼結温度は好ましくは1350℃以上、より好ましくは1400℃以上、更に好ましくは1500℃以上であって、好ましくは1600℃以下、より好ましくは1550℃以下、更に好ましくは1500℃以下とする。
 また上記焼結温度での保持時間が長くなりすぎると結晶粒が成長して粗大化するため、結晶粒の平均結晶粒径を所定の範囲に制御できなくなる。一方、保持時間が短すぎると十分に緻密化することができなくなる。したがって保持時間は好ましくは1時間以上、より好ましくは8時間以上、更に好ましくは12時間以上であって、好ましくは50時間以下、より好ましくは40時間以下、更に好ましくは30時間以下とする。
 また本発明では成形後、上記焼結温度までの平均昇温速度(HR)を100℃/hr以下とすることが好ましい。平均昇温速度が100℃/hrを超えると、結晶粒の異常成長が起こる。また相対密度を十分に高めることができないことがある。より好ましい平均昇温速度は80℃/hr以下、更に好ましくは50℃/hr以下である。一方、平均昇温速度の下限は特に限定されないが、生産性の観点からは10℃/hr以上とすることが好ましく、より好ましくは20℃/hr以上である。
 焼結工程では、焼結雰囲気を酸素ガス雰囲気(例えば大気雰囲気)、酸素ガス加圧下雰囲気とすることが好ましい。また雰囲気ガスの圧力は、蒸気圧の高い酸化亜鉛の蒸発を抑制するために大気圧とすることが望ましい。上記のようにして得られた酸化物焼結体は相対密度が85%以上である。
 上記のようにして酸化物焼結体を得た後、常法により、(f)加工→(g)ボンディングを行なうと本発明のスパッタリングターゲットが得られる。このようにして得られるスパッタリングターゲットの比抵抗も、非常に良好なものであり、比抵抗はおおむね1Ω・cm以下である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 (スパッタリングターゲットの作製)
 純度99.99%の酸化インジウム粉末(In23)、純度99.99%の酸化亜鉛粉末(ZnO)、純度99.99%の酸化ガリウム粉末(Ga23)、純度99.99%の酸化錫粉末(SnO2)を表2に示す比率で配合し、水と分散剤(ポリカルボン酸アンモニウム)を加えてジルコニアボールミルで24時間混合した。次に、上記工程で得られた混合粉末を乾燥して造粒を行った。
 このようにして得られた粉末を金型プレスにて予備成形した後(成形圧力:1.0ton/cm2、成形体サイズ:φ110×t13mm、tは厚み)、CIP(冷間静水圧)にて成形圧力3tonf/cm2で本成形を行った。
 このようにして得られた成形体を、常圧にて大気雰囲気下で500℃に昇温し、該温度で5時間保持して脱脂した。
 このようにして得られた成形体を焼結炉にセットし、表3に示す条件(A~F)で焼結を行った。得られた焼結体を機械加工してφ100×t5mmに仕上げ、Cu製バッキングプレートにボンディングし、スパッタリングターゲットを製作した。
 (薄膜トランジスタの作製)
 このようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリング法で、ガラス基板(サイズ:100mm×100mm×0.50mm)上に、酸化物半導体膜を形成した。スパッタリング条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとした。さらにこの条件で成膜した薄膜を使用して、チャネル長10μm、チャネル幅100μmの薄膜トランジスタを作製した。
 (相対密度の測定)
 相対密度は、スパッタリング後、ターゲットをバッキングプレートから取り外して研磨し、アルキメデス法により算出した。相対密度は85%以上を合格と評価した(表4中、「相対密度(%)」参照)。
 なお、相対密度は、アルキメデス法により測定した密度(g/cm)を理論密度ρ(g/cm)で割った百分率の値であり、理論密度ρは以下のように計算される。
Figure JPOXMLDOC01-appb-M000001
 ここで、W:ZnOの配合量[wt%]、W:Inの配合量[wt%]、W:Gaの配合量[wt%]、W:SnOの配合量[wt%]である。
 (比抵抗の測定)
 焼結体の比抵抗は、上記製作したスパッタリングターゲットについて四端子法により測定した。比抵抗は1Ω・cm以下を合格と評価した。
 (結晶粒の平均結晶粒径)
 結晶粒の平均結晶粒径は、酸化物焼結体破断面(酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置)の組織をSEM(倍率:400倍)で観察し、任意の方向に100μmの長さの直線を引き、この直線内に含まれる結晶粒の数(N)を求め、[100/N]から算出される値を当該直線上での平均結晶粒径とした。同様に20~30μmの間隔で直線を20本作成して各直線上での平均結晶粒径を算出し、更に[各直線上での平均結晶粒径の合計/20]から算出される値を結晶粒の平均結晶粒径とした。結晶粒は平均結晶粒径30μm以下を合格と評価した(表4中、「平均粒径(μm)参照」)。
 (化合物相の比率)
 各化合物相の比率は、スパッタリング後、ターゲットをバッキングプレートから取り外して10mm角の試験片を切出し、X線回折で回折線の強度を測定して求めた。
 分析装置:理学電機製「X線回折装置RINT-1500」
 分析条件:
  ターゲット:Cu
  単色化:モノクロメートを使用(Kα
  ターゲット出力:40kV-200mA
  (連続焼測定)θ/2θ走査
  スリット:発散1/2°、散乱1/2°、受光0.15mm
  モノクロメータ受光スリット:0.6mm
  走査速度:2°/min
  サンプリング幅:0.02°
  測定角度(2θ):5~90°
 この測定で得られた回折ピークについて、ICDD(International Center for Diffraction Data)カードに基づいて表1に示す各化合物相のピークを同定し、回折ピークの高さを測定した。これらのピークは、当該化合物相で回折強度が高く、他の化合物相のピークとの重複がなるべく少ないピークを選択した。各化合物相の指定ピークでのピーク高さの測定値をそれぞれI[ZnSnO]、I[InGaZnO]、I[InGaZn]、I[In]、I[SnO]、I[(ZnO)In]とし(「I」は測定値であることを表す意味)、下式によって体積比率を求めた(表4中、A、B、A+Bの体積比率(%))。
 [ZnSnO]+[InGaZnO]=(I[ZnSnO]+I[InGaZnO])/(I[ZnSnO]+I[InGaZnO]+I[In]+I[SnO]+I[(ZnO)In])×100・・・(1)
 [ZnSnO]=I[ZnSnO]/(I[ZnSnO]+I[InGaZnO]+I[In]+I[SnO]+I[(ZnO)In])×100・・・(2)
 [InGaZnO]=I[InGaZnO]/(I[ZnSnO]+I[InGaZnO]+I[In]+I[SnO]+I[(ZnO)In])×100・・・(3)
 なお、m=2,3,4の(ZnO)In相のピークはいずれの試料においても無視できる程度であったため、I[(ZnO)In]をI[(ZnO)In]とした。また、上記以外の化合物相のピークもほとんど観察されなかった。
 化合物相の比率は[ZnSnO]が30%以上でかつ[InGaZnO]が10%以上であり、[ZnSnO]+[InGaZnO]が75%以上のものを合格と評価した(表4中「A」、「B」、「A+B」参照)。
 (異常放電の評価)
 上記焼結体を直径4インチ、厚さ5mmの形状に加工し、バッキングプレートにボンディングしてスパッタリングターゲットを得る。そのようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリングを行う。スパッタリングの条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとする。この時の100分当りのアーキングの発生回数をカウントし2回以下を合格と評価した(表4中、「異常放電回数」参照)。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の好ましい組成、製造条件を満足するNo.1~3、7は異常放電が抑制されていた。すなわち、スパッタリングを行なったところ、異常放電の発生は2回以下であり、安定して放電することが確認された。またこのようにして得られたスパッタリングターゲットの相対密度および比抵抗も良好な結果が得られた。
 一方、本発明の好ましい製造条件を満足しないNo.4~6、及び好ましい組成を満足しないNo.8、9については、異常放電が多く発生するなど所望の効果を得ることができなかった。
 具体的には、No.4は焼結工程における保持時間tが本発明の規定を外れる例であり、焼結体の相対密度が低く、また化合物相の体積比率([Zn2SnO4]相+[InGaZnO4]相)も低かったため、異常放電の回数が多かった。No.5は焼結工程における焼結温度Tが本発明の規定を外れる例であり、焼結体の相対密度が低く、また化合物相の体積比率([Zn2SnO4]相+[InGaZnO4]相、[Zn2SnO4]相)も低かったため、比抵抗が高く、また異常放電の回数が多かった。No.6は平均昇温速度HRが本発明の規定を外れ、平均結晶粒径が大きくなっている例であり、異常放電の回数が多かった。
 No.8、9の組成は、いずれも金属元素の含有比率が所定の範囲を外れると共に、化合物相の体積比率([Zn2SnO4]相、[InGaZnO4]相)が、本願発明の規定を外れていた。その結果、No.8、9は異常放電の回数が多かった。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年9月14日出願の日本特許出願(特願2012-203577)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、酸化物半導体膜の成膜における異常放電を抑制し、スパッタリング法による安定した成膜が可能な酸化物焼結体、およびスパッタリングターゲットを提供することが可能である。

Claims (10)

  1.  酸化亜鉛と;酸化インジウムと;酸化ガリウムと;酸化錫を混合および焼結して得られる酸化物焼結体であって、
     前記酸化物焼結体の相対密度が85%以上であり、
     前記酸化物焼結体をX線回折したとき、Zn2SnO4相とInGaZnO4相の体積比がそれぞれ下記式(1)~(3)を満足するものであることを特徴とする酸化物焼結体。
     (Zn2SnO4相+InGaZnO4相)/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≧75体積%・・・(1)
     Zn2SnO4相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≧30体積%・・・(2)
     InGaZnO相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≧10体積%・・・(3)
     (式中、mは2以上5以下の整数を表す。)
  2.  前記酸化物焼結体に含まれる全金属元素に対する亜鉛、インジウム、ガリウム、錫の含有量の割合(原子%)をそれぞれ、[Zn]、[In]、[Ga]、[Sn]としたとき、下記式(4)~(6)を満足するものである請求項1に記載の酸化物焼結体。
     40原子%≦[Zn]≦50原子%・・・(4)
     30原子%≦([In]+[Ga])≦45原子%・・・(5)
     (ただし、[In]は4原子%以上、[Ga]は5原子%以上)
     15原子%≦[Sn]≦25原子%・・・(6)
  3.  前記相対密度が110%以下である請求項1に記載の酸化物焼結体。
  4.  前記Zn2SnO4相とInGaZnO4相の体積比が下記式(1‘)を満足する請求項1に記載の酸化物焼結体。
     (Zn2SnO4相+InGaZnO4相)/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≦100体積%・・・(1‘)
  5.  前記Zn2SnO4相の体積比が下記式(2‘)を満足する請求項1に記載の酸化物焼結体。
     Zn2SnO4相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≦90体積%・・・(2‘)
  6.  前記InGaZnO4相の体積比が下記式(3‘)を満足する請求項1に記載の酸化物焼結体。
     InGaZnO相/(Zn2SnO4相+InGaZnO4相+In23相+SnO2相+(ZnO)mIn23相)≦60体積%・・・(3‘)
  7.  前記酸化物焼結体の平均結晶粒径が30μm以下である請求項1に記載の酸化物焼結体。
  8.  前記酸化物焼結体の平均結晶粒径が3μm以上である請求項7に記載の酸化物焼結体。
  9.  請求項1~8のいずれか一項に記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が1Ω・cm以下であること特徴とするスパッタリングターゲット。
  10.  前記比抵抗が10-7Ω・cm以上である請求項9に記載のスパッタリングターゲット。
PCT/JP2013/074340 2012-09-14 2013-09-10 酸化物焼結体およびスパッタリングターゲット WO2014042139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157006265A KR101762043B1 (ko) 2012-09-14 2013-09-10 산화물 소결체 및 스퍼터링 타깃
US14/427,761 US9905403B2 (en) 2012-09-14 2013-09-10 Oxide sintered body and sputtering target
CN201380047313.6A CN104619673B (zh) 2012-09-14 2013-09-10 氧化物烧结体及溅射靶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-203577 2012-09-14
JP2012203577A JP5883368B2 (ja) 2012-09-14 2012-09-14 酸化物焼結体およびスパッタリングターゲット

Publications (2)

Publication Number Publication Date
WO2014042139A1 true WO2014042139A1 (ja) 2014-03-20
WO2014042139A8 WO2014042139A8 (ja) 2015-03-12

Family

ID=50278250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074340 WO2014042139A1 (ja) 2012-09-14 2013-09-10 酸化物焼結体およびスパッタリングターゲット

Country Status (6)

Country Link
US (1) US9905403B2 (ja)
JP (1) JP5883368B2 (ja)
KR (1) KR101762043B1 (ja)
CN (1) CN104619673B (ja)
TW (1) TWI507374B (ja)
WO (1) WO2014042139A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068535A1 (ja) * 2013-11-06 2015-05-14 三井金属鉱業株式会社 スパッタリングターゲットおよびその製造方法
CN105246855B (zh) * 2013-11-29 2017-05-31 株式会社钢臂功科研 氧化物烧结体和溅射靶、以及其制造方法
JP6398645B2 (ja) * 2014-11-20 2018-10-03 Tdk株式会社 スパッタリングターゲット、透明導電性酸化物薄膜、及び導電性フィルム
TWI577032B (zh) * 2015-04-24 2017-04-01 群創光電股份有限公司 顯示裝置
JP6144858B1 (ja) * 2016-04-13 2017-06-07 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP6254308B2 (ja) * 2016-04-19 2017-12-27 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
WO2017183263A1 (ja) * 2016-04-19 2017-10-26 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP6364561B1 (ja) * 2017-05-18 2018-07-25 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット
JP6364562B1 (ja) * 2017-05-19 2018-07-25 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット
CN108642458A (zh) * 2018-06-20 2018-10-12 江苏瑞尔光学有限公司 一种ito镀膜靶材及其制备方法
CN109659411B (zh) * 2018-12-11 2020-02-14 中山大学 一种氧化镓半导体叠层结构及其制备方法
CN112537954B (zh) * 2020-12-17 2022-04-15 中山智隆新材料科技有限公司 一种igzo靶材的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242684A (ja) * 2002-02-14 2003-08-29 Nikko Materials Co Ltd 硫化亜鉛を主成分とするスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体並びに該スパッタリングターゲットの製造方法
WO2009142289A1 (ja) * 2008-05-22 2009-11-26 出光興産株式会社 スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
JP2012114367A (ja) * 2010-11-26 2012-06-14 Idemitsu Kosan Co Ltd 錫を含む非晶質酸化物薄膜、及び薄膜トランジスタ
JP2012158512A (ja) * 2011-01-14 2012-08-23 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243036A (ja) 1994-03-07 1995-09-19 Japan Energy Corp Itoスパッタリングタ−ゲット
JP3746094B2 (ja) 1995-06-28 2006-02-15 出光興産株式会社 ターゲットおよびその製造方法
KR101549295B1 (ko) * 2008-12-12 2015-09-01 이데미쓰 고산 가부시키가이샤 복합 산화물 소결체 및 그것으로 이루어지는 스퍼터링 타겟
JP5591523B2 (ja) * 2009-11-19 2014-09-17 出光興産株式会社 長期成膜時の安定性に優れたIn−Ga−Zn−O系酸化物焼結体スパッタリングターゲット
JP2013070010A (ja) 2010-11-26 2013-04-18 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242684A (ja) * 2002-02-14 2003-08-29 Nikko Materials Co Ltd 硫化亜鉛を主成分とするスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体並びに該スパッタリングターゲットの製造方法
WO2009142289A1 (ja) * 2008-05-22 2009-11-26 出光興産株式会社 スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
JP2012114367A (ja) * 2010-11-26 2012-06-14 Idemitsu Kosan Co Ltd 錫を含む非晶質酸化物薄膜、及び薄膜トランジスタ
JP2012158512A (ja) * 2011-01-14 2012-08-23 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット

Also Published As

Publication number Publication date
CN104619673B (zh) 2016-07-13
JP2014058416A (ja) 2014-04-03
TW201420544A (zh) 2014-06-01
TWI507374B (zh) 2015-11-11
JP5883368B2 (ja) 2016-03-15
US9905403B2 (en) 2018-02-27
KR20150041137A (ko) 2015-04-15
CN104619673A (zh) 2015-05-13
KR101762043B1 (ko) 2017-07-26
US20150235819A1 (en) 2015-08-20
WO2014042139A8 (ja) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5883368B2 (ja) 酸化物焼結体およびスパッタリングターゲット
JP5883367B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5651095B2 (ja) 酸化物焼結体およびスパッタリングターゲット
US10515787B2 (en) Oxide sintered body and sputtering target, and method for producing same
WO2012118150A1 (ja) 酸化物焼結体およびスパッタリングターゲット
JP5952891B2 (ja) 酸化物焼結体、およびスパッタリングターゲットの製造方法
JP5337224B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5318932B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP6774624B2 (ja) 酸化物ターゲット材
JP5255685B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
US20190062900A1 (en) Oxide sintered body and sputtering target
KR102106849B1 (ko) 산화물 소결체 및 스퍼터링 타깃
WO2018211900A1 (ja) 酸化物焼結体およびスパッタリングターゲット
JP2017019668A (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006265

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427761

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836643

Country of ref document: EP

Kind code of ref document: A1