WO2014030641A1 - 細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法 - Google Patents

細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法 Download PDF

Info

Publication number
WO2014030641A1
WO2014030641A1 PCT/JP2013/072178 JP2013072178W WO2014030641A1 WO 2014030641 A1 WO2014030641 A1 WO 2014030641A1 JP 2013072178 W JP2013072178 W JP 2013072178W WO 2014030641 A1 WO2014030641 A1 WO 2014030641A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
cells
derived
cell
iron oxide
Prior art date
Application number
PCT/JP2013/072178
Other languages
English (en)
French (fr)
Inventor
智成 笠井
妹尾 昌治
高田 潤
橋本 英樹
鈴木 智子
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Priority to JP2014531635A priority Critical patent/JPWO2014030641A1/ja
Publication of WO2014030641A1 publication Critical patent/WO2014030641A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5032Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on intercellular interactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Definitions

  • the present invention relates to a cell culture containing cells and iron oxide produced by a microorganism, and a method for producing a protein or peptide using the cell culture.
  • Patent Document 1 and Patent Document 2 disclose a method of culturing cells on a culture substrate having a specific pattern.
  • Patent Documents 3 and 4 disclose a method of culturing cells using a microchannel or a nanoscale channel.
  • Patent Document 5 uses a gadolinium compound in the culture solution
  • Patent Document 6 uses a body fluid of a fish having a mucosal body epidermis in the culture solution.
  • the background art of Patent Document 6 describes a method of monolayer culture on a hollow fiber membrane, a method using a sugar chain polymer, and a method using proteoglycan derived from animal liver.
  • Patent Documents 7 to 10 describe a method for producing human serum albumin (HSA) using recombinants of Escherichia coli or yeast, particularly Pichia yeast and Saccharomyces yeast. Are listed. Further, as described in the background art of Patent Document 7, as a method not using a gene recombinant, HSA is produced as a blood fraction product.
  • HSA human serum albumin
  • the spheroids to be formed are on the micrometer scale, and the spheroids that have grown large have a problem that the spheroids are likely to collapse and divide because they cause necrosis inside.
  • a protein derived from a non-human organism or a sugar chain is mixed, it becomes an antigen in the human body and may cause an allergic reaction or anaphylactic shock.
  • Patent Documents 7 to 10 there is a risk of contamination with exogenous substances such as endotoxin or pyrogen by using recombinants, and enormous investment in GMP facilities is required.
  • the method of producing blood from Patent Document 7 using raw materials is difficult to stably supply the raw materials and has problems such as virus contamination.
  • one object of the present invention is to provide a huge spheroid.
  • Another object of the present invention is to provide a method for producing a protein or peptide having an increased production amount.
  • a further object of the present invention is to provide an additive that can be used effectively when three-dimensionally culturing eukaryotic cells.
  • the present inventors diligently studied to solve the above problems, and found that three-dimensional culture becomes possible when eukaryotic cells are cultured with iron oxide produced by microorganisms, that is, ceramics derived from microorganisms.
  • the present invention has been completed based on such findings, and includes the inventions of the following broad aspects.
  • Item 1 An additive for three-dimensional culture of eukaryotic cells, comprising ceramics derived from microorganisms as an active ingredient.
  • Item 2 The additive for three-dimensional culture according to Item 1, wherein the microorganism-derived ceramic contains iron oxide and / or silica.
  • Item 3 The additive for three-dimensional culture according to Item 1 or 2, wherein the microorganism-derived ceramic further contains phosphorus.
  • the shape of the ceramic derived from a microorganism is a group consisting of a hollow tube shape, a hollow fiber sheath shape, a spiral shape, a branched tube shape, a branched thread shape, a harp shape, a fan shape, a short stem shape, a capsule shape, and a spherical shape.
  • Item 4. The additive according to any one of Items 1 to 3, which is any one selected.
  • Item 5 The additive according to any one of Items 1 to 4, wherein the shape of the ceramic derived from a microorganism is a hollow tube shape or a spiral shape.
  • Item 6 The additive according to any one of Items 1 to 5, wherein the length of the microorganism-derived ceramic is 0.1 to 3000 ⁇ m.
  • Item 7 The additive according to any one of Items 1 to 6, wherein the microorganism-derived ceramic is a magnetic substance.
  • the iron oxide comprises ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , Fe 3 O 4 , ⁇ -FeOOH, ⁇ -FeOOH, ⁇ -FeOOH, and ferrihydrite.
  • Item 8 The additive according to any one of Items 2 to 7, which is at least one selected from the group.
  • Item 9 The additive according to any one of Items 1 to 8, wherein the eukaryotic cell is a mammalian cell and / or an insect cell.
  • Item 10 The additive according to any one of Items 1 to 9, wherein the eukaryotic cell is a stem cell and / or a hepatocyte.
  • Item 11 The microorganism is from Toxosilix spp., Leptosurix spp., Klenosirix spp., Chronosylx spp., Galionella spp., Siderocapsa spp. Item 11.
  • Item 12 The additive according to any one of Items 1 to 11, wherein the microorganism is a genus Leptosurix and / or a genus Galionella.
  • Item 13 The additive according to any one of Items 1 to 12, which is used for spheroid or cell mass formation.
  • Item 14 The additive according to any one of Items 1 to 13, wherein the three-dimensional culture does not use feeder cells.
  • Item 15 A method for three-dimensional culture of eukaryotic cells, comprising the step of adding eukaryotic cells and microorganism-derived ceramics to the medium.
  • Item 16 The method according to Item 15, wherein the microorganism-derived ceramic comprises iron oxide and / or silica.
  • Item 17 A spheroid or cell mass containing ceramics derived from microorganisms and eukaryotic cells carried thereon.
  • Item 18 The spheroid or cell mass according to Item 17, obtained by the method according to Item 15 or Item 16.
  • Item 19 The spheroid or cell mass according to Item 17 or 18, which is used for producing a protein or peptide.
  • Item 20 The spheroid or cell mass according to Item 17 or 18, which is used for screening for drugs or lipids.
  • Item 21 The spheroid or cell mass according to Item 17 or 18, which is used for differentiation of disease malignancy.
  • Item 22 The spheroid or cell mass according to Item 17 or 18, which is for regenerative medicine.
  • Item 23 A microorganism-derived ceramic for use as an additive for three-dimensional culture of eukaryotic cells.
  • Item 24 The microorganism-derived ceramic according to Item 23, wherein the microorganism-derived ceramic contains iron oxide and / or silica.
  • Item 25 Use of ceramics derived from microorganisms for producing an additive for three-dimensional culture of eukaryotic cells.
  • Item 26 The use according to Item 25, wherein the microorganism-derived ceramic comprises iron oxide and / or silica.
  • Item 27 A method for producing a protein or peptide, comprising a step of adding ceramics derived from eukaryotic cells and microorganisms to a medium, and a step of three-dimensionally culturing the cells.
  • Item 28 The method according to Item 27, wherein the microorganism-derived ceramic contains iron oxide and / or silica.
  • Item 29 A screening method for drugs or lipids, the step of adding ceramics derived from eukaryotic cells and microorganisms to a medium, the step of three-dimensional culture of the cells, and the spheroids or cell mass obtained by the three-dimensional culture And a method of contacting a drug or lipid candidate substance.
  • Item 30 The screening method according to Item 28, wherein the microorganism-derived ceramic comprises iron oxide and / or silica.
  • Item 31 is a method for identifying the malignancy of a disease, the step of adding a cell derived from a tissue piece or a tumor piece collected from a living body and a ceramic derived from a microorganism to a medium, a step of three-dimensionally culturing the cell, A differentiation method comprising a step of evaluating a spheroid or a cell mass obtained by three-dimensional culture.
  • Item 32 The identification method according to Item 31, wherein the microorganism-derived ceramic contains iron oxide and / or silica.
  • Item 33 A method for producing an artificial tissue, the step of adding cells collected from a living body and ceramics derived from microorganisms to a medium, the step of three-dimensionally culturing the cells, and the spheroids or cells obtained by the three-dimensional culture
  • a manufacturing method comprising the step of directly or indirectly injecting a mass into a patient or an animal in need of treatment.
  • Item 34 The method according to Item 33, wherein the microorganism-derived ceramic comprises iron oxide and / or silica.
  • Term A1 A cell culture comprising cells and iron oxides produced by microorganisms.
  • Term A2. The cell culture according to Item A1, wherein the cells are primary hepatocytes, hepatocyte-derived cell lines, primary cancer cells, or cancer cell-derived cell lines.
  • Term A3. The cell culture according to Item A1, wherein the cell is a stem cell.
  • Term A4. The cell culture according to any one of Items A1 to A3, wherein the cells are spheroids.
  • Term A5. Item 5.
  • the cell culture according to any one of Items A1 to A4, wherein the iron oxide produced by the microorganism is iron oxide produced by a genus Leptotrix or Galionella.
  • Term A6 Item 6. The cell culture according to any one of Items A1 to A5, wherein the iron oxide produced by the microorganism is a hollow tube-shaped iron oxide.
  • Term A7 A method for producing a protein or peptide using the cell culture according to any one of Items A1 to A6.
  • Term A8 The method according to Item A7, wherein the protein or peptide is a serum protein, hormone, enzyme, immunomodulator, lymphokine, monokine, cytokine, glycoprotein, vaccine antigen, antibody, growth factor, growth factor, or humoral factor.
  • Term A9. The method according to Item A7, wherein the protein or peptide is albumin.
  • a method for producing spheroids comprising culturing cells using iron oxide produced by a microorganism.
  • Term A11 The method according to Item A10, wherein the spheroid is a primary hepatocyte, a hepatocyte-derived cell line, a primary cancer cell, or a spheroid cultured from a cancer cell-derived cell line.
  • Term A12. The method according to Item A10, wherein the cell is a stem cell.
  • Term A13 Item 13.
  • the method according to any one of Items A10 to A12, wherein the iron oxide produced by the microorganism is iron oxide produced by the genus Leptosurix or Galionella.
  • Term A14 The method according to any one of Items A10 to A12, wherein the iron oxide produced by the microorganism is iron oxide produced by the genus Leptosurix or Galionella.
  • the culturing comprises culturing cells by placing a medium containing cells and iron oxide produced by microorganisms in a culture dish having an inner bottom surface that is non-cell-adherent. Any one of Items A10 to A14 The method according to claim 1.
  • Term A17 Use of iron oxide produced by microorganisms for spheroid formation.
  • a cell culture containing cells and iron oxide produced by a microorganism is provided.
  • Such cell culture promotes the formation of large spheroids, and such cell culture can be used for production of proteins or peptides including albumin, and screening for drugs or lipids.
  • FIGS. 1A-1C show scanning electron micrographs of adhesion of human breast cancer-derived MDA-MB-453 cells
  • FIGS. 1D-1F show scanning electron micrographs of adhesion of human liver cancer-derived HepG2 cells.
  • FIGS. 2A-C are spheroids of HepG2 cells formed on L-BIOX on days 6, 9, and 10;
  • FIGS. 2D-E are culture days 4 and 14 in the absence of L-BIOX. The spheroid of the HepG2 cell of a day is shown.
  • FIG. 3-10 was similarly observed with an inverted optical microscope, and the spheroid diameter was measured.
  • Photomicrograph (40x objective) of MDA-MB-453 cells spheroid-formed on magnetic L-BIOX at 1 month of culture. Spheroid diameter of miPS-LLCcm cells cultured on L-BIOX.
  • Bright field observation (BF) FOG. 5A
  • fluorescence (GFP) observation FOG. 5B
  • FIG. 5C 5C of miPS-LLCcm cultured for 7 days on L-BIOX.
  • MiPS cell mass formed on L-BIOX (FIG. 6A-C) and miPS cells cultured in non-adhesive culture dishes (FIG. 6D-F).
  • FIG. 7A is a graph relating to L-BIOX
  • FIG. 7B is a graph relating to G-BIOX.
  • FIG. 9A L-BIOX
  • FIG. 9B No carrier
  • FIG. 9C Aerosil 300
  • FIG. 9D Commercial iron oxide.
  • 10A, B L-BIOX
  • FIG. 10C, D Microcarrier beads.
  • FIG. 11A shows albumin expression in Western blotting.
  • FIG. 11B is a graph showing the expression level of FIG. 11A in signal intensity. The experimental result which examined the influence of the shape of L-BIOX.
  • (A) is a photomicrograph showing the results of three-dimensional culture of miPS cells using tube-shaped L-BIOX.
  • the bar represents 100 ⁇ m.
  • (B) is a photomicrograph showing the results of three-dimensional culture of miPS cells using a tube-shaped L-BIOX powder.
  • the bar represents 100 ⁇ m.
  • (C) is an enlarged image of (A). Bar indicates 20 ⁇ m.
  • (D) is an image obtained by three-dimensional reconstruction of (A). The figure which shows the result of having examined the expression level of the gene in the miPS cell three-dimensionally cultured using L-BIOX.
  • (A) shows endogenous expression genes
  • (B) shows total expression genes.
  • the vertical axis of the graph represents the relative expression level based on the expression level in miPS cells cultured in feederless on an adhesive dish (value is 1).
  • the vertical axis of the graph indicates the diameter ( ⁇ m) of the cell mass obtained by three-dimensional culture, and the horizontal axis indicates the number of culture days.
  • Squares in the graph indicate that L-BIOX and Purimicin are added, and circles in the graph indicate that L-BIOX is not added but Purmycin is added.
  • the arrow of a horizontal axis shows the day which Purimicin was added, and the photographic image in a graph shows the photographic image of the cell mass at the time of each three-dimensional culture.
  • the bar represents 500 ⁇ m.
  • the additive for three-dimensional culture of eukaryotic cells of the present invention comprises a ceramic derived from a microorganism as an active ingredient. That is, the microorganism-derived ceramic in the present invention can be used as an additive for three-dimensional culture of eukaryotic cells. The microorganism-derived ceramic is used for producing an additive for three-dimensional culture of eukaryotic cells.
  • the above-mentioned ceramics derived from microorganisms correspond to “iron oxide produced by microorganisms”, which explains in detail the invention of the embodiments shown in the above-mentioned items A1 to A17. More specifically, (I) Magnetic ceramics by heat treatment of iron oxide produced by microorganisms, (Ii) A porous amorphous silica obtained by acid-treating iron oxide produced by microorganisms and dissolving and removing the Fe component; and (iii) Organic iron oxide, magnetic ceramics, or porous amorphous silica produced by microorganisms.
  • An organic / inorganic material obtained by chemically modifying at least part of a moiety that can be chemically modified with a group (for example, an oxygen atom bonded to an Fe atom and / or Si atom) with an organic group is derived from the microorganism of the present invention. Included in ceramics.
  • the ceramic derived from microorganisms contained as an active ingredient in the additive for three-dimensional culture of the present invention contains iron oxide and / or silica. Furthermore, phosphorus can also be contained. Then, by culturing the microorganism of the present invention, which will be described later, in an environment where transition metal elements such as cobalt, nickel and manganese and rare earth elements such as neodymium are present, these elements can be contained in the ceramic derived from the microorganism. When these elements are contained, magnetism derived from substances other than iron can be imparted to the magnetic ceramic of the present invention. Further, light elements such as sodium, magnesium, and aluminum can also be contained.
  • the element ratio of silica, phosphorus is the atomic number% (at%), and is usually about 66 to 87: 2 to 27: 1 to 32.
  • iron oxide is a detailed description of the invention of the embodiments shown in the above-mentioned items A1 to A17, and described in WO2010 / 110435 and WO2011 / 074587 explaining this. It can be “iron oxide”.
  • the ferrihydrite represented by the above “iron oxide” means low crystalline iron oxide, which is called 2-line ferrihydrite, 6-line ferrihydrite or the like depending on the number of peaks appearing in the X-ray diffraction pattern. ing.
  • the composition of 2-line ferrihydrite is Fe 4 (O, OH, H 2 O)
  • the composition of 6-line ferrihydrite is Fe 4.6 (O, OH, H 2 O) 12 (RA).
  • the shape of the ceramic described above is described in detail in the description of the invention described in the items A1 to A17 described later, and in International Publication Nos. 2010/110435 and 2011/074587 which explain this.
  • the shape of the ceramic is formed by agglomeration of fine particles having a primary particle diameter of usually about 3 to 5 nm.
  • the thickness is about 0.1 to 3000 ⁇ m.
  • the diameter is usually about 0.1 to 5 ⁇ m and the length is about 5 to 3000 ⁇ m.
  • a capsule usually about 1.2 to 24 ⁇ m in length; in the case of a sphere, usually about 0.1 to 1 ⁇ m in diameter; About 4 ⁇ m, about 5 to 200 ⁇ m in length; usually in the form of nanotubes, about 300 to 450 nm in diameter and about 5 to 200 ⁇ m in length; if in the form of hollow strings, usually about 3 to 10 ⁇ m in length; capsule If the shape is normal, the major axis is usually about 1.5 to 7 ⁇ m, the minor axis is about 0.5 to 3 ⁇ m; if it is string, the length is usually about 0.5 to 5 ⁇ m; Is about 5 to 30 ⁇ m in length.
  • microorganisms can be microorganisms described as “iron-oxidizing bacteria” in the detailed description of the invention of the embodiment shown in the above items A1 to A17.
  • it is a genus Leptotrix or genus Galionella.
  • the above-mentioned microorganism-derived ceramic is a magnetic substance as shown in (i) included in “iron oxide produced by microorganisms” which explains in detail the invention of the embodiment shown in the above items A1 to A17. be able to.
  • Such magnetic bodies (hereinafter also referred to as magnetic ceramics in this specification) are disclosed in International Publication Nos. 2010/110435 and International Publication, which describe in detail the inventions described in the above-mentioned items A1 to A17.
  • it contains at least one magnetic iron oxide selected from the group consisting of Fe 3 O 4 and ⁇ -Fe 2 O 3 .
  • the shape of the magnetic ceramic of the present invention is described in International Publication No. 2010/110435 and International Publication No. 2011/074587 which explain the invention of the embodiment shown in the above items A1 to A17 in detail.
  • the shape of the above-mentioned microorganism-derived ceramic, which is the raw material can be generally the same as the shape.
  • the shape of the magnetic ceramic of the present invention is a sheath shape, a spiral shape, a branched tube shape, a thread shape (including a shape like a harp formed by collecting yarn shapes, a fan shape, etc.), a short stem shape, Examples include capsules, spheres, microtubes, nanotubes, hollow strings, capsules, string and sphere aggregates, strings, rods, and the like.
  • the size of the magnetic ceramic of the present invention is usually about 0.1 to 3000 ⁇ m. More specifically, for example, in the case of a sheath, a spiral, a branched tube, a thread, or a short stem, the diameter is usually about 0.1 to 5 ⁇ m, the length is about 5 to 3000 ⁇ m, and preferably the diameter is 0. About 3 to 3 ⁇ m, about 5 to 1000 ⁇ m in length, more preferably about 0.5 to 2 ⁇ m in diameter and about 5 to 200 ⁇ m in length.
  • the length is usually about 1.2 to 24 ⁇ m; in the case of a sphere, the diameter is usually about 0.1 to 1 ⁇ m; in the case of a microtube, the diameter is usually 0.3.
  • the major axis is usually 1.5 to 7 ⁇ m
  • the minor axis is about 0.5 to 3 ⁇ m; if it is a string, it is usually about 0.5 to 5 ⁇ m; if it is a rod, it is usually a long
  • the thickness is about 5 to 30 ⁇ m.
  • the magnetic ceramic of the present invention contains Fe 3 O 4 and the case where it contains ⁇ -Fe 2 O 3 .
  • the magnetic ceramic of the present invention desirably has a fine concavo-convex structure on the surface by an ultrahigh resolution SEM image.
  • the composition ratio is the details of the invention of the embodiment shown in the items A1 to A17 described later.
  • the composition of the ceramics derived from the microorganism as the raw material can be almost the same. That is, when iron, silicon, and phosphorus are contained in the magnetic ceramic of the present invention, the element ratio of iron, silicon, and phosphorus is atomic% (at%), and usually 66 to 87: 2 to It is about 27: 1 to 32, preferably about 70 to 77:16 to 27: 1 to 9.
  • the components of the magnetic ceramic of the present invention are described in International Publication Nos. 2010/110435 and 2011/074587 which describe the invention of the embodiment shown in the above-mentioned items A1 to A17 in detail. As described above, it varies depending on the constituent components of the microorganism-derived ceramic material. As described above, for example, by culturing microorganisms that produce ceramics derived from microorganisms in an environment where transition metal elements such as cobalt, nickel, manganese, and rare earth elements such as neodymium are present, these microorganisms are converted into ceramics derived from microorganisms. Elements can be included. By containing these elements, magnetism derived from substances other than iron can be imparted to the magnetic ceramic of the present invention. Moreover, you may contain light elements, such as sodium, magnesium, aluminum.
  • the magnetic ceramic of the present invention contains silicon and phosphorus in addition to iron, International Publication No. 2010/110435 and International Publication No. As described in Japanese Patent Publication No. 2011-074587, Fe 3 O 4 and ⁇ -Fe 2 O 3 which are usually contained in magnetic ceramics, silicon and phosphorus are not in solid solution, but iron, silicon And phosphorus may be phase-separated. In addition, when silicon and phosphorus are included, no clear peaks due to silicon and phosphorus are confirmed in the X-ray diffraction (XRD) pattern of the magnetic ceramic of the present invention, so that silicon and phosphorus formed an oxide having an amorphous structure. Can be.
  • the main component of such an amorphous phase is preferably amorphous silica.
  • the crystallite size of the magnetic ceramic of the present invention is described in International Publication No. 2010/110435 and International Publication No. 2011/074587 which explain the invention of the embodiment shown in the above items A1 to A17 in detail. Thus, it is usually about 5 to 100 nm.
  • the iron oxide contained in the magnetic ceramic of the present invention is a single phase of Fe 3 O 4 , International Publication No. 2010, which describes the invention of the embodiment shown in the items A1 to A17 described later in detail. / 110435 and International Publication No. 2011/074587, about 60% of iron contained in magnetic ceramics is usually Fe 3 O 4 and about 40% is paramagnetic. Fe 2+ and Fe 3+ .
  • the iron oxide contained in the magnetic ceramic of the present invention is a single phase of ⁇ -Fe 2 O 3 , usually about 70% of the iron contained in the magnetic ceramic is ⁇ -Fe 2 O 3. About 30% is paramagnetic Fe 2+ and Fe 3+ .
  • the iron oxide to be produced is a single phase of Fe 3 O 4 , International Publication Nos. 2010/110435 and 2011/2011, which describe in detail the inventions described in the above-mentioned items A1 to A17.
  • the saturation magnetization of magnetic ceramics is usually about 1 to 50 emu / g, preferably about 30 to 50 emu / g, more preferably about 40 to 50 emu / g.
  • the coercive force is usually about 0 to 250 Oe.
  • the remanent magnetization is usually about 0 to 20 emu / g.
  • the saturation magnetization of the magnetic ceramic is usually about 50 emu / g.
  • the saturation magnetization of magnetic ceramics is usually about 1 to 40 emu / g, preferably about 25 to 40 emu / g, more preferably 30 to 40 emu. / G or so.
  • the coercive force is usually about 0 to 60 Oe.
  • the remanent magnetization is usually about 0 to 20 emu / g.
  • the saturation magnetization of the magnetic ceramic is usually about 40 emu / g.
  • pure Fe 3 O 4 and ⁇ -Fe 2 O 3 are 98 emu / g and 81 emu / g, respectively. Therefore, about 1 to 50% by mass of the compound contained in the magnetic ceramic of the present invention, Magnetic iron oxide fine particles of Fe 3 O 4 or ⁇ -Fe 2 O 3 are obtained.
  • the content of at least one magnetic iron oxide selected from the group consisting of Fe 3 O 4 and ⁇ -Fe 2 O 3 in the magnetic ceramic of the present invention is as described in the above-mentioned items A1 to A17. As described in WO2010 / 110435 and WO2011 / 074587 describing the invention in detail, it is usually about 30 to 50% by mass, preferably about 40 to 50% by mass. is there. The content of the amorphous phase in the magnetic ceramic of the present invention is usually about 70 to 50% by mass, preferably about 60 to 50% by mass.
  • the magnetic ceramic of the present invention contains silicon and phosphorus oxides
  • International Publication Nos. 2010/110435 and 2011/2011 which describe in detail the inventions described in the above-mentioned items A1 to A17.
  • the content of silicon oxide in the magnetic ceramic is usually about 10 to 30% by mass, preferably about 15 to 25% by mass.
  • the content of phosphorus oxide in the magnetic ceramic is usually about 1 to 20% by mass, preferably about 1 to 10% by mass.
  • the porosity of the microorganism-derived ceramic of the present invention is not particularly limited, but is usually about 200 to 350 m 2 / g, more preferably about 260 to 300 m 2 / g in terms of the specific surface area of Bet.
  • Porous amorphous silica by acid treatment of the iron oxide produced by the microorganism and dissolution and removal of the Fe component of the above (iii) included in the “iron oxide produced by the microorganism” corresponding to the ceramic derived from the microorganism of the present invention The above can be as described in the detailed description of the invention of the embodiment shown in the above items A1 to A17.
  • the porosity of such porous amorphous silica is not particularly limited, but is usually about 300 m 2 / g or more, preferably about 400 m 2 / g or more, more preferably 500 m 2 / g in terms of the specific surface area of Bet. More than about.
  • the organic group is a carboxyl group as described in International Publication No. 2010/110435 and International Publication No. 2011/074587 which explain the invention of the embodiment shown in the above-mentioned items A1 to A17 in detail.
  • a part of the iron oxide, magnetic ceramics, or porous amorphous silica produced by the above-mentioned microorganism that can be chemically modified with an organic group and a method of modifying the organic group include the inventions of the embodiments described in the above items A1 to A17. It can be produced by the method described in International Publication No. 2010/110435 and International Publication No. 2011/074587 which are described in detail.
  • the content of the above-mentioned microorganism-derived ceramic in the additive for three-dimensional culture of the present invention is not particularly limited, but is usually about 0.001 to 100 parts by weight per 100 parts by weight of the three-dimensional culture agent. is there. That is, the above-mentioned microorganism-derived ceramic itself can be the additive for three-dimensional culture of the present invention.
  • the eukaryotic cells described above are not particularly limited, and examples thereof include mammalian cells and insect cells.
  • it can be a cell that explains the invention of the embodiment shown in the above-mentioned items A1 to A17 in detail, among which stem cells or hepatocytes are preferable.
  • the additive for three-dimensional culture of the present invention can be an additive for forming spheroids or cell clusters.
  • the three-dimensional culture is different from the one in which cells are grown in a single layer in a plane, and is a method in which cells are grown while adhering to each other to form a three-dimensional cell mass or spheroid.
  • the amount of the additive for three-dimensional culture of the present invention is not particularly limited, but the final concentration in terms of the amount of the above-mentioned microorganism-derived ceramic is about 0.1 to 5 mg / ml with respect to an appropriate medium, Preferably, it is about 0.5 to 3 mg / mL, more preferably about 1.0 to 2.0 mg / mL.
  • the additive for three-dimensional culture of the present invention can be used without using feeder cells.
  • the three-dimensional culture method for eukaryotic cells of the present invention includes a step of adding a ceramic derived from a microorganism to a medium.
  • the eukaryotic cell can be the same as described above regarding [additive for three-dimensional culture of eukaryotic cells].
  • microorganism-derived ceramic can be the same as described above for [additive for three-dimensional culture of eukaryotic cells].
  • the culture medium can be the same as that described in detail for the invention of the embodiment shown in the above items A1 to A17.
  • the spheroid or cell mass of the present invention includes a ceramic derived from a microorganism and a eukaryotic cell carried thereon. And the spheroid or cell mass of this invention is carry
  • microorganism-derived ceramic can be the same as described above for [additive for three-dimensional culture of eukaryotic cells].
  • the eukaryotic cell can be the same as described above regarding [additive for three-dimensional culture of eukaryotic cells].
  • the spheroid or cell mass of the present invention can be suitably used in the field relating to the production of proteins or peptides.
  • a specific production method using the spheroid or cell mass of the present invention for example, the method described later in [Production method of protein or peptide of the present invention] may be adopted, but it is not limited thereto.
  • the spheroid or cell mass of the present invention can be suitably used in the technical field related to drug or lipid screening.
  • a specific screening method using the spheroid or cell mass of the present invention for example, the method described later in [Screening method of drug or lipid of the present invention] may be adopted, but it is not limited thereto.
  • the spheroids or cell clusters of the present invention can be suitably used in the technical field related to disease malignancy discrimination.
  • the specific method for identifying malignancy using the spheroids or cell clusters of the present invention may be, for example, the method described later in [Method for distinguishing malignancy of disease of the present invention], but is not limited thereto. .
  • the spheroid or cell mass of the present invention can be suitably used in the technical field related to regenerative medicine.
  • a specific method in the field of regenerative medicine for example, a method of using an artificial tissue manufactured by a method described later in [Method of manufacturing artificial tissue of the present invention] may be adopted, but the method is not limited thereto. Not.
  • the method for producing a protein or peptide of the present invention comprises a step of adding ceramics derived from eukaryotic cells and microorganisms to a medium, and a step of three-dimensionally culturing the cells.
  • the protein or peptide can be the same as that described in detail for the invention of the embodiment shown in the above items A1 to A17.
  • the medium can be the same as described above for [additive for three-dimensional culture of eukaryotic cells].
  • the eukaryotic cell can be the same as described above for [additive for three-dimensional culture of eukaryotic cells].
  • Ceramics derived from microorganisms and the amount added thereof can be the same as those described above for [additive for three-dimensional culture of eukaryotic cells] and [three-dimensional culture method of eukaryotic cells].
  • the specific three-dimensional culture method can be the same as described above for the “three-dimensional culture method of eukaryotic cells”.
  • Such a protein peptide, or a recombinant protein or peptide obtained from a eukaryotic cell in which a gene encoding the protein or peptide has been previously introduced and expressed can be originally expressed in a eukaryotic cell. It can also be an endogenous protein or peptide.
  • the method for screening for a drug or lipid of the present invention comprises a step of adding ceramics derived from eukaryotic cells and microorganisms to a medium, a step of three-dimensional culture of the cells, and a spheroid or cell mass obtained by the three-dimensional culture A step of contacting a drug or lipid candidate substance.
  • the drug or lipid may be the same as that described in detail for the invention of the embodiment shown in the above items A1 to A17.
  • the ceramics derived from the medium, eukaryotic cells, and microorganisms can be the same as described above for [additive for three-dimensional culture of eukaryotic cells] and [three-dimensional culture method of eukaryotic cells].
  • the specific three-dimensional culture method can be the same as described above for the “three-dimensional culture method of eukaryotic cells”.
  • the above-mentioned drug or lipid candidate substance is brought into contact with the spheroid or cell mass obtained by three-dimensional culture, and the biological reaction in the spheroid or cell mass is used as an index in such three-dimensional culture. Should be screened.
  • the biological reaction index is not particularly limited as long as the drug or lipid desired to be screened is selected based on the action exerted on the spheroid or the cell mass.
  • a method for screening a drug or lipid of the present invention for example, in the case of a drug screening for a cancer therapeutic drug, the above-mentioned spheroid or cell mass is exposed to a candidate cancer therapeutic drug and cultured, and then proliferated by MTT assay or the like.
  • the spheroids causing apoptosis by detecting apoptosis by the TUNEL staining method or the like on the fixed spheroids or cell clusters. Examples include a step of selecting a cancer therapeutic agent exposed to a cell or a cell mass as a desired cancer therapeutic agent.
  • lipid metabolites are measured from the culture supernatant, spheroids, or cell masses.
  • Examples include a method including a step of selecting, a method including a step of selecting a lipid exhibiting a desired kinetics by evaluating the uptake of a fluorescently labeled candidate lipid into a spheroid or a cell mass, and the migration within the spheroid or the cell mass. It is done.
  • the method for distinguishing malignancy of a disease includes adding a cell derived from a tissue piece or a tumor piece collected from a living body and a ceramic derived from a microorganism to a medium, a step of three-dimensionally culturing the cell, and the tertiary A step of evaluating a spheroid or a cell mass obtained in the original culture.
  • the disease is not particularly limited, and examples thereof include cancer.
  • the malignancy indicates, for example, the degree of progression of disease, and is not particularly limited.
  • the tissue piece or tumor piece collected from the living body is not particularly limited, but may be collected from a useful site in examining the malignancy of the disease. Further, the living body is not particularly limited, but for example, reference can be made to mammals and the like in the detailed description of the inventions of the embodiments shown in the above items A1 to A17.
  • the ceramics derived from the medium and the microorganism can be the same as those described above regarding [additive for three-dimensional culture of eukaryotic cells] and [three-dimensional culture method of eukaryotic cells].
  • the specific three-dimensional culture method can be the same as described above for the “three-dimensional culture method of eukaryotic cells”.
  • the differentiation method by analyzing or observing spheroids or cell clusters obtained by three-dimensional culture by a known method, a known diagnostic technique can be adopted, and the malignancy of the disease can be differentiated. There is no limitation.
  • a method comprising a step of measuring the ratio by flow cytometry; the expression level of these genes and proteins in spheroids or cell masses is detected by using qPCR method, Western blotting method, in situ hybridization method, immunostaining method, etc. Examples include a method including a process.
  • a malignancy discrimination method including a step of subjecting the spheroid or cell mass to the Wound healing assay method, transwell, etc., and evaluating the migration ability, and a step of evaluating the invasion ability using Matrigel.
  • a method including a step of removing a cancer tissue and conducting a histopathological diagnosis can be mentioned.
  • metastasis can be observed other than the transplant site, the malignancy can be judged high.
  • the method for producing an artificial tissue of the present invention includes a step of adding cells collected from a living body and ceramics derived from a microorganism to a medium, a step of three-dimensional culture of the cells, and a spheroid obtained by the three-dimensional culture Or alternatively, injecting the cell mass directly or indirectly into the patient or animal in need of treatment.
  • the cell or tissue collected from the living body is not particularly limited, but can be collected from a useful site in examining the malignancy of the disease. Further, the living body is not particularly limited, but for example, reference can be made to mammals and the like in the detailed description of the inventions of the embodiments shown in the above items A1 to A17.
  • the patient or the animal that requires treatment is not particularly limited, and for example, reference can be made to mammals and the like in the detailed description of the inventions described in the above items A1 to A17.
  • the step of directly or indirectly injecting is not particularly limited, but a known infusion method used in the field of regenerative medicine can be appropriately employed.
  • the ceramics derived from the culture medium and the microorganism can be the same as those described above for [additive for three-dimensional culture of eukaryotic cells] and [three-dimensional culture method of eukaryotic cells].
  • the specific three-dimensional culture method can be the same as described above for the “three-dimensional culture method of eukaryotic cells”.
  • an artificial tissue of the present invention for example, for the purpose of producing osteoblasts, JP-A-2006-129734, PlosOne, 2013, Vol. 8 (1)
  • a method for producing an artificial tissue of the present invention for example, for the purpose of producing osteoblasts, JP-A-2006-129734, PlosOne, 2013, Vol. 8 (1)
  • an artificial tissue especially bone tissue, cartilage tissue, etc.
  • an artificial tissue especially bone tissue, cartilage tissue, etc.
  • an artificial tissue can be provided after producing the spheroid or cell mass after three-dimensional culture, and then subjecting it to a step of removing iron oxide using a known method, Cell Reports, 2012, Vol. 2 (5), 1448-1460, Japanese Patent Application No. 2002-294071, and the like, and thereby an artificial tissue (myocardi
  • spheroid a plurality of cells aggregated into a three-dimensional spherical cell mass. Forming and / or maintaining spheroids indicates that the spheroid physiology is closer to living tissue.
  • the cell culture of the present invention contains cells and iron oxide produced by microorganisms.
  • the iron oxide produced by the microorganism functions as a carrier or support for growing the cells, and the cells in the cell culture grow while adhering between the cells with the iron oxide produced by the microorganisms. .
  • the cell is not particularly limited as long as it can be grown in a medium, and is preferably an animal cell, and more preferably a mammal-derived cell.
  • mammals include humans, dogs, cats, monkeys, cows, pigs, horses, sheep, goats, hamsters, guinea pigs, rats, and mice, but humans, dogs, cats, monkeys, rats, and mice are spheroids. From the viewpoint of ease of formation, human is particularly preferable.
  • the tissue or organ from which the cells are derived is either a tissue-forming cell or a tissue / organ that can be artificially added with a proliferation ability.
  • tissue / organs include normal liver, cornea, skin, cartilage, large intestine, small intestine, pancreas, stomach, muscle tissue, heart, lung, esophagus, bone marrow, kidney, spleen, testis, ovary, adipose tissue, etc.
  • tissues and organs those in which these cells are cancerous or tumorous are exemplified.
  • liver or tumor-derived cells or cancer cells are particularly preferred for spheroid formation.
  • Examples of preferred cells are primary hepatocytes (hepatocytes), hepatocyte-derived cell lines, primary cancer cells, and cancer cell-derived cell lines.
  • Examples of cancer cell-derived cell lines include human liver cancer cell line HepG2, human liver cancer cell line HuH-7, human breast cancer cell line MDA-MB-453, human glioma-derived cell lines A172, U251MG, mouse Lewis lung cancer (LLC). ) Cells, mouse embryonic tumor P19 cells, mouse osteoblast-like cell line MC3T3-E1 and the like.
  • the cell may be a stem cell.
  • Stem cells include adult stem cells (tissue stem cells, somatic stem cells), embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).
  • the cells include cells differentiated from stem cells or stem cells derived from iPS cells. Application of regenerative medicine can be expected by spheroid culture of such cells.
  • stem cells include cancer stem cells (Cancer Stem Cells, CSC) and cancer stem cells prepared from iPS cells. Methods for producing cancer stem cells from iPS cells are described in, for example, Chen L, Kasai T, Li Y, Sugii Y, Jin G, et al. (2012) A Model of Cancer Stem Cells Delivered from Mouse Induced Pluripotent Stem Cells.
  • cancer stem cell model cells prepared from mouse iPS (miPS) cells are cultured for about 4 weeks in a mixture of miPS medium and conditioned medium obtained from a mouse cancer cell line, with or without feeder cells. Can be obtained.
  • the cell may be a non-recombinant cell or a recombinant cell.
  • non-recombinant cells contamination of exogenous substances such as endotoxin or pyrogen in a subject to which proteins or peptides produced by the cells are applied is prevented.
  • recombinant cells protein or peptide can be produced with higher efficiency.
  • the cells can be cultured in a suspension culture system without necessarily forming giant spheroids.
  • the cell culture method and conditions general culture methods and conditions can be adopted depending on the type of each cell.
  • the medium any medium for cell culture can be used, and examples thereof include Dulbecco's modified Eagle medium (DMEM), Glasgow MEM (GMEM), EMEM, MEM ⁇ , RPMI-1640, Ham F-12, MCDB medium, and the like. However, it is not limited to these. Furthermore, serum or various growth factors or differentiation-inducing factors may be added to these media.
  • Iron oxide produced by the microorganism The iron oxide produced by the microorganism and the method for producing the same are described in WO2010 / 110435 and WO2011 / 074587, and these documents are incorporated herein in their entirety.
  • Iron oxides produced by microorganisms are iron oxides produced by various microorganisms outside the cells, and those having various shapes are known. Iron oxide produced by microorganisms is also referred to as “biogenous iron oxide”.
  • iron oxide means iron oxide in a narrow sense exemplified by ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , Fe 3 O 4 and the like, ⁇ -FeOOH, Compounds containing iron and oxygen as main components, including iron oxyhydroxide exemplified by ⁇ -FeOOH, ⁇ -FeOOH, etc., and iron hydroxide having a structure close to amorphous typified by ferrihydrite Is a general term.
  • the iron-oxidizing bacterium is not particularly limited as long as it forms the iron oxide containing Fe 3 O 4 , ⁇ -FeOOH, ⁇ -FeOOH (repidocrocite) or the like.
  • examples of the iron-oxidizing bacterium that produces biogenous iron oxide include, for example, Toxothrix sp., Leptothrix sp., Clenothrix sp., And Chronotrix. Clonothrix sp., Gallionella sp., Siderocapsa sp., Siderococcus sp., Sideromonas sp. (Plantomyces sp.).
  • Leptotrix Korodini OUMS1 strain As an example of a bacterium belonging to the genus Leptotrix, Leptotrix Korodini OUMS1 strain can be mentioned.
  • the Leptothrix Korodini OUMS1 strain was founded on December 25, 2009, at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) )), The deposit number is NITE P-860. This strain has now been transferred to an international deposit and its deposit number is NITE BP-860.
  • Iron oxide produced by microorganisms takes various forms, and iron oxide produced by Leptothrix ochracea has a hollow fiber-like sheath structure, including Galionella ferruginea.
  • Galionella genus is spiral, Spherotilus genus and Chronosurix genus are tubular or filamentous, Toxos genus is filamentous (harp-like shape, fan-shaped), Sideromonas is short stem, Siderocapsa is capsule, Siderococcus
  • the genus produces spherical iron oxide.
  • the size of iron oxide produced by microorganisms varies depending on the type, but is usually about 0.1 to 3000 ⁇ m. These iron oxides exist, for example, in sediments collected in natural filtration facilities of water purification plants, and can be purified by subjecting the sediments to centrifugation, drying under reduced pressure, and the like.
  • Iron oxide produced by microorganisms contains trace amounts of silicon and phosphorus in addition to iron and oxygen, but even if it is iron oxide produced by the same microorganism, the types of components such as iron, silicon, and phosphorus contained in iron oxide
  • the composition ratio varies depending on the environment in which microorganisms exist. Since iron oxide produced by microorganisms is derived from a natural product, the possibility that an antigen component is mixed from a culture supernatant using such iron oxide as a carrier is very low.
  • the iron oxide produced by the microorganism of the present invention is not limited to a specific embodiment, but the iron oxide produced by Leptothrix ocracea is in the form of a hollow tube. Therefore, supply of nutrients, oxygen, etc. to the inside of the spheroid, culture solution Is preferable in that the exchange of the above is made more effective.
  • the state of spheroids can be maintained better even if they grow large.
  • the “microorganism-generated iron oxide” of the present invention is understood in a broad sense and can be made into a ceramic derived from a microorganism.
  • the iron oxide is acid-treated and the Fe component is dissolved and removed to form porous amorphous silica; and
  • (iii) Microorganism-generated iron oxide, magnetic ceramics, or porous amorphous silica with an organic group are also included.
  • the cells of the present invention When the cells of the present invention are cultured together with iron oxide produced by a microorganism as a carrier, the cells take in the iron oxide produced by the microorganism and proliferate to form spheroids.
  • iron oxide produced by a microorganism as a carrier
  • the cells take in the iron oxide produced by the microorganism and proliferate to form spheroids.
  • Those skilled in the art can appropriately select and use a preferable medium according to the cells to be used.
  • the culture container may be any culture container or culture dish such as a flask, petri dish, petri dish, plate, tissue culture tube, tray, culture bag, roller bottle, or hollow fiber suitable for spheroid culture.
  • the culture container is a culture container having a non-cell-adherent inner bottom surface.
  • cell non-adhesiveness does not mean that cultured cells do not adhere at all, but means that cultured cells do not adhere to the extent that the formation of spheroids targeted by the present invention is not inhibited.
  • the culture container having a cell non-adhesive inner bottom surface may be any known or commercially available cell non-adhesive culture container, and for example, a special surface treatment is performed by injection molding a general-purpose plastic such as polystyrene.
  • Highly hydrophilic such as non-culture containers, non-woven fabric or porous film scaffolds, plastic-molded culture containers with fine irregular surfaces, polyethylene glycol, polyhydroxyethyl methacrylate, ethylene vinyl alcohol copolymer
  • the number of cultured cells is appropriately determined in consideration of the capacity of the culture vessel, the cell type, the final spheroid size, and the like. For example, 10 4 to 10 7 cells, preferably 10 4 cells per 1 mL of the medium. Seed in culture vessel at ⁇ 10 6 final concentration.
  • the culture days are not particularly limited, but are usually several hours to several months, preferably one day or more to about one month.
  • Cells can be cultured by placing a liquid medium containing cells and iron oxide produced by microorganisms in a culture vessel, but the iron oxide and liquid medium produced by cells, microorganisms are placed in the culture vessel at the same timing. Alternatively, it may be placed in the culture container at another timing.
  • the size of the spheroid is not particularly limited, and the diameter may be 10 ⁇ m or more, preferably 100 ⁇ m or more, more preferably more than 200 ⁇ m.
  • the diameter of the spheroid grows in the culture substrate and carrier of the prior art, necrosis occurs inside and there is a limit to the size.
  • iron oxide generated by microorganisms formation of larger spheroids exceeding 200 ⁇ m in diameter is possible. It becomes possible.
  • the diameter of the spheroid is large, the state of the spheroid is close to that in the living body, and the production of protein or peptide increases.
  • the spheroids and cell cultures of the present invention can be used for screening for substances that become drugs or screening for lipids in metabolism at the stage of drug discovery or the like. That is, a chemical substance, a drug, or the like can be added to a spheroid fixed to a cell culture substrate or a cell culture vessel, and a cell having some effect on a spheroid-forming cell can be screened.
  • the spheroids of the present invention can also be used for differentiation of disease malignancy.
  • the spheroid of the present invention can also be used for regenerative medicine. That is, the spheroid of the present invention is prepared from cells collected from a healthy tissue, and the function of the tissue is maintained / regenerated by directly or indirectly injecting the spheroid into the tissue of a patient or an animal requiring treatment. Can be used for
  • proteins or peptides are useful proteins or peptides that may or may not contain sugars or sugar chains.
  • Such proteins or peptides include serum proteins, hormones, enzymes, immunomodulators, lymphokines, monokines, cytokines, glycoproteins, vaccine antigens, antibodies, growth factors, growth factors, or humoral factors.
  • proteins or peptides include serum albumin, insulin, allergy inhibitory factor, suppressor factor, cytotoxic glycoprotein, cytotoxic factor, tumor cell-derived factor, lymphotoxins, tumor necrosis factor (TNF- ⁇ , - ⁇ Etc.), cachectin, transforming growth factor (TGF- ⁇ , - ⁇ ), or hematopoietic factor, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), and macrophage colony stimulating Factor (M-CSF) and the like.
  • the expression level of such protein or peptide can be determined by immunostaining or Western blotting using a specific binding pair (antibody, receptor, lectin, etc. can be appropriately selected and used by those skilled in the art). Can be confirmed.
  • Examples of combinations of cultured cell lines and proteins secreted thereby include any known ones.
  • serum albumin is produced by spheroid culture of HepG2 cells derived from human liver cancer (Japanese Patent Laid-Open No. 2008-054521).
  • the cells form a three-dimensional alveolar-like spherical structure and are cultured.
  • the expression level of the whey acidic protein gene increases and the protein is secreted (Chen et al., Cell Regulation, Vol. 1, 45-54, 1989).
  • VEGF vascular endothelial growth factor
  • a material non-adhesive culture dish a BD Falcon TM Petri dish (catalog number 351007, 60 mm ⁇ 15 mm) or an Aznor sterilized petri dish (manufactured by ASONE, product number 1-7484-01, 90 mm ⁇ 15 mm) was used.
  • As the adhesive culture dish TPP tissue culture dish TPP93060 or TPP93100 (both manufactured by Sigma Aldrich) was used.
  • MDA-MB-453 cells and HepG2 cells were both obtained from RIKEN Tsukuba Research Institute Bioresource Center (Tsukuba, Japan) (RCB1192 and RBC1886, respectively).
  • Mouse iPS cells (miPS; iPS-MEF-Ng-20D-17) were purchased from RIKEN BioResource Center (Tsukuba, Japan), each with a final concentration of 0.1 mM NEAA, 2 mM L-glutamine, It was maintained in DMEM medium containing 0.1 mM 2-mercaptoethanol, 50 U / ml penicillin, and 50 ⁇ g / ml streptomycin.
  • Mouse Lewis lung cancer (LLC) cells were purchased from ATCC (United States) and maintained in DMEM medium containing 10% FCS.
  • L-BIOX The diameter of L-BIOX is about 1 ⁇ m, the whole is porous, the surface is particulate, the surface area is large (about 280 m 2 / g, commercially available iron oxide is usually 70 m 2 / g), and the surface has a hydroxyl group (—OH). There were many.
  • G-BIOX A groundwater slurry containing iron oxide produced by microorganisms was collected from a culture tank of iron-oxidizing bacteria installed at the Faculty of Agriculture, Okayama University. The preferred species of this culture tank is Galionella forginaire, and the resulting biogenous iron oxide is spiral. The slurry was treated as described above, and the resulting biogenous iron oxide was named G-BIOX.
  • Spheroid formation (3-1. Spheroid formation in HepG2 cells) L-BIOX was suspended at a concentration of 1 mg / ml in 10% -FBS, DMEM medium, injected into a non-adhesive culture dish, and MDA-MB-453 cells and HepG2 cells were each 1 ⁇ 10 4 cells / ml.
  • MDA-MB-453 cells and HepG2 cells were each 1 ⁇ 10 4 cells / ml.
  • spheroids formed by adhesion of cells on L-BIOX were observed (FIG. 1). The medium supernatant was exchanged 2 days after the start of the culture.
  • the diameter of the spheroids was about 200 ⁇ m even (FIG. 2D-E).
  • the medium supernatant was changed every 2 to 3 days from the start of the culture, and every day from the 7th day of culture.
  • MDA-MB-453 cells and mouse Lewis lung cancer (LLC) cells were confirmed to produce giant spheroids on L-BIOX (not shown). MDA-MB-453 cells also formed giant spheroids on magnetic L-BIOX (FIG. 3).
  • Spheroids were seeded at a final concentration of 1 ⁇ 10 5 cells / ml and cultured for 7 days at 37 ° C. with 5% CO 2 , and spheroids formed by adhesion of cells on L-BIOX were observed. (FIG. 4). The medium supernatant was not changed.
  • the spheroids From the result of fluorescence observation of the spheroids with the mercury lamp and the mirror unit WIB (U-MWIB3 (excitation filter: BP460-495, absorption filter BA510IF, manufactured by OLYMPUS)) using the above inverted optical microscope, the spheroids have one GFP fluorescence. (FIG. 5B), it was confirmed that Nanog expression, that is, the properties as stem cells were maintained.
  • the medium supernatant was exchanged 2 days after the start of the culture.
  • spheroid formation tended to be promoted at any concentration compared to culture on non-adhesive culture dishes without L-BIOX added.
  • the spheroid formation promoting effect was remarkable (FIG. 7A). Since the iron oxide produced by Leptothrix ocracea is hollow, the supply of nutrients, oxygen, etc. to the inside of the spheroid and the exchange of the culture solution are made more effective by L-BIOX. In the case of G-BIOX (FIG. 7B) It is thought that the state of the spheroid could be maintained better than that.
  • microcarrier beads HyQ Sphere Microcarriers, Fisher Scientific
  • 10% -FBS, DMEM medium 10% -FBS, DMEM medium at a final concentration of 1 mg / ml
  • HepG2 cells were seeded at a final concentration of 1 ⁇ 10 4 cells / ml.
  • HepG2 secretes albumin protein as an indicator of cell differentiation.
  • L-BIOX at a final concentration of 0 and 1 mg / ml was added to 10% -FBS, DMEM medium to seed HepG2 cells at a final concentration of 1 ⁇ 10 4 cells / ml, 5% CO 2 , 37 ° C.
  • the culture was cultured for 10 days.
  • the medium supernatant was changed every 2 to 3 days, and every day from the 7th day of culture.
  • the medium was replaced with a DMEM medium containing no FBS and incubated for 2 days at 5% CO 2 and 37 ° C., and then the medium supernatant was recovered.
  • the HepG2 cell medium cultured for 2 days at 37 ° C. in 10% -FBS, DMEM medium, 5% CO 2 in an adhesive culture dish was replaced with DMEM medium not containing FBS, and further cultured for 2 days.
  • Western blotting was performed as follows. That is, 10 ⁇ l of each culture supernatant was subjected to SDS-PAGE, blotted on a PVDF membrane using a semi-dry blotting apparatus, blocked with 10% skim milk TBST, washed with TBST, and then anti-human serum albumin antibody as a primary antibody. (Rabbit IgG, manufactured by CST Japan, # 4929) is reacted at 4 ° C. overnight, washed with TBST, and then secondary antibody HRP-labeled anti-rabbit IgG antibody (goat, manufactured by CST Japan, # 7071) at room temperature for 30 minutes.
  • Rabbit IgG manufactured by CST Japan, # 4929
  • HRP substrate Western Lightning Plus-ECL chemiluminescence reagent manufactured by PerkinElmer
  • Light-Capture II cooled CCD camera was added. It was shot in ystem (ATTO Co., Ltd.). The intensity of the band was quantified with image analysis software NIH ImageJ.
  • albumin secreted was about 3-fold increased in the culture supplemented with L-BIOX as compared to the case of culturing in an adhesive culture dish (FIGS. 11A-B). From comparison of band intensity by Western blotting, about 140 mg / L of albumin was secreted into the medium. Thus, albumin protein production was remarkably increased by spheroid culture of liver cancer-derived cells using L-BIOX. Since the secretion amount of albumin was remarkably increased, it is considered that differentiation signals were promoted in HepG2 cells, and it was considered that cells closer to the living body than conventional techniques could be cultured.
  • the medium was replaced with a DMEM medium containing no FBS and incubated for 2 days at 5% CO 2 and 37 ° C., and then the medium supernatant was recovered.
  • the amount of human serum albumin contained in the supernatant collected during the culture period was quantified by the ELISA method.
  • the Eliza method was performed using a commercially available albumin human ELISA kit (Bethyl Laboratories Inc.) according to the manufacturer's protocol, and an EIA plate (655061, Greiner bio-one) was used as a 96-well plate.
  • the mRNA of the cell mass of miPS cells obtained by culturing using tubular L-BIOX was extracted, and the expression of endogenous genes (Nanog, Oct3 / 4, Sox2, Kif4, c-Myc, Lefty-1, And Lefty-2) and total gene expression (Nanog, Oct3 / 4, Sox2, Klf4, and c-Myc) were measured. The results are shown in FIGS. 13A-B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

真核細胞を三次元培養する際に有効に用いられる添加剤を提供する事を目的とする。 微生物由来のセラミックスを有効成分とする、真核細胞の三次元培養用添加剤の提供によって、斯かる目的が達成される。

Description

細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法
 本発明は、細胞と微生物が生成した酸化鉄とを含む細胞培養物、及び細胞培養物を用いたタンパク質又はペプチドの生産方法に関する。
 スフェロイド形成を促進する技術として、特許文献1及び特許文献2には、特定のパターンを有する培養基材上で細胞を培養する方法が開示されている。特許文献3及び特許文献4には、マイクロ流路あるいはナノスケールの流路を用いて細胞を培養する方法が開示されている。培養液を取り込むようにスフェロイドを形成させる方法として、特許文献5では培養液中にガドリウム化合物を用いており、特許文献6では培養液中に粘膜質の体表皮を有する魚類の体液を用いている。また、特許文献6の背景技術には、中空糸膜上で単層培養する方法、糖鎖高分子を用いる方法、及び動物肝臓由来のプロテオグリカンを利用する方法が記載されている。
 一方、有用タンパク質の生産技術として、特許文献7-10には、大腸菌又は酵母、特にピキア属酵母及びサッカロマイセス属酵母の組換え体を用いたヒト血清アルブミン(human serum albumin,HSA)の生産方法が記載されている。また、遺伝子組換え体を用いない方法として、特許文献7の背景技術に記載されているように、HSAは血液の分画産物として製造されている。
特開2010-233538公報 特開2010-22366公報 特開2011-172533公報 特開2009-242495公報 特開2012-65555公報 特開2011-062129公報 特開2005-312463公報 特開2009-298783公報 特開2004-242678公報 特開2003-153697公報
 上記の特許文献1-6では、形成されるスフェロイドはマイクロメートルスケールであり、大きく成長したスフェロイドは内部で壊死を起こすためにスフェロイドが崩壊、分裂する可能性が高いという問題があった。また、培養細胞を用いたタンパク質の生産においては特許文献5及び特許文献6のようにヒト以外の生物由来タンパク質や糖鎖が混入するとヒトの体内で抗原となり、アレルギー反応やアナフィラキシーショックを生じる危険性がある。特許文献7-10についても、組換え体を用いることで内毒素又はパイロジェン等の外因性物質の混入の危険性があり、また莫大なGMP設備投資が必要である。特許文献7の血液を原料に製造する方法は、原料の安定した供給が困難である上、ウイルス混入等の問題がある。
 従って、本発明の一つの目的は、巨大なスフェロイドを提供することにある。
 本発明の別の目的は、生産量が上昇されたタンパク質又はペプチドの生産方法を提供することにある。
 更に本発明は、真核細胞を三次元培養する際に有効に用いられる添加剤を提供する事を目的とする。
 本発明者らは上記課題の解決のために鋭意検討し、真核細胞を微生物が生成した酸化鉄、すなわち微生物由来のセラミックスと共に培養すると、三次元培養が可能となることを見出した。本発明は斯かる知見に基づいて完成されたものであり、下記に示す広い態様の発明を包含する。
項1 微生物由来のセラミックスを有効成分とする、真核細胞の三次元培養用添加剤。
項2 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項1に記載の三次元培養用添加剤。
項3 微生物由来のセラミックスが、更にリンを含む、項1又は2に記載の三次元培養用添加剤。
項4 微生物由来のセラミックスの形状が、中空チューブ状、中空繊維状鞘状、螺旋状、枝分かれしたチューブ状、枝分かれした糸状、ハープ状、扇状、短幹状、カプセル状、及び球状からなる群より選択される何れかである、項1~項3の何れか1項に記載の添加剤。
項5 微生物由来のセラミックスの形状が、中空チューブ状又は螺旋状である、項1~項4の何れか1項に記載の添加剤。
項6 微生物由来のセラミックスの長さが、0.1~3000μmである、項1~項5の何れか1項に記載の添加剤。
項7 微生物由来のセラミックスが、磁性体である、項1~項6の何れか一項に記載の添加剤。
項8 酸化鉄が、α-Fe、β-Fe、γ-Fe、Fe、α-FeOOH、β-FeOOH、γ-FeOOH、及びフェリハイドライトからなる群より選択される少なくとも1種である、項2~項7の何れか1項に記載の添加剤。
項9 真核細胞が、哺乳類細胞及び/又は昆虫細胞である、項1~項8の何れか1項に記載の添加剤。
項10 真核細胞が、幹細胞及び/又は肝細胞である、項1~項9の何れか1項に記載の添加剤。
項11 微生物が、トキソシリックス属菌、レプトスリックス属菌、クレノシリックス属菌、クロノシリックス属菌、ガリオネラ属菌、シデロカプサ属菌、シデロコッカス属菌、シデロモナス属菌、及びプランクトミセス属菌からなる群より選択される少なくとも一種である、項1~項10の何れか1項に記載の添加剤。
項12 微生物が、レプトスリックス属菌及び/又はガリオネラ属菌である、項1~項11の何れか1項に記載の添加剤。
項13 スフェロイド又は細胞塊形成用である、項1~12の何れか1項に記載の添加剤。
項14 三次元培養が、フィーダー細胞を使用しない、項1~項13の何れか1項に記載の添加剤。
項15 真核細胞の三次元培養方法であって、培地に真核細胞及び微生物由来のセラミックスを添加する工程を含む方法。
項16 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項15に記載の方法。
項17 微生物由来のセラミックスと、其れに担持された真核細胞とを含むスフェロイド又は細胞塊。
項18 項15又は項16に記載の方法によって得られる、項17に記載のスフェロイド又は細胞塊。
項19 タンパク質又はペプチドの製造用である、項17又は項18に記載のスフェロイド又は細胞塊。
項20 薬剤又は脂質のスクリーニング用である、項17又は項18に記載のスフェロイド又は細胞塊。
項21 疾病の悪性度鑑別用である、項17又は項18に記載のスフェロイド又は細胞塊。
項22 再生医療用である、項17又は項18に記載のスフェロイド又は細胞塊。
項23 真核細胞の三次元培養用添加剤としての使用のための、微生物由来のセラミックス。
項24 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項23に記載の微生物由来のセラミックス。
項25 真核細胞の三次元培養用添加剤を製造するための、微生物由来のセラミックスの、使用。
項26 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項25に記載の使用。
項27 タンパク質又はペプチドの製造方法であって、培地に真核細胞及び微生物に由来するセラミックスを添加する工程、及び前記細胞を三次元培養する工程を含む、製造方法。
項28 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項27に記載の製造方法。
項29 薬剤又は脂質のスクリーニング方法であって、培地に真核細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は細胞塊と、薬剤又は脂質の候補物質を接触させる工程を含むスクリーニング方法。
項30 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項28に記載のスクリーニング方法。
項31 疾病の悪性度の鑑別方法であって、培地に生体から採取した組織片又は腫瘍片に由来する細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は細胞塊を評価する工程を含む鑑別方法。
項32 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項31に記載の鑑別方法。
項33 人工組織の製造方法であって、培地に生体から採取した細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は細胞塊を、患者又は治療を要する動物に直接的又は間接的に注入する工程を含む製造方法。
項34 微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、項33に記載の製造方法。
 更に本発明には以下に示す態様の発明も包含される。
項A1.細胞と、微生物が生成した酸化鉄とを含む細胞培養物。
項A2.前記細胞が初代肝細胞、肝細胞由来細胞株、初代癌細胞、又は癌細胞由来細胞株
である項A1に記載の細胞培養物。
項A3.前記細胞が幹細胞である項A1に記載の細胞培養物。
項A4.前記細胞がスフェロイドである項A1~項A3のいずれか一項に記載の細胞培養物。
項A5.前記微生物が生成した酸化鉄が、レプトスリックス属又はガリオネラ属が生産する酸化鉄である、項A1~項A4のいずれか一項に記載の細胞培養物。
項A6.前記微生物が生成した酸化鉄が、中空チューブ状の酸化鉄である、項A1~項A5のいずれか一項に記載の細胞培養物。
項A7.項A1~項A6のいずれか一項に記載の細胞培養物を用いた、タンパク質又はペプチドの生産方法。
項A8.前記タンパク質又はペプチドは血清タンパク質、ホルモン、酵素、免疫調節因子、リンホカイン、モノカイン、サイトカイン、糖タンパク質、ワクチン抗原、抗体、成長因子、増殖因子、又は液性因子である項A7に記載の方法。
項A9.前記タンパク質又はペプチドはアルブミンである項A7に記載の方法。
項A10.微生物が生成した酸化鉄を用いて細胞を培養することからなる、スフェロイドの製造方法。
項A11.前記スフェロイドが初代肝細胞、肝細胞由来細胞株、初代癌細胞、又は癌細胞由来細胞株から培養されたスフェロイドである項A10に記載の方法。
項A12.前記細胞が幹細胞である項A10に記載の方法。
項A13.前記微生物が生成した酸化鉄が、レプトスリックス属又はガリオネラ属が生産する酸化鉄である、項A10~項A12のいずれか一項に記載の方法。
項A14.前記微生物が生成した酸化鉄が、中空チューブ状の酸化鉄である、項A10~項A13のいずれか一項に記載の方法。
項A15.前記培養することは、細胞非接着性の内底面を有する培養皿に、細胞と微生物が生成した酸化鉄とを含む培地を入れることにより細胞を培養することからなる、項A10~項A14のいずれか一項に記載の方法。
項A16.項A10~項A15のいずれか一項に記載の方法により得られたスフェロイドの、薬剤又は脂質のスクリーニングのための使用。
項A17.微生物が生成した酸化鉄の、スフェロイド形成のための使用。
 本発明により、細胞と、微生物が生成した酸化鉄とを含む細胞培養物が提供される。かかる細胞培養物により、巨大なスフェロイドの形成が促進されると共に、かかる細胞培養物はアルブミンを初めとするタンパク質又はペプチドの生産、及び薬剤又は脂質のスクリーニングに使用することができる。
L-BIOXに接着及び凝集する細胞。図1A-1Cはヒト乳癌由来MDA-MB-453細胞の接着の走査型電子顕微鏡写真を示し、図1D-1Fはヒト肝臓癌由来HepG2細胞の接着の走査型電子顕微鏡写真を示す。 L-BIOXの存在下又は不在下で培養されたHepG2細胞のスフェロイドの光学顕微鏡写真。図2A-CはL-BIOX上で形成される培養6日目、9日目、及び10日目のHepG2細胞のスフェロイド、図2D-EはL-BIOXがない場合の培養4日目及び14日目のHepG2細胞のスフェロイドを示す。細胞は倒立型光学顕微鏡で観察し、顕微鏡用デジタルカメラ(DP71、オリンパス株式会社製)を用いてMetaMorphソフトウェア(Version 7.7.3.0モレキュラーデバイスジャパン株式会社製)で画像を取り込み、スフェロイド直径を測定した。以下、図3-10も同様に倒立型光学顕微鏡で観察し、スフェロイド直径を測定した。 培養1ヶ月目の、磁性L-BIOX上でスフェロイド形成したMDA-MB-453細胞の光学顕微鏡写真(対物40倍)。 L-BIOX上で培養したmiPS-LLCcm細胞のスフェロイド直径。 L-BIOX上で7日間培養したmiPS-LLCcmの明視野観察(BF)(図5A)、蛍光(GFP)観察(図5B)及びMerge写真(図5C)。 L-BIOX上で形成されたmiPS細胞塊(図6A-C)と非接着性培養皿で培養したmiPS細胞(図6D-F)。 L-BIOX及びG-BIOXがHepG2細胞のスフェロイド形成に与える効果を示すグラフ。図7AはL-BIOXに関するグラフ、図7BはG-BIOXに関するグラフ。 L-BIOXの存在(■)又は不在下(▲)で培養されたHepG2細胞のスフェロイド径を示すグラフ。 HepG2細胞のスフェロイド形成における培養5日目のL-BIOXと他の担体粒子との比較。図9A:L-BIOX、図9B:担体なし、図9C:Aerosil 300、図9D:市販の酸化鉄。 HepG2細胞のスフェロイド形成におけるL-BIOXとマイクロキャリアビーズとの比較。図10A,B:L-BIOX、図10C,D:マイクロキャリアビーズ。 HepG2細胞によるヒト血清アルブミン生産。図11Aはウェスタンブロッティングにおけるアルブミンの発現を示す。図11Bは図11Aの発現量をシグナル強度で示したグラフ。 L-BIOXの形状の影響を検討した実験結果。(A)はチューブ状のL-BIOXを用いてmiPS細胞を三次元培養した結果を示す顕微鏡写真像。バーは100μmを示す。(B)はチューブ状のL-BIOX粉末状に粉砕したものを用いてmiPS細胞を三次元培養した結果を示す顕微鏡写真像。バーは100μmを示す。(C)は(A)拡大像。バーは20μmを示す。(D)は(A)を三次元再構成した像。 L-BIOXを用いて三次元培養したmiPS細胞における遺伝子の発現量を検討した結果を示す図。(A)は内在性発現遺伝子、(B)は総発現遺伝子を示す。グラフの縦軸は、接着ディッシュ上でフィーダレス培養したmiPS細胞での発現量を基準(値を1)とした相対発現量を示す。 L-BIOXを用いて三次元培養したガン幹細胞モデル細胞(miPS-LLCcm)細胞における遺伝子の発現量を検討した結果を示す図。グラフの縦軸は三次元培養で得られた細胞塊の直径(μm)を示し、横軸は培養日数を示す。グラフ中の四角は、L-BIOX及びPurimycinを添加したもの、グラフ中の丸は、L-BIOXを添加せず、Purimycinを添加したものを示す。また、横軸の矢印はPurimycinを添加した日を示し、グラフ中の写真像は、それぞれ三次元培養した際の細胞塊の写真像を示すものである。バーは500μmを示す。
〔真核細胞の三次元培養用添加剤〕
 本発明の真核細胞の三次元培養用添加剤は、微生物由来のセラミックスを有効成分とする。すなわち、本発明における微生物由来セラミックスは、真核細胞の三次元培養用添加剤に使用することができる。そして、前記微生物由来のセラミックスは、真核細胞の三次元培養用添加剤の製造に使用される。
 上述の微生物由来のセラミックスとは、後出の前記項A1~A17に示す態様の発明を詳細に説明する「微生物が生成した酸化鉄」に該当する。より具体的には、
(i)微生物が生成した酸化鉄に加熱処理を施すことにより磁性セラミックスとしたもの、
(ii)微生物が生成した酸化鉄を酸処理しFe成分を溶解除去することにより多孔質アモルファスシリカとしたもの、及び
(iii)微生物が生成した酸化鉄、磁性セラミックス、又は多孔質アモルファスシリカの有機基で化学修飾し得る部分(例えば、Fe原子及び/又はSi原子に結合した酸素原子)の少なくとも一部を有機基で化学修飾して得られた有機・無機材料
が、本発明の微生物由来のセラミックスに包含される。
 本発明の三次元培養用添加剤に有効成分として含有される微生物由来のセラミックスには、酸化鉄及び/又はシリカを含有される。さらに、リンを含有することもできる。そして、後述する本発明の微生物をコバルト、ニッケル、マンガン等の遷移金属元素やネオジウム等の希土類元素等が存在する環境化で培養することにより、微生物由来のセラミックスにこれらの元素を含有させ得る。これらの元素を含有させれば、鉄以外の物質に由来する磁性を本発明の磁性セラミックスに付与できる。また、ナトリウム、マグネシウム、アルミニウムのような軽元素も含有させることもできる。
 また、後出の前記項A1~A17に示す態様の発明を詳細に説明する国際公開第2010/110435号及び国際公開第2011/074587号に記載のように、上述のセラミックスの構成成分として、鉄、シリカ、及びリンの元素比率は原子数%(at%)で、通常は、66~87:2~27:1~32程度である。
 上述の酸化鉄とは、後出の前記項A1~A17に示す態様の発明の詳細な説明、及びこれを説明している国際公開第2010/110435号及び国際公開第2011/074587号に記載の「酸化鉄」であることができる。
 なお、上記「酸化鉄」にて示されるフェリハイドライトとは、低結晶性の酸化鉄を意味し、X線回折パターンに現れるピークの数によって2-line ferrihydriteや6-line ferrihydrite等と呼ばれている。2-line ferrihydriteの組成はFe(O,OH,HO)で、6-line ferrihydriteの組成はFe4.6(O,OH,HO)12とされている(R.A.Eggleton and R.W.Fitzpatrick,“New data and a revised structural model forferrihydrite”,Clays and Clay Minerals,Vol.36,No.2,pp111-124,1988)。
 また、上記「酸化鉄」にて示されるレピドクロサイトとは、結晶系は斜方晶系、空間群はBbmm、格子定数はa=0.3071,b=1.2520,c=0.3873Å,α=β=γ=90°であり、化学式がγ-FeOOHで表される結晶性の酸化鉄である。
 上述のセラミックスの形状は、後出の前記項A1~A17に示す態様の発明の詳細な説明、及びこれを説明している国際公開第2010/110435号及び国際公開第2011/074587号に記載のように、中空チューブ状、中空繊維状鞘状、鞘状、らせん状、枝分かれしたチューブ状、糸状(糸状が集まって構成されたハープのような形状、扇状等も含む)、短幹状、カプセル状、球状、マイクロチューブ状、ナノチューブ状、中空ひも状、カプセル状、ひも状と球状の凝集体、ひも状、ロッド状等とすることができる。前記セラミックスの形状は、一次粒子径が、通常は、3~5nm程度の微粒子が集合して形成される。
 上述の微生物由来のセラミックスの長さは、後出の前記項A1~A17に示す態様の発明の詳細な説明、及びこれを説明している国際公開第2010/110435号及び国際公開第2011/074587号に記載のように、通常は、0.1~3000μm程度である。
 好ましくは、上述のような微生物由来のセラミックスが鞘状、らせん状、枝分かれしたチューブ状、糸状、及び短幹状であれば、通常は、直径0.1~5μm程度、長さ5~3000μm程度;カプセル状であれば、通常は、長さ1.2~24μm程度;球状であれば、通常は、直径0.1~1μm程度;マイクロチューブ状であれば、通常は、直径0.3~4μm程度、長さ5~200μm程度;ナノチューブ状であれば、通常は、直径300~450nm程度、長さ5~200μm程度;中空ひも状であれば、通常は、長さ3~10μm程度;カプセル状であれば、通常は、長径1.5~7μm程度、短径0.5~3μm程度;ひも状であれば、通常は、長さ0.5~5μm程度;ロッド状であれば、通常は、長さ5~30μm程度である。
 上述の微生物とは、後出の前記項A1~A17に示す態様の発明の詳細な説明にて「鉄酸化細菌」と説明される微生物であることができる。好ましくは、レプトスリックス属菌又はガリオネラ属菌である。
 上述の微生物由来のセラミックスは、後出の前記項A1~A17に示す態様の発明を詳細に説明する「微生物が生成した酸化鉄」に包含される(i)に示すように、磁性体であることができる。この様な磁性体(以後、本明細書において磁性セラミックスともいう。)は、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、例えば、Fe及びγ-Feからなる群から選ばれる少なくとも1種の磁性酸化鉄を含有する。
 また、本発明の磁性セラミックスの形状は、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、通常は、原料である上述の微生物由来のセラミックスの形状とほぼ同じとすることができる。
 具体的には、本発明の磁性セラミックスの形状は、鞘状、らせん状、枝分かれしたチューブ状、糸状(糸状が集まって構成されたハープのような形状、扇状等も含む)、短幹状、カプセル状、球状、マイクロチューブ状、ナノチューブ状、中空ひも状、カプセル状、ひも状と球状の凝集体、ひも状、ロッド状等が挙げられる。
 また、本発明の磁性セラミックスの大きさは、通常は、0.1~3000μm程度である。より具体的には、例えば、鞘状、らせん状、枝分かれしたチューブ状、糸状、短幹状であれば、通常は、直径0.1~5μm程度、長さ5~3000μm程度、好ましくは直径0.3~3μm程度、長さ5~1000μm程度、より好ましくは直径0.5~2μm程度、長さ5~200μm程度である。また、カプセル状であれば、通常は、長さ1.2~24μm程度;球状であれば、通常は、直径0.1~1μm程度;マイクロチューブ状であれば、通常は、直径0.3~4μm程度、長さ5~200μm程度;ナノチューブ状であれば、直径300~450nm程度、長さ5~200μm程度;中空ひも状であれば、通常は、長さ3~10μm程度;カプセル状であれば、通常は、長径1.5~7μm、短径0.5~3μm程度;ひも状であれば、通常は、長さ0.5~5μm程度;ロッド状であれば、通常は、長さ5~30μm程度である。
 さらに、本発明の磁性セラミックスがFeを含有する場合と、γ-Feを含有する場合とは、表面形状にはほとんど差がない。また、本発明の磁性セラミックスは、望ましくは超高分解能SEM像による表面の形状が微細凹凸構造である。
 本発明の磁性セラミックスにおいて、前記微生物由来のセラミックスに、鉄原子に加えて、ケイ素及びリンが含有される場合、その組成比は、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、原料である前記微生物由来のセラミックスの組成とほぼ同じとすることができる。すなわち、本発明の磁性セラミックスに鉄、ケイ素、及びリンが含有される場合、鉄、ケイ素、及びリンの元素比率は原子数%(at%)で、それぞれ、通常は、66~87:2~27:1~32程度、好ましくは70~77:16~27:1~9程度である。
 なお、本発明の磁性セラミックスの構成成分は、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、原料となる前記微生物由来のセラミックスの構成成分によって変化する。上述の通り、例えば、微生物由来のセラミックスを生成する微生物をコバルト、ニッケル、マンガン等の遷移金属元素やネオジウム等の希土類元素等が存在する環境化で培養することにより、微生物由来のセラミックスにこれらの元素を含有させることができる。これらの元素を含有させることで、鉄以外の物質に由来する磁性を本発明の磁性セラミックスに付与できる。また、ナトリウム、マグネシウム、アルミニウム等のような軽元素を含有させてもよい。
 また、本発明の磁性セラミックスが鉄に加えて、ケイ素及びリンを含有する場合、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、通常、磁性セラミックスに含有されるFe及びγ-Feと、ケイ素及びリンとは固溶しておらず、鉄、ケイ素及びリンはそれぞれ相分離したものとすることができる。なお、ケイ素及びリンを含む場合、本発明の磁性セラミックスのX線回折(XRD)パターンにケイ素及びリンに起因する明瞭なピークが確認されないことから、ケイ素及びリンはアモルファス構造の酸化物を形成したものとすることができる。この様なアモルファス相の主成分は、アモルファスシリカであることが好ましい。
 本発明の磁性セラミックスの結晶子サイズは、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、通常は、5~100nm程度である。
 また、本発明の磁性セラミックスに含有される酸化鉄がFeの単一相である場合、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、磁性セラミックスに含有される鉄の、通常は、約6割程度がFeであり、約4割程度が常磁性のFe2+及びFe3+である。一方、本発明の磁性セラミックスに含有される酸化鉄がγ-Feの単一相である場合、磁性セラミックスに含まれる鉄の、通常は、約7割程度がγ-Feであり、約3割程度が常磁性のFe2+及びFe3+である。
 なお、常磁性のFe2+及びFe3+が、前記のアモルファス相を構成するFe成分であると仮定して、メスバウアー分光法(Mossbauer分光法)の結果と原料である前記微生物由来のセラミックス中の鉄、ケイ素、及びリンの組成比から、アモルファス相の組成を計算することができる。
 微生物由来のセラミックス中の鉄、ケイ素、及びリンの組成比が、上記のFe:Si:P=66~87:2~27:1~32である場合であって、本発明の磁性セラミックスに含有される酸化鉄がFeの単一相である場合、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、アモルファス相の組成(at%)は、通常は、およそFe:Si:P=36~66:5~55:2~60程度である。また、本発明の磁性セラミックスに含有される酸化鉄がγ-Feの単一相である場合、アモルファス相の組成(at%)は、通常は、およそFe:Si:P=39~69:4~51:2~56程度である。
 本発明の磁性セラミックスがFeを含有する場合には、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、磁性セラミックスの飽和磁化は、通常は、1~50emu/g程度、好ましくは30~50emu/g程度、より好ましくは40~50emu/g程度である。また、保磁力は、通常は、0~250Oe程度である。さらに、残留磁化は、通常は、0~20emu/g程度でる。なお、本発明の磁性セラミックスに含有される酸化鉄がFeの単一相である場合には、磁性セラミックスの飽和磁化は、通常は、50emu/g程度である。
 一方、本発明の磁性セラミックスに含有される酸化鉄がγ-Feを含有する場合、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、磁性セラミックスの飽和磁化は、通常は、1~40emu/g程度、好ましくは25~40emu/g程度、より好ましくは30~40emu/g程度である。また、保磁力は、通常は、0~60Oe程度である。さらに、残留磁化は、通常は、0~20emu/g程度である。なお、本発明の磁性セラミックスに含有される酸化鉄がγ-Feの単一相である場合、磁性セラミックスの飽和磁化は、通常は、40emu/g程度である。
 また、純粋なFe及びγ-Feは、それぞれ98emu/g及び81emu/gであることから、本発明の磁性セラミックス中に含有される1~50質量%程度の化合物が、Fe又はγ-Feの磁性酸化鉄微粒子となる。
 また、本発明の磁性セラミックス中の、Fe及びγ-Feからなる群から選ばれる少なくとも一種の磁性酸化鉄の含有量は、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、通常は、30~50質量%程度、好ましくは40~50質量%程度である。また、本発明の磁性セラミックス中のアモルファス相の含有量は、通常は、70~50質量%程度、好ましくは60~50質量%程度である。
 本発明の磁性セラミックスがケイ素及びリンの酸化物を含有する場合、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、磁性セラミックス中のケイ素酸化物の含有量は、通常は、10~30質量%程度、好ましくは15~25質量%程度である。また、磁性セラミックス中のリン酸化物の含有量は、通常は、1~20質量%程度、好ましくは1~10質量%程度である。
 本発明の微生物由来のセラミックスの多孔度は、特に限定はされないがBetの比表面積に換算して、通常は200~350m2/g程度、より好ましくは、260~300m2/g程度である。
 本発明の微生物由来のセラミックスに該当する「微生物が生成した酸化鉄」包含される、上記(iii)の、微生物が生成した酸化鉄の酸処理しFe成分を溶解除去することにより多孔質アモルファスシリカとしたものは、後出の前記項A1~A17に示す態様の発明の詳細な説明にて説明される通りとすることができる。斯かる多孔質アモルファスシリカの多孔度は、特に限定はされないがBetの比表面積に換算して、通常は300m2/g程度以上、好ましくは400m2/g程度以上、より好ましくは500m2/g程度以上である。
 本発明の微生物由来のセラミックスに該当する「微生物が生成した酸化鉄」包含される、上記(iii)の、微生物が生成した酸化鉄、磁性セラミックス、又は多孔質アモルファスシリカの有機基で化学修飾し得る部分(例えば、Fe原子及び/又はSi原子に結合した酸素原子)の少なくとも一部を有機基で化学修飾して得られた有機・無機材料は後出の前記項A1~A17に示す態様の発明の詳細な説明にて説明される通りとすることができる。
 上記有機基とは、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号にて記載されるように、カルボキシル基、カルボン酸エステル基、アミド基、イミド基、シアノ基、イソシアノ基、アルデヒド基、ケトン基、イミノ基、アミノ基、アジド基、ニトロ基、ヒドロキシ基、エーテル基、エポキシ基、イソシアナト基、イソチオシアナト基、アルキル基、アリール基、アルケニル基、アルキニル基、チオール基、スルフィド基、スルホン酸基、スルホン酸エステル基、スルホキシド基、複素環、ハロゲン原子、ケイ素原子、チタン原子及びリン原子等の官能基を有する基が挙げられる。
 上述の微生物が生成した酸化鉄、磁性セラミックス、又は多孔質アモルファスシリカの有機基で化学修飾し得る部分と前記有機基を修飾する方法は、後出の前記項A1~A17に示す態様の発明を詳細に説明している国際公開第2010/110435号及び国際公開第2011/074587号に記載の方法で作製することが可能である。
 本発明の三次元培養用添加剤における上述の微生物由来のセラミックスの含有量は、特に限定することはないが、三次元培養用剤100重量部当たり、通常は0.001~100重量部程度である。すなわち、上述の微生物由来のセラミックスそのものを、本発明の三次元培養用添加剤であることができる。
 上述の真核細胞は、特に限定はされないが、例えば哺乳類細胞、昆虫細胞等が挙げられる。
 例えば、後出の前記項A1~A17に示す態様の発明を詳細に説明する細胞であることができ、中でも、幹細胞又は肝細胞が好ましい。
 本発明の三次元培養用添加剤は、スフェロイド又は細胞塊の形成用の添加剤であることができる。
 なお、三次元培養とは、平面的に単層で細胞を増殖させるものとは異なり、細胞同士を接着させながら増殖させ、立体的な細胞塊又はスフェロイドを形成させるものである。
 本発明の三次元培養用添加剤の使用量は、特に限定はされないが、適当な培地に対して、上述の微生物由来のセラミックスの量に換算した最終濃度が0.1~5mg/ml程度、好ましくは、0.5~3mg/mL程度、より好ましくは1.0~2.0mg/mL程度である。
 本発明の三次元培養用添加剤は、フィーダー細胞を用いることなく使用することが可能である。
〔真核細胞の三次元培養方法〕
 本発明の真核細胞の三次元培養方法は、培地に微生物由来のセラミックスを添加する工程を含む。
 真核細胞とは、上述の〔真核細胞の三次元培養用添加剤〕に関する説明と同様であることができる。
微生物由来のセラミックスとは上述の〔真核細胞の三次元培養用添加剤〕に関する説明と同様であることができる。
 培地とは、後出の前記項A1~A17に示す態様の発明を詳細に説明と同様であることができる。
 培養条件、培養環境等に関する具体的な培養方法は、後出の前記項A1~A17に示す態様の発明を詳細に説明と同様であることができる。
〔スフェロイド又は細胞塊〕
 本発明のスフェロイド又は細胞塊は、微生物由来のセラミックスと、これに担持された真核細胞を含む。そして、本発明のスフェロイド又は細胞塊は、微生物由来のセラミックスに担持されている。すなわち、微生物由来のセラミックスは、真核細胞のスキャフォールドとしての機能を発揮する。
 微生物由来のセラミックスとは、上述の〔真核細胞の三次元培養用添加剤〕に関する説明と同様であることができる。
 真核細胞とは、上述の〔真核細胞の三次元培養用添加剤〕に関する説明と同様であることができる。
 本発明のスフェロイド又は細胞塊は、タンパク質又はペプチドの製造に関する分野に好適に用いることができる。本発明のスフェロイド又は細胞塊を用いた具体的な製造方法は、例えば〔本発明のタンパク質又はペプチドの製造方法〕にて後述する方法を採用すればよいが、これに限定はされない。
 本発明のスフェロイド又は細胞塊は、薬剤又は脂質のスクリーニングに関する技術分野に好適に用いることができる。本発明のスフェロイド又は細胞塊を用いた具体的なスクリーニング方法は、例えば〔本発明の薬剤又は脂質のスクリーニング方法〕にて後述する方法を採用すればよいが、これに限定はされない。
 本発明のスフェロイド又は細胞塊は、疾病の悪性度鑑別に関する技術分野に好適に用いることができる。本発明のスフェロイド又は細胞塊を用いた具体的な悪性度の鑑別方法は、例えば〔本発明の疾病の悪性度の鑑別方法〕にて後述する方法を採用すればよいが、これに限定はされない。
 本発明のスフェロイド又は細胞塊は、再生医療に関する技術分野に好適に用いることができる。具体的な再生医療分野での方法に関しては、例えば〔本発明の人工組織の製造方法〕にて後述する方法等にて製造される人工組織の使用方法を採用すればよいが、これに限定はされない。
〔タンパク質又はペプチドの製造方法〕
 本発明のタンパク質又はペプチドの製造方法は、培地に真核細胞及び微生物に由来するセラミックスを添加する工程、及び前記細胞を三次元培養する工程を含む。
 タンパク質又はペプチドは後出の前記項A1~A17に示す態様の発明を詳細に説明と同様であることができる。
 培地は、上述の〔真核細胞の三次元培養用添加剤〕に関する説明と同様であることができる。
 真核細胞は、上述の〔真核細胞の三次元培養用添加剤〕に関する説明と同様であることができる。
 微生物に由来するセラミックス並びにその添加量は、上述の〔真核細胞の三次元培養用添加剤〕及び〔真核細胞の三次元培養方法〕に関する説明と同様であることができる。
 具体的な三次元培養の方法は、上述の〔真核細胞の三次元培養方法〕に関する説明と同様であることができる。
 また、後出の前記項A1~A17に示す態様の発明を詳細に説明に記載される各種のタンパク質又はペプチドの製造技術を適宜採用してもよい。この様なタンパク質ペプチド又は、予め前記タンパク質又はペプチドをコードする遺伝子が導入され、これらを発現する真核細胞から得られるリコンビナントタンパク質又はペプチドであることができ、真核細胞に起源的に発現している内在性のタンパク質又はペプチドであることもできる。
〔薬剤又は脂質のスクリーニング方法〕
 本発明の薬剤又は脂質のスクリーニング方法は、培地に真核細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は細胞塊と、薬剤又は脂質の候補物質を接触させる工程を含む。
 薬剤又は脂質とは、後出の前記項A1~A17に示す態様の発明を詳細に説明と同様であることができる。
 培地、真核細胞、及び微生物に由来するセラミックスとは、上述の〔真核細胞の三次元培養用添加剤〕及び〔真核細胞の三次元培養方法〕に関する説明と同様であることができる。
 具体的な三次元培養の方法は、上述の〔真核細胞の三次元培養方法〕に関する説明と同様であることができる。
 スクリーニング方法では、上述の薬剤又は脂質の候補物質と三次元培養で得られたスフェロイド又は細胞塊を接触させたのち、斯かる三次元培養でスフェロイド又は細胞塊における生体反応を指標として、薬剤又は脂質をスクリーニングすればよい。
 生体反応の指標とは、スクリーニングを所望する薬剤又は脂質が、スフェロイド又は細胞塊において発揮する作用を基に選択すればよく、特に限定はされない。
 また、後出の前記項A1~A17に示す態様の発明を詳細に説明に記載される各種のスクリーニング技術を適宜採用してもよい。
 本発明の薬剤又は脂質のスクリーニング方法として、例えば、がん治療薬の薬剤スクリーニングであれば、上述のスフェロイド又は細胞塊に候補となるガン治療薬を曝露して培養した後に、MTTアッセイ等による増殖抑制効果を測定してIC50を算出し、その数値が設定した基準値よりも低い結果を示すスフェロイド又は細胞塊に曝露したがん治療薬を所望のガン治療薬として選択する工程;上述の曝露後のスフェロイド又は細胞塊を染色して固定した後に、公知の方法を用いて生死判定を行い、死んだスフェロイド又は細胞塊に曝露させたガン治療薬を所望のがん治療薬として選択する工程;上記固定後のスフェロイド又は細胞塊にTUNEL染色法等によるアポトーシスの検出を行って、アポトーシスを引き起こしているスフェロイド又は細胞塊に曝露したガン治療薬を、所望のがん治療薬として選択する工程等を挙げることができる。
 また、脂質のスクリーニングでは、候補脂質をスフェロイド又は細胞塊に曝露して培養した後に、培養上清、スフェロイド、又は細胞塊から脂質代謝産物を測定し、測定した量が多い場合に所望の脂質として選択する工程を含む方法、蛍光ラベルした候補脂質のスフェロイド又は細胞塊内への取込みやスフェロイド又は細胞塊内での移行を評価し、所望の動態を示す脂質を選択する工程を含む方法等が挙げられる。
〔疾病の悪性度の鑑別方法〕
 本発明の疾病の悪性度の鑑別方法は、培地に生体から採取した組織片又は腫瘍片に由来する細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は又は細胞塊を評価する工程を含む。
 疾病とは、特に限定はされないが、例えばガン等が挙げられる。悪性度とは、例えば疾病の進行度合いを示すものであり、特に限定はされない。
 生体から採取した組織片又は腫瘍片とは、特に限定はされないが、疾病の悪性度を検討する上において、有用な部位から採取すればよい。また、生体とは特に限定はされないが、例えば後出の前記項A1~A17に示す態様の発明を詳細に説明における哺乳類等を参照することができる。
 培地及び微生物に由来するセラミックスとは、上述の〔真核細胞の三次元培養用添加剤〕及び〔真核細胞の三次元培養方法〕に関する説明と同様とすることができる。
 具体的な三次元培養の方法は、上述の〔真核細胞の三次元培養方法〕に関する説明と同様とすることができる。
 鑑別方法では、三次元培養によって得られたスフェロイド又は細胞塊を公知の方法にて解析又は観察することによって、公知の診断技術を採用し、疾患の悪性度を鑑別とすることができるが、特に限定はされない。
 また、後出の前記項A1~A17に示す態様の発明を詳細に説明に記載される各種の鑑別技術を適宜採用することができる。
 本発明の疾病の悪性度の鑑別方法として、例えば、in vitroでは、CD44タンパク質が高発現で、且つCD24タンパク質が低発現の上記スフェロイド又は細胞塊、又はCD133タンパク質が高発現するスフェロイド又は細胞塊の割合をフローサイトメトリーで測定する工程を含む方法;これらの遺伝子およびタンパク質のスフェロイド又は細胞塊における発現量を、qPCR法、ウエスタンブロッティング法、in situハイブリダイゼーション法、免疫染色法等を用いて検出する工程を含む方法等が挙げられる。
 また、上記スフェロイド又は細胞塊をWound healing assay法、トランスウェル等に供し、遊走能を評価する工程、マトリゲルを用いて浸潤能を評価する工程を含む悪性度の鑑別方法が挙げられる。
 更に、マウスに上記スフェロイド又は細胞塊を移植して担癌マウスを作製した後に、がん組織を摘出し、病理組織学的診断を行う工程を含む方法が挙げられる。この場合、さらに移植部位以外に転移が観察できれば悪性度は高い判断することもできる。
〔本発明の人工組織の製造方法〕
 本発明の本発明の人工組織の製造方法は、培地に生体から採取した細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は又は細胞塊を、患者又は治療を要する動物に直接的又は間接的に注入する工程を含む。
 生体から採取する細胞又は組織とは、特に限定はされないが、疾病の悪性度を検討する上において、有用な部位から採取することができる。また、生体とは特に限定はされないが、例えば後出の前記項A1~A17に示す態様の発明を詳細に説明における哺乳類等を参照することができる。
 患者又は治療を要する動物とは特に限定はされないが、例えば後出の前記項A1~A17に示す態様の発明を詳細に説明における哺乳類等を参照することができる。
 直接的又は間接的に注入する工程とは、特に限定はされないが、再生医療分野にて用いられる公知の注入方法を適宜採用することができる。
 培地及び微生物に由来するセラミックスとは、上述の〔真核細胞の三次元培養用添加剤〕及び〔真核細胞の三次元培養方法〕に関する説明と同様であることができる。
 具体的な三次元培養の方法は、上述の〔真核細胞の三次元培養方法〕に関する説明と同様であることができる。
 また、後出の前記項A1~A17に示す態様の発明を詳細に説明に記載される各種の再生医療に用いられる技術を適宜採用することができる。
 本発明の人工組織の製造方法として、例えば骨芽細胞作製を目的とした場合であれば、特開2006-129734号公報、PlosOne,2013,Vol.8(1)e53771に記載の様に、上記スフェロイド又は細胞塊(特に、骨芽細胞を含むもの)に対してデキサメタゾン及びβグリセロフォスフェートなどを添加して培養する工程を含む方法が挙げられ、これによって人工組織(特に骨組織、軟骨組織等)を提供することができる。
 また、三次元培養後して上記スフェロイド又は細胞塊を作成した後に、公知の方法を用いて酸化鉄を除去する工程に供した後に、Cell Reports,2012,Vol.2(5),1448-1460、特願2002-294071号公報等に記載の方法が挙げられ、これによって人工組織(心筋)を提供することができる。
 以下に、上述した項A1~A17に示す態様の発明を詳細に説明する。ただし、本発明が以下に説明される発明に限定されないのは言うまでもない。
 本明細書において、複数の細胞が凝集して三次元の球状細胞塊になったものを「スフェロイド」という。スフェロイドを形成及び/又は維持することは、スフェロイドの生理機能が生体組織により近いことを示す。
 本発明の細胞培養物は、細胞と、微生物が生成した酸化鉄とを含む。微生物が生成した酸化鉄は、細胞を増殖させるための担体又は支持体として機能し、細胞培養物中の細胞は、微生物が生成した酸化鉄を細胞間に取り込みながら細胞間で接着して増殖する。
細胞
 細胞は、培地中で増殖させることができる細胞であれば特に限定されず、動物細胞であることが好ましく、その中でもほ乳類由来の細胞であることがより好ましい。ほ乳類として、ヒト、イヌ、ネコ、サル、ウシ、ブタ、ウマ、ヒツジ、ヤギ、ハムスター、モルモット、ラット、及びマウスなどが例示されるが、ヒト、イヌ、ネコ、サル、ラット、及びマウスがスフェロイドの形成容易性の面から好ましく、ヒトが特に好ましい。
 ほ乳類由来の細胞を用いる場合の、細胞が由来する組織・臓器については、組織を形成する細胞に増殖能を有する細胞が存在しているか、或いは人為的に増殖能を付加することができる組織・臓器である限りに於いて特に限定されない。かかる組織・臓器としては、例えば、肝臓、角膜、皮膚、軟骨、大腸、小腸、膵臓、胃、筋組織、心臓、肺臓、食道、骨髄、腎臓、脾臓、精巣、卵巣、脂肪組織等の正常な組織・臓器の他、これらの細胞が癌化又は腫瘍化したものが例示される。その中でも、特に肝臓又は腫瘍由来の細胞若しくは癌細胞であることがスフェロイド形成のために好ましい。好ましい細胞の例は、初代肝細胞(ヘパトサイト)、肝細胞由来細胞株、初代癌細胞、及び癌細胞由来細胞株である。癌細胞由来細胞株には、例えば、ヒト肝癌細胞株HepG2、ヒト肝癌細胞株HuH-7、ヒト乳癌細胞株MDA-MB-453、ヒト神経膠腫由来細胞株A172、U251MG、マウスLewis肺癌(LLC)細胞、マウス胚性腫瘍P19細胞、及びマウス骨芽様細胞株MC3T3-E1等が挙げられる。
 また、細胞は幹細胞であってもよい。幹細胞には、成体幹細胞(組織幹細胞、体性幹細胞)、胚性幹細胞(ES細胞)及び人工多能性幹細胞(iPS細胞)が含まれる。さらには細胞には、幹細胞から分化された細胞又はiPS細胞から誘導された幹細胞も含まれる。かかる細胞をスフェロイド培養することによって、再生医療への応用も期待できる。幹細胞の例には、例えば癌幹細胞(Cancer Stem Cells,CSC)及びiPS細胞から作製した癌幹細胞が挙げられる。iPS細胞から癌幹細胞を作製する方法は、例えば本願発明者らのChen L,Kasai T,Li Y,Sugii Y,Jin G,et al.(2012) A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells.PLoS ONE 7(4):e33544.doi:10.1371/journal.pone.0033544に記載されており、当該文献はその全体を本明細書に援用する。例えば、マウスiPS(miPS)細胞から作製されるがん幹細胞モデル細胞は、フィーダー細胞なし又は有りで、miPS培地とマウス癌細胞株から得られた条件培地との混合物中でmiPSを約4週間培養することにより得られる。
 さらに、細胞は非組み換え細胞であっても、組み換え細胞であってもよい。非組み換え細胞を用いた場合には、細胞により生産されたタンパク質又はペプチドを応用する対象における内毒素又はパイロジェン等の外因性物質の混入が防止される。組み換え細胞を用いた場合には、タンパク質又はペプチドのより高効率な生産が可能となる。また、組み換え細胞を用いた場合には、必ずしも巨大スフェロイドを形成せずとも、細胞を浮遊培養系で培養し得る。
 細胞の培養方法、培養条件は、各細胞の種類に応じて一般的な培養方法、条件が採用できる。培地は、任意の細胞培養用の培地を用いることができ、例えば、ダルベッコ改変イーグル培地(DMEM)、グラスゴーMEM(GMEM)、EMEM、MEMα、RPMI-1640、ハムF-12、MCDB培地等が挙げられるが、これらに限定されない。さらに、これらの培地には血清又は、各種の増殖因子もしくは分化誘導因子等が添加されてもよい。
微生物が生成した酸化鉄
 微生物が生成した酸化鉄及びその製造方法は、WO2010/110435及びWO2011/074587に記載されており、これらの文献全体を本明細書に援用する。微生物が生成した酸化鉄は、様々な微生物が菌体外に生産する酸化鉄であり、種々の形状のものが知られている。微生物が生成した酸化鉄は、「バイオジナス酸化鉄」とも称される。
 本明細書において、「酸化鉄」とはα-Fe、β-Fe、γ-Fe、Feなどに例示される狭義の酸化鉄、α-FeOOH、β-FeOOH、γ-FeOOHなどに例示されるオキシ水酸化鉄、フェリハイドライト(Ferrihydrite)に代表される非晶質に近い構造の水酸化鉄を含む、鉄と酸素とを主成分とする化合物の総称である。
 上記鉄酸化細菌としては、Fe、α-FeOOH、又はγ-FeOOH(レピドクロサイト)等を含む上記酸化鉄を形成するものであれば良く、特に限定されるものではない。上記バイオジナス酸化鉄を生成する鉄酸化細菌としては、たとえば、トキソシリックス属菌(Toxothrix sp.)、レプトスリックス属菌(Leptothrix sp.)、クレノシリックス属菌(Crenothrix sp.)、クロノシリックス属菌(Clonothrix sp.)、ガリオネラ属菌(Gallionella sp.)、シデロカプサ属菌(Siderocapsa sp.)、シデロコッカス属菌(Siderococcus sp.)、シデロモナス属菌(Sideromonas sp.)、及びプランクトミセス属菌(Planktomyces sp.)などを挙げることができる。
 レプトスリックス属細菌の一例としては、レプトスリックス・コロディニ OUMS1株が挙げられる。当該レプトスリックス・コロディニOUMS1株は、2009年12月25日に、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818))に、受託番号NITE P-860として寄託されている。また、この菌株は、現在国際寄託に移管されており、その受託番号はNITE BP-860である。
 微生物が生成した酸化鉄は種々の形状を取り、レプトスリックス・オクラセア(Leptothrix ochracea)が生産する酸化鉄は、中空繊維状鞘状構造をしており、ガリオネラ・フェルギネア(Gallionella ferruginea)を初めとするガリオネラ属は螺旋状、スフェロチルス属及びクロノスリックス属は枝分かれしたチューブ状又は糸状、トクソスリックス属は糸状(ハープのような形状、扇状)、シデロモナス属は短幹状、シデロカプサ属はカプセル状、シデロコッカス属は球状の酸化鉄を生産する。微生物が生成した酸化鉄の大きさは、その種類によって様々であるが、通常0.1~3000μm程度である。これらの酸化鉄は、例えば、浄水場の自然ろ過施設に溜まった堆積物中等に存在し、該堆積物に遠心分離、減圧乾燥等を施すことより、精製することができる。
 微生物が生成した酸化鉄は、鉄、酸素以外に微量のケイ素、リンを含むが、同一の微生物が作り出す酸化鉄であっても、酸化鉄に含まれる鉄、ケイ素、リン等の構成成分の種類や構成比は、微生物の存在する環境によって変化する。微生物が生成した酸化鉄は天然物由来であるため、かかる酸化鉄を担体として用いた培養上清から抗原成分が混入する可能性は非常に低い。
 本発明の微生物が生成した酸化鉄は、特定の実施形態に限定されないが、レプトスリックス・オクラセアが生成する酸化鉄は中空チューブ状であるため、スフェロイド内部にまで養分や酸素等の供給、培養液の交換がより効果的になされる点で好ましい。レプトスリックス・オクラセアが生成する酸化鉄を用いると、スフェロイドは大きく成長しても状態をより良好に維持することができる。
 さらに、本発明の“微生物が生成した酸化鉄”は広義に解され、微生物由来のセラミックスとすることができ、前記酸化鉄の他に
(i)かかる酸化鉄に加熱処理を施すことにより磁性セラミックスとしたもの、
(ii)かかる酸化鉄の酸処理しFe成分を溶解除去することにより多孔質アモルファスシリカとしたもの、ならびに
(iii)微生物が生成した酸化鉄、磁性セラミックス、又は多孔質アモルファスシリカの有機基で化学修飾し得る部分(例えば、Fe原子及び/又はSi原子に結合した酸素原子)の少なくとも一部を有機基で化学修飾して得られた有機・無機材料
も含まれる。
磁性セラミックス及びその製造方法についてはWO2011/074587に記載されており、この文献全体を本明細書に援用する。上記酸処理は、バイオジナス酸化鉄を酸処理することによりFe成分を溶解除去し、結果として多孔質アモルファスシリカが得られるもので、酸処理に使用する酸としては、例えば、塩酸及び硫酸が挙げられる。酸処理の時間は、通常1時間~6日、特に2~4日である。酸処理工程の前に、微生物が生成した酸化鉄を乾燥する工程を有していても良く、酸処理工程の後に、酸処理工程で得られた多孔質アモルファスシリカを洗浄及び乾燥する工程を有していても良い。有機・無機材料及びその製造方法についてはWO2010/110435に記載されている。
スフェロイド及びその培養
 本発明の細胞は、担体である微生物が生成した酸化鉄と共に培養されると、微生物が生成した酸化鉄を細胞が取り込んで増殖することにより、スフェロイドを形成することができる。当業者には使用する細胞に合わせて好ましい培地を適宜選択して使用することが可能である。
 培養容器は、スフェロイド培養に適したフラスコ、シャーレ、ペトリディッシュ、プレート、組織培養用チューブ、トレイ、培養バッグ、ローラーボトル、又はホローファイバー等の任意の培養容器又は培養皿であってよい。1実施形態において、培養容器は細胞非接着性の内底面を有する培養容器である。ここで、細胞非接着性とは、培養細胞が全く接着しないという趣旨ではなく、本発明が目的とするスフェロイドの形成を阻害しない程度に、培養細胞が接着しないという趣旨である。
 細胞非接着性の内底面を有する培養容器は、任意の公知の又は市販の細胞非接着性の培養容器であってよく、例えば、ポリスチレン等の汎用プラスチックを射出成型した、特別な表面処理を行わない培養容器、不織布又は多孔性フィルムの足場を備えた培養容器、微細な凹凸面を備えたプラスチック成型の培養容器、ポリエチレングリコールやポリヒドロキシエチルメタクリレート、エチレンビニルアルコール共重合体などの親水性の高い物質から形成された培養容器、容器の表面を、界面活性剤やリン脂質などの表面性能を親水性にし得る物質でコーティングした培養容器、プラズマ処理などの表面処理によって親水性を付与した培養容器が含まれるが、これらに限定されるわけではない。
 培養細胞の数は培養容器の容量、細胞の種類、最終的なスフェロイドの大きさ等を考慮して適宜決定されるが、例えば、培地1mL辺り10個~10個、好ましくは10個~10個の終濃度で培養容器に播種される。培養日数は特に限定されないが、通常、数時間~数ヶ月、好ましくは1日以上~約1ヶ月である。
 細胞は、細胞と微生物が生成した酸化鉄とを含む液体培地を、培養容器に入れることにより培養され得るが、細胞、微生物が生成した酸化鉄及び液体培地は、同じタイミングで培養容器に入れられてもよいし、別のタイミングで培養容器に入れられてもよい。
 スフェロイドの大きさは特に限定されず、直径が10μm以上あれば良いが、好ましくは100μm以上、より好ましくは200μmを超える。従来技術の培養基材及び担体ではスフェロイドが成長すると内部で壊死が生じて大きさに限界があったが、微生物が生成した酸化鉄を用いることで、直径200μmをも超えるより大きなスフェロイドの形成が可能となる。一般に、スフェロイドの直径が大きいと、スフェロイドの状態が生体内での状態と近くなり、タンパク質又はペプチドの生産が増大する。
 本発明のスフェロイド及び細胞培養物は、創薬等の段階に於いて薬剤となる物質のスクリーニング又は代謝における脂質のスクリーニングに使用することができる。すなわち、細胞培養基材又は細胞培養容器に固着したスフェロイドに対して、化学物質、薬剤等を添加し、スフェロイドを形成する細胞に対して何らかの効果を有するものをスクリーニングすることができる。
また、本発明のスフェロイドは、疾病の悪性度鑑別のために使用することもできる。すなわち、生体から採取した組織片や腫瘍片を、細胞毎に分散させた後、本発明のスフェロイドとする過程において増殖能の評価を行ったり、或いはかかるスフェロイドからの遊離細胞の有無を評価することにより癌転移能の評価をすることができる。
 また、本発明のスフェロイドは、再生医療のために使用することもできる。すなわち、健常な組織より採取した細胞より本発明のスフェロイドを調製し、かかるスフェロイドを患者や治療を要する動物の該当組織に直接的又は間接的に注入することで、該当組織の機能の維持・再生に使用することができる。
培養細胞を用いたタンパク質又はペプチドの生産
 上記のようにして製造されたスフェロイド及び細胞培養物により、糖又は糖鎖を含んでも含まなくてもよい有用なタンパク質又はペプチドを生産することができる。そのようなタンパク質又はペプチドとしては血清タンパク質、ホルモン、酵素、免疫調節因子、リンホカイン、モノカイン、サイトカイン、糖タンパク質、ワクチン抗原、抗体、成長因子、増殖因子、又は液性因子等が挙げられる。さらに具体的なタンパク質又はペプチドには、血清アルブミン、インスリン、アレルギー抑制因子、サプレッサー因子、細胞障害性糖タンパク質、細胞障害因子、腫瘍細胞由来因子、リンホトキシン類、腫瘍壊死因子(TNF-α、-β等)、カケクチン、形質転換増殖因子(TGF-α、-β)、あるいは造血因子、顆粒球コロニー刺激因子(G-CSF)、顆粒球-マクロファージコロニー刺激因子(GM-CSF)、及びマクロファージコロニー刺激因子(M-CSF)等が挙げられる。かかるタンパク質又はペプチドの発現量は、タンパク質又はペプチドに対する特異的結合対(抗体、レセプター、及びレクチンなど当業者であれば適宜選択して使用することができる)を利用した免疫染色又はウェスタンブロッティング等で確認することができる。
 培養細胞株と、それにより分泌されるタンパク質との組み合わせの例としては、任意の公知のものが含まれる。例えば、ヒト肝臓癌由来HepG2細胞のスフェロイド培養により、血清アルブミンが生産される(特開2008-054521)、マウスの乳腺上皮細胞では、細胞が三次元の肺胞様球状構造を形成し、培養に伴い乳清酸性タンパク質遺伝子の発現量が上昇し、同タンパク質が分泌される(Chen et al.,Cell Regulation,Vol.1,45-54,1989)。ヒト脳腫瘍の癌幹細胞のスフェロイド培養では、がん幹細胞マーカーのCD133発現量が上昇している(Sheila K.,et al.,Cancer Research 2003,63 : 5821-5828, 2003)。ヒト小児血管腫細胞のスフェロイド培養によりVEGF(血管内皮細胞増殖因子)の発現レベルが増大する(Xu et al. Journal of Hematology&Oncology 2011,4:54)。いずれの場合も細胞のスフェロイド培養によりタンパク質の生産量が上昇している。よって、かかる培養細胞株を用いることにより、内毒素又はパイロジェン等の外因性物質の混入が防止され、酵母組換え体や血液の精製によらずとも、低コストで安全なタンパク質又はペプチドの生産が可能となる。
 本明細書中に引用されているすべての特許、特許出願及び文献の開示は、それらの全体が参照により本明細書に組み込まれるものとする。
 以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。
1.材料
 非接着性培養皿としては、BD FalconTMペトリディッシュ(カタログ番号351007,60mm×15mm)又はアズノール滅菌シャーレ(アズワン製、品番1-7484-01、90mm×15mm)を使用した。接着性培養皿としては、TPP組織培養皿TPP93060又はTPP93100(いずれもSigma Aldrich社製)を使用した。
 MDA-MB-453細胞及びHepG2細胞はいずれも独立行政法人理化学研究所筑波研究所バイオリソースセンター(筑波、日本)から得た(それぞれRCB1192及びRBC1886)。マウスiPS細胞(miPS;iPS-MEF-Ng-20D-17)は独立行政法人理化学研究所バイオリソースセンター(筑波、日本)から購入し、それぞれ終濃度が0.1mMのNEAA、2mMのL-グルタミン、0.1mMの2-メルカプトエタノールと50U/mlペニシリン、及び50μg/mlストレプトマイシンとなるように含むDMEM培地中にて維持した。マウスLewis肺癌(LLC)細胞はATCC(アメリカ合衆国)から購入し、10%のFCSを含むDMEM培地中に維持した。
2.バイオジナス酸化鉄の調製
 (2-1.L-BIOXの調製)
 京都府城陽市の公共施設である文化パルク城陽に設置した鉄酸化細菌の培養槽から、微生物が生成した酸化鉄を含んだ地下水スラリーを回収した。この培養槽の優先種は鉄酸化細菌レプトスリックス・オクラセアであり、得られるバイオジナス酸化鉄は直径1μm程度の中空チューブ状である。このスラリーに28%NH水溶液を加えてpH10.5に調整し10分撹拌し、撹拌をとめて40分静置した。デカンテーションにより上澄みのみフィルタろ過し、4倍量の蒸留水で洗浄した。得られた含水ケーキをエタノールに分散し、15分撹拌した。懸濁液をフィルタろ過し、100℃で乾燥し、これをL-BIOXと命名した。 L-BIOXの直径は1μm程度、全体が多孔質、表面は粒子状であり、表面積が広く(280m/g程度、市販の酸化鉄は通常70m/g)、表面に水酸基(-OH)が多かった。
 (2-2.G-BIOXの調製)
 岡山大学農学部に設置した鉄酸化細菌の培養槽から、微生物が生成した酸化鉄を含んだ地下水スラリーを回収した。この培養槽の優先種はガリオネラ・フォルギネアであり、得られるバイオジナス酸化鉄は螺旋状である。スラリーを上述と同様に処理し、得られたバイオジナス酸化鉄をG-BIOXと命名した。
 (2-3.磁性L-BIOXの調製)
 レプトスリックス・オクラセア由来の上記L-BIOXを、WO2011/074587の[0113]の実施例1の手順(I)-(III)で加熱処理して、磁性L-BIOXとした。
 具体的な手順(I)-(III)は以下の通りである。
手順(I):原料セラミックスの乾燥粉末をアドバンテック社製の電気マッフル炉OPM-28Dを用いて、大気下、800℃で2時間焼成した。この操作は急熱急冷で行った。
手順(II):H3%-Arガス(1気圧)の存在下、手順(I)で得られた焼成後のセラミックスを電気炉(光洋リンドバーグ(株)社製のチューブ炉)で、550℃、2時間の条件下に水素還元した。電気炉のH3%-Arガス(0.1MPa)流入口の直前に酸除去カラム(ジーエルサイエンス(株)社製の大型オキシゲントラップ)を、原料セラミックスが入った電気炉の前後にPを設置することによって、ガス中の微量酸素、反応で発生する水分を除去しながら還元処理を行った。還元処理前に炉内を真空排気した後に、H3%-Arガスで満たした。反応中のガス流量は100ccmとした。昇温速度は10℃/minで冷却は急冷とした。
手順(III):実施例1の手順(II)で得られたサンプルを大気下、250℃で2時間、アドバンテック社製の電気マッフル炉OPM-28Dを用いて加熱した。この操作は急熱急冷で行った。
3.スフェロイド形成
 (3-1.HepG2細胞におけるスフェロイド形成)
 10%-FBS,DMEM培地中にL-BIOXを1mg/mlの濃度で懸濁し、非接着性培養皿に注入後、MDA-MB-453細胞及びHepG2細胞をそれぞれ1×10個/mlの終濃度で播種して5%のCO,37℃で4日間培養するとL-BIOX上に細胞が接着して形成したスフェロイドが観察された(図1)。培地上清の交換は培養開始から2日後に行った。
 L-BIOXの存在下で形成されたHepG2細胞のスフェロイドは、培養10日後には1mmを超える大きさに成長した(図2A-C)。HepG2細胞はL-BIOX上に凝集して周囲のL-BIOXを取り込みながら成長する様子が観察された。このように、L-BIOXを用いて細胞をスフェロイド培養することで巨大なスフェロイドの作製に成功した。
 一方、L-BIOX無しで非接着性培養皿上に同濃度のHepG2細胞を播種した場合はスフェロイドの直径が大きくても約200μmであった(図2D-E)。培地上清の交換は培養開始から2日~3日毎に行い、培養7日目からは毎日行った。
 (3-2.MDA-MB-453細胞及びマウスLewis肺癌(LLC)細胞におけるスフェロイド形成)
 HepG2細胞以外にも、MDA-MB-453細胞及びマウスLewis肺癌(LLC)細胞でもL-BIOX上での巨大なスフェロイドの作製が確認された(図示せず)。また、MDA-MB-453細胞は、磁性L-BIOX上でも巨大スフェロイドが形成された(図3)。
 (3-3.癌幹細胞におけるスフェロイド形成)
 0.1mMのNEAA、2mMのL-グルタミン、0.1mMの2-メルカプトエタノール、50U/mlのペニシリン、50μg/mlのストレプトマイシン及びITSサプリメントを含むDMEM培地中にL-BIOXを1mg/mlの濃度で懸濁し、非接着性培養容器に注入後、マウスiPS(miPS;iPS-MEF-Ng-20D-17)より作製したがん幹細胞モデル細胞であるmiPS-LLCcm細胞(前掲のChen L,et al.の論文に記載)を1×10個/mlの終濃度で播種して5%のCO,37℃で7日間培養するとL-BIOX上に細胞が接着して形成したスフェロイドが観察された(図4)。培地上清の交換は行わなかった。
 図4に示す結果から、L-BIOXを添加した場合、2000μm近くの大きさスフェロイドが形成されるのに対し、L-BIOXを添加しない場合には200μm程度の大きさにまでしか成長しなかった。また、培養開始から18日目の結果からは、L-BIOXを添加した場合に得られるスフェロイドが、無添加の場合と比較して8倍程度もの大きさにまで成長することが明らかとなった。
 スフェロイドを前記の倒立型光学顕微鏡を用いて、水銀ランプとミラーユニットWIB(U-MWIB3(励起フィルタ:BP460-495、吸収フィルタBA510IF、OLYMPUS社製)で蛍光観察した結果からスフェロイドでGFP蛍光が一様に認められ(図5B)、Nanogの発現すなわち幹細胞としての性質が維持されていることが確認できた。
 (3-4.iPS細胞におけるスフェロイド形成)
 0.1mMのNEAA、2mMのL-グルタミン、0.1mMの2-メルカプトエタノール、50U/mlのペニシリン、50μg/mlのストレプトマイシン及びITSサプリメントを含むDMEM培地中にL-BIOXを1mg/mlの濃度で懸濁し、miPS(miPS;iPS-MEF-Ng-20D-17)を1×10個/mlの終濃度で播種して5%のCO,37℃で7日間培養すると、L-BIOX上では細胞塊が形成され、GFPの蛍光が非常に強く観察された(図6B)が、L-BIOXなしではGFPの蛍光が観察されなかった(図6E)。培地は2日毎に交換した。L-BIOX上で培養を行うと、フィーダー細胞なしで多分化能を維持した培養が出来る可能性がある。
4.バイオジナス酸化鉄の量がスフェロイド形成に与える効果
 10%のFBSを含むDMEM培地中に添加するL-BIOX又はG-BIOXの量がスフェロイド形成に与える効果を評価する目的で、非接着性培養皿上にBIOXを0,0.1,0.5,1及び2mg/mlの最終濃度となるように濃度で懸濁した後、1×10個/mlの終濃度でHepG2細胞を播種し、5%のCO,37℃で培養を行い、培養2日後及び4日後にそれぞれ10個以上のスフェロイドを無作為に選択し、その直径を測定した(図7A-B)。それぞれの平均の値をグラフにした。培地上清の交換は培養開始から2日後に行った。L-BIOXを添加して培養すると、L-BIOXを添加しない非接着性培養皿上での培養に比べていずれの濃度でもスフェロイド形成が促進される傾向にあったが、特に1mg/mlの濃度でスフェロイド形成促進効果が顕著であった(図7A)。レプトスリックス・オクラセアが生成する酸化鉄は中空であるため、L-BIOXによりスフェロイド内部にまで養分や酸素等の供給、培養液の交換がより効果的になされ、G-BIOXの場合(図7B)に比べてスフェロイドの状態をより良好に維持できたと考えられる。
5.培養日数とスフェロイド径の関係
 1mg/mlの終濃度のL-BIOXを10%-FBS,DMEM培地中に添加してHepG2細胞を1×10個/mlの終濃度で播種し、5%のCO,37℃で培養を10日間継続すると、L-BIOXを添加しない非接着性培養皿上での培養と比較してスフェロイドの直径が6倍以上になった(図8)。培地上清の交換は2日~3日毎に行い、培養7日目からは毎日行った。
6.バイオジナス酸化鉄と他の担体粒子との比較
 L-BIOX、市販のアモルファスシリカ粒子(Aerosil 300、東新化成株式会社)、市販の酸化鉄粒子(αFe)をそれぞれ終濃度1mg/mlで10%-FBS,DMEM培地中に懸濁してHepG2細胞を1×10個/mlの終濃度で播種し、5%のCO,37℃で培養を5日間培養した。培地上清の交換は培養開始後2日目に行った。L-BIOX上のスフェロイドは直径が200μmを超える大きさに成長したのに対し、Aerosil、酸化鉄及び担体を添加しない非接着性培養皿上では大きいスフェロイドでも直径は200μm以下であった(図9A-D)。
 また、マイクロキャリアビーズ(HyQ Sphere Microcarriers, Fisher Scientific)を1mg/mlの終濃度で10%-FBS,DMEM培地に添加してHepG2細胞を1×10個/mlの終濃度で播種し、5%のCO,37℃で2週間培養した場合、ビーズ表面上に細胞が付着して増殖する様子が観察されたが、スフェロイドは形成されなかった(図10A-D)。
7.HepG2細胞によるヒト血清アルブミン生産
 HepG2は細胞分化の指標としてアルブミンタンパク質を分泌する。0及び1mg/mlの終濃度のL-BIOXを10%-FBS,DMEM培地中に添加してHepG2細胞を1×10個/mlの終濃度で播種し、5%のCO,37℃で培養を10日間培養した。培地上清の交換は2日~3日毎に行い、培養7日目からは毎日行った。培養10日後にFBSを含まないDMEM培地に交換して2日間、5%のCO,37℃でインキュベートした後、培地上清を回収した。また、接着性培養皿で10%-FBS,DMEM培地、5%CO,37℃で2日間培養したHepG2細胞の培地からFBSを含まないDMEM培地に交換して更に2日間、同様に培養して培地上清を回収した。回収した上清のそれぞれ10μlずつをウェスタンブロッティング(Western blotting)解析に供した。
 ウェスタンブロッティングは以下のように行った。つまり、培養上清各10μlをSDS-PAGEに供してセミドライ式ブロッティング装置を用いてPVDF膜にブロッティングした後、10%スキムミルクTBSTでブロッキングを行い、TBSTで洗浄後、一次抗体の抗ヒト血清アルブミン抗体(rabbit IgG,CSTジャパン製、#4929)を4℃で一晩反応させ、TBSTで洗浄後、二次抗体のHRP標識抗rabbit IgG抗体(goat, CSTジャパン製、#7071)を室温で30分反応させ、洗浄後、HRP基質Western Lightning Plus-ECL chemiluminescence reagent (PerkinElmer社製)を添加し、Light-Capture II cooled CCD camera system(ATTO社製)で撮影した。バンドの強度を画像解析ソフトNIH Image Jで定量した。
 接着性培養皿で培養した場合と比較して、L-BIOXを添加した培養物ではアルブミンの分泌量が約3倍に増加していることが分かった(図11A-B)。ウェスタンブロッティングによるバンド強度の比較から約140mg/Lのアルブミンが培地中に分泌されていた。このように、肝臓癌由来細胞をL-BIOXを用いてスフェロイド培養することにより、アルブミンタンパク質の生産量が著しく上昇した。アルブミンの分泌量が著しく上昇したことから、HepG2細胞において分化シグナルが促進されていると考えられ、従来技術よりも生体内に近い細胞を培養することができたと考えられる。
8.スピナーフラスコでのHepG2細胞の培養及びヒト血清アルブミン生産
 L-BIOXとHepG2細胞をそれぞれ10倍の濃度にして、すなわち10mg/mlの終濃度のL-BIOXを10%-FBS,DMEM培地中に添加してHepG2細胞を1×10個/mlの終濃度で播種した。20ml容のスピナーフラスコ内で撹拌しながら5%のCO,37℃で10日間培養した。培地上清の交換は2日~3日毎に行い、培養上清はそれぞれ回収した。培養10日後にFBSを含まないDMEM培地に交換して2日間、5%のCO,37℃でインキュベートした後、培地上清を回収した。培養期間内に回収した上清に含まれるヒト血清アルブミン量をイライザ法によって定量した。イライザ法は、市販のAlbumin human ELISA quantitation kit(Bethyl laboratories INC社製)を用いて製造業者のプロトコルに従って行い、96 well plateとしてEIAプレート(655061、Greiner bio-one社製)を用いた。
 その結果、1Lスケールの培養当り合計約200mgのヒト血清アルブミンが分泌されていることが判った。
9.バイオジナス酸化鉄の形状の検討
 上記3-4「iPS細胞におけるスフェロイド形成」の項で説明した条件と同様にして、チューブ状のL-BIOXを終濃度が1mg/mlとなるように培地に添加してmiPSを培養した。培養から3日目の蛍光顕微鏡による観察結果を図12Aに示す。すると、直径300μm程度の細胞塊が形成されることが確認された。
 一方で、上述のチューブ状のL-BIOXに代えて、これをボールミルで粉砕して粉末状にしたもの用いて培養した場合には、細胞塊の形成を確認することはできなかった(図12B)。
 次いで、チューブ状のL-BIOXを用いて培養して得られた細胞を、共焦点蛍光顕微鏡を用いてそれが発現するGFPを検出することにより観察した。得られた細胞の内部においても、GFPの発現が確認された(図12C)。また、これを三次元再構成した結果(図12D)から、より明確に細胞塊全体においてGFPの発現が確認された。GFPはNanogプロモーターの下流に配置されている。従って、GFPが著量発現していることから得られたmiPS細胞の細胞塊が未分化な状態維持していることが明らかとなった。
 チューブ状のL-BIOXを用いて培養して得られたmiPS細胞の細胞塊のmRNAを抽出し、内在性遺伝子の発現(Nanog、Oct3/4、Sox2、Kif4、c-Myc、Lefty-1、及びLefty-2)及び総遺伝子の発現(Nanog、Oct3/4、Sox2、Klf4、及びc-Myc)の量を測定した。結果を図13A-Bに示す。
 この結果、各遺伝子の発現量において、内在性遺伝子と総遺伝子との間の発現量には大きな変化は認められず、miPS細胞が未分化な状態を維持していることが明らかであった。また、Klf4、Lefty1、及びLefty2の内在性遺伝子の発現量が僅かに増加していることから、活性型のガン抑制遺伝子の生産にも利用できる可能性を示唆している。
10.ガン幹細胞モデルでの検討
 上記3-4「癌幹細胞におけるスフェロイド形成」の項で説明した条件と同様にして、ガン幹細胞モデル細胞であるmiPS-LLCcm細胞を培養した。なお、この細胞は、未分化マーカーであるNanogプロモーターの下流にPuromycin耐性遺伝子が組み込まれているために、細胞が未分化状態を維持していれば、Puromycin存在下でも生存維持効果を発揮する。
 そこで、培養開始7日目から毎日、培地にPuromycinを最終濃度が1μg/mLとなるように添加して、そのまま12日間培養を続けた。その結果を図14に示す。この結果、L-BIOXを添加なかった場合、miPS-LLCcm細胞の細胞塊は培養から1日目に崩壊してしまい100μm程度の大きさとなってしまった。
 一方で、L-BIOXを添加した場合、miPS-LLCcm細胞の細胞塊は、その大きさを維持していることが明らかとなった。そして、大きさが維持された細胞塊は、Puromycin存在下で培養しても死滅することが無かったため、Nanog遺伝子を発現し、未分化な状態を維持していることも明らかとなった。これによって、均一な状態のがん幹細胞を一度に大量に培養できることが示唆される。これによって、生体内でがん幹細胞からがん細胞に分化する過程の解析やがん化誘導因子の解析、標的分子の解析に有効となることが考えられる。

Claims (34)

  1.  微生物由来のセラミックスを有効成分とする、真核細胞の三次元培養用添加剤。
  2.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項1に記載の三次元培養用添加剤。
  3. 微生物由来のセラミックスが、更にリンを含む、項1又は2に記載の三次元培養用添加剤。
  4.  微生物由来のセラミックスの形状が、中空チューブ状、中空繊維状鞘状、螺旋状、枝分かれしたチューブ状、枝分かれした糸状、ハープ状、扇状、短幹状、カプセル状、及び球状からなる群より選択される何れかである、請求項1~3の何れか1項に記載の添加剤
  5.  微生物由来のセラミックスの形状が、中空チューブ状又は螺旋状である、請求項1~4の何れか1項に記載の添加剤。
  6.  微生物由来のセラミックスの長さが、0.1~3000μmである、請求項1~5の何れか1項に記載の添加剤。
  7.  微生物由来のセラミックスが、磁性体である、請求項1~6の何れか一項に記載の添加剤。
  8.  酸化鉄が、α-Fe、β-Fe、γ-Fe、Fe、α-FeOOH、β-FeOOH、γ-FeOOH、及びフェリハイドライトからなる群より選択される少なくとも1種である、請求項2~7の何れか1項に記載の添加剤。
  9.  真核細胞が、哺乳類細胞及び/又は昆虫細胞である、請求項1~8の何れか1項に記載の添加剤。
  10.  真核細胞が、幹細胞及び/又は肝細胞である、請求項1~9の何れか1項に記載の添加剤。
  11.  微生物が、トキソシリックス属菌、レプトスリックス属菌、クレノシリックス属菌、クロノシリックス属菌、ガリオネラ属菌、シデロカプサ属菌、シデロコッカス属菌、シデロモナス属菌、及びプランクトミセス属菌からなる群より選択される少なくとも一種である、請求項1~10の何れか1項に記載の添加剤。
  12.  微生物が、レプトスリックス属菌及び/又はガリオネラ属菌である、請求項1~11の何れか1項に記載の添加剤。
  13.  スフェロイド又は又は細胞塊形成用である、請求項1~12の何れか1項に記載の添加剤。
  14.  三次元培養が、フィーダー細胞を使用しない、請求項1~13の何れか1項に記載の添加剤。
  15.  真核細胞の三次元培養方法であって、培地に真核細胞及び微生物由来のセラミックスを添加する工程を含む方法。
  16.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項15に記載の方法。
  17.  微生物由来のセラミックスと、其れに担持された真核細胞とを含むスフェロイド又は又は細胞塊。
  18.  請求項15又は16に記載の方法によって得られる、請求項17に記載のスフェロイド又は又は細胞塊。
  19.  タンパク質又はペプチドの製造用である、請求項17又は18に記載のスフェロイド又は又は細胞塊。
  20.  薬剤又は脂質のスクリーニング用である、請求項17又は18に記載のスフェロイド又は又は細胞塊。
  21.  疾病の悪性度鑑別用である、請求項17又は18に記載のスフェロイド又は又は細胞塊。
  22.  再生医療用である、請求項17又は18に記載のスフェロイド又は又は細胞塊。
  23.  真核細胞の三次元培養用添加剤としての使用のための、微生物由来のセラミックス。
  24.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項23に記載の微生物由来のセラミックス。
  25.  真核細胞の三次元培養用添加剤を製造するための、微生物由来のセラミックスの使用。
  26.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項25に記載の使用。
  27.  タンパク質又はペプチドの製造方法であって、培地に真核細胞及び微生物に由来するセラミックスを添加する工程、及び前記細胞を三次元培養する工程を含む、製造方法。
  28.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項27に記載の製造方法。
  29.  薬剤又は脂質のスクリーニング方法であって、培地に真核細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は又は細胞塊と、薬剤又は脂質の候補物質を接触させる工程を含むスクリーニング方法。
  30.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項28に記載のスクリーニング方法。
  31.  疾病の悪性度の鑑別方法であって、培地に生体から採取した組織片又は腫瘍片に由来する細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は細胞塊を評価する工程を含む鑑別方法。
  32.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項31に記載の鑑別方法。
  33.  人工組織の製造方法であって、培地に生体から採取した細胞及び微生物に由来するセラミックスを添加する工程、前記細胞を三次元培養する工程、及び前記三次元培養で得られたスフェロイド又は細胞塊を、患者又は治療を要する動物に直接的又は間接的に注入する工程を含む製造方法。
  34.  微生物由来のセラミックスが、酸化鉄及び/又はシリカを含む、請求項33に記載の製造方法。
PCT/JP2013/072178 2012-08-20 2013-08-20 細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法 WO2014030641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531635A JPWO2014030641A1 (ja) 2012-08-20 2013-08-20 細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181690 2012-08-20
JP2012181690 2012-08-20

Publications (1)

Publication Number Publication Date
WO2014030641A1 true WO2014030641A1 (ja) 2014-02-27

Family

ID=50149949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072178 WO2014030641A1 (ja) 2012-08-20 2013-08-20 細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法

Country Status (2)

Country Link
JP (1) JPWO2014030641A1 (ja)
WO (1) WO2014030641A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201594A (ja) * 2002-12-25 2004-07-22 Toshiba Ceramics Co Ltd 生体培養用基体及びその製造方法
JP2007202506A (ja) * 2006-02-03 2007-08-16 Toshiba Ceramics Co Ltd ヒト造血幹細胞または造血前駆細胞の培養方法
WO2008084857A1 (ja) * 2007-01-12 2008-07-17 Nippon Sheet Glass Company, Limited 三次元細胞培養担体およびそれを用いた細胞培養方法
JP2008173018A (ja) * 2007-01-16 2008-07-31 Canon Inc 細胞培養方法及び細胞培養用基板
WO2010110435A1 (ja) * 2009-03-27 2010-09-30 国立大学法人岡山大学 有機・無機複合材料及びその製造方法
JP2010263868A (ja) * 2009-05-18 2010-11-25 Covalent Materials Corp 細胞培養担体
JP2012090584A (ja) * 2010-10-27 2012-05-17 Inoac Gijutsu Kenkyusho:Kk 反重力培養方法及び反重力培養装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201594A (ja) * 2002-12-25 2004-07-22 Toshiba Ceramics Co Ltd 生体培養用基体及びその製造方法
JP2007202506A (ja) * 2006-02-03 2007-08-16 Toshiba Ceramics Co Ltd ヒト造血幹細胞または造血前駆細胞の培養方法
WO2008084857A1 (ja) * 2007-01-12 2008-07-17 Nippon Sheet Glass Company, Limited 三次元細胞培養担体およびそれを用いた細胞培養方法
JP2008173018A (ja) * 2007-01-16 2008-07-31 Canon Inc 細胞培養方法及び細胞培養用基板
WO2010110435A1 (ja) * 2009-03-27 2010-09-30 国立大学法人岡山大学 有機・無機複合材料及びその製造方法
JP2010263868A (ja) * 2009-05-18 2010-11-25 Covalent Materials Corp 細胞培養担体
JP2012090584A (ja) * 2010-10-27 2012-05-17 Inoac Gijutsu Kenkyusho:Kk 反重力培養方法及び反重力培養装置

Also Published As

Publication number Publication date
JPWO2014030641A1 (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6879517B2 (ja) 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
JP7248166B2 (ja) 培地組成物
US10844365B2 (en) Systems and methods for magnetic guidance and patterning of materials
Ge et al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration
Slowing et al. Exocytosis of mesoporous silica nanoparticles from mammalian cells: from asymmetric cell-to-cell transfer to protein harvesting
JP5769717B2 (ja) 細胞を磁性化するための材料及び磁気操作
WO2015111685A1 (ja) 培地組成物の製造方法
Savvateeva et al. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells
WO2014148562A1 (ja) がん幹細胞を含む細胞集団を得る方法
CN109415694A (zh) 用于产生源自干细胞的细胞外囊泡的方法
JPWO2019088292A1 (ja) ハイドロゲル粒子およびその製造方法、ハイドロゲル粒子を内包する細胞または細胞構造体、ハイドロゲル粒子を用いた細胞活性の評価方法、並びにハイドロゲル粒子の徐放性製剤としての使用
WO2014171486A1 (ja) 培地組成物及び当該培地組成物を用いた赤血球の製造方法
CN112300994B (zh) 用于捕获循环肿瘤细胞的纳米磁珠及其制备方法和应用
JP5578613B2 (ja) 磁性ナノ粒子複合体及び当該磁性ナノ粒子複合体による細胞の標識方法
WO2014030641A1 (ja) 細胞を培養する担体及び培養細胞を用いたタンパク質又はペプチドの生産方法
Horie et al. Magnetic nanoparticles: functionalization and manufacturing of pluripotent stem cells
JP6226545B2 (ja) ヒアルロン酸を利用したスフェロイド培養法
Ishihara et al. Preparation of magnetic hydrogel microparticles with cationic surfaces and their cell-assembling performance
Ito et al. Magnetic separation of cells in coculture systems using magnetite cationic liposomes
Gao et al. A scalable culture system incorporating microcarrier for specialised mesenchymal stem cells from human embryonic stem cells
WO2024010053A1 (ja) 胚葉体細胞組成物、分化細胞組成物及び分化細胞組成物の製造方法
RU2688321C2 (ru) Способ улучшения сбора гемопоэтических клеток при их культивировании на стромальных слоях путем предварительной магнетизации последних
Pasqualini et al. c12) United States Patent (IO) Patent No.: US 10,844,365 B2
Xu In vitro hematopoietic stem/progenitor cell proliferation and labeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831480

Country of ref document: EP

Kind code of ref document: A1