WO2014034270A1 - 加圧エア駆動式ピストン往復動型油圧ポンプ - Google Patents

加圧エア駆動式ピストン往復動型油圧ポンプ Download PDF

Info

Publication number
WO2014034270A1
WO2014034270A1 PCT/JP2013/068510 JP2013068510W WO2014034270A1 WO 2014034270 A1 WO2014034270 A1 WO 2014034270A1 JP 2013068510 W JP2013068510 W JP 2013068510W WO 2014034270 A1 WO2014034270 A1 WO 2014034270A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
air
piston
annular
valve body
Prior art date
Application number
PCT/JP2013/068510
Other languages
English (en)
French (fr)
Inventor
基木 水田
Original Assignee
パスカルエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パスカルエンジニアリング株式会社 filed Critical パスカルエンジニアリング株式会社
Priority to CN201380042610.1A priority Critical patent/CN104583590B/zh
Priority to US14/423,514 priority patent/US9822771B2/en
Priority to EP13832561.8A priority patent/EP2899400B1/en
Priority to KR1020157007118A priority patent/KR102007021B1/ko
Publication of WO2014034270A1 publication Critical patent/WO2014034270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/123Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber
    • F04B9/127Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting elastic-fluid motor, e.g. actuated in the other direction by gravity or a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • F04B53/121Valves; Arrangement of valves arranged in or on pistons the valve being an annular ring surrounding the piston, e.g. an O-ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections

Definitions

  • the present invention relates to a pressurized air-driven piston reciprocating hydraulic pump, and more particularly to an improved valve body that is not in a neutral position (all-port open state).
  • This type of piston reciprocating hydraulic pump described in Patent Document 1 has, as the basic structure, a piston that is mounted in a cylinder hole of a cylinder member and driven to reciprocate in the axial direction, and a piston on both sides of the piston in the cylinder hole.
  • a hydraulic pump mechanism including a plunger extending from the center of the piston toward the backward movement chamber, and A valve case having a partition wall and fixed to the end of the cylinder member, an air supply port and an air discharge port for supplying pressurized air provided in the valve case, and a forward chamber as an air supply port
  • the main switching valve that continuously switches over the air supply position for communication and the air discharge position for communicating the forward chamber with the air discharge port, and the position of the main switching valve is switched in synchronization with the main switching valve.
  • Switching valve machine including a sub switching valve It is equipped with a door.
  • the main switching valve has an annular valve body portion that is biased toward the air supply position by pressurized air in an annular air passage that communicates with the air supply port, and a piston portion forming portion that is integral with the annular valve body portion;
  • the main valve body is movable in the axial direction.
  • the annular valve body portion includes first and second annular valve surfaces that are formed at both ends in the moving direction and that selectively contact the first and second annular valve seats of the valve case.
  • the piston part accommodated in the cylinder hole formed in the valve case is provided.
  • the sub-switching valve switches the main switching valve to the air supply position by discharging pressurized air from the air introduction chamber formed by the cylinder hole and the piston at the start of piston forward movement, and starts to move backward. Sometimes, by introducing pressurized air into the air introduction chamber, the main switching valve is switched to the air discharge position. Thus, the piston continuously reciprocates and the hydraulic pump mechanism generates hydraulic pressure.
  • the pressurized air drive type piston reciprocating hydraulic pump described in Patent Document 2 has a basic structure similar to the basic structure.
  • the main switching valve includes an annular valve body portion that is biased to an air supply position by pressurized air in an annular air passage that communicates with the air supply port, and a cylinder hole forming portion that is integral with the annular valve body portion.
  • the valve case side piston portion is inserted into the cylinder hole of the cylinder hole forming portion to form an air introduction chamber, and an exhaust valve for opening and closing the air discharge port of the air introduction chamber is provided.
  • a valve rod of the sub switching valve is operatively connected to the piston and inserted into an inner hole connected to the air introduction chamber, and an intake valve having an O-ring mounted in an annular groove near the upper end of the valve rod is provided.
  • the exhaust valve When the piston reaches the return limit position, the exhaust valve is opened at the tip of the valve rod, the pressurized air in the air introduction chamber is discharged, and the main switching valve is operated by the pressure of the pressurized air acting on the main switching valve.
  • pressurized air By switching to the air supply position, pressurized air is supplied to the forward movement chamber to move the piston forward.
  • the intake valve is opened, pressurized air is introduced into the air introduction chamber, and the main switching valve is switched to the air discharge position, whereby the piston is moved backward.
  • the piston continuously reciprocates and the hydraulic pump mechanism generates hydraulic pressure.
  • This hydraulic pump solves the problem that when a hydraulic leak occurs at the hydraulic supply destination, the main switching valve is in the neutral position (all ports open state) when the piston moves forward at an extremely low speed.
  • the valve stem is movably connected to the piston, and the air pressure in the forward chamber acts in the valve closing direction on the annular pressure receiving portion at the boundary between the large diameter portion and the small diameter portion of the valve rod so that the piston moves forward.
  • the valve rod is opened all at once against the valve closing force of the pressurized air acting on the annular pressure receiving part by the low pressure pressurized air gradually flowing into the inner hole from the intake valve.
  • the intake valve is fully opened and the main switching valve is switched to the air discharge position.
  • the closing force of the pressurized air acting on the annular pressure receiving portion of the valve rod depends on the pressure of the pressurized air supplied from the pressurized air supply source, and therefore the valve closing force Since it varies depending on the pressure of pressurized air, it is difficult to stabilize the timing at which the intake valve is fully opened, the valve rod moves relative to the piston, and a collision noise between the valve rod and the piston is generated.
  • the valve body collides with the valve seat, so that there is a problem that a collision sound is generated.
  • An object of the present invention is to provide a pressurized air-driven piston reciprocating hydraulic pump having a sub-switching valve that operates reliably without being affected by fluctuations in the pressure of pressurized air supplied from a pressurized air supply source. And providing a pressurized air driven piston reciprocating hydraulic pump that operates quietly with little collision noise.
  • a pressurized air drive type piston reciprocating hydraulic pump includes a piston mounted in a cylinder hole of a cylinder member and driven to reciprocate in an axial direction thereof, forward chambers on both sides of the piston of the cylinder hole, A moving chamber, a return compression spring provided in the return chamber, a hydraulic pump mechanism including a plunger extending from the center of the piston toward the return chamber, and a partition wall as an end wall of the forward chamber.
  • valve case fixed to the end of the cylinder member, an air supply port for supplying pressurized air and an air discharge port provided in the valve case, and an air supply position for communicating the forward chamber with the air supply port
  • a main switching valve that continuously switches over the air discharge position that communicates the forward chamber with the air discharge port, and a sub switching valve that switches the position of the main switching valve in synchronization with the main switching valve.
  • Pressurized air drive with switching valve mechanism including A formula piston reciprocating hydraulic pumps
  • the main switching valve has an annular valve body portion that is biased toward the air supply position by pressurized air in an annular air passage that communicates with the air supply port, and a piston portion forming portion that is integral with the annular valve body portion;
  • the annular valve body portion includes first and second annular valve surfaces that are formed at both ends in the moving direction and that selectively contact the first and second annular valve seats of the valve case.
  • the auxiliary switching valve includes an air introduction chamber formed by the piston receiving hole and the piston portion, a partition wall portion of a valve case extending from a center portion of the piston to the forward movement chamber side, the air introduction chamber, A valve stem slidably penetrating the main valve body, a small diameter portion formed in the valve stem, a first valve member capable of sealing between the valve stem and the main valve body, and the valve stem and partition A second valve member capable of sealing between the walls,
  • the sub switching valve switches the main switching valve to the air supply position by releasing the sealing of the first valve member by the small diameter portion and discharging the pressurized air in the air introduction chamber at the start of the forward movement of the piston.
  • a central side portion of the main valve body that is close to the outer periphery of the valve stem is configured as a sub valve body that is separate from a portion other than the central side portion,
  • the sub-valve body is air-slidably mounted in a sub-piston receiving hole formed in the piston portion and faces the air introduction chamber, and the sub-piston portion extends to the opposite side of the air introduction chamber.
  • a compression spring for biasing the auxiliary valve body toward the air introduction chamber is provided while the end of the cylindrical part of the auxiliary valve body faces the air discharge port, and the first valve member is mounted on the cylindrical part It is characterized by that.
  • a pressurized air drive type piston reciprocating hydraulic pump according to claim 2 is the invention according to claim 1, wherein the pressurized air drive type piston reciprocating hydraulic pump is integrally formed with the annular valve body portion and extends to the opposite side of the piston receiving hole and into the cylindrical hole of the valve case.
  • a cylindrical portion slidably fitted is provided, and the annular air passage is formed on the outer peripheral side of the cylindrical portion.
  • a pressurized air drive type piston reciprocating hydraulic pump according to claim 3 is the invention according to claim 1 or 2, wherein an annular air exhaust passage is formed by the annular valve body portion, the piston portion forming portion and the valve case of the main valve body. And an air passage for communicating the annular air exhaust passage with the air discharge port is formed in the main valve body.
  • a pressurized air drive type piston reciprocating hydraulic pump is the invention according to the first or second aspect, wherein an air passage for introducing pressurized air from an air supply port to the air introduction chamber is provided in the valve case.
  • An air passage is formed between the cylindrical portion of the sub-valve body and the outer peripheral surface of the valve rod, and is capable of discharging the pressurized air from the air introduction chamber.
  • a pressurized air drive type piston reciprocating hydraulic pump is the invention according to the first or second aspect, wherein the second valve member has a length of a valve stem in an annular gap between the valve stem and the partition wall portion.
  • a small-diameter cylindrical portion that is movably mounted in the vertical direction, extends from the sub-piston portion of the sub-valve element, is inserted into the annular gap, and receives the second valve member from the air introduction chamber side is provided.
  • the pressurized air driven piston reciprocating hydraulic pump according to claim 6 is the invention according to claim 5, wherein when the piston reaches the forward movement limit position, the end of the small diameter portion of the valve stem and the second valve The second valve member is unsealed by moving the auxiliary valve body relative to the main valve body by pressurized air introduced into the air introduction chamber from between the members.
  • a pressurized air drive type piston reciprocating hydraulic pump according to a seventh aspect is the invention according to the first or second aspect, further comprising a compression spring that biases the main valve body of the main switching valve toward the air supply position. It is characterized by that.
  • the air introduction chamber is slightly opened.
  • the pressurized air that flows in each time acts on the sub piston portion of the sub valve body.
  • the sub-valve body has a sub-piston portion and a cylindrical portion, and this cylindrical portion faces the air discharge port. Therefore, the sub-valve body has the second valve with the pressure of a small amount of pressurized air flowing into the air introduction chamber.
  • this hydraulic pump does not employ a structure in which the valve stem collides with the metal member, no collision noise is generated from the periphery of the valve stem, and the durability is excellent.
  • the annular air passage is formed on the outer peripheral side of the cylinder portion of the main valve body, and the annular valve body portion can be biased toward the air supply position by the air pressure.
  • the pressurized air can be rapidly discharged from the annular air discharge passage through the air passage formed in the main valve body.
  • the pressurized air can be introduced into the air introduction chamber via the air passage formed in the valve case, and the pressurized air in the air introduction chamber is supplied to the cylindrical portion of the sub valve body and the valve rod.
  • the air can be discharged from the air passage between the outer peripheral surface.
  • the second valve member is pressed from the air introduction chamber side by the small diameter cylindrical portion of the sub valve body, and then the air introduction chamber of the small diameter cylindrical portion. The second valve member can be moved to the air introduction chamber side in conjunction with the movement to the side.
  • the sub-valve body when the piston reaches the forward movement limit position, the sub-valve body is pressurized by the pressurized air introduced into the air introduction chamber from between the end of the small diameter portion of the valve stem and the second valve member. Can be moved relative to the main valve body to release the sealing of the second valve member.
  • the main valve body of the main switching valve since the compression spring for biasing the main valve body of the main switching valve toward the air supply position is provided, the main valve body of the main switching valve is in the neutral position (air supply position and air discharge position). Intermediate position).
  • FIG. 1 is a longitudinal sectional view of a pressurized air driven piston reciprocating hydraulic pump (piston return limit position) according to an embodiment of the present invention. It is a longitudinal cross-sectional view of the hydraulic pump (immediately after arrival at the piston forward movement limit position). It is a longitudinal cross-sectional view of the said hydraulic pump (just before a piston backward movement start). It is the A section enlarged view of FIG. It is a longitudinal cross-sectional view of the said hydraulic pump (at the time of piston backward movement start). It is the B section enlarged view of FIG.
  • the pressurized air drive type piston reciprocating hydraulic pump P is a pump that generates hydraulic pressure by pressurized air.
  • hydraulic pressure means compressed pressurized oil.
  • the hydraulic pump P includes a single-acting air cylinder 1, a switching valve mechanism unit 3 that switches supply / discharge of pressurized air to / from the forward movement chamber 11 of the air cylinder 1, Hydraulic pump mechanism 2 including a plunger 21 driven by an air cylinder 1, an air supply port 4 to which pressurized air is supplied from an external pressurized air supply source, and an air discharge port for discharging pressurized air to the outside 5 etc.
  • the air supply port 4 is formed in a port fitting 4a and a valve case 31 fixed to the valve case 31, and an air hose or an air pipe for supplying pressurized air is connected to the port fitting 4a.
  • the air discharge port 5 is formed at the center side portion of the upper end valve case 32 of the switching valve mechanism section 3, and this air discharge port 5 is communicated with a silencer chamber 33 containing a silencer 33a, and the silencer chamber 33 is opened to the atmosphere. Yes.
  • the silencer 33a is prevented from coming off by a retaining ring 34.
  • the air cylinder 1 includes a cylinder member 13, a piston 14 that is mounted in a cylinder hole 13 a of the cylinder member 13 and continuously reciprocated in the axial direction of the cylinder hole 13 a, a piston rod 15, and a cylinder hole 13 a.
  • the forward movement chamber 11 and the backward movement chamber 12 on both sides of the inner piston 14, a compression spring 16 that is attached to the backward movement chamber 12 to move the piston 14 backward, and buffer members 17 a and 17 b made of synthetic resin are provided. Yes.
  • the forward movement chamber 11 is formed on the upper side of the piston 14, and the backward movement chamber 12 is formed on the lower side of the piston 14.
  • the valve case 31 is integrally formed at the upper end of the cylinder member 13, and the upper end of the forward movement chamber 11 is partitioned by a partition wall portion 31 a (corresponding to the end wall of the forward movement chamber 11).
  • the lower end of the cylinder member 13 is closed with a pump case 22, and the pump case 22 is fixed to the cylinder member 13 with a plurality of bolts (not shown), for example.
  • the piston 14 includes a piston main body 14a, an auxiliary piston 14b in contact with the lower surface of the piston main body 14a, and a spring receiving member 14c.
  • a piston rod 15 that penetrates the spring receiving member 14c extends downward from the center of the disk-shaped auxiliary piston 14b, and a valve rod 35 that penetrates the piston body 14a and the valve case 31 upward from the center of the auxiliary piston 14b. (Belonging to the switching valve mechanism 3) extends.
  • the outer peripheral portion of the piston main body 14a is sealed with a synthetic resin O-ring 14d.
  • An annular recess 22a that accommodates the lower end portion of the compression spring 16 is formed at the upper end of the pump case 22.
  • the upper end of the compression spring 16 is received by the spring receiving member 14c, and the lower end of the compression spring 16 is the wall surface of the annular recess 22a. It is accepted.
  • the return chamber 12 is open to the atmosphere through a breathing hole (not shown).
  • a plurality of air passages 36 for supplying and discharging pressurized air to and from the forward chamber 11 are formed in the valve case 31.
  • the hydraulic pump mechanism 2 includes a pump case 22, a plunger 21 formed integrally with a lower end portion of the piston rod 15, a plunger hole 23 in which the plunger 21 moves up and down, a seal member 24, and a suction port for sucking oil. 25, a suction check valve 25a, a discharge port 26 for discharging hydraulic pressure, a discharge check valve 26a, and the like.
  • the plunger hole 23 is formed in the plunger hole member 23a.
  • a port fitting 25b forming the suction port 25 and a port fitting 26b forming the discharge port 26 are screwed into the pump case 22, respectively, and a hydraulic hose or a hydraulic pipe is connected to the port fittings 25b and 26b.
  • the switching valve mechanism 3 is communicated with the valve case 31 and the upper end valve case 32, an annular air passage 39 communicating with the air supply port 4 via the air passages 37 and 38, and the air discharge port 5 via the air passage 41.
  • the annular air exhaust passage 40 the air supply position for communicating the forward chamber 11 with the air supply port 4 (see FIGS. 3 and 4), and the air discharge position for communicating the forward chamber 11 with the air discharge port 5 (FIG. 5). , See FIG. 6), and a main switching valve 42A that performs switching operation continuously, and a sub switching valve 42B that switches the position of the main valve body 43 of the main switching valve 42A in synchronization with the main switching valve 42A.
  • Including a switching valve mechanism 42 Including a switching valve mechanism 42.
  • the main switching valve 42A includes an annular valve body 43a urged toward the air supply position by the pressurized air in the annular air passage 39, a piston portion forming portion 43b, a cylindrical portion.
  • the main valve body 43 which has 43c is provided.
  • the main valve body 43 is movable in the axial direction of the cylinder hole 13a (vertically), for example, 300 to 500 ⁇ m, and is biased downward (toward the air supply position) by a weak compression spring 44. .
  • the annular valve body portion 43a and the piston portion forming portion 43b are integrally formed.
  • the piston portion forming portion 43b includes a piston portion 46 housed in a piston housing hole 45 formed in the valve case 31 so as to be airtightly slidable, and a connecting cylinder extending upward from the piston portion 46 and continuing to the annular valve body portion 43a. A portion 47 is provided.
  • the cylindrical portion 43c is integrally formed in the middle portion in the radial direction of the annular valve body portion 43a, extends to the opposite side (upward) of the piston accommodation hole 45, and is slidably fitted in the cylindrical hole 32a of the upper end valve case 32. ing.
  • An annular air passage 39 is formed by the annular valve body 43a, the cylinder 43c, and the upper end valve case 32 on the outer peripheral side of the cylinder 43c.
  • the annular air passage 39 communicates with the air supply port 4 through a plurality of radial air passages 38 and a single longitudinal air passage 37.
  • An annular air passage 48 communicating with the forward movement chamber 11 via the air passage 36 is formed outside the outer peripheral surface of the annular valve body 43a.
  • the annular air exhaust passage 40 is formed by an annular valve body portion 43a, a piston portion forming portion 43b, and a valve case 31, and a plurality of air passages 41 communicating the annular air exhaust passage 40 to the air discharge port 5 are annular valve bodies. It is formed in the portion 43a.
  • the annular valve body 43a includes first and second annular valve surfaces 51 and 52 formed at both ends (upper and lower ends) in the moving direction.
  • the first annular valve surface 51 is composed of a synthetic resin-made annular seal member fitted in an annular groove at the upper end of the annular valve body 43a on the outer diameter side of the cylindrical portion 43c.
  • the second annular valve surface 52 is formed of a synthetic resin annular seal member fitted below the first annular valve surface 51 into an annular groove at the lower end of the annular valve body 43a.
  • a first annular valve seat 53 that approaches or contacts the first annular valve surface 51 is formed in the upper valve case 32, and a second annular valve seat 54 that approaches or contacts the second annular valve surface 52 is formed in the valve case 31.
  • the first and second annular valve surfaces 51 and 52 are configured to selectively contact the first and second annular valve seats 53 and 54.
  • the state in which the first annular valve surface 51 is separated from the first annular valve seat 53 and the second annular valve surface 52 is in contact with the second annular valve seat 54 is the air supply position.
  • the pressurized air supplied from the air supply port 4 passes through the air passage 37, the eaves annular air passage 37a, the air passage 38, the annular air passages 39 and 48, and the air passage 36. Is supplied to the forward chamber 11.
  • the air discharge position is a state where the second annular valve surface 52 is separated from the second annular valve seat 54 and the first annular valve surface 51 is in contact with the first annular valve seat 53.
  • the sub switching valve 42B includes an air introduction chamber 55 formed by the piston receiving hole 45 and the piston portion 46, a valve rod 35, a small diameter portion 35a formed in the valve rod 35, the valve rod 35, and the main valve body. 43, a first valve member 56 capable of sealing between 43, and a second valve member 57 capable of sealing between the valve rod 35 and the partition wall portion 31a.
  • the valve rod 35 extends from the center portion of the auxiliary piston 14 b to the forward chamber 11 side, and slidably penetrates the partition wall portion 31 a of the valve case 31, the air introduction chamber 55, and the main valve body 43.
  • An air passage 58 for introducing pressurized air from the air supply port 4 to the air introduction chamber 55 is formed in the partition wall portion 31a.
  • the small-diameter portion 35a of the valve stem 35 is formed with an annular groove having a predetermined length (for example, 6 to 10 mm) in the vertical direction, and the upper end portion and the lower end portion of the small-diameter portion 35a are formed in a tapered portion 35b that gradually decreases in diameter.
  • a predetermined length for example, 6 to 10 mm
  • the first valve member 56 is at a position corresponding to the middle in the vertical direction of the small diameter portion 35 a of the valve rod 35.
  • the second valve member 57 corresponds to the tapered portion 35 b on the lower end side of the small diameter portion 35 a of the valve rod 35. Become position.
  • the sub switching valve 42B releases the main valve body 43 from the air supply position by releasing the sealing of the first valve member 56 by the small diameter portion 35a and discharging the pressurized air from the air introduction chamber 55 when the piston 14 starts to move forward.
  • the second valve member 57 is unsealed by the small-diameter portion 35a of the valve rod 35 and the pressurized air is introduced into the air introduction chamber 55, so that the main valve body 43 is aired. It is configured to switch to the discharge position.
  • a plurality of seal members a to e are provided.
  • a central side portion of the main valve body 43 near the outer periphery of the valve stem 35 is configured as a sub valve body 43A that is separate from the portions other than the central side portion.
  • the sub-valve element 43 ⁇ / b> A includes a sub-piston portion 60 and a cylindrical portion 61 that is integral with the sub-piston portion 60.
  • An air passage 62 is formed between the inner peripheral surface of the tubular portion 61 and the outer peripheral surface of the valve rod 35 so that the pressurized air in the air introduction chamber 55 can be discharged.
  • the sub-piston portion 60 is mounted in a sub-piston accommodating hole 63 formed in the piston portion 46 so as to be airtight and slidable, and faces the air introduction chamber 55.
  • the cylindrical portion 61 extends from the sub piston portion 60 to the opposite side of the air introduction chamber 55 and penetrates the cylindrical hole of the main valve body 43 so as to be slidable.
  • the end of the cylindrical portion 61 of the sub valve body 43A faces the air discharge port 5, and a weak compression spring 64 that biases the sub valve body 43A toward the air introduction chamber 55 is provided.
  • the lower half part of the cylindrical part 61 is formed to have a smaller diameter than the upper half part, and is configured so as not to contact the inner peripheral surface of the cylindrical hole of the main valve body 43, so that the frictional force acting on the sub-valve body 43A is reduced. It is configured to be small.
  • the first valve member 56 is composed of an O-ring, and the first valve member 56 is mounted in an annular groove formed in the inner peripheral portion of the cylindrical portion 61.
  • the second valve member 57 is configured by an O-ring, and is movably mounted in the annular gap 65 between the valve rod 35 and the partition wall portion 31a in the length direction (axial direction) of the valve rod 35.
  • the sub-piston portion 60 of the sub-valve body 43A has a small-diameter cylindrical portion 60a that extends downward from the sub-piston portion 60 and is inserted into the upper end portion of the annular gap 65 and receives the second valve member 57 from the air introduction chamber 55 side. Is provided.
  • a plurality of inclined air passages 66 are formed in the vicinity of the upper side of the small-diameter cylindrical portion 60a to connect the valve rod insertion hole of the sub-valve element 43A to the air introduction chamber 55.
  • a flanged sleeve 67 is fitted and fixed to the lower end portion of the annular gap 65.
  • an O-ring 68 and a spacer 69 are mounted on the upper side of the flanged sleeve 67, and this spacer 69 has a plurality of small holes 69 a in its thin middle portion, and an O-ring is formed at the lower end surface of the spacer 69.
  • the upper surface of 68 is pressed and the second valve member 57 is received from below by the upper end surface of the spacer 69.
  • the air passage 58 is formed so as to communicate with a plurality of small holes 69 a in the middle stage of the spacer 69.
  • the air introduction chamber 55 is entered from a small gap between the tapered portion 35 b on the lower end side of the small diameter portion 35 a of the valve rod 35 and the second valve member 57.
  • the auxiliary valve body 43A is moved upward relative to the main valve body 43 by the light pressing force of the introduced pressurized air, and the second valve member 57 is reliably moved upward to seal the second valve member 57. Release the stop securely.
  • the pressurized air introduced into the air introduction chamber 55 acts on the piston portion 46 and the sub-piston portion 60, and the main valve body 43 and the sub-valve body 43A are in a short distance.
  • the main switching valve 42A is reliably switched to the air discharge position by moving upward.
  • the sub-valve body 43A is configured to be movable upward with a small force of pressurized air, and when the piston 14 reaches the forward movement limit position, the tapered portion on the lower end side of the small-diameter portion 35a of the valve stem 35
  • the secondary valve body 43A is moved upward relative to the main valve body 43 with a small amount of pressurized air that breaks the sealing of the second valve member 57 via 35b and flows into the air introduction chamber 55, and
  • By moving the two-valve member 57 upward the sealing of the second valve member 57 is reliably released via the small diameter portion 35a, and the pressurized air is rapidly introduced into the air introduction chamber 55, and the main switching valve 42A is moved to the air. It is possible to quickly switch to the discharge position.
  • the sub-valve element 43A Even if the supply pressure of the pressurized air varies, the sub-valve element 43A is not affected. Moreover, since the hydraulic pressure consumption at the hydraulic supply destination is very small, the sub-valve element 43A operates reliably as described above even when the piston 14 moves at a super-low speed, so that the main valve element 43 is neutral. It does not stop at the position (all port open state). And since the main valve body 43 is urged
  • the present invention provides a pressurized air driven piston reciprocating hydraulic pump that continuously generates hydraulic pressure by supplying pressurized air, and is applicable to various applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

加圧エア駆動式ピストン往復動型油圧ポンプ(P)は、加圧エアの供給系を切換える主切換弁(42A)と、この主切換弁(42A)をエア供給位置とエア排出位置とに亙って切換える副切換弁(42B)とを有するが、ピストン(14)が超微速動作する場合に主切換弁(42A)が中立位置になる場合がある。 【解決手段】主弁体(43)の環状弁体部(43a)の上下両端に弁ケース(31,32)側の第1,第2環状弁座(53,54)に接近又は当接する第1,第2環状弁面(51,52)が形成され、ピストン収容穴(45)とピストン部(46)でエア導入室(55)が形成され、副切換弁(42B)はエア導入室(55)に加圧エアを供給・排出することで主切換弁(42A)を切換える。主弁体(43)の中心側コア部分を別体の副弁体(43A)に構成し、この副弁体(43A)を弱い加圧エア力で急速移動させて第2弁部材(57)の封止を解除し、主弁体(43)を切換える。

Description

加圧エア駆動式ピストン往復動型油圧ポンプ
 本発明は、加圧エア駆動式ピストン往復動型油圧ポンプに関し、特に弁体が中立位置(オールポートオープン状態)にならないように改良したものに関する。
 従来から、次のような基本構造を備えた加圧エア駆動式ピストン往復動型油圧ポンプが実用に供されている。特許文献1に記載されたこの種のピストン往復動型油圧ポンプは、前記基本構造として、シリンダ部材のシリンダ孔に装着されその軸心方向へ往復駆動されるピストンと、シリンダ孔のピストンの両側の往動室及び復動室と、復動室に設けた復動用圧縮スプリングと、ピストンの中心部から復動室側へ延びるプランジャを含む油圧ポンプ機構部と、前記往動室の端壁としての仕切壁部を有し且つ前記シリンダ部材の端部に固定された弁ケースと、この弁ケースに設けた加圧エア供給用のエア供給口及びエア排出口と、往動室をエア供給口に連通させるエア供給位置と往動室をエア排出口に連通させるエア排出位置とに亙って連続的に切換え動作する主切換弁とこの主切換弁に同期連動して主切換弁の位置を切換える副切換弁とを含む切換弁機構とを備えている。
 前記主切換弁は、エア供給口に通じる環状エア通路の加圧エアでエア供給位置側へ付勢される環状弁体部とこの環状弁体部と一体のピストン部形成部とを有し且つ前記軸心方向へ移動可能な主弁体を備えている。前記環状弁体部はその移動方向両端に形成され且つ弁ケースの第1,第2環状弁座に択一的に当接する第1,第2環状弁面を備える共に、前記ピストン部形成部は弁ケースに形成されたシリンダ穴に収容されたピストン部を備えている。
 副切換弁は、ピストンの往動開始時に、シリンダ穴とピストン部とで形成されるエア導入室から加圧エアを排出することにより、主切換弁をエア供給位置に切換え、また、復動開始時に、エア導入室に加圧エアを導入することにより、主切換弁をエア排出位置に切換える。こうして、ピストンが連続的に往復動して油圧ポンプ機構部が油圧を発生させる。
 この特許文献1の油圧ポンプにおいては、エア供給口に供給される加圧エアの圧力が設定圧力以下に低下した場合に、環状エア通路の加圧エアで環状弁体部をエア供給位置側へ付勢する付勢力が低下して、主切換弁が中立位置(オールポート・オープン状態)になるという課題を解決する為に次のような構造を採用している。即ち、エア供給位置の時に第1弁面から離隔する第1弁座を弁ケースに対して可動の可動部材に形成し、その可動部材を圧縮スプリングで第1弁座が第1弁面に当接する閉弁側へ付勢し、加圧エアの供給圧が圧縮スプリングの閉弁力に相当する圧力以上になったときに、第1弁面と第1弁座間が離隔するように構成している。
 特許文献2に記載の加圧エア駆動式ピストン往復動型油圧ポンプは、前記基本構造と同様の基本構造を備えている。この油圧ポンプにおいて、主切換弁は、エア供給口に通ずる環状エア通路の加圧エアでエア供給位置へ付勢される環状弁体部と、この環状弁体部と一体のシリンダ穴形成部とを備えており、シリンダ穴形成部のシリンダ穴に弁ケース側のピストン部が挿入されてエア導入室が形成され、このエア導入室のエア排出口を開閉する排気弁が設けられている。副切換弁の弁棒はピストンに作動的に連結されてエア導入室に連なる内孔に挿入され、弁棒の上端近傍部の環状溝にOリングを装着した吸気弁が設けられている。
 ピストンが復動限界位置に達したとき、弁棒の先端で排気弁を開弁してエア導入室の加圧エアを排出し、主切換弁に作用する加圧エアの圧力で主切換弁をエア供給位置に切換えることにより、往動室に加圧エアを供給してピストンを往動させる。その後、ピストンが往動限界位置に達したとき、吸気弁を開弁してエア導入室に加圧エアを導入して、主切換弁をエア排出位置に切換えることにより、ピストンを復動させる。こうして、ピストンが連続的に往復動作して油圧ポンプ機構部が油圧を発生させる。
 この油圧ポンプにおいては、油圧供給先において油圧リーク等が発生した場合に、ピストンが超微速で往動する際に、主切換弁が中立位置(オールポート・オープン状態)になるという課題を解決する為に、次のような構造を採用している。
 前記弁棒をピストンに可動に連結し、弁棒の大径部と小径部の境界の環状受圧部に往動室のエア圧が弁閉弁方向に作用するように構成し、ピストンが往動限界位置に達する直前に、吸気弁から内孔に徐々に流入した低圧の加圧エアにより、環状受圧部に作用する加圧エアの閉弁力に抗して弁棒を一挙に開弁作動させて、吸気弁を全開状態にし、主切換弁をエア排出位置に切換えるように構成してある。
特開昭61-277801号公報 特開2005-201164号公報
 特許文献1の油圧ポンプにおいては、特許文献2の課題のように、ピストンが超微速で往動する際に、主切換弁が中立位置(オールポート・オープン状態)になる可能性があるという課題を解決することができない。
 特許文献2の油圧ポンプにおいては、弁棒の環状受圧部に作用する加圧エアの閉弁力が、加圧エア供給源から供給される加圧エアの圧力に依存するため、その閉弁力が加圧エアの圧力によって変動するから、吸気弁が全開するタイミングを安定させることが難しいこと、弁棒がピストンに対して相対移動するため、弁棒とピストンの衝突音が発生すること、排気弁の開閉の際にその弁体が弁座に衝突するため衝突音が発生すること、等の問題がある。
 本発明の目的は、加圧エア供給源から供給される加圧エアの圧力の変動の影響を受けずに確実に作動する副切換弁を有する加圧エア駆動式ピストン往復動型油圧ポンプを提供すること、衝突音の発生が少なく静粛に作動する加圧エア駆動式ピストン往復動型油圧ポンプを提供すること、等である。
 請求項1に係る加圧エア駆動式ピストン往復動型油圧ポンプは、シリンダ部材のシリンダ孔に装着されその軸心方向へ往復駆動されるピストンと、シリンダ孔のピストンの両側の往動室及び復動室と、復動室に設けた復動用圧縮スプリングと、ピストンの中心部から復動室側へ延びるプランジャを含む油圧ポンプ機構部と、前記往動室の端壁としての仕切壁部を有し且つ前記シリンダ部材の端部に固定された弁ケースと、この弁ケースに設けた加圧エア供給用のエア供給口及びエア排出口と、往動室をエア供給口に連通させるエア供給位置と往動室をエア排出口に連通させるエア排出位置とに亙って連続的に切換え動作する主切換弁とこの主切換弁に同期連動して主切換弁の位置を切換える副切換弁とを含む切換弁機構とを備えた加圧エア駆動式ピストン往復動型油圧ポンプであって、
 前記主切換弁は、エア供給口に通じる環状エア通路の加圧エアでエア供給位置側へ付勢される環状弁体部とこの環状弁体部と一体のピストン部形成部とを有し且つ前記軸心方向へ移動可能な主弁体を有し、
 前記環状弁体部はその移動方向両端に形成され且つ弁ケースの第1,第2環状弁座に択一的に当接する第1,第2環状弁面を備える共に、前記ピストン部形成部は弁ケースに形成されたピストン収容穴に収容されたピストン部を備え、
 前記副切換弁は、前記ピストン収容穴と前記ピストン部とで形成されるエア導入室と、前記ピストンの中心部から往動室側へ延びて弁ケースの仕切壁部と前記エア導入室と前記主弁体を摺動自在に貫通する弁棒と、この弁棒に形成された小径部と、前記弁棒と主弁体の間を封止可能な第1弁部材と、前記弁棒と仕切壁部の間を封止可能な第2弁部材とを備え、
 前記副切換弁は、前記ピストンの往動開始時には前記小径部により第1弁部材の封止を解除してエア導入室の加圧エアを排出することにより主切換弁をエア供給位置に切換えると共に、前記ピストンの復動開始時には前記小径部により第2弁部材の封止を解除してエア導入室に加圧エアを導入することにより主切換弁をエア排出位置に切換えるように構成した加圧エア駆動式ピストン往復動型油圧ポンプにおいて、
 前記主弁体のうちの前記弁棒外周に近い中心側部分を、この中心側部分以外の部分とは別体の副弁体に構成し、
 前記副弁体は、前記ピストン部に形成された副ピストン収容穴に気密摺動自在に装着され且つ前記エア導入室に臨む副ピストン部と、この副ピストン部から前記エア導入室と反対側へ延びて主弁体の円筒穴に摺動自在に装着された筒状部を備え、
 前記副弁体の前記筒状部の端部をエア排出口に臨ませると共に前記副弁体をエア導入室側へ付勢する圧縮スプリングを設け、前記第1弁部材を筒状部に装着したことを特徴としている。
 請求項2に係る加圧エア駆動式ピストン往復動型油圧ポンプは、請求項1の発明において、前記環状弁体部に一体形成されてピストン収容穴と反対側へ延び且つ弁ケースの円筒孔に摺動自在に内嵌した筒部を設け、この筒部の外周側に前記環状エア通路が形成されたことを特徴としている。
 請求項3に係る加圧エア駆動式ピストン往復動型油圧ポンプは、請求項1又は2の発明において、前記主弁体の環状弁体部とピストン部形成部と弁ケースとで環状エア排気通路が形成され、この環状エア排気通路をエア排出口に連通させるエア通路が主弁体に形成されたことを特徴としている。
 請求項4に係る加圧エア駆動式ピストン往復動型油圧ポンプは、請求項1又は2の発明において、前記エア導入室へエア供給口から加圧エアを導入する為のエア通路が弁ケースに形成され、前記副弁体の筒状部と弁棒の外周面との間に前記エア導入室の加圧エアを排出可能なエア通路が形成されたことを特徴としている。
 請求項5に係る加圧エア駆動式ピストン往復動型油圧ポンプは、請求項1又は2の発明において、前記第2弁部材は、弁棒と仕切壁部の間の環状隙間に弁棒の長さ方向へ可動に装着され、前記副弁体の副ピストン部から延びて前記環状隙間に挿入され且つ第2弁部材をエア導入室側から受け止める小径筒部を設けたことを特徴としている。
 請求項6に係る加圧エア駆動式ピストン往復動型油圧ポンプは、請求項5の発明において、前記ピストンが往動限界位置に達した時、前記弁棒の小径部の端部と第2弁部材の間からエア導入室に導入された加圧エアにより副弁体を主弁体に対して相対移動させて第2弁部材の封止を解除するように構成されたことを特徴としている。
 請求項7に係る加圧エア駆動式ピストン往復動型油圧ポンプは、請求項1又は2の発明において、前記主切換弁の主弁体をエア供給位置の方へ付勢する圧縮スプリングを設けたことを特徴としている。
 請求項1の発明によれば、ピストンが往動限界位置に達して復動開始する時、弁棒の小径部を介して第2弁部材の封止が解除され始めると、エア導入室に少しずつ流入する加圧エアが副弁体の副ピストン部に作用する。副弁体は副ピストン部と筒状部を有し、この筒状部がエア排出口に臨んでいるため、副弁体はエア導入室に流入した少量の加圧エアの圧力で第2弁部材の封止を解除する方向へ移動し、第2弁部材の封止が瞬時に確実に解除されてエア導入室に加圧エアが導入されるため、主切換弁がエア排出位置へ確実に切換えられる。そのため、主切換弁がオールポート・オープン状態になることがない。
 この油圧ポンプの副弁体は、エア導入室に導入される加圧エアの圧力が変動しても、その影響を受けることはなく、上記のように作動するため、供給圧の変動の影響を受けることはない。
 しかも、この油圧ポンプでは、弁棒を金属部材に衝突させる構造は採用されていないため、弁棒の周辺から衝突音が発生することがないうえ、耐久性に優れる。
 請求項2の発明によれば、主弁体の筒部の外周側に環状エア通路を形成し、そのエア圧で環状弁体部をエア供給位置の方へ付勢することができる。
 請求項3の発明によれば、環状エア排出通路から、主弁体に形成したエア通路を介して加圧エアを急速に排出することができる。
 請求項4の発明によれば、弁ケースに形成したエア通路を介してエア導入室に加圧エアを導入でき、また、エア導入室の加圧エアを副弁体の筒状部と弁棒の外周面との間のエア通路から排出できる。
 請求項5の発明によれば、ピストンが往動限界位置に達するまで、副弁体の小径筒部で第2弁部材をエア導入室側から押えておき、その後、小径筒部のエア導入室側への移動に連動して第2弁部材をエア導入室側へ移動させることができる。
 請求項6の発明によれば、ピストンが往動限界位置に達した時、弁棒の小径部の端部と第2弁部材の間からエア導入室に導入された加圧エアにより副弁体を主弁体に対して相対移動させて第2弁部材の封止を解除することができる。
 請求項7の発明によれば、主切換弁の主弁体をエア供給位置の方へ付勢する圧縮スプリングを設けたため、主切換弁の主弁体が中立位置(エア供給位置とエア排出位置の中間位置)になりにくくなる。
本発明の実施例に係る加圧エア駆動式ピストン往復動型油圧ポンプ(ピストン復動限界位置)の縦断面図である。 前記油圧ポンプ(ピストン往動限界位置に到着直後)の縦断面図である。 前記油圧ポンプ(ピストン復動開始直前)の縦断面図である。 図3のA部拡大図である。 前記油圧ポンプ(ピストン復動開始時)の縦断面図である。 図5のB部拡大図である。
 本発明を実施するための形態について実施例に基づいて説明する。
 本実施例に係る加圧エア駆動式ピストン往復動型油圧ポンプPは、加圧エアによって油圧を発生させるポンプである。但し、本明細書において、「油圧」は圧縮された加圧油を意味する。
 図1、図2に示すように、この油圧ポンプPは、単動型エアシリンダ1と、このエアシリンダ1の往動室11に対する加圧エアの供給・排出を切換える切換弁機構部3と、エアシリンダ1で駆動されるプランジャ21を含む油圧ポンプ機構部2と、外部の加圧エア供給源から加圧エアが供給されるエア供給口4と、外部へ加圧エアを排出するエア排出口5などを備えている。
 エア供給口4は、弁ケース31に固定されたポート金具4aと弁ケース31に形成され、このポート金具4aには加圧エアを供給するエアホース又はエア配管が連結される。エア排出口5は切換弁機構部3の上端弁ケース32の中心側部分に形成され、このエア排出口5はサイレンサー33aを収容した消音室33に連通され、消音室33は大気に開放されている。尚、サイレンサー33aは止め輪34で抜け止めされている。
 前記エアシリンダ1は、シリンダ部材13と、このシリンダ部材13のシリンダ孔13aに装着されてシリンダ孔13aの軸心方向へ連続的に往復駆動されるピストン14と、ピストンロッド15と、シリンダ孔13a内のピストン14の両側の往動室11及び復動室12と、復動室12に装着されてピストン14を復動させる圧縮スプリング16と、合成樹脂製の緩衝部材17a,17bなどを備えている。尚、往動室11はピストン14の上側に形成され、復動室12はピストン14の下側に形成されている。
 シリンダ部材13の上端に弁ケース31が一体形成され、往動室11の上端は弁ケース31の仕切壁部31a(往動室11の端壁に相当する)で仕切られている。シリンダ部材13の下端はポンプケース22で塞がれ、ポンプケース22はシリンダ部材13に例えば複数のボルト(図示略)で固定されている。
ピストン14は、ピストン本体14aと、このピストン本体14aの下面に当接した補助ピストン14bと、スプリング受け部材14cとを有する。ディスク状の補助ピストン14bの中心部から下方へスプリング受け部材14cを貫通するピストンロッド15が延び、補助ピストン14bの中心部から上方へピストン本体14aと弁ケース31を貫通する弁棒35(これは切換弁機構部3に属する)が延びている。ピストン本体14aの外周部は合成樹脂製のOリング14dでシールされている。
 ポンプケース22の上端には、圧縮スプリング16の下端部分を収容する環状凹部22aが形成され、圧縮スプリング16の上端はスプリング受け部材14cで受け止められ、圧縮スプリング16の下端は環状凹部22aの壁面で受け止められている。復動室12は図示外の呼吸孔で大気に開放されている。往動室11に対して加圧エアを供給・排出する為の複数のエア通路36が弁ケース31に形成されている。
 油圧ポンプ機構部2は、ポンプケース22と、ピストンロッド15の下端側部分に一体形成されたプランジャ21と、このプランジャ21が昇降するプランジャ孔23と、シール部材24と、油を吸入する吸入ポート25及び吸入用逆止弁25aと、油圧を吐出する吐出ポート26及び吐出用逆止弁26aなどを備えている。プランジャ孔23はプランジャ孔部材23aに形成されている。吸入ポート25を形成するポート金具25bと、吐出ポート26を形成するポート金具26bはポンプケース22に夫々螺合され、ポート金具25b,26bには油圧ホース又は油圧配管が接続される。
 切換弁機構部3は、弁ケース31及び上端弁ケース32と、エア通路37,38を介してエア供給口4に通じる環状エア通路39と、エア通路41を介してエア排出口5に連通された環状エア排気通路40と、往動室11をエア供給口4に連通させるエア供給位置(図3、図4参照)と往動室11をエア排出口5に連通させるエア排出位置(図5、図6参照)とに亙って連続的に切換え動作する主切換弁42Aと、この主切換弁42Aに同期連動して主切換弁42Aの主弁体43の位置を切換える副切換弁42Bとを含む切換弁機構42を備えている。
 図1~図6に示すように、主切換弁42Aは、環状エア通路39の加圧エアでエア供給位置側へ付勢される環状弁体部43aと、ピストン部形成部43bと、筒部43cとを有する主弁体43を備えている。この主弁体43は、シリンダ孔13aの軸心方向へ(上下方向へ)例えば300 ~500 μm移動可能であり、弱い圧縮スプリング44により下方へ(エア供給位置の方へ)付勢されている。環状弁体部43aとピストン部形成部43bは一体的に形成されている。ピストン部形成部43bは、弁ケース31に形成されたピストン収容穴45に気密摺動自在に収容されたピストン部46と、このピストン部46から上方へ延びて環状弁体部43aに連なる連結筒部47を備えている。
 前記筒部43cは、環状弁体部43aの径方向途中部に一体形成されてピストン収容穴45と反対側(上方)へ延び且つ上端弁ケース32の円筒孔32aに摺動自在に内嵌されている。この筒部43cの外周側に、環状弁体部43aと筒部43cと上端弁ケース32とで環状エア通路39が形成されている。この環状エア通路39は、複数の径方向エア通路38と1つの縦向きエア通路37とでエア供給口4に連通されている。環状弁体部43aの外周面の外側には、エア通路36を介して往動室11に連通した環状エア通路48が形成されている。
 環状エア排気通路40は、環状弁体部43aとピストン部形成部43bと弁ケース31とで形成され、この環状エア排気通路40をエア排出口5に連通させる複数のエア通路41が環状弁体部43aに形成されている。環状弁体部43aは、その移動方向両端(上下両端)に形成された第1,第2環状弁面51,52を備えている。第1環状弁面51は、筒部43cよりも外径側において、環状弁体部43aの上端部の環状溝に嵌めた合成樹脂製の環状シール部材で構成されている。第2環状弁面52は、第1環状弁面51の下方において、環状弁体部43aの下端部の環状溝に嵌めた合成樹脂製の環状シール部材で構成されている。
 第1環状弁面51に接近又は当接する第1環状弁座53が上端弁ケース32に形成され、第2環状弁面52に接近又は当接する第2環状弁座54が弁ケース31に形成され、第1,第2環状弁面51,52が第1,第2環状弁座53,54に択一的に当接するように構成されている。第1環状弁面51が第1環状弁座53から離隔し且つ第2環状弁面52が第2環状弁座54に当接した状態がエア供給位置である。主切換弁42Aがエア供給位置にあるとき、エア供給口4から供給された加圧エアは、エア通路37、 環状エア通路37a、エア通路38、環状エア通路39,48、エア通路36を通って往動室11へ供給される。
 上記とは反対に、第2環状弁面52が第2環状弁座54から離隔し且つ第1環状弁面51が第1環状弁座53に当接した状態がエア排出位置である。主切換弁42Aがエア排出位置にあるとき、往動室11の加圧エアは、エア通路36、環状エア通路48、環状エア排気通路40、エア通路41を通ってエア排出口5へ排出される。
 副切換弁42Bは、ピストン収容穴45とピストン部46とで形成されるエア導入室55と、弁棒35と、この弁棒35に形成された小径部35aと、弁棒35と主弁体43の間を封止可能な第1弁部材56と、弁棒35と仕切壁部31aの間を封止可能な第2弁部材57とを備えている。弁棒35は、補助ピストン14bの中心部から往動室11側へ延びて弁ケース31の仕切壁部31aとエア導入室55と主弁体43を摺動自在に貫通している。エア供給口4からエア導入室55へ加圧エアを導入する為のエア通路58が仕切壁部31aに形成されている。
 弁棒35の小径部35aは、上下方向に所定の長さ(例えば6~10mm)の環状溝でもって形成され、小径部35aの上端部と下端部は徐々に小径化するテーパ部35bに形成されている。
 図1に示すように、ピストン14が上限位置(復動限界位置)にあるとき、第1弁部材56が弁棒35の小径部35aの上下方向中間に対応する位置になる。これに対して、図2に示すように、ピストン14が下限位置(往動限界位置)にあるとき、第2弁部材57が弁棒35の小径部35aの下端側のテーパ部35bに対応する位置になる。
 副切換弁42Bは、ピストン14の往動開始時には小径部35aにより第1弁部材56の封止を解除してエア導入室55の加圧エアを排出することにより主弁体43をエア供給位置に切換えると共に、ピストン14の復動開始時には弁棒35の小径部35aにより第2弁部材57の封止を解除してエア導入室55に加圧エアを導入することにより主弁体43をエア排出位置に切換えるように構成されている。尚、複数のシール部材a~eが設けられている。
 次に、本願特有の構成および作用について説明する。
 図2~図4に示すように、主弁体43のうちの弁棒35の外周に近い中心側部分が、この中心側部分以外の部分とは別体の副弁体43Aに構成されている。副弁体43Aは、副ピストン部60と、この副ピストン部60と一体の筒状部61を備えている。
 この筒状部61の内周面と弁棒35の外周面との間にエア導入室55の加圧エアを排出可能なエア通路62が形成されている。副ピストン部60は、ピストン部46に形成された副ピストン収容穴63に気密摺動自在に装着されて、エア導入室55に臨んでいる。筒状部61は、副ピストン部60からエア導入室55と反対側へ延びて主弁体43の円筒穴に摺動自在に貫通している。副弁体43Aの筒状部61の端部はエア排出口5に臨んでおり、副弁体43Aをエア導入室55側へ付勢する弱い圧縮スプリング64が設けられている。尚、筒状部61の下半部は上半部よりも小径に形成され、主弁体43の円筒穴の内周面に接触しないように構成し、副弁体43Aに作用する摩擦力が小さくなるように構成してある。
 第1弁部材56はOリングで構成され、この第1弁部材56は、筒状部61の内周部に形成された環状溝に装着されている。第2弁部材57はOリングで構成され、弁棒35と仕切壁部31aの間の環状隙間65に弁棒35の長さ方向(軸心方向)へ可動に装着されている。副弁体43Aの副ピストン部60には、その副ピストン部60から下方へ延びて環状隙間65の上端側部分に挿入され且つ第2弁部材57をエア導入室55側から受け止める小径筒部60aが設けられている。小径筒部60aの上側近傍において副弁体43Aの弁棒挿通孔をエア導入室55に連通させる複数の傾斜エア通路66が形成されている。
 図4に示すように、前記環状隙間65の下端部には鍔付きスリーブ67が嵌合して固定されている。環状隙間65において、鍔付きスリーブ67の上側にOリング68とスペーサ69が装着され、このスペーサ69は、その中段の薄肉部に複数の小孔69aを有し、スペーサ69の下端面でOリング68の上面を押え、スペーサ69の上端面で第2弁部材57を下方から受け止めるように構成されている。エア通路58は、スペーサ69の中段の複数の小孔69aに連通するように形成されている。
 この油圧ポンプPにおいては、エア供給口4に加圧エアを連続的に供給し、切換弁機構部3の主切換弁42Aと副切換弁42Bの作用で、ピストン14を高速で連続的に往復動作させることで、油圧ポンプ機構部2から油圧を連続的に発生させることができる。
 図4に示すように、ピストン14が往動限界位置に達した時、弁棒35の小径部35aの下端側のテーパ部35bと第2弁部材57の間の小さな隙間からエア導入室55に導入された加圧エアの軽い押圧力により副弁体43Aを主弁体43に対して上方へ相対移動させ、第2弁部材57を確実に上方移動させることにより、第2弁部材57の封止を確実に解除する。次の瞬間には、図6に示すように、エア導入室55に導入された加圧エアがピストン部46と副ピストン部60に作用して、主弁体43と副弁体43Aが小距離上方へ移動して主切換弁42Aがエア排出位置に確実に切換えられる。
 このように、副弁体43Aが加圧エアの小さな力で上方へ移動可能に構成し、ピストン14が往動限界位置に到達した際に、弁棒35の小径部35aの下端側のテーパ部35bを介して第2弁部材57の封止を破ってエア導入室55に流入する少量の加圧エアでもって副弁体43Aを主弁体43に対して相対的に上方移動させて、第2弁部材57を上方移動させることによって小径部35aを介して第2弁部材57の封止を確実に解除し、エア導入室55に急速に加圧エアを導入し、主切換弁42Aをエア排出位置に急速に切換えることができる。
 加圧エアの供給圧が変動しても、副弁体43Aは影響を受けることはない。しかも、油圧供給先の油圧消費量が微量であるため、ピストン14が超微速で移動するような場合でも、副弁体43Aが上記のように確実に作動するため、主弁体43が中立位置(オールポート・オープン状態)に停止することはない。そして、圧縮スプリング44で主弁体43をエア供給位置の方へ付勢しているため、主弁体43が中立位置に停止しにくくなる。
しかも、弁棒35が弁棒35以外の金属部材と衝突しない構造になっているため、ピストン14が連続的に高速で往復動作しても、衝突音が発生することない。
 以上説明した油圧ポンプPの構造は一例を示すものであって、当業者であれば、本発明の趣旨を逸脱しない範囲で、前記実施例を部分的に変更して実施可能である。
 本発明は、加圧エアを供給することにより連続的に油圧を発生する加圧エア駆動式ピストン往復動型油圧ポンプであって、種々の用途に適用可能な油圧ポンプを提供する。
P    加圧エア駆動式ピストン往復動型油圧ポンプ
1    単動型エアシリンダ
2    油圧ポンプ機構部
3    切換弁機構部
4    エア供給口
5    エア排出口
11   往動室
12   復動室
13   シリンダ部材
13a  シリンダ孔
14   ピストン
16   圧縮スプリング
21   プランジャ
31   弁ケース
31a  仕切壁部
32   上端弁ケース
35   弁棒
35a  小径部
35b  テーパ部(小径部の端部)
39   環状エア通路
40   環状エア排気通路
41   エア通路
42   切換弁機構
42A  主切換弁
42B  副切換弁
43   主弁体
43A  副弁体
43a  環状弁体部
43b  ピストン部形成部
43c  筒部
44   圧縮スプリング
45   ピストン収容穴
46   ピストン部
51,52  第1,第2環状弁面
53,54  第1,第2環状弁座
55   エア導入室
56   第1弁部材
57   第2弁部材
58   エア通路
60    副ピストン部
60a  小径筒部
61   筒状部
63   副ピストン収容穴
64   圧縮スプリング
65   環状隙間

Claims (7)

  1.  シリンダ部材のシリンダ孔に装着されその軸心方向へ往復駆動されるピストンと、シリンダ孔のピストンの両側の往動室及び復動室と、復動室に設けた復動用圧縮スプリングと、ピストンの中心部から復動室側へ延びるプランジャを含む油圧ポンプ機構部と、前記往動室の端壁としての仕切壁部を有し且つ前記シリンダ部材の端部に固定された弁ケースと、この弁ケースに設けた加圧エア供給用のエア供給口及びエア排出口と、往動室をエア供給口に連通させるエア供給位置と往動室をエア排出口に連通させるエア排出位置とに亙って連続的に切換え動作する主切換弁とこの主切換弁に同期連動して主切換弁の位置を切換える副切換弁とを含む切換弁機構とを備えた加圧エア駆動式ピストン往復動型油圧ポンプであって、
     前記主切換弁は、エア供給口に通じる環状エア通路の加圧エアでエア供給位置側へ付勢される環状弁体部とこの環状弁体部と一体のピストン部形成部とを有し且つ前記軸心方向へ移動可能な主弁体を有し、
     前記環状弁体部はその移動方向両端に形成され且つ弁ケースの第1,第2環状弁座に択一的に当接する第1,第2環状弁面を備える共に、前記ピストン部形成部は弁ケースに形成されたピストン収容穴に収容されたピストン部を備え、
     前記副切換弁は、前記ピストン収容穴と前記ピストン部とで形成されるエア導入室と、前記ピストンの中心部から往動室側へ延びて弁ケースの仕切壁部と前記エア導入室と前記主弁体を摺動自在に貫通する弁棒と、この弁棒に形成された小径部と、前記弁棒と主弁体の間を封止可能な第1弁部材と、前記弁棒と仕切壁部の間を封止可能な第2弁部材とを備え、
     前記副切換弁は、前記ピストンの往動開始時には前記小径部により第1弁部材の封止を解除してエア導入室の加圧エアを排出することにより主切換弁をエア供給位置に切換えると共に、前記ピストンの復動開始時には前記小径部により第2弁部材の封止を解除してエア導入室に加圧エアを導入することにより主切換弁をエア排出位置に切換えるように構成した加圧エア駆動式ピストン往復動型油圧ポンプにおいて、
     前記主弁体のうちの前記弁棒外周に近い中心側部分を、この中心側部分以外の部分とは別体の副弁体に構成し、
     前記副弁体は、前記ピストン部に形成された副ピストン収容穴に気密摺動自在に装着され且つ前記エア導入室に臨む副ピストン部と、この副ピストン部から前記エア導入室と反対側へ延びて主弁体の円筒穴に摺動自在に装着された筒状部を備え、
     前記副弁体の前記筒状部の端部をエア排出口に臨ませると共に前記副弁体をエア導入室側へ付勢する圧縮スプリングを設け、前記第1弁部材を筒状部に装着した、
     ことを特徴とする加圧エア駆動式ピストン往復動型油圧ポンプ。
  2.  前記環状弁体部に一体形成されてピストン収容穴と反対側へ延び且つ弁ケースの円筒孔に摺動自在に内嵌した筒部を設け、この筒部の外周側に前記環状エア通路が形成されたことを特徴とする請求項1に記載の加圧エア駆動式ピストン往復動型油圧ポンプ。
  3.  前記主弁体の環状弁体部とピストン部形成部と弁ケースとで環状エア排気通路が形成され、この環状エア排気通路をエア排出口に連通させるエア通路が主弁体に形成されたことを特徴とする請求項1又は2に記載の加圧エア駆動式ピストン往復動型油圧ポンプ。
  4.  前記エア導入室へエア供給口から加圧エアを導入する為のエア通路が弁ケースに形成され、前記副弁体の筒状部と弁棒の外周面との間に前記エア導入室の加圧エアを排出可能なエア通路が形成されたことを特徴とする請求項1又は2に記載の加圧エア駆動式ピストン往復動型油圧ポンプ。
  5.  前記第2弁部材は、弁棒と仕切壁部の間の環状隙間に弁棒の長さ方向へ可動に装着され、前記副弁体の副ピストン部から延びて前記環状隙間に挿入され且つ第2弁部材をエア導入室側から受け止める小径筒部を設けたことを特徴とする請求項1又は2に記載の加圧エア駆動式ピストン往復動型油圧ポンプ。
  6.  前記ピストンが往動限界位置に達した時、前記弁棒の小径部の端部と第2弁部材の間からエア導入室に導入された加圧エアにより副弁体を主弁体に対して相対移動させて第2弁部材の封止を解除するように構成されたことを特徴とする請求項5に記載の加圧エア駆動式ピストン往復動型油圧ポンプ。
  7.  前記主切換弁の主弁体をエア供給位置の方へ付勢する圧縮スプリングを設けたことを特徴とする請求項1又は2に記載の加圧エア駆動式ピストン往復動型油圧ポンプ。
PCT/JP2013/068510 2012-08-28 2013-07-05 加圧エア駆動式ピストン往復動型油圧ポンプ WO2014034270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380042610.1A CN104583590B (zh) 2012-08-28 2013-07-05 加压空气驱动式活塞往返运动型油压泵
US14/423,514 US9822771B2 (en) 2012-08-28 2013-07-05 Compressed air driven reciprocating piston hydraulic pump
EP13832561.8A EP2899400B1 (en) 2012-08-28 2013-07-05 Compressed air driven reciprocating piston hydraulic pump
KR1020157007118A KR102007021B1 (ko) 2012-08-28 2013-07-05 가압 에어 구동식 피스톤 왕복동형 유압 펌프

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-187139 2012-08-28
JP2012187139A JP5969318B2 (ja) 2012-08-28 2012-08-28 加圧エア駆動式ピストン往復動型油圧ポンプ

Publications (1)

Publication Number Publication Date
WO2014034270A1 true WO2014034270A1 (ja) 2014-03-06

Family

ID=50183092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068510 WO2014034270A1 (ja) 2012-08-28 2013-07-05 加圧エア駆動式ピストン往復動型油圧ポンプ

Country Status (7)

Country Link
US (1) US9822771B2 (ja)
EP (1) EP2899400B1 (ja)
JP (1) JP5969318B2 (ja)
KR (1) KR102007021B1 (ja)
CN (1) CN104583590B (ja)
TW (1) TWI601878B (ja)
WO (1) WO2014034270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109838358A (zh) * 2019-03-15 2019-06-04 中船澄西船舶修造有限公司 一种水雾喷砂机用的柱塞泵改进结构

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160341192A1 (en) * 2014-02-07 2016-11-24 Jemtab Systems Ab An air-driven hydraulic pump
US9879660B2 (en) * 2014-06-26 2018-01-30 Springboard Biodiesel, Llc Pump for removing liquids from vessels under vacuum
US10740789B2 (en) * 2015-12-10 2020-08-11 Facebook, Inc. Modifying advertisement bids using predicted advertisement performance
CN107355369B (zh) * 2016-05-10 2019-04-12 上海迪瓦流体控制科技有限公司 双向缓冲装置及含其的活塞式压缩机气阀控制系统
US20210388824A1 (en) * 2018-09-24 2021-12-16 Burckhardt Compression Ag Piston compressor and method of operating the same
CN109058066B (zh) * 2018-09-28 2024-02-06 扬州市华能太阳能有限公司 一种气动高压注油器的空气泵
RU2699598C1 (ru) * 2019-01-18 2019-09-06 Общество с ограниченной ответственностью Финансово-промышленная компания "Космос-Нефть-Газ" Агрегат насосный плунжерный пневмоприводной
US12066022B2 (en) * 2019-08-09 2024-08-20 Kosmek Ltd. Motor and hydraulic pump device including the motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277801A (ja) 1985-05-31 1986-12-08 Aioi Seiki Kk 圧力流体式ピストン往復型発動機
JPH02130401U (ja) * 1989-04-03 1990-10-26
JPH03229004A (ja) * 1990-01-31 1991-10-11 Kosumetsuku:Kk 流体圧ピストン発動機
JP2005201164A (ja) 2004-01-16 2005-07-28 Sr Engineering Co Ltd 高圧流体発生装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272081A (en) * 1965-01-04 1966-09-13 Vedder Borgert Air motor
US3788781A (en) * 1972-03-17 1974-01-29 Owatonna Tool Co Hydraulic system
JPS5540761B2 (ja) * 1975-03-08 1980-10-20
US4110983A (en) * 1977-06-13 1978-09-05 Terry McDermid Air operated hydraulic pump apparatus
JPS63130904A (ja) * 1986-11-17 1988-06-03 Kosumetsuku:Kk 流体圧ピストン発動機
JP2528499B2 (ja) * 1988-04-15 1996-08-28 甲南電機株式会社 往復動ポンプ装置
US5252042A (en) * 1991-08-09 1993-10-12 Kabushiki Kaisha Kosmek Gas booster assembly for fluid pressure piston driving apparatus
JP2946005B2 (ja) * 1991-08-09 1999-09-06 株式会社コスメック ガス増圧器
US6409482B1 (en) * 2000-09-13 2002-06-25 Wang Wing Fon Double-force type pressure cylinder structure
CN2578549Y (zh) * 2002-10-22 2003-10-08 邴慧源 往复式气动抽油泵
WO2009011012A1 (ja) * 2007-07-18 2009-01-22 Pascal Engineering Corporation エア駆動型油圧ポンプ
JP4428671B2 (ja) * 2008-05-02 2010-03-10 アクチュアント コーポレーション 流体圧発生装置
JP5435908B2 (ja) * 2008-08-06 2014-03-05 パスカルエンジニアリング株式会社 クランプ装置
CN201250767Y (zh) * 2008-09-03 2009-06-03 宁波顺兴机械制造有限公司 气动液压泵

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277801A (ja) 1985-05-31 1986-12-08 Aioi Seiki Kk 圧力流体式ピストン往復型発動機
JPH02130401U (ja) * 1989-04-03 1990-10-26
JPH03229004A (ja) * 1990-01-31 1991-10-11 Kosumetsuku:Kk 流体圧ピストン発動機
JP2005201164A (ja) 2004-01-16 2005-07-28 Sr Engineering Co Ltd 高圧流体発生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109838358A (zh) * 2019-03-15 2019-06-04 中船澄西船舶修造有限公司 一种水雾喷砂机用的柱塞泵改进结构
CN109838358B (zh) * 2019-03-15 2023-12-26 中船澄西船舶修造有限公司 一种水雾喷砂机用的柱塞泵改进结构

Also Published As

Publication number Publication date
JP2014043817A (ja) 2014-03-13
CN104583590A (zh) 2015-04-29
TW201408880A (zh) 2014-03-01
CN104583590B (zh) 2016-05-25
KR102007021B1 (ko) 2019-08-02
EP2899400A1 (en) 2015-07-29
JP5969318B2 (ja) 2016-08-17
EP2899400B1 (en) 2018-04-11
US20160201656A1 (en) 2016-07-14
US9822771B2 (en) 2017-11-21
KR20150051221A (ko) 2015-05-11
EP2899400A4 (en) 2016-07-13
TWI601878B (zh) 2017-10-11

Similar Documents

Publication Publication Date Title
JP5969318B2 (ja) 加圧エア駆動式ピストン往復動型油圧ポンプ
JP5256545B2 (ja) 減圧切換弁
TWI707101B (zh) 流體控制閥
JP2008039083A (ja) 閉鎖力増強機構付きダイヤフラム型電磁弁
JP2010149844A (ja) デッドストローク低減弁
CN110573750B (zh) 增压装置以及具备该增压装置的气缸装置
TW201700889A (zh) 流路單元及切換閥
JP2008267514A (ja) 油圧シリンダのクッシヨン装置
TWI761899B (zh) 發動機及具備該發動機的油壓泵裝置
JP2004360876A (ja) 三方弁
JP6780820B2 (ja) エアシリンダ
JP6227520B2 (ja) 内部パイロット式3ポート切換弁
JP4680394B2 (ja) 順次動作シリンダシステム
JP5231292B2 (ja) シリンダ
JP6796291B2 (ja) エアシリンダ
CN117307553B (zh) 液压油缸和作业机械
JP4294845B2 (ja) 定量バルブ
JP2009270458A (ja) 流体圧発生装置
JP2001248545A (ja) 空圧駆動式の液圧ポンプ
WO2020054321A1 (ja) 流体圧シリンダ
JP2005282739A (ja) シリンダ装置
JPH02211388A (ja) エアードリブンポンプ
JPH09144710A (ja) 往復動形アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14423514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157007118

Country of ref document: KR

Kind code of ref document: A