WO2014041973A1 - Ofdm受信装置及びofdm受信方法 - Google Patents

Ofdm受信装置及びofdm受信方法 Download PDF

Info

Publication number
WO2014041973A1
WO2014041973A1 PCT/JP2013/072245 JP2013072245W WO2014041973A1 WO 2014041973 A1 WO2014041973 A1 WO 2014041973A1 JP 2013072245 W JP2013072245 W JP 2013072245W WO 2014041973 A1 WO2014041973 A1 WO 2014041973A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
group
ofdm
unit
data
Prior art date
Application number
PCT/JP2013/072245
Other languages
English (en)
French (fr)
Inventor
菅野 美樹
鈴木 宏
内藤 正博
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13837729.6A priority Critical patent/EP2897315B1/en
Priority to JP2014535473A priority patent/JP5865502B2/ja
Publication of WO2014041973A1 publication Critical patent/WO2014041973A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to an OFDM receiving apparatus and an OFDM receiving method for receiving a transmission signal using an orthogonal frequency division multiplexing (OFDM) system, and more particularly, to a received signal quality measurement technique.
  • OFDM orthogonal frequency division multiplexing
  • the OFDM (Orthogonal Frequency Division Multiplexing) method is widely used in digital terrestrial television broadcasting, wireless LAN (Local Area Network) systems, and the like as a multicarrier modulation / demodulation method capable of realizing efficient data transmission.
  • An OFDM signal is a signal generated by performing multi-level modulation on each of orthogonal carriers using a modulation scheme such as QAM (Quadrature Amplitude Modulation). According to the OFDM signal, since a plurality of bit data can be transmitted simultaneously by a plurality of carriers, the transmission rate can be increased in a relatively narrow occupied band.
  • the received signal may contain errors due to transmission path distortion or additional noise. Even if the received signal contains an error, in order to be able to correctly restore the original transmission data from the received signal, the transmitting device controls the transmission gain for each carrier, and the receiving device Performs control such as modulation scheme control for each carrier or application of an error correction code. However, if a modulation method with a small QAM value is selected, the number of bits of data that can be transmitted becomes small. If error correction is applied, redundant data needs to be added. It will decline.
  • bit error rate A device has been proposed in which the transmission rate is estimated by estimating the Bit Error Rate, and the carrier modulation method or error correction coding rate is determined so that the estimated BER for each carrier is smaller than the desired reference BER. (For example, refer to Patent Document 1).
  • Patent Literature 1 sorts carriers according to BER estimated for each carrier, and collects carriers in order from the smallest BER, and the BER threshold value required for data before error correction and data before error correction. Compare with. And the apparatus of patent document 1 presumes that a reception state is good in an order from the group which does not exceed a BER threshold value, assigns a high QAM value and a high coding rate to the group that the reception state is presumed good, The BER threshold value is controlled according to the actual BER detected by the bit error rate detection unit.
  • an object of the present invention is to provide an OFDM receiving apparatus and an OFDM receiving method capable of grasping the reception level and the actual error occurrence state for each carrier group.
  • An OFDM receiver demodulates a received OFDM modulated signal and generates a transmission signal bit string based on the OFDM modulated signal, and the transmission signal bit string generated by the OFDM demodulating means.
  • error correction decoding means for generating a data string in error correction processing units by performing error correction decoding, and a carrier for calculating a parameter value serving as an index of reception status in carrier units from the OFDM modulation signal
  • a reception state calculating means an error information detecting means for detecting a transmission error in the error correction decoding means and detecting a correction status; and outputting a data string of error correction processing units; and a frequency to which a carrier constituting the OFDM modulation signal belongs.
  • Group determining means for performing a grouping operation which is a process of dividing the data sequence of the error correction processing unit into a plurality of continuous data groups so as to correspond to a plurality of carrier groups, and the plurality of data determined by the group determining means
  • An error information measuring unit that measures an output from the error information detecting unit for each data group, and a representative for each carrier group according to the parameter value output from the carrier reception state calculating unit.
  • Carrier group representative value calculating means for calculating a value is provided.
  • An OFDM reception method includes an OFDM demodulation step of demodulating a received OFDM modulated signal and generating a transmission signal bit string based on the OFDM modulated signal, and the transmission signal generated by the OFDM demodulation step By performing error correction decoding on the bit string, an error correction decoding process for generating a data string in error correction processing units, and a parameter value serving as an index of reception status in carrier units from the OFDM modulation signal are calculated.
  • a carrier reception state calculating step, an error information detecting step of detecting a transmission error in the error correction decoding step and detecting a correction status, and outputting a data string of an error correction processing unit, and a carrier constituting the OFDM modulation signal Divide the frequency band into multiple carrier groups by grouping adjacent carrier groups on the frequency axis,
  • a group determination step for performing a grouping operation which is a process of dividing the data sequence of the error correction processing unit into a plurality of continuous data groups so as to correspond to a plurality of carrier groups, and the plurality of the plurality of times determined by the group determination step For each data group, in accordance with the value of the parameter output in the error information measurement step for measuring the output from the error information detection means in the data group unit and the carrier reception state calculation step, for each carrier group And a carrier group representative value calculating step for calculating a representative value.
  • the present invention it is possible to grasp the reception level and the error occurrence state in association with the carrier group.
  • FIG. 6 is a block diagram which shows roughly the structure of the OFDM receiver which concerns on Embodiment 1 of this invention (namely, apparatus which can implement the OFDM receiving method which concerns on Embodiment 1).
  • 3 is a flowchart schematically showing main steps of the OFDM receiving method according to Embodiment 1.
  • 6 is an explanatory diagram illustrating an example of a payload configuration of an OFDM modulated signal in Embodiment 1.
  • FIG. 6 is an explanatory diagram illustrating an example of setting contents of a modulation scheme included in a demodulation information table according to Embodiment 1.
  • FIG. 6 is a timing diagram illustrating an example of an operation of a group determination unit in Embodiment 1.
  • FIG. 6 is an explanatory diagram illustrating an example of a group determination result of a group determination unit in Embodiment 1.
  • FIG. 6 is a timing diagram illustrating an example of an operation of an error information measurement unit according to Embodiment 1.
  • FIG. 3 is an explanatory diagram illustrating a configuration example of data stored in a memory according to Embodiment 1.
  • FIG. It is a block diagram which shows roughly the structure of the OFDM receiver which concerns on Embodiment 2 of this invention (namely, apparatus which can implement the OFDM receiving method which concerns on Embodiment 2).
  • 7 is a flowchart schematically showing main steps of an OFDM receiving method according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of setting contents of a modulation scheme included in a demodulation information table in Embodiment 2.
  • FIG. 10 is a timing diagram illustrating an example of an operation of a target range setting unit in the second embodiment.
  • 10 is an explanatory diagram illustrating an example of a group determination result of a group determination unit according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of data stored in a memory according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of an operation of a carrier analysis unit in Embodiment 2.
  • FIG. (A) And (b) is explanatory drawing which shows an example of the group determination result of the group determination part in Embodiment 2.
  • FIG. 10 is a flowchart schematically showing main steps of an OFDM reception method according to Embodiment 3.
  • A)-(d) is explanatory drawing which shows an example of the frequency interleaving method in Embodiment 3.
  • FIG. 10 is an explanatory diagram illustrating an example of an operation of a group number conversion unit in the third embodiment.
  • FIG. 10 is a flowchart schematically showing main steps of an OFDM reception method according to Embodiment 4.
  • FIG. 10 is a block diagram schematically showing an example of a configuration of a data processing unit and a status register of an OFDM receiver according to a fourth embodiment.
  • FIG. 1 shows an OFDM receiving apparatus 100 according to Embodiment 1 of the present invention (that is, an apparatus that can implement the OFDM receiving method according to Embodiment 1). It is a block diagram which shows a structure schematically.
  • an OFDM receiving apparatus 100 according to Embodiment 1 includes an ADC (Analog-to-Digital Converter) unit 101 and an error correction decoding unit as an example of an error correction decoding unit as main components.
  • 102 a MAC (Media Access Control) unit 103, an OFDM demodulation unit 110 as an example of an OFDM demodulation unit, and a reception state detection unit 120.
  • ADC Analog-to-Digital Converter
  • the OFDM demodulator 110 includes, as main components, an orthogonal demodulator 111, an FFT (Fast Fourier Transform) unit 112, an equalizer 113, a demapping unit 114, and demodulation information.
  • the table 115 and the synchronization control unit 116 are included.
  • the reception state detection unit 120 includes a reception level calculation unit 121 as an example of a carrier reception state calculation unit, an error information detection unit 122 as an example of an error information detection unit, and a carrier analysis.
  • the carrier analyzing unit 130 includes a group determining unit 131 as an example of a group determining unit, a reception level shaping unit 132 as an example of a carrier group representative value calculating unit, and an error information measuring unit 133 as an example of an error information measuring unit.
  • a memory 134 as an example of a storage means.
  • OFDM demodulation section 110 demodulates the received OFDM modulated signal and generates a transmission signal bit string based on this OFDM modulated signal.
  • the error correction decoding unit 102 performs error correction decoding on the transmission signal bit sequence generated by the OFDM demodulation unit 110, thereby generating a data sequence of error correction processing units.
  • the reception level calculation unit 121 calculates the value of a parameter that is an index of the quality of the reception state in carrier units from the OFDM modulated signal.
  • the error information detection unit 122 detects a transmission error in the error correction decoding unit 102 and a correction status.
  • the group determination unit 131 discriminates a plurality of carrier groups including a first predetermined number of adjacent carrier sequences or a second predetermined number of error correction processing unit data sequences.
  • the error information measuring unit 133 measures the output from the error information detecting unit 122 for each of the plurality of carrier groups determined by the group determining unit 131 in units of the carrier group.
  • the reception level shaping unit 132 calculates a representative value for each carrier group according to the parameter value output from the reception level calculation unit 121.
  • the representative value output from the reception level shaping unit 132 and the measurement result output from the error information measuring unit 133 are sequentially written and written for each carrier group corresponding to the representative value and the measurement result. Hold the data. According to OFDM receiving apparatus 100 according to Embodiment 1, by confirming the contents of memory 134, it is possible to grasp the reception level and the error occurrence state in association with the carrier group.
  • FIG. 2 is a flowchart showing main steps of the OFDM reception method according to the first embodiment.
  • the OFDM reception method according to Embodiment 1 demodulates a received OFDM modulated signal and generates a transmission signal bit string based on the OFDM modulated signal (step ST1), and OFDM
  • An error correction decoding step (step ST2) for generating a data sequence of an error correction processing unit by performing error correction decoding on the transmission signal bit sequence generated by the demodulation step, and a reception state in units of carriers from the OFDM modulation signal
  • a carrier reception state calculation step (step ST3) for calculating a parameter value serving as a quality index
  • an error information detection step for detecting a transmission error and detecting a correction state in the error correction decoding step.
  • the OFDM reception method discriminates a plurality of carrier groups consisting of a first predetermined number of adjacent carrier sequences or a second predetermined number of error correction processing unit data sequences.
  • a group determination step (step ST5), an error information measurement step (step ST6) for measuring an output in the error information detection step for each of the plurality of carrier groups determined in the group determination step, in units of the carrier group,
  • a carrier group representative value calculation step (step ST7) for calculating a representative value for each carrier group according to the parameter value output in the carrier reception state calculation step, and a representative value output in the carrier group representative value calculation step And the measurement result output in the error information measurement process.
  • the memory 134 as a means sequentially writes for each carrier group corresponding to the result of the representative value and the measurement, and a storage step (step ST8) for holding the written data in the memory 134.
  • a storage step for holding the written data in the memory 134.
  • the OFDM reception apparatus 100 transmits a frame composed of an idle, a preamble, and a payload from the OFDM transmission apparatus to the OFDM reception apparatus 100. Act as part of. One frame is composed of a plurality of symbols.
  • the OFDM transmission apparatus collectively configures a payload by combining user data to be transmitted, adds information on the payload as frame header information to the payload, and configures a payload by collectively transmitting user data to be transmitted. In order to adjust the payload length to a predetermined payload length, a process of inserting a null packet into the payload is performed.
  • the OFDM transmitter adds a parity bit to the frame header, scrambles the entire payload, and then performs OFDM on the frame. It modulates and transmits as OFDM modulation signal S (t).
  • the OFDM transmission apparatus has a function capable of designating a modulation scheme for each carrier
  • the OFDM reception apparatus 100 has a function capable of designating a demodulation scheme for each carrier. Have. These functions can be realized, for example, when each of the OFDM transmitter and the OFDM receiver 100 has an information table (modulation information table and demodulation information table) having common contents.
  • the OFDM modulated signal S (t) received by the OFDM receiver 100 is input to the ADC unit 101 and converted from an analog signal to a digital signal sequence D (n).
  • the digital signal sequence D (n) obtained by the conversion is input to the OFDM demodulator 110.
  • the OFDM demodulator 110 demodulates the digital signal sequence D (n) based on the received OFDM modulated signal and outputs bit sequence data based on the OFDM modulated signal.
  • an IF (Intermediate Frequency) signal is converted into baseband signals I (n) and Q (n), and the baseband signals I (n) and Q (n) are converted into FFTs. Input to the unit 112.
  • the baseband signal I (n) is an I (In-phase) signal
  • the baseband signal Q (n) is a Q (Quadrature-phase) signal.
  • Baseband signals I (n) and Q (n) are converted from a time-axis signal to a frequency-axis signal by fast Fourier transform in FFT section 112 and input to equalization section 113.
  • the baseband signal converted into the frequency axis signal is corrected in transmission path distortion by the equalization unit 113 and then input to the demapping unit 114.
  • demapping processing which is processing for generating bit string data from the output of the equalizing unit 113, is performed using the modulation scheme information for each carrier in the demodulation information table 115.
  • the modulation scheme information indicates which one of a carrier modulation scheme such as QPSK (Quadrature Phase Shift Keying), 16QAM, 64QAM, or a carrier mask designation indicating that the corresponding carrier is not used is assigned. This is information to be expressed and needs to match the setting of the modulation method for each carrier in the OFDM transmitter.
  • modulation scheme information is stored in the demodulation information table 115 in advance, and the demapping unit 114 performs demapping processing while referring to the modulation scheme information in the demodulation information table 115, and payload data is converted into bit string data. Output.
  • the synchronization control unit 116 performs synchronization processing such as symbol timing synchronization, carrier frequency synchronization, and sampling frequency synchronization so that the demodulation processing in the OFDM demodulation unit 110 is correctly performed.
  • the synchronization control unit 116 is configured to perform processing for correcting transmission path distortion and accurately synchronizing, such as transmission path estimation or delay profile detection.
  • the bit string data output from the OFDM demodulator 110 is input to the error correction decoder 102.
  • the error correction decoding unit 102 performs error correction decoding processing on the bit string data to generate reception data.
  • the error correction decoding process is performed by a decoding method corresponding to the error correction code method in the OFDM transmitter.
  • a Reed-Solomon (RS) code is used as an error correction method, and a continuous lump of data of 8 bits (1 byte) is used as an error correction processing unit (RS unit).
  • redundant data used for error correction is added to information data that is actually transmitted.
  • the number of redundant data is determined according to the error correction capability.
  • the number of information data is k (k is a natural number)
  • the number of code data that is the sum of the number of information data and the number of redundant data is n (n is a natural number)
  • “1”, which is the basic unit of the number of data corresponds to an RS unit (8 bits).
  • the error correction decoding unit 102 processes payload data having a configuration as shown in FIG. 3, for example. In other words, code data is continuously input to the error correction decoding unit 102, information data is input first among the code data, then redundant data is input, and after a processing delay in the error correction decoding unit 102, As many pieces of data as the number of information data are output from the error correction decoding unit 102.
  • Received data obtained by the error correction decoding unit 102 is input to the MAC unit 103.
  • the MAC unit 103 descrambles the received frame data for descrambling performed by the OFDM transmitter, a frame header analysis process for extracting a frame header from the data sequence and extracting information about the payload, and a frame header analysis process
  • the user data separation process for separating the individual user data from the payload is performed according to the information obtained from the above.
  • the data output from the MAC unit 103 is output to a subsequent processing unit (for example, a block that performs processing according to the user's instruction content).
  • the reception level calculation unit 121 in the reception state detection unit 120 calculates the reception power level for each carrier using the complex data output from the FFT unit 112 during OFDM demodulation in the OFDM demodulation unit 110.
  • reception level calculation section 121 calculates the reception level for each carrier.
  • the reception level calculation unit 121 may calculate a value indicating the reception state for each carrier instead of the reception level.
  • a value indicating the reception state a value such as SNR (Signal-to-Noise Ratio) or CNR (Carrier-to-Noise Ratio) can be used.
  • the error information detection unit 122 in the reception state detection unit 120 detects the operation state of error correction decoding in the error correction decoding unit 102.
  • the error information detection unit 122 detects the presence / absence of RS unit data including an error, detects the success / failure of error correction, or detects the start position of the processing unit of RS decoding, and indicates these detection results.
  • the signal is generated so as to be synchronized with the decoding process in the error correction decoding unit 102.
  • the error information detection unit 122 generates an RS data enable signal, an RS redundant data enable signal, an RS error detection position signal, and the like.
  • the carrier analysis unit 130 analyzes and holds the reception state in carrier units.
  • the OFDM modulation signal in Embodiment 1 can specify the modulation method for each carrier, and the number of bits that can be transmitted in one carrier is 2 bits for QPSK, 4 bits for 16QAM, and 64QAM. 6 bits.
  • the bit length per carrier after OFDM demodulation does not necessarily match the RS unit in the error correction decoding unit 102, and error information detected by the error information detection unit 122 is demodulated by the OFDM demodulation unit 110 in any carrier. It cannot be directly grasped whether the demodulation error is the cause.
  • the carrier analysis unit 130 makes it possible to grasp the reception level, error correction decoding state, and frame error occurrence state for each carrier group (also simply referred to as “group”) composed of a plurality of carriers.
  • the number of carriers per symbol is 80 (carrier numbers 0, 1,..., 79 are assigned in order from the lowest frequency), and QPSK and 16QAM are used as carrier modulation schemes. , 64QAM and a carrier mask can be set.
  • the group determination unit 131 performs grouping for each predetermined carrier, and determines what unit the RS unit serving as the boundary of the group is, that is, what byte in the first embodiment.
  • 64QAM is set for the carrier numbers 0, ..., 39
  • 16QAM is set for the carrier numbers 40, ..., 49
  • the carrier numbers 50, ..., 55 are The carrier mask is set, and the carrier numbers 56,..., 79 exemplify the case where QPSK is set.
  • the OFDM demodulator 110 performs a series of OFDM demodulation on the OFDM modulated signal in the order of carrier numbers 0, 1, 2,.
  • the group deciding unit 131 simultaneously refers to the data in which the demapping unit 114 refers to the demodulation information table 115 in the order of carrier numbers.
  • the boundary information G1b of the group 1 is “11”.
  • the groups 2,..., 7 are also grouped, and the boundary information G0b,..., G7b of each group is as shown in FIG.
  • the group determining unit 131 holds the determined group boundary information and outputs it to the error information measuring unit 133.
  • the error information measurement unit 133 uses the group boundary information from the group determination unit 131 to measure the frequency of occurrence of error information in each group. This operation will be described with reference to the example of FIG. In FIG. 7, the symbol header indicates the beginning of the symbol period, the RS data indicates RS decoded data output in units of RS after the RS decoding processing in the error correction decoding unit 102, that is, 8 bits per cycle, and RS data enable indicates The error correction decoding unit 102 outputs a signal indicating whether or not the RS data is valid (“1” is valid) for each RS unit.
  • the number of information data 1,..., K represents the count value of the number of information data after RS decoding output from the error correction decoding unit 102, and is reset to “0” for each RS decoding process.
  • the RS error detection position signal represents a position where an error is detected by RS decoding with reference to the RS data enable signal (“1” is error).
  • the RS redundant data enable signal represents redundant data of the code data. Redundant data becomes unnecessary after error correction decoding, and therefore is not output from the error correction decoding unit 102 to the MAC unit 103.
  • the redundant data is included in the OFDM modulated signal as transmission data and uses a carrier corresponding to the number of redundant data, a period corresponding to transmission corresponding to the number of redundant data is indicated ("1"). "Is the redundant data transmission period).
  • the input / output units to the error correction decoding unit 102 are both RS units, and as shown in FIG. 3, the configuration is such that the code data followed by the corresponding redundant data is sequentially input after the information data is arranged. Therefore, the invalid period of the RS data enable is the same as or longer than the period when the RS redundant data enable signal is “1”.
  • the RS counter is incremented by 1 when the RS data enable is “1” or the RS redundant data enable is “1”, and the information data output from the error correction decoding unit 102 and the redundant data that should have been received are displayed. It represents the value counted for each RS unit, and is reset to “0” at the head of the symbol. Since the RS counter represents the number of data received per symbol, when the RS counter value matches the previously obtained group boundary information Gnb (n is an integer not less than 0 and not more than 7) (the group in FIG. 7). When the boundary information Gnb coincidence timing signal is “1”), the data represents the position of the last carrier in the carrier group corresponding to the boundary information Gnb of the group to be compared. Accordingly, eight periods are allocated to each group in order from the head of the symbol to the group 7 such that the boundary information Gnb coincidence timing signal of the first group becomes “1” and the second is group 1. Is possible.
  • the error information measuring unit 133 further measures the RS error detection position signal corresponding to the grouping based on the coincidence timing of the group boundary information Gnb, and calculates the number of group-specific RS corrections.
  • the reception level shaping unit 132 shapes the reception level value for each group according to the group final carrier number CNn used by the group determination unit 131, and calculates a representative value of the reception level.
  • a representative value of the reception level use a value representing a general statistical indicator of the reception level within the group, such as an average value, median value, or mode value of the reception levels within the group. Can do.
  • the memory 134 holds the values obtained by the reception level shaping unit 132 and the error information measurement unit 133 for a certain period.
  • FIG. 8 shows an example of the data holding state in the memory 134.
  • the address column indicates the address address of the memory
  • the group column indicates the group number determined by the group determination unit 131
  • the reception level column indicates the reception level representative value for each group obtained by the reception level shaping unit 132.
  • the error information measurement value string represents error correction information such as the number of error corrections measured for each group by the error information measurement unit 133.
  • L0,..., L7, L0 ', ..., L7', L0 ", ..., L7" represent reception level values.
  • E0, ..., E7, E0 ', ..., E7', E0 ", ..., E7” represent error information measurement values.
  • Am0,..., Am7 represent address values at which the value of the mth symbol in the memory 134 is written.
  • FIG. 8 shows an example in which one frame is composed of m symbols (m is a natural number). One group information corresponds to one address, and measurement results are sequentially written for each received OFDM symbol. The number of frames that can be held in the memory 134 is determined by the capacity secured in the memory 134.
  • the reception level shaping unit 132 and the error information measuring unit 133 have different timings for completing the processing, and therefore the timings for writing to the memory 134 do not match.
  • the entire area of the memory 134 is controlled as a ring buffer and a predetermined CPU interrupt such as a data reception error occurs in the OFDM receiver 100, writing to the memory 134 is stopped, and an interrupt occurs. By reading the value on the memory 134 later, it is possible to grasp the reception state immediately before the occurrence of the interrupt.
  • all the group final carrier numbers CNn included in the group determining unit 131 are used. However, the grouping is always performed so that all the set group final carrier numbers CNn are used. There is no need, and it may be possible to operate with fewer than eight groups.
  • ⁇ 1-4 Effects According to Embodiment 1 As described above, according to the OFDM receiving apparatus 100 and the OFDM receiving method according to Embodiment 1, the reception level and the error occurrence state in RS decoding correspond to the carrier group. It can be grasped.
  • the OFDM receiving apparatus 100 and the OFDM receiving method according to Embodiment 1 it is possible to directly change the modulation scheme or adjust the transmission gain for the carrier group in which an error has occurred, so that it is more finely optimized. Can set up a good career.
  • group determination section 131 performs grouping while sequentially comparing the output order of carrier numbers and RS unit data according to the contents of demodulation information table 115.
  • error information can be associated with a carrier group.
  • the group boundary is determined when the modulation scheme information is read from the demodulation information table 115 in synchronization with the demapping process in the demapping unit 114, and then error correction is performed.
  • the carrier group in the RS processing unit can be performed using the error correction decoding result in the decoding unit 102, and the processing can be completed within the target symbol.
  • Embodiment 1 the carrier number corresponding to the boundary of the carrier group is set as the grouping criterion.
  • the RS processing unit is based on the RS processing unit. It is good also as a structure which sets a number.
  • the writing to the memory 134 is performed individually by the reception level shaping unit 132 and the error information measuring unit 133, but a separate memory access arbitration unit is provided, and the memory access arbitration unit is connected to the memory 134. It is good also as a structure which performs this control collectively.
  • the group determination unit 131 sets the group determination completion flag Fg. It is also possible to prepare and limit the execution period of the grouping operation according to the state.
  • FIG. 9 shows an OFDM receiver 200 according to Embodiment 2 of the present invention (that is, an apparatus that can implement the OFDM reception method according to Embodiment 2) 200. It is a block diagram which shows a structure schematically. 9, components that are the same as or correspond to the components of the OFDM receiving apparatus 100 shown in FIG. OFDM receiving apparatus 200 according to Embodiment 2 is different from OFDM receiving apparatus 100 of FIG. 1 according to Embodiment 1 in that carrier analysis section 230 in reception state detecting section 220 includes target range determining section 235. Different from the configuration. In FIG. 9, the content of the demodulation information table 215 of the OFDM demodulator 210 is different from the content of the demodulation information table 115 in the first embodiment shown in FIG.
  • FIG. 10 is a flowchart schematically showing main steps of the OFDM reception method according to the second embodiment.
  • the OFDM reception method according to Embodiment 2 includes a grouping start carrier number CNS indicating the number of carriers to start grouping determined by the target range determination unit 235, and a group carrier that is the number of carriers included in the group
  • the point which performs a group determination process (step ST25) using this number CNUM differs from the OFDM receiving method which concerns on Embodiment 1 shown by FIG.
  • the circuit range required for OFDM receiving apparatus 200 is reduced by setting the carrier range to be measured using start carrier number CNS and group carrier number CNUM. And setting change processing can be reduced.
  • the target range determination unit 235 will be described.
  • the number of carriers in one symbol is 80.
  • the demodulation information table 215 is set as shown in FIG. 11, and the carrier numbers 50, 51,..., 55 are 64QAM instead of the carrier mask. This is different from Form 1.
  • the target range determination unit 235 calculates the group final carrier number of each group from the grouping start carrier number CNS and the group carrier number CNUM using a GC counter that counts the group carrier number.
  • the starting carrier number CNS is set to “40” and the number of group carriers CNUM is set to “4”.
  • the GC counter counts the number of carriers and resets it to “0” every time it matches the number of group carriers CNUM.
  • the RS counter value is set in the group boundary information Gnb where the value of the GN counter representing the group number is n, and the GN counter is incremented by one.
  • the GN counter is reset to “0” at the head of the symbol and represents the group number.
  • the error information measurement unit 133 performs reception level or error for each group for carriers in the range from carrier number 40 to carrier number 71 in the same manner as in the first embodiment.
  • the number of corrections can be acquired, and data measured as shown in FIG.
  • the group final carrier may have an effect across the groups. For example, when there is a carrier CB straddling the group GA and the group GB, if there are many transmission errors in the group GA, the transmission error can be reduced by taking measures such as changing the modulation method for the carrier group included in the group GA. Although it can be reduced, the same countermeasure as the carrier group of the group GA can be applied in advance to the straddling carrier CB.
  • the group determination unit 131 calculates the number of transmission bits at the beginning of the symbol. Instead of setting the initial value to “0”, the fractional bit number calculated for the previous symbol may be set, and the head symbol of the frame may be always reset to “0”.
  • the carrier number for starting grouping is fixed to 0, but when the carrier number for starting grouping is set as the first carrier number of group 0 as in the second embodiment, 'RS counter value when carrier number matches start carrier number CNS' If the value equivalent to GSB is held, since the number of carriers per symbol is 80, 'RS counter value when carrier number matches start carrier number CNS' GSB is 7 bits,
  • the group final carrier number CNn (n is an integer of 0 or more and 7 or less) is 8 and is 56 bits, A total of 63 bits, which is the total number of these bits, is required.
  • the reception level shaping unit 132 adds the start carrier number CNS and the group carrier number CNUM instead of the group final carrier number CNn, and a 7-bit carrier number counter. Since it can be processed in the same way as 1.
  • the carrier number counter up to the start carrier number CNS of the group determining unit 131 is 7 bits
  • 'RS counter value when carrier number matches start carrier number CNS' GSB is 7 bits
  • the GC counter is 7 bits
  • the GN counter is 3 bits
  • the fraction flag is 8 bits
  • the reception level shaping unit 132 is 7 bits
  • the total number of bits, 39 bits, is the required number of bits.
  • the circuit scale can be reduced as compared with the first embodiment.
  • the number of carriers per symbol is 800, it is 90 bits in the first embodiment and 51 bits in the second embodiment, and as the number of carriers per symbol increases, the difference in circuit scale increases. Become.
  • the number of parameters to be changed is “RS counter value when the carrier number matches the start carrier number CNS” in the first embodiment, and the group last carrier.
  • the total number is eight, including the number CNn, but in the second embodiment, the number is the start carrier number CNS and the number of group carriers CNUM.
  • the group is divided as shown in FIG.
  • the reception level or the number of error corrections can be acquired. For this reason, if a configuration in which the start carrier number CNS and the number of group carriers CNUM can be changed from an external device (for example, an external CPU) connected to the OFDM receiver 200 is employed, first, FIG. As shown in (a), the reception level or error occurrence state is grasped for each carrier group for all carriers in the symbol, and then the carrier range is limited as shown in FIG. 16 (b). The detailed status can be checked with a small change process.
  • ⁇ 2-4 Effects of Embodiment 2
  • the carrier range to be measured is set to the start carrier number CNS, the group carrier By setting using the number CNUM, the circuit scale can be reduced and the setting change processing can be reduced.
  • the group determination unit 131 when the group determination unit 131 performs grouping, a fraction flag Gnp is provided, so that transmission can be performed using carriers included in the target group. Even if the number of bits is not divisible by the RS unit, it is possible to perform processing in consideration of the influence on the adjacent group.
  • FIG. 17 shows an OFDM receiving apparatus 300 according to Embodiment 3 of the present invention (that is, an apparatus capable of performing the OFDM receiving method according to Embodiment 3). It is a block diagram which shows a structure schematically. In FIG. 17, the same or corresponding components as those of the OFDM receiving apparatus 100 shown in FIG.
  • the OFDM receiving apparatus 300 according to Embodiment 3 is that the OFDM demodulator 310 includes a frequency deinterleaver 317, the carrier analyzer 330 includes a group number converter 336, and frequency interleaved OFDM modulation. The point corresponding to the signal is different from the OFDM receiving apparatus 100 of FIG.
  • FIG. 18 is a flowchart showing main steps of the OFDM reception method according to the third embodiment.
  • the OFDM reception method according to Embodiment 3 is used for transmitting data in an error correction processing unit in which an error has occurred in a data sequence in an error correction processing unit when frequency interleaving is performed on the OFDM modulated signal.
  • the OFDM reception method according to the first embodiment shown in FIG. 2 further includes a group number conversion step (step ST31) for decoding the transmitted transmission carrier number and determining a carrier group including the transmission carrier number. Different. According to the OFDM reception method according to Embodiment 3, even when a frequency-interleaved OFDM modulated signal is input, it is possible to grasp the reception level and the error occurrence state in association with the carrier group.
  • ⁇ 3-3 Detailed Explanation of OFDM Receiver 300 and OFDM Reception Method Frequency interleaving is realized by changing the carrier to which the transmission signal bit string is assigned according to a predetermined interleaving rule and then performing OFDM modulation, and an OFDM demodulator The carrier order is not changed during the OFDM demodulation operation in 310.
  • the OFDM transmitter when the error correction encoded data shown in FIG. 19A is transmitted in the order of d0, d1, d2,..., The buffer shown in FIG. Data is written to the buffer address, and at the time of OFDM modulation, it is possible to generate a frequency-interleaved OFDM modulated signal by sequentially reading from address 0 and assigning it to each carrier.
  • the processing up to the equalization unit 113 is performed regardless of the presence or absence of frequency interleaving.
  • the output data from the equalizing unit 113 is written in the frequency deinterleave unit 317 in the order of address 0 in the buffer shown in FIG. 19C in order from the address 0, and read out in the order of addresses according to the same interleaving rule as that of the OFDM transmitter.
  • the data arrangement is changed to obtain the original transmission bit string as shown in FIG.
  • the above description regarding frequency interleaving is merely an example of frequency interleaving processing, and other processing methods may be employed.
  • RS decoded data output from error correction decoding section 102 is not a bit string transmitted in order from carrier numbers 0, 1,... The association with the RS unit position of the carrier used for transmission is not accurate.
  • the error information measuring unit 333 obtains from the group number conversion unit 336 the group number to which the carrier number that transmitted the RS unit data in which the error has occurred belongs. Detailed operation in the error information measurement unit 333 will be described with reference to FIG. 20, signals having the same names as the signals described in FIG. 7 used in the first embodiment represent the same signals as those in the first embodiment.
  • the RS counter values when the RS error detection position is “1” are T0, T1, and T2 in order from the top of the symbol.
  • the group number conversion unit 336 reads modulation scheme information by associating the same interleaving rule as the buffer read address in the frequency deinterleaving unit 317 with the carrier order of the demodulation information table 115 before starting RS data output at the head of the symbol.
  • the CB counter accumulates and adds the number of transmission bits corresponding to the read modulation method, and the modulation method information is read until the CB counter value is equal to or more than 8 bits as in the RS unit.
  • the current carrier number CCn is calculated for each cycle in which the RS enable is “1”, and is output to the error information measuring unit 333.
  • the group number conversion unit 336 determines to which group the carrier number held as the current carrier number CCn belongs to the group determination unit 131,
  • the number of valid error occurrence groups EGn is plural, and the error occurrence groups EGn may all be the same group.
  • the error information measurement unit 333 continues to hold the error information measurement value for each group for the symbol period, and increments the error information measurement value of the corresponding group when the error occurrence group EGn is valid.
  • the error information measurement value can be written to the memory 134 every time measurement is completed in each group in order from the group 0.
  • all carriers in the symbol for all groups After the measurement at is completed, it is written in the memory 134.
  • the error information measurement value is incremented in units of RS.
  • the measurement value is increased because it is incremented in units of the number of carriers.
  • the operation in the reception level shaping unit 132 in the third embodiment is the same as that in the first embodiment.
  • ⁇ 3-4 Effects of Embodiment 3
  • the OFDM receiving apparatus 300 and the OFDM receiving method according to Embodiment 3 by providing a mechanism for converting a group number, frequency interleaving is performed. Even an OFDM modulated signal can be associated with a carrier and an RS unit, and the reception level and the error occurrence state in RS decoding can be grasped for each carrier group.
  • FIG. 21 shows an OFDM receiver 400 according to Embodiment 4 of the present invention (that is, an apparatus that can implement the OFDM reception method according to Embodiment 4) 400. It is a block diagram which shows a structure schematically. In FIG. 21, the same or corresponding components as those of the OFDM receiving apparatus 100 shown in FIG.
  • the OFDM receiving apparatus 400 according to the fourth embodiment is based on the first embodiment in that the carrier analysis unit 430 includes a data processing unit 435 and a status register 436 instead of the memory 134 (FIG. 1). Different from the OFDM receiver 100.
  • FIG. 22 is a flowchart schematically showing main steps of the OFDM reception method according to the fourth embodiment.
  • the OFDM receiving method according to the fourth embodiment is different from the OFDM receiving method according to the first embodiment in that it has a data processing and processing result storage step (step ST48) instead of the storage step (step ST8).
  • step ST48 data processing and processing result storage step
  • the OFDM receiving method demodulates a received OFDM modulated signal and generates a transmission signal bit string based on the OFDM modulated signal (step ST1), and OFDM
  • An error correction decoding step (step ST2) for generating a data sequence of an error correction processing unit by performing error correction decoding on the transmission signal bit sequence generated by the demodulation step, and a reception state in units of carriers from the OFDM modulation signal
  • a carrier reception state calculation step (step ST3) for calculating a parameter value serving as a quality index
  • an error information detection step for detecting a transmission error and detecting a correction state in the error correction decoding step. ing.
  • the OFDM reception method discriminates a plurality of carrier groups including a first predetermined number of adjacent carrier sequences or a second predetermined number of error correction processing unit data sequences.
  • a group determination step (step ST5), an error information measurement step (step ST6) for measuring an output in the error information detection step for each of the plurality of carrier groups determined in the group determination step, in units of the carrier group,
  • a carrier group representative value calculating step (step ST7) for calculating a representative value for each carrier group according to the parameter value output in the carrier reception state calculating step.
  • the data processing unit 435 as the data processing means performs the representative value output in the carrier group representative value calculation step (step ST7) and the error information measurement step (step ST6).
  • the output measurement result is processed to reduce the amount of information, and the processed representative value and the processed measurement result are stored in the status register 436 as a storage unit (step ST48).
  • ⁇ 4-3 >> Detailed Description of OFDM Receiver 400 and OFDM Reception Method
  • the representative value of the reception level for each group calculated by the reception level shaping unit 132 and the number of RS corrections for each group calculated by the error information measurement unit 133 are determined in order from the completion of the calculation process.
  • the data is written at a predetermined address and data bit position in the memory 134.
  • the memory 134 is constantly updated with the latest data. Therefore, the amount of data that the memory 134 can hold is limited by the actual capacity of the memory 134.
  • the data processing unit 435 outputs the representative value output from the reception level shaping unit 132 and the error information measurement unit 133 in order to record the operation state during the period exceeding the capacity of the memory 134.
  • the result of the measurement is processed, the data to be held is processed, and the status register 436 stores the processed data in which the data amount is reduced.
  • the status register 436 holds data in a format different from that of the memory 134 in the first embodiment.
  • the status register 436 holds a plurality of values output from the data processing unit 435, but the capacity depends on the number of data processed by the data processing unit 435 and is sufficiently larger than the memory 134 in the first embodiment. small.
  • FIG. 23 is a block diagram schematically showing an example of the configuration of the data processing unit 435 and the status register 436 of the OFDM receiver 400 according to the fourth embodiment.
  • the data processing unit 435 receives the representative value of the reception level and the RS correction number for each group from the reception level shaping unit 132 and the error information measurement unit 133. Further, in the data processing unit 435, an appropriate range of reception levels and an inappropriate number of consecutive times, and an allowable range of RS correction numbers and an unacceptable number of consecutive times are set in advance.
  • the data processing unit 435 compares the representative value of the reception level with the upper limit value RLU and the lower limit value RLL of the appropriate range of the reception level, and determines whether or not the representative value of the reception level is within the appropriate range. To do.
  • An RLn flag (n is an integer greater than or equal to 0 and less than or equal to 7) 4352 is prepared for each group. When the representative value of the reception level is within the appropriate range, “0” is set. 1 ′′ is temporarily held in the RLn flag 4352. Since the data of each group is updated for each OFDM symbol, the data processing unit 435 performs the same determination for each symbol and continues to update the RLn flag 4352.
  • the data processing unit 435 counts the number of consecutive symbols for the group in which the symbols for which the RLn flag is “1” continues by the RLn continuous symbol number counter 4352 and compares the number with the inappropriate number of consecutive times LN.
  • the SRLn flag (n is an integer not less than 0 and not more than 7) 4361 prepared for each group in the status register 436 holds “1”. Let Once “1” is held in the SRLn flag 4361, the power of the OFDM receiver 400 is stopped, or an instruction to clear it to “0” is not input from an external device (for example, CPU). As long as the SRLn flag 4361 is maintained, “1” is held. In addition, the SRLn flag 4261 maintains “0” unless the number of symbols for which the RLn flag 4352 is “1” exceeds the inappropriate number of consecutive times LN.
  • the data processing unit 435 compares the RS correction number with the upper limit value REU and the lower limit value REL of the allowable range of the RS correction number, and determines whether the RS correction number is within the allowable range. Determine.
  • a REn flag (n is an integer greater than or equal to 0 and less than or equal to 7) 4356 is prepared for each group. When the RS correction number is within the allowable range, “0” is set. When the RS correction number is out of the allowable range, “1” is set. Is temporarily held in the REn flag 4356. Since the data of each group is updated for each OFDM symbol, the data processing unit 435 performs the same determination for each symbol and continues to update the REn flag 4356.
  • the data processing unit 435 counts the number of consecutive symbols for the group in which the symbols for which the REn flag 4356 is “1” continues, by the REn continuous symbol number counter 4357, and compares it with the allowable number of consecutive times EN.
  • the SREn flag (n is an integer of 0 or more and 7 or less) 4362 prepared for each group in the same status register 436 holds “1”. Let Once “1” is held in the SREn flag 4362, the power of the OFDM receiver 400 is stopped, or an instruction to clear it to “0” is not input from an external device (for example, CPU). As long as the SREn flag 4362 remains “1”. The SREn flag 4362 maintains “0” unless the number of symbols for which the REn flag 4356 is “1” exceeds the unacceptable number of consecutive times EN.
  • the CPU is notified by an interrupt, or the CPU periodically polls the status register 436. By doing so, the CPU can know the time (approximate time) when the flag in the status register 436 changes to “1”.
  • FIG. 21 shows a form in which the memory 134 in the first embodiment is not provided, but the OFDM receiver according to the fourth embodiment uses a memory similar to the memory 134 in the first embodiment as a data processing unit. It may be configured to be used in addition to 435 and status register 436. When such a configuration is adopted, the OFDM receiving apparatus can maintain both the latest state and the state after operating for a long time.
  • processing content in the data processing unit 435 is not limited to the above processing content, and may be other processing if a processing suitable for the parameter detected by the reception state detection unit 420 is selected.
  • ⁇ 4-4 Effects of Embodiment 4
  • conditions set while the OFDM receiving apparatus 400 is operating are generated. Whether or not it has been performed can be held in the status register 436 having a small memory capacity for a long time.
  • the OFDM receivers 100, 200, 300, 400 and the OFDM receiving method according to the embodiments of the present invention communicate via a network (for example, an existing metal line network and power line communication (PLC)) that transmits signals in a wired manner. It can be applied to possible devices (for example, a digital television receiver, a digital television receiver, a wired terminal device, a personal computer, etc.).
  • PLC metal line network and power line communication
  • the OFDM receivers 100, 200, 300, 400 and the OFDM reception method according to the embodiments of the present invention are apparatuses (for example, a terrestrial digital television broadcast receiver, It can be applied to a digital terrestrial television broadcast receiving device, a wireless terminal device, a personal computer, and the like.
  • 100, 200, 300, 400 OFDM receiver 101 ADC unit, 102 error correction decoding unit (error correction decoding unit), 103 MAC unit, 110, 210, 310 OFDM demodulation unit (OFDM demodulation unit), 111 orthogonal demodulation unit, 112 FFT unit, 113 equalization unit, 114 demapping unit, 115, 215 demodulation information table, 116 synchronization control unit, 120, 220, 320, 420 reception state detection unit, 121 reception level calculation unit (carrier reception state calculation means), 122 error information detection unit (error information detection unit), 130, 230, 330, 430 carrier analysis unit, 131 group determination unit (group determination unit, carrier group boundary setting unit), 132 reception level shaping unit (carrier group representative) Calculation means), 133,333 error information measurement section (error information measurement means), 134 memory (storage means), 235 target range determination section, 317 frequency deinterleave section, 336 group number conversion section (group number conversion means), 435 Data processing section, 436 status register.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 OFDM受信装置(100)は、OFDM復調部(110)、誤り訂正復号部(102)、キャリア単位で受信状態の良否の指標となるパラメータの値を算出する受信レベル算出部(121)、伝送誤り及び訂正状況を検出し、誤り訂正処理単位のデータ列を出力する誤り情報検出部(122)、OFDM変調信号を構成するキャリアが属する周波数帯を、周波数軸上で隣接するキャリア群をまとめて複数のキャリアグループに分け、誤り訂正処理単位のデータ列を連続する複数のデータグループに分ける処理であるグループ分け動作を行うグループ決定部(131)、複数のデータグループの各々についてデータグループ単位で、誤り情報検出部(122)からの出力を計測する誤り情報計測部(133)、及び受信レベル算出部(121)から出力されるパラメータの値にしたがって、キャリアグループ毎の代表値を算出する受信レベル整形部(132)を備える。

Description

OFDM受信装置及びOFDM受信方法
 本発明は、直交周波数分割多重(OFDM)方式を用いた伝送信号を受信するOFDM受信装置及びOFDM受信方法に関し、特に、受信信号の品質測定技術に関する。
 OFDM(Orthogonal Frequency Division Multiplexing)方式は、効率の良いデータ伝送を実現することができるマルチキャリア変復調方式として、地上デジタルテレビジョン放送及び無線LAN(Local Area Network)システムなどに広く使用されている。OFDM信号は、直交するキャリアのそれぞれを、QAM(Quadrature Amplitude Modulation)などの変調方式を用いて多値変調することによって生成される信号である。OFDM信号によれば、複数のキャリアによって同時に複数のビットデータを送信することができるので、比較的狭い占有帯域で、伝送レートを高くすることができる。
 実際の伝送においては、伝送路ひずみ又は付加雑音により、受信信号に誤りが含まれている場合がある。受信信号に誤りが含まれている場合であっても、受信信号から元の伝送データを正しく復元することができるようにするため、送信装置は、キャリア毎に送信ゲインの制御を行い、受信装置は、キャリア毎の変調方式の制御又は誤り訂正符号の適用などの制御を行う。しかし、QAM値の小さい変調方式を選択すれば、伝送することができるデータのビット数が小さくなってしまい、また、誤り訂正を適用すれば、冗長データの付加が必要になるため、伝送レートが低下してしまう。
 この改善策として、伝送路毎に必要な伝送レートを確保しつつ伝送誤りの影響を受け難いデータ伝送を実現できるようにするために、キャリア毎に雑音レベルを測定してBER(ビット誤り率:Bit Error Rate)を推測することによって伝送レートを見積もり、キャリア毎に推測されたBERが、所望の基準BERより小さくなるようにキャリアの変調方式又は誤り訂正符号化率を決定する装置が提案されている(例えば、特許文献1参照)。
 特許文献1に記載の装置は、キャリア毎に推測されたBERにしたがってキャリアをソートし、BERの小さいものから順にキャリアを集めたグループにおけるBERの平均値と誤り訂正前のデータに求められるBER閾値との比較を行う。そして、特許文献1に記載の装置は、BER閾値を超えないグループから順に受信状態がよいと推測して、受信状態がよいと推測されたグループには高いQAM値及び高い符号化率を割り当て、BER閾値は、ビット誤り率検出部で検出した実際のBERに従って制御している。
特許第4816547号公報(図1)
 しかし、特許文献1に記載の装置においては、ビット誤り率検出部における実際のBERの検出とは別に、キャリア毎のBERを推測することが必要である。また、特許文献1に記載の装置においては、実際に検出されたBERは、ビット誤り閾値設定に反映されるのみであり、実際に誤りが発生しているキャリアを直接には特定できない構成となっていた。
 そこで、本発明の目的は、受信レベル及び実際の誤り発生状態をキャリアグループ毎に把握することができるOFDM受信装置及びOFDM受信方法を提供することである。
 本発明の一態様に係るOFDM受信装置は、受信したOFDM変調信号を復調し、該OFDM変調信号に基づく伝送信号ビット列を生成するOFDM復調手段と、前記OFDM復調手段によって生成された前記伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する誤り訂正復号手段と、前記OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出するキャリア受信状態算出手段と、前記誤り訂正復号手段における伝送誤りの検出及び訂正状況を検出し、誤り訂正処理単位のデータ列を出力する誤り情報検出手段と、前記OFDM変調信号を構成するキャリアが属する周波数帯を、周波数軸上で隣接するキャリア群をまとめて複数のキャリアグループに分け、前記複数のキャリアグループに対応するよう前記誤り訂正処理単位のデータ列を連続する複数のデータグループに分ける処理であるグループ分け動作を行うグループ決定手段と、前記グループ決定手段によって決定された前記複数のデータグループの各々について前記データグループ単位で、前記誤り情報検出手段からの出力を計測する誤り情報計測手段と、前記キャリア受信状態算出手段から出力される前記パラメータの値にしたがって、前記キャリアグループ毎の代表値を算出するキャリアグループ代表値算出手段とを備えることを特徴としている。
 本発明の他の態様に係るOFDM受信方法は、受信したOFDM変調信号を復調し、該OFDM変調信号に基づく伝送信号ビット列を生成するOFDM復調工程と、前記OFDM復調工程によって生成された前記伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する誤り訂正復号工程と、前記OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出するキャリア受信状態算出工程と、前記誤り訂正復号工程における伝送誤りの検出及び訂正状況を検出し、誤り訂正処理単位のデータ列を出力する誤り情報検出工程と、前記OFDM変調信号を構成するキャリアが属する周波数帯を、周波数軸上で隣接するキャリア群をまとめて複数のキャリアグループに分け、前記複数のキャリアグループに対応するよう前記誤り訂正処理単位のデータ列を連続する複数のデータグループに分ける処理であるグループ分け動作を行うグループ決定工程と、前記グループ決定工程によって決定された前記複数のデータグループの各々について前記データグループ単位で、前記誤り情報検出手段からの出力を計測する誤り情報計測工程と、前記キャリア受信状態算出工程において出力される前記パラメータの値にしたがって、前記キャリアグループ毎の代表値を算出するキャリアグループ代表値算出工程とを備えることを特徴としている。
 本発明によれば、受信レベルと誤り発生状態とをキャリアグループに対応付けて把握することができる。
本発明の実施の形態1に係るOFDM受信装置(すなわち、実施の形態1に係るOFDM受信方法を実施することができる装置)の構成を概略的に示すブロック図である。 実施の形態1に係るOFDM受信方法の主要工程を概略的に示すフローチャートである。 実施の形態1におけるOFDM変調信号のペイロード構成の一例を示す説明図である。 実施の形態1における復調情報テーブルに含まれる変調方式の設定内容の一例を示す説明図である。 実施の形態1におけるグループ決定部の動作の一例を示すタイミング図である。 実施の形態1におけるグループ決定部のグループ判定結果の一例を示す説明図である。 実施の形態1における誤り情報計測部の動作の一例を示すタイミング図である。 実施の形態1におけるメモリに格納されるデータの構成例を示す説明図である。 本発明の実施の形態2に係るOFDM受信装置(すなわち、実施の形態2に係るOFDM受信方法を実施することができる装置)の構成を概略的に示すブロック図である。 実施の形態2に係るOFDM受信方法の主要工程を概略的に示すフローチャートである。 実施の形態2における復調情報テーブルに含まれる変調方式の設定内容の一例を示す説明図である。 実施の形態2における対象範囲設定部の動作の一例を示すタイミング図である。 実施の形態2におけるグループ決定部のグループ判定結果の一例を示す説明図である。 実施の形態2におけるメモリに格納されるデータの構成例を示す説明図である。 実施の形態2におけるキャリア解析部の動作の一例を示す説明図である。 (a)及び(b)は、実施の形態2におけるグループ決定部のグループ判定結果の一例を示す説明図である。 本発明の実施の形態3に係るOFDM受信装置(すなわち、実施の形態3に係るOFDM受信方法を実施することができる装置)の構成を概略的に示すブロック図である。 実施の形態3に係るOFDM受信方法の主要工程を概略的に示すフローチャートである。 (a)~(d)は、実施の形態3における周波数インターリーブ方法の一例を示す説明図である。 実施の形態3におけるグループ番号変換部の動作の一例を示す説明図である。 本発明の実施の形態4に係るOFDM受信装置(すなわち、実施の形態4に係るOFDM受信方法を実施することができる装置)の構成を概略的に示すブロック図である。 実施の形態4に係るOFDM受信方法の主要工程を概略的に示すフローチャートである。 実施の形態4に係るOFDM受信装置のデータ加工部及びステータスレジスタの構成の一例を概略的に示すブロック図である。
《1》実施の形態1.
《1-1》OFDM受信装置100の主要構成
 図1は、本発明の実施の形態1に係るOFDM受信装置(すなわち、実施の形態1に係るOFDM受信方法を実施することができる装置)100の構成を概略的に示すブロック図である。図1に示されるように、実施の形態1に係るOFDM受信装置100は、主要な構成として、ADC(Analog-to-Digital Converter)部101と、誤り訂正復号手段の一例としての誤り訂正復号部102と、MAC(Media Access Control)部103と、OFDM復調手段の一例としてのOFDM復調部110と、受信状態検出部120とを有する。
 また、図1に示されるように、OFDM復調部110は、主要な構成として、直交復調部111と、FFT(Fast Fourier Transform)部112と、等化部113と、デマップ部114と、復調情報テーブル115と、同期制御部116とを有する。
 また、図1に示されるように、受信状態検出部120は、キャリア受信状態算出手段の一例としての受信レベル算出部121と、誤り情報検出手段の一例としての誤り情報検出部122と、キャリア解析部130とを有する。キャリア解析部130は、グループ決定手段の一例としてのグループ決定部131と、キャリアグループ代表値算出手段の一例としての受信レベル整形部132と、誤り情報計測手段の一例としての誤り情報計測部133と、記憶手段の一例としてのメモリ134とを有する。
 実施の形態1に係るOFDM受信装置100において、OFDM復調部110は、受信したOFDM変調信号を復調し、このOFDM変調信号に基づく伝送信号ビット列を生成する。誤り訂正復号部102は、OFDM復調部110によって生成された伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する。受信レベル算出部121は、OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出する。誤り情報検出部122は、誤り訂正復号部102における伝送誤りの検出及び訂正状況を検出する。グループ決定部131は、隣接する第1の所定の数のキャリア列、又は、第2の所定の数の誤り訂正処理単位のデータ列からなる、複数のキャリアグループを判別する。誤り情報計測部133は、グループ決定部131によって決定された複数のキャリアグループの各々について前記キャリアグループ単位で、誤り情報検出部122からの出力を計測する。受信レベル整形部132は、受信レベル算出部121から出力されるパラメータの値にしたがって、キャリアグループ毎の代表値を算出する。メモリ134は、受信レベル整形部132から出力される代表値と誤り情報計測部133から出力される計測の結果とが、この代表値及び計測の結果に対応するキャリアグループ毎に順次書き込まれ、書き込まれたデータを保持する。実施の形態1に係るOFDM受信装置100によれば、メモリ134の内容を確認することによって、受信レベルと誤り発生状態とをキャリアグループに対応付けて把握することができる。
《1-2》OFDM受信方法の主要工程
 図2は、実施の形態1に係るOFDM受信方法の主要な工程を示すフローチャートである。図2に示されるように、実施の形態1に係るOFDM受信方法は、受信したOFDM変調信号を復調し、該OFDM変調信号に基づく伝送信号ビット列を生成するOFDM復調工程(ステップST1)と、OFDM復調工程によって生成された前記伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する誤り訂正復号工程(ステップST2)と、OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出するキャリア受信状態算出工程(ステップST3)と、誤り訂正復号工程における伝送誤りの検出及び訂正状況を検出する誤り情報検出工程(ステップST4)とを有している。さらに、実施の形態1に係るOFDM受信方法は、隣接する第1の所定の数のキャリア列、又は、第2の所定の数の誤り訂正処理単位のデータ列からなる、複数のキャリアグループを判別するグループ決定工程(ステップST5)と、グループ決定工程によって決定された前記複数のキャリアグループの各々について前記キャリアグループ単位で、誤り情報検出工程における出力を計測する誤り情報計測工程(ステップST6)と、キャリア受信状態算出工程において出力される前記パラメータの値にしたがって、前記キャリアグループ毎の代表値を算出するキャリアグループ代表値算出工程(ステップST7)と、キャリアグループ代表値算出工程において出力される代表値と誤り情報計測工程において出力される前記計測の結果とを、記憶手段としてのメモリ134に、前記代表値及び前記計測の結果に対応するキャリアグループ毎に順次書き込み、該書き込まれたデータをメモリ134に保持させる記憶工程(ステップST8)とを有している。実施の形態1に係るOFDM受信方法によれば、メモリ134の内容を確認することによって、受信レベルと誤り発生状態とをキャリアグループに対応付けて把握することができる。
《1-3》OFDM受信装置100及びOFDM受信方法の詳細説明
 実施の形態1において、OFDM受信装置100は、アイドルとプリアンブルとペイロードとからなるフレームをOFDM送信装置からOFDM受信装置100に伝送するシステムの一部として動作する。また、1つのフレームは、複数のシンボルから構成される。OFDM送信装置は、送信するユーザーデータをまとめてペイロードを構成し、当該ペイロードに関する情報をフレームヘッダ情報として当該ペイロードに付加する処理、及び、送信するユーザーデータをまとめてペイロードを構成し、当該ペイロードのペイロード長を所定のペイロード長に合わせるために当該ペイロードにヌルパケットを挿入する処理などを行う。さらに、OFDM受信装置100がフレームヘッダに対する誤り検出を行うことができるようにするため、OFDM送信装置は、フレームヘッダにパリティビットを付加し、ペイロード全体に対してスクランブルを実施した後、フレームにOFDM変調を施してOFDM変調信号S(t)として送信する。なお、実施の形態1において、OFDM送信装置は、キャリア毎に変調方式を指定することがきる機能を有しており、OFDM受信装置100は、キャリア毎に復調方式を指定することがきる機能を有している。これらの機能は、例えば、OFDM送信装置とOFDM受信装置100の各々が、共通の内容を持つ情報テーブル(変調情報テーブルと復調情報テーブル)を持つことによって実現できる。
 OFDM受信装置100によって受信されたOFDM変調信号S(t)は、ADC部101に入力され、アナログ信号からデジタル信号列D(n)に変換される。変換によって得られたデジタル信号列D(n)は、OFDM復調部110に入力される。
 OFDM復調部110は、受信したOFDM変調信号に基づくデジタル信号列D(n)を復調し、OFDM変調信号に基づくビット列データを出力する。
 OFDM復調部110の直交復調部111では、IF(Intermediate Frequency)信号がベースバンド信号I(n)及びQ(n)に変換され、このベースバンド信号I(n)及びQ(n)は、FFT部112に入力される。ここで、ベースバンド信号I(n)は、I(In-phase)信号であり、ベースバンド信号Q(n)は、Q(Quadrature-phase)信号である。ベースバンド信号I(n)及びQ(n)は、FFT部112で、高速フーリエ変換を用いて時間軸信号から周波数軸信号へと変換されて、等化部113へ入力される。周波数軸信号に変換されたベースバンド信号は、等化部113で伝送路歪みを補正され、その後、デマップ部114に入力される。
 デマップ部114では、復調情報テーブル115にあるキャリア毎の変調方式情報を用いて、等化部113の出力からビット列データを生成する処理であるデマッピング処理が行われる。変調方式情報とは、QPSK(Quadrature Phase Shift Keying)、16QAM、64QAMなどのようなキャリア変調方式、又は、該当キャリアを使用していないことを示すキャリアマスク指定のうちのいずれが割り当てられているかを表す情報であり、OFDM送信装置におけるキャリア毎の変調方式の設定と一致している必要がある。実施の形態1においては、変調方式情報を復調情報テーブル115に予め保持しておき、デマップ部114が復調情報テーブル115の変調方式情報を参照しながらデマッピング処理を行い、ペイロードデータをビット列データとして出力する。
 同期制御部116は、OFDM復調部110における復調処理が正しく行われるように、シンボルタイミング同期、搬送波周波数同期、及び標本化周波数同期などのような同期処理を行う。同期制御部116は、伝送路推定又は遅延プロファイルの検出など、伝送路歪みを補正し正確に同期を取るための処理を行う構成を備えている。
 OFDM復調部110から出力されるビット列データは、誤り訂正復号部102へ入力される。誤り訂正復号部102は、このビット列データに誤り訂正復号処理を施して、受信データを生成する。誤り訂正復号処理は、OFDM送信装置における誤り訂正符号方式に対応した復号方式で実施される。実施の形態1においては、誤り訂正方式としてリードソロモン(RS)符号を用い、8ビット(1バイト)の連続した一塊のデータを誤り訂正処理単位(RS単位)とする場合を説明する。
 RS符号においては、実際に伝送する情報データに、誤り訂正のために使用される冗長データが付加される。この冗長データの数は、誤り訂正能力に応じて決められる。情報データ数をk個(kは、自然数)とし、情報データ数と冗長データ数の和である符号データ数をn個(nは、自然数)とし、訂正可能なRS単位数をt(tは、自然数)とすると、次式
t=(n-k)/2
が成立する。したがって、冗長データ数(n-k)は、t=2の場合に4個となり、t=4の場合に8個となる。なお、データ数の基本単位である「1個」は、RS単位(8ビット)に相当する。
 したがって、誤り訂正復号部102への入力データには、冗長データも含まれているが、誤り訂正復号部102からの出力データは、情報データのみとなる。このため、誤り訂正復号部102からの出力データは、誤り訂正復号部102への入力データよりも、冗長データ分だけデータ数が減っている。実施の形態1における誤り訂正復号部102は、例えば、図3に示されるような構成のペイロードデータを処理する。言い換えれば、誤り訂正復号部102には、符号データが連続して入力され、符号データのうち先に情報データが入力され、引き続き、冗長データが入力され、誤り訂正復号部102における処理遅延後、誤り訂正復号部102から情報データ数分だけ有効なデータが出力される。
 誤り訂正復号部102で得られた受信データは、MAC部103に入力される。MAC部103では、受信したフレームデータに対し、OFDM送信装置で施されたスクランブルを解除するデスクランブル処理、データ列からフレームヘッダを取り出しペイロードに関する情報を抽出するフレームヘッダ解析処理、及びフレームヘッダ解析処理から得た情報に従いペイロードから個別ユーザーデータを分離するユーザーデータ分離処理が施される。MAC部103から出力されたデータは、後段の処理部(例えば、ユーザーの指示内容に応じた処理を行うブロックなど)へ出力される。
 次に、受信状態検出部120について説明する。受信状態検出部120内の受信レベル算出部121は、OFDM復調部110におけるOFDM復調時に、FFT部112からの複素データ出力を用いてキャリア毎の受信電力レベルを算出する。実施の形態1において、受信レベル算出部121は、キャリア毎の受信レベルを算出する。しかし、受信レベル算出部121は、受信レベルに代えて、キャリア毎の受信状態を示す値を算出してもよい。この受信状態を示す値としては、SNR(Signal-to-Noise Ratio)又はCNR(Carrier-to-Noise Ratio)などの値を用いることができる。
 受信状態検出部120内の誤り情報検出部122は、誤り訂正復号部102における誤り訂正復号の動作状態を検出する。誤り情報検出部122は、誤りを含むRS単位のデータの有無の検出、又は、誤り訂正の成否の検出、又は、RS復号の処理単位の先頭位置の検出などを行い、これらの検出結果を示す信号を、誤り訂正復号部102における復号処理と同期するように生成する。誤り情報検出部122は、RSデータイネーブル信号、RS冗長データイネーブル信号、RS誤り検出位置信号などを生成する。
 次に、キャリア解析部130について説明する。キャリア解析部130は、キャリア単位における受信状態を解析し、保持する。
 実施の形態1におけるOFDM変調信号は、既に述べたように、キャリア毎に変調方式を指定でき、1つのキャリアで伝送することができるビット数は、QPSKで2ビット、16QAMで4ビット、64QAMで6ビットである。OFDM復調後のキャリアあたりのビット長は、誤り訂正復号部102におけるRS単位と一致するとは限らず、誤り情報検出部122で検出する誤り情報が、OFDM復調部110で復調した、いずれのキャリアにおける復調エラーが原因であるかを直接的には把握することができない。また、伝送路歪み又は伝送路に対するノイズ付加が原因で復調エラーが発生している場合は、1本のキャリアが単独で影響を受けることは少なく、その前後のキャリアにも影響が及ぶ場合が多い。
 そこで、キャリア解析部130では、複数のキャリアからなるキャリアグループ(単に「グループ」とも言う。)毎に受信レベル又は誤り訂正復号状態、フレームエラーの発生状態を把握することができるようにする。
 以下、キャリア解析部130の動作について説明する。実施の形態1においては、1シンボルあたりのキャリア本数を80本(周波数が低いものから順に0,1,…,79のキャリア番号を割り当てるものとする)、キャリアの変調方式としては、QPSK、16QAM、64QAM、キャリアマスクが設定可能である場合を説明する。
 グループ決定部131は、所定のキャリア毎にグループ分けを行い、そのグループの境界となるRS単位が何単位目、すなわち、実施の形態1においては、何バイト目にあたるかを判定する。復調情報テーブル115は、図4に示されるように、キャリア番号0,…,39は、64QAMが設定され、キャリア番号40,…,49は、16QAMが設定され、キャリア番号50,…,55は、キャリアマスクが設定され、キャリア番号56,…,79は、QPSKが設定されている場合を例示する。ここでは、グループ決定部131は、各グループが伝送するビット列総数がRS単位で割り切れるようにグループ最終キャリア番号CNn(nは、0以上で7以下の整数)を、CN0=7,CN1=15、CN2=23、CN3=31、CN4=40、CN5=55、CN6=67、CN7=79として、nをグループ番号とする8つのグループに分ける場合を例示する。この場合には、1シンボルあたり328ビットを伝送することができることになる。
 OFDM復調部110では、OFDM変調信号に対しキャリア番号0,1,2,…,79の順に一連のOFDM復調が実行される。このとき、デマップ部114が復調情報テーブル115をキャリア番号順に参照するデータを、グループ決定部131も同時に参照する。
 グループの最終キャリア番号にしたがってRS単位を基準としてグループの境界を決定する動作について、図5を用いて説明する。グループの最終キャリアに注目すると、グループ0の最終キャリアであるキャリア番号7までには、キャリア8本分の48ビット、すなわち、6バイトが伝送され、これは、誤り訂正復号部102では、5RS単位までであることがわかる。そこで、グループ0の境界情報G0bとして“5”を対応付ける。
 次に、グループ1では、キャリア番号15までには、グループ0とあわせて96ビット、すなわち、12バイトが伝送され、これは、ちょうど11RS単位目までであることがわかる。そこで、グループ決定部131では、グループ1の境界情報G1bは、“11”となる。同様にしてグループ2,…,7についてもグループ分けを行い、各グループの境界情報G0b,…,G7bは、図6に示す通りとなる。グループ決定部131では、判定したグループの境界情報を保持し、誤り情報計測部133へと出力する。
 誤り情報計測部133は、グループ決定部131からのグループの境界情報を用い、各グループ内における誤り情報の発生頻度を計測する。この動作を、図7の例を用いて説明する。図7において、シンボルヘッダは、シンボル期間の先頭を、RSデータは、誤り訂正復号部102におけるRS復号処理後にRS単位すなわち、1サイクルあたり8ビットずつ出力されるRS復号データを、RSデータイネーブルは、RSデータが有効であるか否か(“1”が有効)をRS単位毎に示す信号で誤り訂正復号部102から出力される。情報データ数1,…,kは、誤り訂正復号部102から出力されるRS復号後の情報データ数の計数値を表し、RS復号処理毎に“0”にリセットされる。RS誤り検出位置信号は、RS復号により誤りが検出された位置を、RSデータイネーブル信号を基準として表す(“1”が誤りあり)。
 図7において、RS冗長データイネーブル信号は、符号データのうちの冗長データ分を表す。冗長データは、誤り訂正復号後には、不要となるため誤り訂正復号部102からMAC部103には、出力されない。しかし、冗長データは、OFDM変調信号には、伝送データとして含まれており、冗長データ数に相当するキャリアを使用していることから、冗長データ数分の伝送に相当する期間を示す(“1”が冗長データ伝送期間)。誤り訂正復号部102への入出力単位は、ともにRS単位であり、図3に示したように、情報データが並び次に、対応する冗長データが続く符号データが順次入力されるような構成となっているため、RSデータイネーブルの無効期間は、RS冗長データイネーブル信号が“1”となる期間と同じかそれよりも長くなる。
 RSカウンタは、RSデータイネーブルが“1”又は、RS冗長データイネーブルが“1”のときに1ずつインクリメントし、誤り訂正復号部102から出力される情報データと受信しているはずの冗長データをRS単位毎にカウントした値を表し、シンボルの先頭で“0”にリセットされる。RSカウンタは、シンボルあたりに受信するデータ数を表すことから、RSカウンタ値が先に求めたグループの境界情報Gnb(nは、0以上で7以下の整数)に一致するとき(図7のグループの境界情報Gnb一致タイミング信号が“1”となるとき)、そのデータが比較対象としているグループの境界情報Gnbに対応するキャリアグループにおける最終キャリアのある位置を表すことになる。したがって、シンボルの先頭から最初のグループの境界情報Gnb一致タイミング信号が“1”となるときまでがグループ0、2番目がグループ1というように順にグループ7まで、8つの期間を各グループに割り付けることが可能となる。
 誤り情報計測部133では、さらに、グループの境界情報Gnbの一致タイミングによるグループ分けに対応して、RS誤り検出位置信号を計測し、グループ別RS訂正数を算出する。
 受信レベル整形部132は、グループ決定部131で用いたグループ最終キャリア番号CNnにしたがってグループ毎に受信レベルの値を整形し、受信レベルの代表値を算出する。受信レベルの代表値としては、グループ内の受信レベルの平均値、又は、中央値、又は、最頻値などのような、グループ内の受信レベルの一般的な統計の指標を表す値を用いることができる。
 メモリ134は、受信レベル整形部132及び誤り情報計測部133で求めた値を一定期間保持する。図8に、メモリ134におけるデータの保持状態の例を示す。図8で、アドレス列は、メモリのアドレス番地を、グループ列は、グループ決定部131で判定したグループ番号を、受信レベル列は、受信レベル整形部132で求めたグループ毎の受信レベル代表値を、誤り情報計測値列は、誤り情報計測部133でグループ毎に計測した誤り訂正数などの誤り訂正情報を表す。
 また、L0,…,L7、L0′,…,L7′、L0″,…,L7″は、受信レベルの値を表す。E0,…,E7、E0′,…,E7′、E0″,…,E7″は、誤り情報計測値の値を表す。Am0,…,Am7は、メモリ134におけるmシンボル目の値を書き込むアドレス値を表す。図8は、1フレームがmシンボル(mは、自然数)で構成されている場合の例である。1つのアドレス番地に1つのグループ情報が対応しており、受信したOFDMシンボル毎に計測結果を、順次書き込む。メモリ134で保持することができるフレーム数は、メモリ134で確保する容量で決まる。
 同じシンボルの同じグループに対してであっても、受信レベル整形部132と誤り情報計測部133とでは、処理が完了するタイミングが異なるため、メモリ134に書き込むタイミングが一致しない。しかし、メモリ134の同じアドレス番地に書き込んでおき、OFDM受信装置100の外部にある装置(例えば、CPU)などを介して読み出すことが可能な構成としておき、適当なタイミングでメモリ134の保持する値を読み出すようにすることで、キャリアグループと受信レベル及び誤り発生状況が直接対応付けされた情報が得られる。
 したがって、定期的に(例えば、所定の期間毎に)メモリ134上の値を読み出すことで、キャリアグループ毎にBERの実測値を算出することができる。
 また、メモリ134の全領域を用いてリングバッファとして制御し、OFDM受信装置100におけるデータ受信異常などの所定のCPU割込みが発生した際に、メモリ134に対する書き込みを停止する構成とすれば、割込み発生後にメモリ134上の値を読み出すことで、割込みが発生する直前の受信状態を把握することができる。
 なお、実施の形態1においては、グループ決定部131が備えるグループ最終キャリア番号CNnを全て用いるものとしたが、必ずしも、備えているグループ最終キャリア番号CNn設定値を全て使用するようにグループ分けを行う必要はなく、8より少ないグループで動作するようにしてもよい。
《1-4》実施の形態1による効果
 以上に説明したように、実施の形態1に係るOFDM受信装置100及びOFDM受信方法によれば、受信レベルとRS復号における誤り発生状態をキャリアグループに対応付けて把握することができる。
 また、実施の形態1に係るOFDM受信装置100及びOFDM受信方法によれば、誤りが発生しているキャリアグループに対して直接的に変調方式の変更又は送信ゲインの調整が可能となり、より細かく最適なキャリア設定を行うことができる。
 また、実施の形態1に係るOFDM受信装置100及びOFDM受信方法によれば、グループ決定部131において、復調情報テーブル115の内容にしたがってキャリア番号とRS単位データの出力順を逐次比較しながらグループ分けする構成としているため、キャリア毎の変調方式が一様でない場合であっても、キャリアグループに誤り情報を対応付けることができる。
 さらに、キャリア本数を基準としてグループの境界を設定することで、デマップ部114におけるデマッピング処理に同期して復調情報テーブル115から変調方式情報を読み出した際にグループの境界が決定し、その後誤り訂正復号部102における誤り訂正復号結果を用いてRS処理単位におけるキャリアグループへの対応付けを行うことができ、対象シンボル内で処理を完結させることができる。
《1-5》実施の形態1の変形例
 実施の形態1においては、グループ分けの基準としてキャリアグループの境界にあたるキャリア番号を設定するような構成としているが、RS処理単位を基準としてRS処理単位数を設定するような構成としてもよい。
 また、図1においては、メモリ134への書き込みは、受信レベル整形部132及び誤り情報計測部133が個別に行うものとしているが、別途メモリアクセス調停部を設け、メモリアクセス調停部が、メモリ134の制御を、まとめて行うような構成としてもよい。
 また、グループ決定部131では、デマップ部114が復調情報テーブル115をキャリア番号毎に参照するデータを同時に参照しつつグループ分けを行う場合を説明したが、グループ決定部131でグループ決定完了フラグFgを用意し、その状態にしたがってグループ分け動作の実行期間を制限するようにしてもよい。グループ決定完了フラグFg(“0”は、グループ決定が完了、“1”は、グループ分け動作が完了)を備え、OFDM受信の開始時、又は、復調情報テーブル115の内容が変更された場合にのみFg=“0”を設定してグループ分け動作を開始し、動作完了後にFg=“1”とすることで、回路が動作する期間を制限することもできる。このようにグループ決定部131の動作期間を制限することで、消費電力を抑制することができる。
《2》実施の形態2.
《2-1》OFDM受信装置200の主要構成
 図9は、本発明の実施の形態2に係るOFDM受信装置(すなわち、実施の形態2に係るOFDM受信方法を実施することができる装置)200の構成を概略的に示すブロック図である。図9において、図1に示したOFDM受信装置100の構成要素と同一又は対応する構成要素には、同一の符号を付す。実施の形態2に係るOFDM受信装置200は、受信状態検出部220内のキャリア解析部230が対象範囲決定部235を備えている点が、実施の形態1に係る図1のOFDM受信装置100の構成と異なる。なお、図9においては、OFDM復調部210の復調情報テーブル215の内容が、図2に示される実施の形態1における復調情報テーブル115の内容と異なる。
《2-2》OFDM受信方法の主要工程
 図10は、実施の形態2に係るOFDM受信方法の主要工程を概略的に示すフローチャートである。図10において、図2に示される工程と同一又は対応する工程には、同じステップ番号を付す。実施の形態2に係るOFDM受信方法は、対象範囲決定部235によって決定された、グループ分けを開始するキャリアの番号を示すグループ分け開始キャリア番号CNSと、グループに含まれるキャリアの本数であるグループキャリア本数CNUMとを用いてグループ決定工程(ステップST25)を実行する点が、図2に示される実施の形態1に係るOFDM受信方法と異なる。実施の形態2に係るOFDM受信方法によれば、計測対象とするキャリア範囲を開始キャリア番号CNS及びグループキャリア本数CNUMを用いて設定することで、OFDM受信装置200に要求される回路規模を小さくすることができ、かつ、設定変更処理を少なくすることができる。
《2-3》OFDM受信装置200及びOFDM受信方法の詳細説明
 次に、OFDM受信装置200におけるキャリア解析部230の動作を説明する。実施の形態1においては、グループ決定部131が、グループ最終キャリア番号CNnを元に、先頭キャリア番号0から順にグループ分けを行う場合を説明している。より詳細に誤り訂正数を把握するためには、1つのグループに含まれるキャリアの本数を少なくしてグループの数を増やせばよい。しかし、グループの数を増やすとグループ最終キャリア番号CNnの数がグループの数だけ必要となり、メモリ134で保持するデータ量も増える。
 そこで、実施の形態2においては、対象範囲決定部235にグループ分けを開始するキャリアの番号を示すグループ分け開始キャリア番号CNSと、グループに含まれるキャリアの本数であるグループキャリア本数CNUMとを設定する。
 次に、対象範囲決定部235の動作を説明する。実施の形態2においては、実施の形態1と同様に、1シンボル内のキャリア本数を80本としている。ただし、実施の形態2においては、復調情報テーブル215は、図11に示されるように設定されており、キャリア番号50,51,…,55がキャリアマスクではなく64QAMとしており、この点が、実施の形態1と異なる。
 対象範囲決定部235では、グループ分け開始キャリア番号CNSとグループキャリア本数CNUMから、グループのキャリア番号をカウントするGCカウンタを用いて各グループのグループ最終キャリア番号を算出する。
 例えば、開始キャリア番号CNSを“40”、グループキャリア本数CNUMを“4”とする。図12に示されるように、GCカウンタは、キャリア本数をカウントし、グループキャリア本数CNUMと一致する度に“0”にリセットする。このとき同時に、グループ番号を表すGNカウンタの値をnとするグループの境界情報GnbにRSカウンタ値を設定し、GNカウンタは、1だけインクリメントする。GNカウンタは、シンボルの先頭で“0”にリセットされ、グループ番号を表す。
 RSカウンタ値は、シンボルの先頭で“0”にリセットされるが、開始キャリア番号CNSが“0”でない場合には、キャリア番号が0から開始キャリア番号CNSまでのキャリアが全てキャリアマスクに設定されていない限り、グループ0の先頭でRSカウンタ値が“0”にはならない。そこで、キャリア番号が開始キャリア番号CNSに一致するときのRSカウンタ値についても保持しておく必要があり、これを‘キャリア番号が開始キャリア番号CNSに一致するときのRSカウンタ値’GSBとする。図12においては、
GSb=“R0”、G0b=“R1”、G1b=“R3”となる。
 グループ2の途中からキャリアの変調方式が変わりG2b=“R6”となるが、グループ2に含まれるRS単位の個数は、2.5個となり、端数が生じる。そこで、グループ決定部131では、端数フラグGnp(n=0,…,7)を用意し、グループの境界情報Gnb設定時に端数があるときは、“1”、端数がないときは、“0”を割り当てる。したがって、図12においては、
G0p=“0”、G1p=“0”、G2p=“1”となる。
 以降同様に処理することで、図13に示す通りの結果が得られる。この求められた端数フラグGnpの値を用いれば、誤り情報計測部133において実施の形態1と同様にしてキャリア番号40からキャリア番号71までの範囲のキャリアに対して、グループ毎に受信レベル又は誤り訂正数が取得でき、メモリ134には、図14のように計測されたデータが書き込まれる。
 メモリ134で端数フラグGnpが“1”のグループがあれば、グループ最終キャリアがグループを跨って影響を及ぼしている可能性がある。例えば、グループGA及びグループGBに跨るキャリアCBがある場合に、グループGAにおける伝送誤りの発生が多ければグループGAに含まれるキャリア群に対して変調方式を変えるなどの対策をすることで伝送誤りを低減することができるが、跨っているキャリアCBに対しても予めグループGAのキャリア群と同じ対策を施すことができる。
 1シンボル全体で伝送するデータビット数がRS単位で割り切れない場合、すなわち、最終グループで端数フラグが“1”となるような場合は、シンボルの先頭でグループ決定部131における伝送ビット数算出時の初期値を“0”ではなく、前シンボルで算出した端数ビット数をセットし、フレームの先頭シンボルでは、必ず“0”にリセットするような構成とすればよい。
 実施の形態1においては、グループ分けを開始するキャリア番号を0に固定していたが、実施の形態2と同様にしてグループ分けを開始するキャリア番号をグループ0の先頭キャリア番号とした場合に、‘キャリア番号が開始キャリア番号CNSに一致するときのRSカウンタ値’GSB相当の値を保持するとすれば、シンボルあたりのキャリア本数が80本であることから、
 ‘キャリア番号が開始キャリア番号CNSに一致するときのRSカウンタ値’GSBは、7ビットであり、
 グループ最終キャリア番号CNn(nは、0以上で7以下の整数)は8個で、56ビットであり、
これらのビット数の合計である63ビットが必要となる。
 これに対し、実施の形態2においては、受信レベル整形部132でグループ最終キャリア番号CNnの代わりに開始キャリア番号CNS及びグループキャリア本数CNUMと、7ビットのキャリア数カウンタを追加することで実施の形態1と同様に処理を行うことができることから、
 グループ決定部131の開始キャリア番号CNSまでのキャリア数カウンタは、7ビットであり、
 ‘キャリア番号が開始キャリア番号CNSに一致するときのRSカウンタ値’GSBは、7ビットであり、
 GCカウンタは、7ビットであり、
 GNカウンタは、3ビットであり、
 端数フラグは、8ビットであり、
 受信レベル整形部132は、7ビットであり、
 これらのビット数の合計である39ビットが必要なビット数である。このように、実施の形態2の場合には、実施の形態1に比べ、回路規模を削減することができる。
 また、シンボルあたりのキャリア数を800本とすれば、実施の形態1においては、90ビット、実施の形態2においては、51ビットとなり、シンボルあたりのキャリア数が多くなると、回路規模の差も大きくなる。
 また、グループのキャリア数設定を変更する場合に、変更対象となるパラメータ数が実施の形態1においては、‘キャリア番号が開始キャリア番号CNSに一致するときのRSカウンタ値’GSBと、グループ最終キャリア番号CNnとをあわせた8個であるが、実施の形態2においては、開始キャリア番号CNSとグループキャリア本数CNUMとの2個である。
 開始キャリア番号CNSを“0”、グループキャリア本数CNUMを“10”とすれば図15に示されるようにグループ分けされ、実施の形態1と同様に、シンボル内のキャリア全体に対してグループ毎に受信レベル又は誤り訂正数が取得することができる。このため、開始キャリア番号CNSとグループキャリア本数CNUMとを、OFDM受信装置200に接続されている外部の装置(例えば、外部のCPU)などから変更可能な構成を採用すれば、最初に、図16(a)に示されるように、シンボル内の全てのキャリアについてキャリアグループ毎に受信レベル又は誤り発生状態を把握し、次に、図16(b)に示されるように、キャリア範囲を制限して詳細な状態を調べることが、少ない変更処理で可能となる。
《2-4》実施の形態2による効果
 以上に説明したように、実施の形態2に係るOFDM受信装置200及びOFDM受信方法によれば、計測対象とするキャリア範囲を開始キャリア番号CNS、グループキャリア本数CNUMを用いて設定することで回路規模を小さくし、かつ、設定変更処理を少なくすることができる。
 さらに、実施の形態2に係るOFDM受信装置200及びOFDM受信方法によれば、グループ決定部131でグループ分けを行う際に端数フラグGnpを設けることによって、対象となるグループに含まれるキャリアで伝送可能なビット数がRS単位で割り切れない場合であっても、隣接グループへの影響の有無を考慮した処理を行うことができる。
《3》実施の形態3.
《3-1》OFDM受信装置300の主要構成
 図17は、本発明の実施の形態3に係るOFDM受信装置(すなわち、実施の形態3に係るOFDM受信方法を実施することができる装置)300の構成を概略的に示すブロック図である。図17において、図1に示したOFDM受信装置100の構成要素と同一又は対応する構成要素には、同一の符号を付す。実施の形態3に係るOFDM受信装置300は、OFDM復調部310に周波数デインターリーブ部317を備えている点、キャリア解析部330にグループ番号変換部336を備えている点、周波数インターリーブされたOFDM変調信号に対応している点が、図1のOFDM受信装置100と異なる。
《3-2》OFDM受信方法の主要工程
 図18は、実施の形態3に係るOFDM受信方法の主要な工程を示すフローチャートである。図18において、図2に示される工程と同一又は対応する工程には、同じステップ番号を付す。実施の形態3に係るOFDM受信方法は、OFDM変調信号に周波数インターリーブが施されているときに、誤り訂正処理単位のデータ列のうち誤りが発生している誤り訂正処理単位のデータの伝送に使用された伝送キャリア番号をデコードし、前記伝送キャリア番号が含まれるキャリアグループを判別するグループ番号変換工程(ステップST31)をさらに有する点が、図2に示される実施の形態1に係るOFDM受信方法と異なる。実施の形態3に係るOFDM受信方法によれば、周波数インターリーブされたOFDM変調信号が入力された場合であっても、受信レベルと誤り発生状態とをキャリアグループに対応付けて把握することができる。
《3-3》OFDM受信装置300及びOFDM受信方法の詳細説明
 周波数インターリーブは、伝送信号ビット列を割り当てるキャリアを所定のインターリーブ規則にしたがって入れ替えてから、OFDM変調することで実現しており、OFDM復調部310におけるOFDM復調動作時でキャリア順が入れ替わるわけではない。OFDM送信装置では、図19(a)に示す誤り訂正符号化されたデータをd0,d1,d2,…の順に伝送する場合、図19(b)に示すバッファに対し、所定のインターリーブ規則に則ったバッファアドレスにデータを書き込み、OFDM変調時は、アドレス0番地から順に読み出して各キャリアに割り当てることで、周波数インターリーブされたOFDM変調信号を生成することができる。
 周波数インターリーブされたOFDM変調信号を受信したOFDM受信装置300では、周波数インターリーブの有無にかかわらず等化部113までの処理が行われる。等化部113からの出力データは、周波数デインターリーブ部317において図19(c)に示すバッファにアドレス0番地から順にデータが書き込まれ、OFDM送信装置と同じインターリーブ規則にしたがったアドレス順にデータを読み出してデータ配置を入れ替え、図19(d)のように元の伝送ビット列を得る。なお、周波数インターリーブに関する上記説明は、周波数インターリーブ処理の一例を示しているに過ぎず、他の処理方法を採用してもよい。
 実施の形態3においては、誤り訂正復号部102から出力されるRS復号データは、キャリア番号0,1,…,79と、キャリア番号の小さいものから順番に伝送されたビット列ではないため、そのままでは伝送に使用されたキャリアのRS単位位置との対応付けが正確ではない。
 誤り情報計測部333は、誤りが発生しているRS単位データを伝送したキャリア番号が属するグループ番号を、グループ番号変換部336から得る。誤り情報計測部333における詳細な動作を、図20を用いて説明する。図20において、実施の形態1で用いた図7に記載の信号と同じ名称の信号については、実施の形態1と同じ信号を表す。図20においては、RS誤り検出位置が“1”となるときのRSカウンタ値を、シンボルの先頭から順にT0,T1,T2としている。
 グループ番号変換部336は、シンボルの先頭のRSデータ出力が開始される前に、周波数デインターリーブ部317におけるバッファリードアドレスと同じインターリーブ規則を復調情報テーブル115のキャリア順に対応付けて変調方式情報の読み出しを開始し、読み出した変調方式に対応する伝送ビット数をCBカウンタで累積加算し、CBカウンタ値がRS単位と同じ8ビット以上になるまで変調方式情報を読み出す。
 このとき、CBカウンタ値が8ビット以上になるまでに読み出したキャリア番号を、カレントキャリア番号CCn(n=0,…,3)として保持しておく。変調方式は、64QAM、16QAM、QPSKに対応するので、キャリア1本あたりそれぞれ6ビット、4ビット、2ビットが伝送可能であり、RS単位1個あたり最大4本のキャリアを使用する可能性があるため、カレントキャリア番号CCnは、最大4個保持する必要がある。なお、キャリアマスクでは、データの伝送を行わないので、そのキャリア番号は、カレントキャリア番号CCnとして保持しない。
 上記のようにして、RSイネーブルが“1”となるサイクル毎にカレントキャリア番号CCnを算出しておき、誤り情報計測部333へと出力する。
 RS誤り検出位置が“1”となるとき、グループ番号変換部336では、カレントキャリア番号CCnとして保持しているキャリア番号が、グループ決定部131でグループ分けされたどのグループに属するかを判定し、エラー発生グループEGn(n=0,…,3)として誤り情報計測部333へと出力する。有効なエラー発生グループEGnの個数は、複数となり、エラー発生グループEGnが全て同じグループとなることもあり得る。
 誤り情報計測部333では、グループ毎の誤り情報計測値をシンボル期間保持し続け、エラー発生グループEGnが有効な場合に対応するグループの誤り情報計測値をインクリメントする。実施の形態1においては、グループ0から順に各グループにおける計測完了の度にメモリ134へ誤り情報計測値を書き込むことができたが、実施の形態3においては、全てのグループについてシンボル内の全キャリアにおける計測が完了してからメモリ134に書き込む。
 また、実施の形態1においては、RS単位で誤り情報計測値をインクリメントしていたが、実施の形態3においては、キャリア本数単位でインクリメントするため、計測値は、大きくなる。
 受信レベル整形部132における処理には、周波数インターリーブの影響はないため、実施の形態3の受信レベル整形部132における動作は、実施の形態1の場合と同様な動作である。
《3-4》実施の形態3による効果
 以上に説明したように、実施の形態3に係るOFDM受信装置300及びOFDM受信方法によれば、グループ番号を変換する機構を設けることで、周波数インターリーブされたOFDM変調信号であってもキャリアとRS単位の対応付けが可能となり、受信レベルとRS復号における誤り発生状態をキャリアグループ毎に把握することができる。
《4》実施の形態4.
《4-1》OFDM受信装置400の主要構成
 図21は、本発明の実施の形態4に係るOFDM受信装置(すなわち、実施の形態4に係るOFDM受信方法を実施することができる装置)400の構成を概略的に示すブロック図である。図21において、図1に示したOFDM受信装置100の構成要素と同一又は対応する構成要素には、同一の符号を付す。実施の形態4に係るOFDM受信装置400は、キャリア解析部430が、メモリ134(図1)の代わりに、データ加工部435とステータスレジスタ436とを備えている点において、実施の形態1に係るOFDM受信装置100と異なる。
《4-2》OFDM受信方法の主要工程
 図22は、実施の形態4に係るOFDM受信方法の主要工程を概略的に示すフローチャートである。図22において、図2に示される工程と同一又は対応する工程には、同じステップ番号を付す。実施の形態4に係るOFDM受信方法は、記憶工程(ステップST8)に代えてデータ加工及び加工結果の記憶工程(ステップST48)を有する点が、実施の形態1に係るOFDM受信方法と相違する。図22に示されるように、実施の形態4に係るOFDM受信方法は、受信したOFDM変調信号を復調し、該OFDM変調信号に基づく伝送信号ビット列を生成するOFDM復調工程(ステップST1)と、OFDM復調工程によって生成された前記伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する誤り訂正復号工程(ステップST2)と、OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出するキャリア受信状態算出工程(ステップST3)と、誤り訂正復号工程における伝送誤りの検出及び訂正状況を検出する誤り情報検出工程(ステップST4)とを有している。また、実施の形態4に係るOFDM受信方法は、隣接する第1の所定の数のキャリア列、又は、第2の所定の数の誤り訂正処理単位のデータ列からなる、複数のキャリアグループを判別するグループ決定工程(ステップST5)と、グループ決定工程によって決定された前記複数のキャリアグループの各々について前記キャリアグループ単位で、誤り情報検出工程における出力を計測する誤り情報計測工程(ステップST6)と、キャリア受信状態算出工程において出力される前記パラメータの値にしたがって、前記キャリアグループ毎の代表値を算出するキャリアグループ代表値算出工程(ステップST7)とを有する。さらに、実施の形態4に係るOFDM受信方法は、データ加工手段としてのデータ加工部435が、キャリアグループ代表値算出工程(ステップST7)において出力される代表値と誤り情報計測工程(ステップST6)において出力される計測の結果とを加工して、情報量を削減し、この加工された代表値及び加工された計測の結果を記憶手段としてのステータスレジスタ436に記憶させる工程(ステップST48)を有する。
《4-3》OFDM受信装置400及びOFDM受信方法の詳細説明
 次に、OFDM受信装置400における受信状態検出部420の一部としてのキャリア解析部430の動作を説明する。実施の形態1においては、受信レベル整形部132で算出したグループ毎の受信レベルの代表値と誤り情報計測部133で算出したグループ毎のRS訂正数は、算出処理が完了したものから順にグループ決定部131でのグループ決定結果にしたがって、メモリ134の所定のアドレス及びデータビット位置に書き込まれる。このように、実施の形態1においては、メモリ134は、常に最新のデータで更新されるため、メモリ134が保持できるデータの量はメモリ134の実際の容量によって制限される。そこで、実施の形態4においては、メモリ134の容量を超える期間の動作状態を記録するため、データ加工部435が、受信レベル整形部132において出力される代表値と誤り情報計測部133において出力される計測の結果とを加工して、保持するデータの加工を行い、ステータスレジスタ436でデータ量が削減された加工された形式のデータを記憶する。ステータスレジスタ436は、実施の形態1におけるメモリ134とは異なる形式でデータを保持する。ステータスレジスタ436では、データ加工部435から出力される複数の値を保持するが、その容量は、データ加工部435で処理するデータ数に依存し、実施の形態1におけるメモリ134と比べて十分に小さい。
 次に、データ加工部435の動作を説明する。図23は、実施の形態4に係るOFDM受信装置400のデータ加工部435及びステータスレジスタ436の構成の一例を概略的に示すブロック図である。データ加工部435は、受信レベル整形部132及び誤り情報計測部133からグループ毎の受信レベルの代表値及びRS訂正数を受け取る。また、データ加工部435には、予め、受信レベルの適正範囲と非適正連続回数、並びに、RS訂正数の許容範囲と許容不可連続回数が設定されている。
 データ加工部435は、受信レベルの代表値に対して、受信レベルの適正範囲の上限値RLU及び下限値RLLとの比較を行い、受信レベルの代表値が適正範囲内であるか否かを判定する。グループ毎にRLnフラグ(nは、0以上で7以下の整数)4352を用意し、受信レベルの代表値が適正範囲内である場合には、“0”を、適正範囲から外れる場合には“1”をRLnフラグ4352に一旦保持する。各グループのデータは、OFDMシンボル毎に更新されるので、データ加工部435は、各シンボルについて同様にして判定を行い、RLnフラグ4352を更新し続ける。データ加工部435は、このRLnフラグが“1”となるシンボルが連続するグループについて、その連続するシンボル数をRLn連続シンボル数カウンタ4352でカウントし、非適正連続回数LNとの比較を行う。非適正連続回数LNよりもRLn連続シンボル数カウンタ4352の値が大きい場合、同じくステータスレジスタ436にグループ毎に用意するSRLnフラグ(nは、0以上で7以下の整数)4361に“1”を保持させる。一旦、SRLnフラグ4361に“1”が保持されたならば、OFDM受信装置400の電源停止が生じたり、又は、外部にある装置(例えば、CPU)などから“0”にクリアする指示が入力されない限り、SRLnフラグ4361として“1”が保持され続ける。また、RLnフラグ4352が“1”となるシンボル数が非適正連続回数LNを超えない限り、SRLnフラグ4261は“0”を維持する。
 同様にして、データ加工部435は、RS訂正数に対しては、RS訂正数の許容範囲の上限値REU及び下限値RELとの比較を行い、RS訂正数が許容範囲内であるか否かを判定する。グループ毎にREnフラグ(nは、0以上で7以下の整数)4356を用意し、RS訂正数が許容範囲内である場合には、“0”を、許容範囲から外れる場合には“1”をREnフラグ4356に一旦保持する。各グループのデータは、OFDMシンボル毎に更新されるので、データ加工部435は、各シンボルについて同様にして判定を行い、REnフラグ4356を更新し続ける。データ加工部435は、このREnフラグ4356が“1”となるシンボルが連続するグループについて、その連続するシンボル数をREn連続シンボル数カウンタ4357でカウントし、許容不可連続回数ENとの比較を行う。許容不可連続回数ENよりもREn連続シンボル数カウンタ4357の値が大きい場合、同じステータスレジスタ436にグループ毎に用意するSREnフラグ(nは、0以上で7以下の整数)4362に“1”を保持させる。一旦、SREnフラグ4362に“1”が保持されたならば、OFDM受信装置400の電源停止が生じたり、又は、外部にある装置(例えば、CPU)などから“0”にクリアする指示が入力されない限り、SREnフラグ4362として“1”が保持され続ける。また、REnフラグ4356が“1”となるシンボル数が許容不可連続回数ENを超えない限り、SREnフラグ4362は“0”を維持する。
 このとき、ステータスレジスタ436にあるSRLnフラグ4361又はSREnフラグ4362のいずれかが“1”になった場合に、CPUに対して割込みで通知する、又は、CPUが定期的にステータスレジスタ436をポーリングするようにしておくことで、ステータスレジスタ436にあるフラグが“1”に変化した時刻(おおよその時刻)も合わせてCPUで知ることができるような構成とすることができる。
 また、図21には、実施の形態1におけるメモリ134を備えない形態を示したが、実施の形態4に係るOFDM受信装置は、実施の形態1におけるメモリ134と同様のメモリを、データ加工部435及びステータスレジスタ436に加えて使用するような構成としてもよい。このような構成を採用した場合には、OFDM受信装置は、直近の状態及び長時間動作した上での状態の両方を保持することができる。
 なお、データ加工部435における処理内容は、上記処理内容に限定されるものではなく、受信状態検出部420で検出するパラメータに適した処理を選択すれば、他の処理とすることもできる。
《4-4》実施の形態4による効果
 以上に説明したように、実施の形態4に係るOFDM受信装置及び受信方法によれば、OFDM受信装置400が動作している間に設定した条件が発生したか否かの情報を、小さいメモリ容量のステータスレジスタ436に、長時間にわたって保持することができる。
 本発明の実施の形態に係るOFDM受信装置100,200,300,400及びOFDM受信方法は、信号を有線伝送するネットワーク(例えば、既存のメタル線ネットワーク及び電力線通信(PLC)など)を介して通信可能な装置(例えば、デジタルテレビジョン受像器、デジタルテレビジョン受信装置、有線端末装置、パーソナルコンピュータなど)に適用可能である。また、本発明の実施の形態に係るOFDM受信装置100,200,300,400及びOFDM受信方法は、信号を無線伝送するネットワークを介して通信可能な装置(例えば、地上デジタルテレビジョン放送受像器、地上デジタルテレビジョン放送用受信装置、無線端末装置、パーソナルコンピュータなど)に適用可能である。
 100,200,300,400 OFDM受信装置、 101 ADC部、 102 誤り訂正復号部(誤り訂正復号手段)、 103 MAC部、 110,210,310 OFDM復調部(OFDM復調手段)、 111 直交復調部、 112 FFT部、 113 等化部、 114 デマップ部、 115,215 復調情報テーブル、 116 同期制御部、 120,220,320,420 受信状態検出部、 121 受信レベル算出部(キャリア受信状態算出手段)、 122 誤り情報検出部(誤り情報検出手段)、 130,230,330,430 キャリア解析部、 131 グループ決定部(グループ決定手段,キャリアグループ境界設定手段)、 132 受信レベル整形部(キャリアグループ代表値算出手段)、 133,333 誤り情報計測部(誤り情報計測手段)、 134 メモリ(記憶手段)、 235 対象範囲決定部、 317 周波数デインターリーブ部、 336 グループ番号変換部(グループ番号変換手段)、 435 データ加工部、 436 ステータスレジスタ。

Claims (16)

  1.  受信したOFDM変調信号を復調し、該OFDM変調信号に基づく伝送信号ビット列を生成するOFDM復調手段と、
     前記OFDM復調手段によって生成された前記伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する誤り訂正復号手段と、
     前記OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出するキャリア受信状態算出手段と、
     前記誤り訂正復号手段における伝送誤りの検出及び訂正状況を検出し、誤り訂正処理単位のデータ列を出力する誤り情報検出手段と、
     前記OFDM変調信号を構成するキャリアが属する周波数帯を、周波数軸上で隣接するキャリア群をまとめて複数のキャリアグループに分け、前記複数のキャリアグループに対応するよう前記誤り訂正処理単位のデータ列を連続する複数のデータグループに分ける処理であるグループ分け動作を行うグループ決定手段と、
     前記グループ決定手段によって決定された前記複数のデータグループの各々について前記データグループ単位で、前記誤り情報検出手段からの出力を計測する誤り情報計測手段と、
     前記キャリア受信状態算出手段から出力される前記パラメータの値にしたがって、前記キャリアグループ毎の代表値を算出するキャリアグループ代表値算出手段と、
     を備えることを特徴とするOFDM受信装置。
  2.  前記キャリアグループ代表値算出手段から出力される前記代表値と前記誤り情報計測手段から出力される前記計測の結果とが順次書き込まれ、前記代表値と前記計測の結果とを対応付けて保持する記憶手段をさらに備えることを特徴とする請求項1に記載のOFDM受信装置。
  3.  前記グループ決定手段は、前記複数のキャリアグループのそれぞれの中で最も周波数の高いキャリアを前記キャリアグループの境界として設定するキャリアグループ境界設定手段を有することを特徴とする請求項1又は2に記載のOFDM受信装置。
  4.  前記グループ決定手段は、前記キャリアグループの判別開始キャリアと固定のキャリア本数とを用いて前記グループ分け動作を行うことを特徴とする請求項1から3のいずれか1項に記載のOFDM受信装置。
  5.  前記グループ決定手段は、前記グループ分け動作の対象としている前記キャリアグループに含まれるキャリアが伝送可能なビット列の総数が、前記誤り訂正処理単位で割り切れず端数が生じたことを識別する端数フラグを保持することを特徴とする請求項1から4のいずれか1項に記載のOFDM受信装置。
  6.  前記OFDM変調信号に周波数インターリーブが施されているときに、前記誤り訂正処理単位のデータ列のうち誤りが発生している誤り訂正処理単位のデータの伝送に使用された伝送キャリア番号をデコードし、前記伝送キャリア番号が含まれるキャリアグループを判別するグループ番号変換手段をさらに備え、
     前記誤り情報計測手段は、前記グループ番号変換手段で判別されたキャリアグループ情報を元に誤り情報を計測する
     ことを特徴とする請求項1から5のいずれか1項に記載のOFDM受信装置。
  7.  前記グループ決定手段は、変調方式情報の更新の有無に同期してグループの判別動作を行うことを特徴とする請求項1から5のいずれか1項に記載のOFDM受信装置。
  8.  前記キャリアグループ代表値算出手段から出力される前記代表値と前記誤り情報計測手段から出力される前記計測の結果とを加工し、前記記憶手段に保持する情報量を削減するデータ加工手段をさらに備えることを特徴とする請求項1又は2に記載のOFDM受信装置。
  9.  受信したOFDM変調信号を復調し、該OFDM変調信号に基づく伝送信号ビット列を生成するOFDM復調工程と、
     前記OFDM復調工程によって生成された前記伝送信号ビット列に、誤り訂正復号を行うことによって、誤り訂正処理単位のデータ列を生成する誤り訂正復号工程と、
     前記OFDM変調信号からキャリア単位での受信状態の良否の指標となるパラメータの値を算出するキャリア受信状態算出工程と、
     前記誤り訂正復号工程における伝送誤りの検出及び訂正状況を検出し、誤り訂正処理単位のデータ列を出力する誤り情報検出工程と、
     前記OFDM変調信号を構成するキャリアが属する周波数帯を、周波数軸上で隣接するキャリア群をまとめて複数のキャリアグループに分け、前記複数のキャリアグループに対応するよう前記誤り訂正処理単位のデータ列を連続する複数のデータグループに分ける処理であるグループ分け動作を行うグループ決定工程と、
     前記グループ決定工程によって決定された前記複数のデータグループの各々について前記データグループ単位で、前記誤り情報検出手段からの出力を計測する誤り情報計測工程と、
     前記キャリア受信状態算出工程において出力される前記パラメータの値にしたがって、前記キャリアグループ毎の代表値を算出するキャリアグループ代表値算出工程と、
     を備えることを特徴とするOFDM受信方法。
  10.  前記キャリアグループ代表値算出工程において出力される前記代表値と前記誤り情報計測工程において出力される前記計測の結果とが順次書き込まれ、前記代表値と前記計測の結果とを対応付けて保持する記憶工程をさらに備えることを特徴とする請求項9に記載のOFDM受信方法。
  11.  前記グループ決定工程は、前記複数のキャリアグループのそれぞれの中で最も周波数の高いキャリアを前記キャリアグループの境界として設定するキャリアグループ境界設定工程を有することを特徴とする請求項9又は10に記載のOFDM受信方法。
  12.  前記グループ決定工程において、前記キャリアグループの判別開始キャリアと固定のキャリア本数とを用いて前記グループ分け動作を行うことを特徴とする請求項9から11のいずれか1項に記載のOFDM受信方法。
  13.  前記グループ決定工程において、前記グループ分け動作の対象としている前記キャリアグループに含まれるキャリアが伝送可能なビット列の総数が、前記誤り訂正処理単位で割り切れず端数が生じたことを識別する端数フラグを保持することを特徴とする請求項9から12のいずれか1項に記載のOFDM受信方法。
  14.  前記OFDM変調信号に周波数インターリーブが施されているときに、
     前記誤り訂正処理単位のデータ列のうち誤りが発生している誤り訂正処理単位のデータの伝送に使用された伝送キャリア番号をデコードし、前記伝送キャリア番号が含まれるキャリアグループを判別するグループ番号変換工程をさらに備え、
     前記誤り情報計測工程においては、前記グループ番号変換工程で判別されたキャリアグループ情報をもとに誤り情報を計測する
     ことを特徴とする請求項9から13のいずれか1項に記載のOFDM受信方法。
  15.  前記グループ決定工程は、変調方式情報の更新の有無に同期してグループの判別動作を行うことを特徴とする請求項9から13のいずれか1項に記載のOFDM受信方法。
  16.  前記キャリアグループ代表値算出工程において出力される前記代表値と前記誤り情報計測工程において出力される前記計測の結果とを加工し、前記記憶工程において保持する情報量を削減するデータ加工工程をさらに備えることを特徴とする請求項9又は10に記載のOFDM受信方法。
PCT/JP2013/072245 2012-09-11 2013-08-21 Ofdm受信装置及びofdm受信方法 WO2014041973A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13837729.6A EP2897315B1 (en) 2012-09-11 2013-08-21 Ofdm reception apparatus and ofdm reception method
JP2014535473A JP5865502B2 (ja) 2012-09-11 2013-08-21 Ofdm受信装置及びofdm受信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012199392 2012-09-11
JP2012-199392 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041973A1 true WO2014041973A1 (ja) 2014-03-20

Family

ID=50278097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072245 WO2014041973A1 (ja) 2012-09-11 2013-08-21 Ofdm受信装置及びofdm受信方法

Country Status (3)

Country Link
EP (1) EP2897315B1 (ja)
JP (1) JP5865502B2 (ja)
WO (1) WO2014041973A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111643A (ja) * 2014-12-10 2016-06-20 三菱電機株式会社 通信システム及び通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084108A1 (fr) * 2002-03-29 2003-10-09 Matsushita Electric Industrial Co., Ltd. Procede de retransmission de donnees dans un systeme de transmission et de communication a porteuses multiples presentant un dispositif de controle de retransmission de donnees
JP2005184435A (ja) * 2003-12-19 2005-07-07 Hitachi Kokusai Electric Inc 送信キャリア可変多重伝送装置
JP2009253754A (ja) * 2008-04-08 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> 周波数分割多重通信方法及びその通信装置
JP4816547B2 (ja) 2007-04-06 2011-11-16 パナソニック電工株式会社 マルチキャリア通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882665B2 (ja) * 2002-04-17 2007-02-21 ソニー株式会社 複数の搬送波を用いる無線通信方式のための通信装置、受信装置及び通信方法
EP2050214B1 (en) * 2006-08-09 2014-11-26 Lg Electronics Inc. Method of estimating signal-to-noise ratio and adjusting feedback information transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084108A1 (fr) * 2002-03-29 2003-10-09 Matsushita Electric Industrial Co., Ltd. Procede de retransmission de donnees dans un systeme de transmission et de communication a porteuses multiples presentant un dispositif de controle de retransmission de donnees
JP2005184435A (ja) * 2003-12-19 2005-07-07 Hitachi Kokusai Electric Inc 送信キャリア可変多重伝送装置
JP4816547B2 (ja) 2007-04-06 2011-11-16 パナソニック電工株式会社 マルチキャリア通信装置
JP2009253754A (ja) * 2008-04-08 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> 周波数分割多重通信方法及びその通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111643A (ja) * 2014-12-10 2016-06-20 三菱電機株式会社 通信システム及び通信方法

Also Published As

Publication number Publication date
EP2897315A1 (en) 2015-07-22
JPWO2014041973A1 (ja) 2016-08-18
EP2897315A4 (en) 2016-06-01
JP5865502B2 (ja) 2016-02-17
EP2897315B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
KR101037942B1 (ko) 수신 성능이 향상된 디지털 방송 수신기
JP4542612B2 (ja) 可変ofdmサブチャネルの符号化及び変調
US9258167B2 (en) Transmitting apparatus, receiving apparatus and control methods thereof
US20060234628A1 (en) Radio communication system, radio transmission apparatus and radio reception apparatus
US20020186797A1 (en) Decoders for many-carrier signals, in particular in DVB-T receivers
US7542513B2 (en) Communication data using wideband communications
EP1760915B1 (en) Method and system for detecting transmitted data signal quality and integrity
JP3930525B2 (ja) デジタル復調装置、その制御方法、その制御用プログラム、その制御用プログラムを記録した記録媒体及びデジタル受信装置
US10090949B2 (en) Transmitting apparatus and receiving apparatus, and signal processing method thereof
JP5865502B2 (ja) Ofdm受信装置及びofdm受信方法
WO2011083773A1 (ja) マルチキャリア変調信号受信装置及び集積回路
JP2009027470A (ja) 受信装置
JP3691449B2 (ja) ダイバーシティ回路およびこの回路を備えるダイバーシティ受信装置
JP2010109610A (ja) 適応変調通信装置
JP3979789B2 (ja) デジタル信号受信装置
JP4816547B2 (ja) マルチキャリア通信装置
US20160143000A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN101188703A (zh) 接收状态的判定方法以及利用了该方法的接收装置
KR102269078B1 (ko) 송신 장치, 수신 장치 및 그 제어 방법
JP2013055369A (ja) マルチキャリア変調信号受信装置
KR100728912B1 (ko) 수신 성능이 향상된 디지털 방송 송수신 시스템 및 그의신호처리방법
US20100091918A1 (en) Digital receiver, controlling method of the apparatus, computer program product, and recording medium recording thereon the product
JP5848094B2 (ja) 通信装置および通信装置の動作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE