WO2014030516A1 - 窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法 - Google Patents

窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法 Download PDF

Info

Publication number
WO2014030516A1
WO2014030516A1 PCT/JP2013/070903 JP2013070903W WO2014030516A1 WO 2014030516 A1 WO2014030516 A1 WO 2014030516A1 JP 2013070903 W JP2013070903 W JP 2013070903W WO 2014030516 A1 WO2014030516 A1 WO 2014030516A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
dimensional structure
mask
base material
semiconductor device
Prior art date
Application number
PCT/JP2013/070903
Other languages
English (en)
French (fr)
Inventor
藤原 康文
小泉 淳
寺井 慶和
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2014531567A priority Critical patent/JP6048896B2/ja
Priority to US14/422,185 priority patent/US9455376B2/en
Publication of WO2014030516A1 publication Critical patent/WO2014030516A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Definitions

  • the present invention relates to a nitride semiconductor device substrate and a manufacturing method thereof, a red light emitting semiconductor device and a manufacturing method thereof, and further relates to a nitride semiconductor device using the nitride semiconductor device substrate.
  • Nitride semiconductors such as gallium nitride (GaN) are attracting attention as semiconductor materials for blue light-emitting devices, and in recent years, by adding high concentrations of indium (In) to GaN, green and red light-emitting devices can be obtained. It is expected to be realized. However, as the In composition becomes higher, fluctuations in the In composition and piezo electric field effects become more prominent, so that a red light emitting device using a nitride semiconductor has not been realized.
  • GaN gallium nitride
  • red light emitting diode By realizing such a red light emitting diode, it is possible to integrate light primary diodes of light using a nitride semiconductor on the same substrate together with the blue light emitting diode and the green light emitting diode that have already been developed. Therefore, application to fields such as a small and high-definition full-color display and LED lighting to which light emission in a red region not included in the current white LED is added is expected.
  • the light output of the red light emitting diode described above is currently limited to about 50 ⁇ W, and further improvement in light emission intensity (light output) is required for practical use.
  • a GaN buffer layer 12 and an undoped GaN layer 13 are grown on the (0001) plane of the sapphire substrate 11, and the base material template 10 whose surface is the (0001) plane is formed.
  • the base material template 10 whose surface is the (0001) plane is formed.
  • a manufactured, had grown (0001) plane of Eu added GaN layer 30 on the surface when increasing the concentration of added Eu, compared to the ionic radius of Ga 3+ ion radius of Eu 3+ is substituted one. Since it was five times larger, the crystal growth surface was roughened and the light output could not be improved.
  • a sapphire substrate is cut into a higher index plane than the (0001) plane, and a high index plane Eu-doped GaN layer is grown by using a base material template on which a high index plane undoped GaN layer is grown. Then, the density of the bonds that improve the impurity addition characteristics is increased and Eu incorporation is promoted, so that it is expected to improve the light output.
  • the manufacturing cost of the red light emitting semiconductor element is greatly increased and generally cannot be used.
  • the present invention does not require an expensive process of cutting a sapphire substrate into a high index surface, and can produce a red light emitting semiconductor element having a high light emission intensity (light output) at a low cost. It is an object to provide a manufacturing technique of a semiconductor element.
  • the inventor has studied the solution of the above problems as follows, and has completed the present invention.
  • the inventor has previously grown a GaN layer (undoped) having a higher index plane than the (0001) plane on a conventional inexpensive base material template on which the (0001) plane undoped GaN layer is formed, If an Eu-doped GaN layer can be grown thereon, a high-index surface Eu-doped GaN layer can be grown in the same manner as when an Eu-doped GaN layer is grown using a substrate cut into a high-index surface. Therefore, it was considered that a red light emitting semiconductor element having high light emission intensity (light output) can be manufactured at low cost.
  • the selective growth method it is possible to grow a GaN three-dimensional structure having a higher index plane than the (0001) plane on the (0001) plane undoped GaN layer.
  • the Eu-doped GaN layer is grown using the high-index surface of this side, the Eu-added concentration can be improved by utilizing the impurity addition characteristic specific to the high-index surface, and a high light output is obtained. I found that I can do it.
  • a conventional base material template 10 (FIG. 1A) in which a GaN buffer layer 12 and an undoped GaN layer 13 are grown on a (0001) plane of a sapphire substrate 11.
  • a GaN solid structure 20 was grown on the undoped GaN layer 13 and the SiO 2 mask layer 14 (selective growth method) (FIG. 1C )).
  • the GaN three-dimensional structure 20 was grown until the SiO 2 mask layer 14 was completely covered.
  • the light output is improved as compared with the conventional case. confirmed.
  • the present inventor further conducted various experiments and studies on more preferable conditions for growing the Eu-doped GaN layer on the ⁇ 1-101 ⁇ facet surface of the GaN three-dimensional structure described above. Due to the difference, the growth surface of the Eu-added GaN layer changed greatly, and an unexpected result that the light output was drastically improved was obtained.
  • the light output in the ⁇ 2-201 ⁇ plane or ⁇ 3-301 ⁇ plane Eu-doped GaN layer is much more improved than the light output in ⁇ 1-101 ⁇ described above. I understood.
  • the present inventor applied a selective growth method to grow a GaN solid structure having a high index surface on undoped GaN on a base material, and then on the high index surface of the GaN structure. It has been found that a red light emitting semiconductor device with improved light output can be provided by growing an Eu-doped GaN layer under controlled growth conditions.
  • the reason why the light output is improved in this manner is that, in addition to the above-described increase in the density of bonds, by growing a high index plane Eu-doped GaN layer, the optical output is further parallel to the substrate and perpendicular to the stripe direction.
  • an Eu-added GaN layer that is not constrained by the substrate grows on the SiO 2 mask, and the deformation caused by Eu having a large ion radius is relieved by the deformation of the Eu-added GaN layer, so that Eu is more captured. It is considered that the light output was improved by being promoted (that is, the Eu addition concentration was improved).
  • the emission wavelength does not change depending on the ambient temperature as well as an alternative to AlGaInP-based LEDs currently used as red LEDs.
  • High-intensity LED lighting that makes use of the characteristics of rare earth elements can be realized.
  • the (0001) plane has been described as the plane to which the selective growth method is applied.
  • the present invention is not limited to the (0001) plane, and the same effects as the above effects can be achieved even with other index planes. Can be obtained.
  • the base material is not limited to GaN, and InN, AlN, or a mixed crystal thereof (InGaN, AlGaN). Etc.) can be used as the base material, and the same effect as the above can be obtained.
  • the additive element is not limited to Eu, and the same effect as described above can be obtained even if Pr is added. That is, in these elements, the outer electrons are shielded by the inner electrons, and the light emission associated with the inner shell transition has a wavelength of 590 nm or more. Since it is light, it is not limited to Eu, but may be Pr.
  • the present inventor applied a selective growth method in the production of a red light emitting semiconductor element to grow a GaN three-dimensional structure having a high index surface on the base material undoped GaN. It has been found that a red light-emitting semiconductor device with improved light output can be provided at low cost by growing an Eu-doped GaN layer on a high-index surface of a three-dimensional structure. Then, it has been found that by changing the growth conditions of the Eu-doped GaN layer, such as the growth temperature, Eu-doped GaN layers with various high index surfaces can be obtained.
  • the inventor of the present invention has come to realize that the semiconductor element manufactured by these techniques is not limited to the use as the red light emitting semiconductor element described above, and can be preferably used as a substrate for manufacturing other nitride semiconductor elements. .
  • nitrides such as GaN and InN have a large wide gap, and by using this wide gap, nitride semiconductor elements suitable for various applications can be provided, but suitable for applications.
  • nitride semiconductor elements suitable for various applications can be provided, but suitable for applications.
  • the present inventor studied a technique for improving the light output of a red light emitting semiconductor element, which is a kind of nitride semiconductor element, and applied the selective growth method to improve the high index surface. It has been found that a desired high index plane Eu-added GaN layer can be formed at low cost by growing a GaN three-dimensional structure and growing an Eu-added GaN layer on the high index plane of the GaN three-dimensional structure.
  • a selective growth method is applied to an undoped GaN layer on the (0001) plane to grow a GaN three-dimensional structure having a higher index plane than the (0001) plane on the side surface.
  • the Eu-added GaN layer was grown using the above, the unexpected result that the Eu-added GaN layer having a high index surface can be grown by controlling the growth condition was successfully obtained.
  • a GaN layer having a desired index plane can be obtained over a wide range, and for nitride semiconductor devices having characteristics suitable for various applications.
  • a substrate can be provided.
  • the desired high index surface active layer can be obtained not only by controlling the growth conditions of the active layer but also by controlling the growth conditions in the selective growth.
  • a high index surface can be grown in the same manner by using other rare earth elements instead of Eu. Even if another nitride layer is used in place of the GaN layer, the high index plane can be similarly grown.
  • the shape and size of the mask formed on the base material can be set as appropriate. However, as in the case where Si is added together with Eu, the influence of adding Si together with rare earth elements is avoided. If necessary, it is preferable to grow the three-dimensional structure so that the mask is completely covered.
  • Si is added together with rare earth elements, such as growing a three-dimensional structure without completely covering with a mask and intentionally adding Si to the active layer to prevent light emission of the active layer. You may use the effects of doing things.
  • Si is intentionally added together with the rare earth element to prevent light emission of the active layer, and the effect of adding Si together with the rare earth element is utilized. May be.
  • the substrate for a nitride semiconductor device manufactured as described above does not require processing for cutting out a high index surface in advance, and can be provided at low cost.
  • the invention described in claim 1 A method of manufacturing a nitride semiconductor device substrate using metal nitride, Using a metal nitride as a base material, a mask forming step of forming a mask of a predetermined shape on the base material, A three-dimensional structure of the same material as the base material is grown on the base material on which the mask is formed, using a selective growth method, so that a layer having a higher index surface than the base material is formed on the side surface.
  • a three-dimensional structure growth process An active layer growth step of growing an active layer on which the rare earth element is added to replace the metal element of the metal nitride using a metal organic vapor phase epitaxy method on the side surface of the three-dimensional structure; , In the active layer growth step, the active layer having a desired high index surface is grown by controlling the growth conditions of the active layer.
  • the active layer having a desired high index surface when the active layer is grown, the active layer having a desired high index surface can be grown by controlling the growth conditions, and such an active layer having a high index surface is grown.
  • the nitride semiconductor device substrate By using the nitride semiconductor device substrate, a nitride semiconductor device having characteristics suitable for various applications can be manufactured at low cost.
  • the invention described in claim 2 A method of manufacturing a nitride semiconductor device substrate using metal nitride, Using a metal nitride as a base material, a mask forming step of forming a mask of a predetermined shape on the base material, A three-dimensional structure of the same material as the base material is grown on the base material on which the mask is formed, using a selective growth method, so that a layer having a higher index surface than the base material is formed on the side surface.
  • a three-dimensional structure growth process An active layer growth step of growing an active layer on which the rare earth element is added to replace the metal element of the metal nitride using a metal organic vapor phase epitaxy method on the side surface of the three-dimensional structure; , In the three-dimensional structure growth step, a desired high-index surface active layer is formed on the side surface of the three-dimensional structure by controlling the three-dimensional structure growth conditions. .
  • An active layer having a desired high index surface can also be formed by controlling conditions for growing a three-dimensional structure in which a layer having a higher index surface than the base material is formed on the side surface.
  • the invention according to claim 3 3.
  • the active layer having a higher index plane can be grown by controlling the conditions for growing the three-dimensional structure and controlling the growth conditions when the active layer is grown.
  • the invention according to claim 4 4.
  • the invention described in claim 5 4.
  • the growth temperature can be easily controlled, which is preferable as a growth condition control method.
  • the mask is a mask made of SiO 2 ; 6.
  • SiO 2 or SiN can be used, but the SiO 2 mask material is preferable because it is inexpensive and easily available.
  • the shape and size of the mask formed on the base material can be set as appropriate, but it is necessary to avoid the influence of adding Si together with rare earth elements as in the case where Si is added together with Eu. In some cases, it is preferable to grow the three-dimensional structure so that the mask is completely covered.
  • the invention described in claim 7 The mask is a mask made of SiO 2 ;
  • Si is added along with rare earth elements, such as preventing the active layer from emitting light by growing a three-dimensional structure in a partially exposed state that is not completely covered with a mask, and intentionally adding Si to the active layer.
  • rare earth elements such as preventing the active layer from emitting light by growing a three-dimensional structure in a partially exposed state that is not completely covered with a mask, and intentionally adding Si to the active layer.
  • the invention according to claim 8 provides:
  • the mask is a mask made of SiO 2 ; 6.
  • the characteristics of the active layer can be controlled widely.
  • the invention according to claim 9 is: The method for manufacturing a substrate for a nitride semiconductor device according to any one of claims 1 to 8, wherein the metal nitride is GaN.
  • GaN gallium nitride semiconductors
  • the growth conditions are already well known and can be obtained at low cost.
  • the invention according to claim 10 is: 10. The method for manufacturing a substrate for a nitride semiconductor device according to claim 1, wherein the rare earth element added in the active layer growth step is Eu.
  • Eu is also used in the manufacture of the red light emitting semiconductor element described above, so that the growth conditions of the active layer are already well known and can be obtained at low cost.
  • the invention according to claim 11 The method for manufacturing a substrate for a nitride semiconductor device according to claim 1, further comprising a mask process for masking the formed active layer.
  • the active layer may affect the nitride semiconductor so that the active layer emits red light.
  • the active layer can be masked to prevent the active layer from affecting the nitride semiconductor.
  • the above-described SiO 2 or SiN can be used as the mask.
  • the invention according to claim 12 A nitride semiconductor device substrate manufactured using the method for manufacturing a nitride semiconductor device substrate according to any one of claims 1 to 11.
  • the invention according to claim 13 A nitride semiconductor device substrate using metal nitride, Using a metal nitride as a base material, a mask forming step of forming a mask of a predetermined shape on the base material, A three-dimensional structure of the same material as the base material is grown on the base material on which the mask is formed, using a selective growth method, so that a layer having a higher index surface than the base material is formed on the side surface.
  • a three-dimensional structure growth process An active layer growth step of growing an active layer on which the rare earth element is added to replace the metal element of the metal nitride using a metal organic vapor phase epitaxy method on the side surface of the three-dimensional structure; ,
  • the nitride semiconductor device substrate is manufactured using a method for manufacturing a nitride semiconductor device substrate in which an active layer having a desired high index surface is grown by controlling the growth conditions of the active layer. This is a substrate for a nitride semiconductor device.
  • the invention according to claim 14 A nitride semiconductor device substrate using metal nitride, Using a metal nitride as a base material, a mask forming step of forming a mask of a predetermined shape on the base material, A three-dimensional structure of the same material as the base material is grown on the base material on which the mask is formed, using a selective growth method, so that a layer having a higher index surface than the base material is formed on the side surface.
  • a three-dimensional structure growth process An active layer growth step of growing an active layer on which the rare earth element is added to replace the metal element of the metal nitride using a metal organic vapor phase epitaxy method on the side surface of the three-dimensional structure; ,
  • the three-dimensional structure growth process is performed using a method for manufacturing a nitride semiconductor device substrate in which a desired high-index surface active layer is formed on the side surface of the three-dimensional structure by controlling the three-dimensional structure growth conditions. This is a nitride semiconductor device substrate.
  • a nitride semiconductor element substrate on which an active layer having a desired high index surface is grown can be provided at low cost.
  • the invention according to claim 15 is: A nitride semiconductor device manufactured using the nitride semiconductor device substrate according to any one of claims 12 to 14.
  • a nitride semiconductor element suitable for various applications can be provided easily and inexpensively.
  • the present invention is suitable for a light emitting semiconductor element.
  • the invention described in claim 16 A method of manufacturing a red light emitting semiconductor device using GaN, InN, AlN or a mixed crystal of any two or more thereof, A mask forming step of forming a mask of a predetermined shape on the base material using GaN, InN, AlN or a mixed crystal of any two or more thereof as a base material; A three-dimensional structure of the same material as the base material is grown on the base material on which the mask is formed, using a selective growth method, so that a layer having a higher index surface than the base material is formed on the side surface.
  • a three-dimensional structure growth process An active layer growth step of growing an active layer on which Eu or Pr is added so as to replace Ga, In, or Al by using a metal organic vapor phase epitaxy method on a side surface of the three-dimensional structure;
  • a method for manufacturing a red light emitting semiconductor device characterized by the following.
  • the side surface of the three-dimensional structure has a higher index surface than the base material.
  • a layer can be formed.
  • an active layer such as an Eu-doped GaN layer is grown on the high index surface formed on the side surface of the three-dimensional structure by using an organic metal vapor phase epitaxy method (OMVPE method). An element can be obtained.
  • OMVPE method organic metal vapor phase epitaxy method
  • the invention described in claim 17 The mask is a mask made of SiO 2 ; The method according to claim 16, wherein the three-dimensional structure is grown so as to completely cover the mask.
  • SiO 2 or SiN can be used, but the SiO 2 mask material is preferable because it is inexpensive and easily available.
  • the shape and size of the mask formed on the base material can be set as appropriate. However, as described above, when Si is added together with Eu, red light emission cannot be obtained, so that the mask is completely covered. Thus, it is preferable to grow the three-dimensional structure.
  • the invention according to claim 18 18.
  • the present inventors grow an active layer such as an Eu-doped GaN layer on the side surface of the formed three-dimensional structure, the growth surface of the active layer changes greatly due to a slight difference in the growth temperature, and the light An unexpected result that the output is dramatically improved was obtained.
  • This result shows that when a three-dimensional structure is grown by applying a selective growth method based on the index surface of the base material, and an active layer having Eu or Pr added to the side surface of the three-dimensional structure is grown, the growth temperature is increased. It shows that an active layer having a desired index surface can be obtained over a wide range with a slight control. Then, by growing an active layer having a desired index surface in this way, a red light emitting semiconductor element having a desired high light output can be obtained.
  • Eu is more preferable as an additive element because it has a higher red light emission efficiency than Pr. Eu also has a track record as a red phosphor for color televisions, and it is easier to obtain Eu compounds than Pr.
  • an Eu compound represented by a general formula Eu [C 5 (CH 3 ) 4 R] 2 (R: alkyl group) such as Eu [C 5 (CH 3 ) 5 ] 2 , Eu [C 5 (CH 3 ) 4 H] 2 , Eu ⁇ N [Si (CH 3 ) 3 ] 2 ⁇ 3 , Eu (C 5 H 7 O 2 ) 3 , Eu (C 11 H 19 O 2 ) 3
  • Eu ⁇ N [Si (CH 3 ) 3 ] 2 ⁇ 3 and Eu (C 11 H 19 O 2 ) 3 have a high vapor pressure in the reactor, This is preferable because efficient addition can be performed.
  • the invention according to claim 20 provides A red light emitting semiconductor device manufactured using the method for manufacturing a red light emitting semiconductor device according to any one of claims 16 to 19.
  • red light emitting semiconductor device having an improved light output as compared with the conventional red light emitting semiconductor device, and light emission of the three primary colors of “red, green, and blue” light described above.
  • Great economic effects such as application to diodes, small and high-definition full-color displays, and high-intensity LED illumination can be provided.
  • substrate for nitride semiconductor elements and nitride semiconductor elements which have a desired index surface can be provided easily and cheaply, and the red light emitting semiconductor element provided with the high light emission intensity (light output) Can be provided at low cost.
  • FIG. 1 is a diagram schematically showing a manufacturing process of a red light-emitting semiconductor device according to the present embodiment.
  • Reference numeral 10 denotes a base material template, a sapphire substrate 11, a GaN buffer layer 12, and The undoped GaN layer 13 is configured.
  • Reference numeral 14 denotes a SiO 2 mask layer.
  • a (0001) plane sapphire substrate 11 having a thickness of 430 ⁇ m is prepared, ultrasonically soaked in an organic solvent, and further a cleaning liquid in which hydrochloric acid and ultrapure water are mixed, aqueous ammonia Then, it was washed by immersing in the order of ultrapure water.
  • the sapphire substrate 11 was set in the MOVPE apparatus, and the GaN buffer layer 12 and the undoped GaN layer 13 were grown on the (0001) plane of the sapphire substrate 11.
  • the sapphire substrate 11 was placed on the quartz susceptor tray in the glove box and set on the susceptor of the quartz reaction tube.
  • purified hydrogen gas is introduced into the quartz reaction tube, the pressure is maintained at atmospheric pressure, the sapphire substrate 11 is heated to 475 ° C. while flowing ammonia (NH 3 ) gas, and trimethylgallium (TMGa) is added. By supplying, the GaN buffer layer 12 was grown for 85 seconds.
  • NH 3 ammonia
  • TMGa trimethylgallium
  • the sapphire substrate 11 was further heated to 1150 ° C., and the undoped GaN layer 13 was grown for 30 minutes to produce the base material template 10 shown in FIG.
  • the produced base material template 10 is taken out from the MOVPE apparatus, and an SiO 2 mask layer 14 having a thickness of 100 nm is formed on the undoped GaN layer 13 by using an electron beam evaporation method.
  • an SiO 2 mask layer 14 having a thickness of 100 nm is formed on the undoped GaN layer 13 by using an electron beam evaporation method.
  • photoresist windows are formed in a stripe shape having a width of 5 ⁇ m in the ⁇ 11-20> direction with respect to the undoped GaN layer 13 using photolithography at an interval of 5 ⁇ m, and then SiO 2 with hydrofluoric acid.
  • the mask layer 14 was etched to produce a selective growth substrate.
  • the SiO 2 mask layer 14 was completely covered with the GaN three-dimensional structure 20 by performing the growth of the GaN three-dimensional structure 20 in the following three stages. That is, the first 0.5 hours NH 3 1.5 slm, the TMGa was 1.03sccm supply, the next 0.5 hours 3.0slm NH 3, and the TMGa was 2.06sccm supply, the last 1. For 0 hour, NH 3 was supplied at 4.5 slm and TMGa was supplied at 3.09 sccm to grow the GaN solid structure 20.
  • the growth temperature was divided into three points, and the red light emitting semiconductor device of Example 1 in which the Eu-doped GaN layer was grown at a growth temperature of 940 ° C., the Eu-doped GaN layer was grown at a growth temperature of 960 ° C.
  • the red light-emitting semiconductor device of Example 2 and the red light-emitting semiconductor device of Example 3 in which the Eu-doped GaN layer was grown at a growth temperature of 980 ° C. were obtained.
  • Example 2 growth temperature 960 ° C.
  • the Eu-doped GaN layer 30 was grown at the same growth temperature as the growth temperature of the GaN solid structure 20, but the GaN solid structure 20 was added by the addition of Eu. It was found that the ⁇ 2-201 ⁇ facet surface having a higher index appears as the inclination of the side surface increases as about 75 °.
  • Example 3 growth temperature 980 ° C.
  • the inclination of the side surface of the GaN solid structure 20 is further increased to about 80 °, and a higher index ⁇ 3-301 ⁇ facet surface appears. I understood.
  • a ⁇ 1-101 ⁇ facet plane that is a higher index plane than the (0001) plane can be formed on the side surface, and Eu. It can be confirmed that a high index plane ⁇ 2-201 ⁇ facet surface and ⁇ 3-301 ⁇ facet surface can be easily formed by performing a slight temperature control by addition, and formation of an Eu-doped GaN layer.
  • the ⁇ n ⁇ n01 ⁇ plane 30 is formed on the ⁇ 1-101 ⁇ side surface of the GaN solid structure 20, and various indices are formed on the side surface of the GaN three-dimensional structure. It can be seen that a surface active layer can be formed.
  • the red light-emitting semiconductor element of Example 2 was subjected to photoluminescence (PL) measurement by He-Cd laser excitation (10K). The measurement results are shown in FIG. In FIG. 5, the horizontal axis represents wavelength (nm) and the vertical axis represents PL intensity (au).
  • FIG. 5 shows a red light-emitting semiconductor device manufactured by a conventional method, that is, by growing an Eu-doped GaN layer 30 on a flat undoped GaN layer 13 of a base material template, as shown in FIG.
  • Comparative Example 1 the results of the same measurement are also shown.
  • the red light-emitting semiconductor element of Example 2 and the red light-emitting semiconductor element of Comparative Example 1 have different spectral shapes, and the intensity ratio of the red light emission peak indicating the Eu emission center is also different. That is, it can be seen that one peak is dominant in the red light emitting semiconductor element of Example 2, and the PL intensity (light output) is greatly improved as compared with the red light emitting semiconductor element of Comparative Example 1.
  • red light-emitting semiconductor element of Example 2 and the red light-emitting semiconductor element of Comparative Example 1 have different energy transport efficiencies to the light emission centers, and specific light emission centers were preferentially excited. .
  • the X-ray absorption near edge structure spectrum was measured using the red light emitting semiconductor element of Example 2 in the same manner as described above.
  • the measurement results are shown in FIG. In FIG. 7, the horizontal axis represents photon energy (eV), and the vertical axis represents fluorescent X-ray intensity (au).
  • FIG. 7 shows a red light emitting semiconductor device manufactured by forming an Eu-doped GaN layer 30 on a GaN solid structure 20 in which the SiO 2 mask layer 14 shown in FIG. 8 is not completely covered by the GaN three-dimensional structure 20.
  • the results of the same measurement are also shown.
  • Example 2 since an absorption peak is shown at the same energy position as EuCl 3 having trivalent Eu ions, Eu is added as trivalent Eu ions. It can be seen that the SiO 2 mask layer 14 is covered with the GaN three-dimensional structure 20 to prevent Si from being mixed into the Eu-added GaN layer 30. This can also be seen from the fact that red light is emitted in the photoluminescence shown in FIG.
  • a GaN three-dimensional structure having a high index surface is grown on the base material undoped GaN, and then an Eu-doped GaN layer is formed on the high index surface of the GaN three-dimensional structure. By growing it, a red light-emitting semiconductor element with improved light output can be obtained at a low cost.
  • a nitride semiconductor device substrate having an active layer having a desired index plane over a wide range can be obtained.
  • a nitride semiconductor device having suitable characteristics can be provided at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)

Abstract

 所望の指数面を有する窒化物半導体素子用基板および窒化物半導体素子を容易かつ安価に提供することができ、また、高い発光強度(光出力)を備えた赤色発光半導体素子を安価に提供することができる技術を提供する。 金属窒化物を母材として、母材上に所定の形状のマスクを形成するマスク形成工程と、マスクが形成された母材上に、選択成長法を用いて、母材よりも高指数面の層が側面に形成されるように、母材と同じ材質の立体構造を成長させる立体構造成長工程と、立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程とを備えており、活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる窒化物半導体素子用基板および赤色発光半導体の製造方法。

Description

窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法
 本発明は、窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法に関し、さらに、前記窒化物半導体素子用基板を用いた窒化物半導体素子に関する。
 窒化ガリウム(GaN)などの窒化物半導体は、青色発光デバイスを構成する半導体材料として注目されており、近年では、GaNにインジウム(In)を高濃度添加することにより、緑色さらには赤色発光デバイスを実現できると期待されている。しかし、高In組成になるに従い、In組成の揺らぎやピエゾ電界効果が顕著になるため、窒化物半導体を用いた赤色発光デバイスの実現には至っていないのが現状である。
 一方、窒化物半導体のワイドギャップに着目し、GaNを添加母体として、希土類元素のユーロピウム(Eu)やプラセオジム(Pr)が添加された半導体が赤色発光デバイスとして有望視されている。
 このような状況下、本発明者らは、世界に先駆けてEuまたはPr添加GaNを活性層とする赤色発光ダイオード(LED)の実現に成功した(特許文献1)。
 そして、このような赤色発光ダイオードの実現により、既に開発されている青色発光ダイオードおよび緑色発光ダイオードと併せて、同一基板上に窒化物半導体を用いた光の三原色の発光ダイオードを集積化することが可能となるため、小型で高精細なフルカラーディスプレイや、現在の白色LEDには含まれていない赤色領域の発光が加えられたLED照明などの分野への応用が期待されている。
WO2010/128643 A1公報
 しかしながら、前記した赤色発光ダイオードの光出力は、現状では50μW程度に留まっており、実用化には発光強度(光出力)の更なる向上が求められている。
 赤色発光ダイオードの光出力を向上させるためには、Euの添加濃度を可能な限り増大させることが必要である。
 しかし、従来は、図6に示すように、サファイア基板11の(0001)面上にGaNバッファ層12、およびアンドープGaN層13を成長させて、表面が(0001)面である母材テンプレート10を作製し、その表面にEu添加GaN層30の(0001)面を成長させていたため、Euの添加濃度を大きくした場合、Eu3+のイオン半径が置換されるGa3+のイオン半径に比べて1.5倍大きいことから結晶成長表面の荒れを招き、光出力を向上させることができなかった。
 一方、サファイア基板を(0001)面よりも高指数面に切り出して、この上に高指数面のアンドープGaN層を成長させた母材テンプレートを用いることにより、高指数面のEu添加GaN層を成長させると、不純物添加特性を向上させる結合手の密度が増加してEuの取り込みが促進されるため、光出力の向上を図ることが期待できる。しかし、このような加工にはコストが掛かるため、赤色発光半導体素子の製造コストを大きく上昇させ、一般的には使用することができなかった。
 そこで、本発明は、サファイア基板を高指数の面に切り出すという高価な加工を必要とすることなく、高い発光強度(光出力)を備えた赤色発光半導体素子を安価に製造することができる赤色発光半導体素子の製造技術を提供することを課題とする。
 本発明者は、上記の課題の解決について以下のように検討を行い、本発明を完成するに至った。
 即ち、本発明者は、(0001)面のアンドープGaN層が形成された従来の安価な母材テンプレート上に、予め、(0001)面よりも高指数面のGaN層(アンドープ)を成長させ、この上にEu添加GaN層を成長させることができれば、高指数面に切り出された基板を用いてEu添加GaN層を成長させた場合と同様に、高指数面のEu添加GaN層を成長させることができ、高い発光強度(光出力)を備えた赤色発光半導体素子を安価に製造することができると考えた。
 そして、検討の結果、選択成長法を適用することにより、(0001)面のアンドープGaN層上に、側面に(0001)面よりも高指数の面が形成されたGaN立体構造を成長させることができ、この側面の高指数面を利用してEu添加GaN層を成長させた場合、高指数面に特異な不純物添加特性を利用してEu添加濃度を向上させることができ、高い光出力を得ることができることを見出した。
 具体的には、図1に示すように、サファイア基板11の(0001)面上にGaNバッファ層12、およびアンドープGaN層13を成長させた従来の母材テンプレート10(図1(a))の表面にSiOマスク層14を設けた(図1(b))後、アンドープGaN層13およびSiOマスク層14の上にGaN立体構造20を成長させた(選択成長法)(図1(c))。
 そして、このGaN立体構造20の側面に、アンドープGaN層13の(0001)面に比べてより高指数面である{1-101}ファセット面が形成されていることを確認した(図2)。
 なお、SiがEuとともに添加されるとEuの赤色発光を得ることができないため、上記においてGaN立体構造20は、SiOマスク層14が完全に覆われる状態まで成長させた。
 そして、このGaN立体構造20の側面に形成された{1-101}ファセット面上に{1-101}面のEu添加GaN層30を成長させることにより、従来よりも光出力が向上することを確認した。
 その後、本発明者が、さらに、前記したGaN立体構造の{1-101}ファセット面上にEu添加GaN層を成長させるより好ましい条件について、種々の実験と検討を行ったところ、成長温度の僅かな違いによりEu添加GaN層の成長面が大きく変化し、光出力が飛躍的に向上するという予想もしない結果が得られた。
 即ち、図3に示すように、成長温度が940℃の場合にはGaN立体構造20の側面と同じ{1-101}面が形成されていたのに対して、960℃の場合には{2-201}面、980℃の場合には{3-301}面と、成長温度を僅かに変えることだけでGaN立体構造20の側面に比べてより高指数のファセット面が形成された。
 これは、Euの添加により成長速度が遅くなることに加えて、成長温度の変化に応じてEu添加GaN層の成長モードが変化したため、異なる指数面が形成されたものと推測される。
 そして、このような{2-201}面や{3-301}面のEu添加GaN層における光出力は、前記した{1-101}における光出力に比べ、さらに飛躍的に向上していることが分かった。
 以上のように、本発明者は、選択成長法を適用して母材上のアンドープGaN上に高指数面の側面を有するGaN立体構造を成長させ、その後、このGaN立体構造の高指数面上に成長条件を制御してEu添加GaN層を成長させることにより、従来よりも光出力が向上した赤色発光半導体素子を提供できることを見出した。
 このように光出力が向上した理由としては、高指数面のEu添加GaN層を成長させることにより、前記した結合手の密度の増加に加え、さらに、基板と平行かつストライプ方向と垂直な方向に成長することで、SiOマスク上で基板に拘束されないEu添加GaN層が成長し、Eu添加GaN層が変形することによってイオン半径の大きなEuに起因する歪みが緩和されて、Euの取り込みがより促進されて(即ち、Eu添加濃度が向上)、光出力の向上がもたらされたものと考えられる。
 そして、このような高い光出力のデバイス特性に優れた赤色発光ダイオードの実現により、「赤・緑・青」の光の三原色の発光ダイオードを実用化レベルで集積化することが可能となるため、小型かつ高精細な高出力の発光ダイオードを用いたフルカラーディスプレイを実現することができる。
 また、現在の白色LEDには含まれていない赤色領域の強度の高い発光を加えることにより、現在赤色LEDとして使用されているAlGaInP系LEDの代替のみならず、周囲の温度によって発光波長が変化しないという希土類元素の特性を生かした高輝度LED照明が可能となる。
 なお、以上においては、選択成長法を適用する面として(0001)面を挙げて説明してきたが、(0001)面に限定されず、他の指数面であっても上記の効果と同様の効果を得ることができる。
 また、母材としてGaN、添加元素としてEuを挙げて説明してきたが、特許文献1の場合と同様に、母材としてはGaNに限定されず、InN、AlNまたはこれらの混晶(InGaN、AlGaN等)を母材としても、上記の効果と同様の効果を得ることができる。
 また、添加元素もEuに限定されず、Prを添加元素としても上記の効果と同様の効果を得ることができる。即ち、これらの元素は外殻電子が内殻電子により遮蔽されており、殻内遷移に伴う発光が590nm以上の波長であり、これがNTSC色域、HDTV色域に限定されず、赤みが感じられる光であるため、Euに限定されず、Prであってもよい。
 以上のように、本発明者は、赤色発光半導体素子の作製において、選択成長法を適用して母材のアンドープGaN上に高指数面の側面を有するGaN立体構造を成長させ、その後、このGaN立体構造の高指数面上にEu添加GaN層を成長させることにより、光出力がより向上した赤色発光半導体素子を安価に提供できることを見出した。そして、成長温度など、Eu添加GaN層の成長条件を変化させることにより、種々に高指数面化されたEu添加GaN層を得ることができることを見出した。
 そして、本発明者は、これらの技術により作製された半導体素子は上記した赤色発光半導体素子としての使用に限定されず、他の窒化物半導体素子の作製時の基板として好ましく使用できることに思い至った。
 即ち、GaNやInNなどの窒化物は、大きなワイドギャップを有しており、このワイドギャップを利用することにより、種々の用途に適した窒化物半導体素子を提供することができるが、用途に適した特性を充分に発揮させるためには、その特性に対応した指数面、特に高指数面の窒化物層を基板上に形成させる必要がある。
 一方、本発明者は、上記したように、窒化物半導体素子の一種である赤色発光半導体素子の光出力を向上させる技術を検討する中で、選択成長法を適用して高指数面の側面を有するGaN立体構造を成長させると共に、GaN立体構造の高指数面上にEu添加GaN層を成長させることにより、所望する高指数面のEu添加GaN層を安価に形成することができることを見出した。
 即ち、(0001)面のアンドープGaN層上に、選択成長法を適用して、側面に(0001)面よりも高指数の面が形成されたGaN立体構造を成長させ、この側面の高指数面を利用してEu添加GaN層を成長させた場合、その成長条件を制御することにより、高指数面のEu添加GaN層を成長させることができるという予想もしなかった結果を得ることに成功した。
 このため、上記技術を用いて活性層の成長条件を制御することにより、広い範囲に亘って所望の指数面のGaN層を得ることができ、種々の用途に適した特性の窒化物半導体素子用基板を提供することができる。
 さらに、所望する高指数面の活性層は、活性層の成長条件の制御だけでなく、選択成長における成長条件を制御することによっても得られると考えられる。
 そして、Euの基本的な化学的性質や蒸気圧は他の希土類元素においても大きく相違しないため、Euに替えて他の希土類元素を用いても同様に高指数面を成長させることができ、また、GaN層に替えて他の窒化物層を用いても同様に高指数面を成長させることができる。
 また、母材上に形成するマスクの形状やサイズは、適宜設定することができるが、前記したSiがEuとともに添加された場合のように、希土類元素とともにSiが添加されることによる影響を避ける必要がある場合には、マスクが完全に覆われるように立体構造を成長させることが好ましい。
 なお、上記とは逆に、マスクで完全に覆わずに立体構造を成長させて、Siを意図的に活性層に添加して、活性層の発光を防止するなど、希土類元素とともにSiが添加されることによる影響を利用してもよい。
 なお、マスクで完全に覆った後、立体構造の成長に際して、希土類元素とともにSiを意図的に添加して、活性層の発光を防止するなど、希土類元素とともにSiを添加することによる影響を利用してもよい。
 上記のように作製された窒化物半導体素子用基板は、予め高指数面を切り出す加工などが不要であり、安価に提供することができる。
 請求項1~請求項20に記載の発明は、以上の知見に基づく発明である。
 即ち、請求項1に記載の発明は、
 金属窒化物を用いた窒化物半導体素子用基板の製造方法であって、
 金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
 前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
 前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
を備えており、
 前記活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる
ことを特徴とする窒化物半導体素子用基板の製造方法である。
 本請求項の発明においては、活性層の成長に際して、その成長条件を制御することにより、所望する高指数面の活性層を成長させることができ、このような高指数面の活性層を成長させた窒化物半導体素子用基板を用いることにより、種々の用途に適した特性を備えた窒化物半導体素子を安価に製造することができる。
 請求項2に記載の発明は、
 金属窒化物を用いた窒化物半導体素子用基板の製造方法であって、
 金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
 前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
 前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
を備えており、
 前記立体構造成長工程において、立体構造の成長条件を制御することにより、立体構造の側面に所望する高指数面の活性層を形成させる
ことを特徴とする窒化物半導体素子用基板の製造方法である。
 母材よりも高指数面の層が側面に形成された立体構造を成長させる条件を制御することによっても、所望する高指数面の活性層を形成させることができ、このような高指数面の活性層を成長させた窒化物半導体素子用基板を用いることにより、種々の用途に適した特性を備えた窒化物半導体素子を安価に製造することができる。
 請求項3に記載の発明は、
 前記活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる
ことを特徴とする請求項2に記載の窒化物半導体素子用基板の製造方法である。
 立体構造を成長させる条件を制御すると共に、活性層の成長に際して、その成長条件を制御することにより、より高指数面の活性層を成長させることができる。
 請求項4に記載の発明は、
 前記活性層の成長条件の制御が、成長温度により行われることを特徴とする請求項1または請求項3に記載の窒化物半導体素子用基板の製造方法である。
 請求項5に記載の発明は、
 前記立体構造の成長条件の制御が、成長温度により行われることを特徴とする請求項2または請求項3に記載の窒化物半導体素子用基板の製造方法である。
 活性層の成長条件の制御や立体構造の成長条件の制御において、成長温度は容易に制御することができるため成長条件の制御方法として好ましい。
 請求項6に記載の発明は、
 前記マスクがSiO製のマスクであり、
 前記マスクを完全に覆うように前記立体構造を成長させる
ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子用基板の製造方法である。
 マスク材としては、SiOやSiNなどを使用することができるが、SiOマスク材は、安価で入手も容易であるため好ましい。
 母材上に形成するマスクの形状やサイズは、適宜設定することができるが、前記したSiがEuとともに添加された場合のように、希土類元素とともにSiが添加されることによる影響を避ける必要がある場合には、マスクが完全に覆われるように立体構造を成長させることが好ましい。
 請求項7に記載の発明は、
 前記マスクがSiO製のマスクであり、
 前記マスクを完全には覆わないように前記立体構造を成長させて、Siを意図的に活性層に添加する
ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子用基板の製造方法である。
 マスクで完全には覆わず、一部を露出させた状態で立体構造を成長させて、Siを意図的に活性層に添加して、活性層の発光を防止するなど、希土類元素と共にSiが添加されることによる影響を利用することにより、活性層の特性を幅広く制御することができる。
 請求項8に記載の発明は、
 前記マスクがSiO製のマスクであり、
 前記マスクを完全に覆うように前記立体構造を成長させた後、Siを意図的に活性層に添加する
ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子用基板の製造方法である。
 マスクを完全に覆うように立体構造を成長させた後、Siを意図的に活性層に添加して、活性層の発光を防止するなど、希土類元素と共にSiを添加することによる影響を利用することによっても、活性層の特性を幅広く制御することができる。
 請求項9に記載の発明は、
 前記金属窒化物が、GaNであることを特徴とする請求項1ないし請求項8のいずれか1項に記載の窒化物半導体素子用基板の製造方法である。
 窒化物半導体を形成する金属窒化物の内でも、GaNは一般的に使用されているため成長条件が既によく分かっており、また、安価に入手することができる。
 請求項10に記載の発明は、
 前記活性層成長工程において添加される希土類元素が、Euであることを特徴とする請求項1ないし請求項9のいずれか1項に記載の窒化物半導体素子用基板の製造方法である。
 Euは、前記した赤色発光半導体素子の製造にも用いられているため活性層の成長条件が既によく分かっており、また、安価に入手することができる。
 請求項11に記載の発明は、
 さらに、形成された前記活性層をマスクするマスク工程を備えていることを特徴とする請求項1ないし請求項10のいずれか1項に記載の窒化物半導体素子用基板の製造方法である。
 例えば、Eu添加GaN層を活性層とする窒化物半導体素子用基板上に窒化物半導体を形成すると活性層が赤色発光するように、窒化物半導体に対して活性層が影響を与える場合がある。このような恐れがある場合には、活性層をマスクすることにより、窒化物半導体に対する活性層の影響を防止することができる。
 なお、マスクとしては、前記したSiOやSiNなどを使用することができる。
 請求項12に記載の発明は、
 請求項1ないし請求項11のいずれか1項に記載の窒化物半導体素子用基板の製造方法を用いて作製されていることを特徴とする窒化物半導体素子用基板である。
 請求項13に記載の発明は、
 金属窒化物を用いた窒化物半導体素子用基板であって、
 金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
 前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
 前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
を備えており、
 前記活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる
窒化物半導体素子用基板の製造方法を用いて作製されていることを特徴とする窒化物半導体素子用基板である。
 請求項14に記載の発明は、
 金属窒化物を用いた窒化物半導体素子用基板であって、
 金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
 前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
 前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
を備えており、
 前記立体構造成長工程において、立体構造の成長条件を制御することにより、立体構造の側面に所望する高指数面の活性層を形成させる
窒化物半導体素子用基板の製造方法を用いて作製されていることを特徴とする窒化物半導体素子用基板である。
 上記した各製造方法を用いることにより、所望の高指数面を有する活性層を成長させた窒化物半導体素子用基板を安価に提供することができる。
 請求項15に記載の発明は、
 請求項12ないし請求項14のいずれか1項に記載の窒化物半導体素子用基板を用いて作製されていることを特徴とする窒化物半導体素子である。
 安価な窒化物半導体素子用基板を用いているため、各種の用途に適した窒化物半導体素子を容易かつ安価に提供することができる。特に、本発明は発光半導体素子に好適である。
 請求項16に記載の発明は、
 GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶を用いた赤色発光半導体素子の製造方法であって、
 GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
 前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
 前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、EuまたはPrがGa、InあるいはAlと置換するように添加された活性層を成長させる活性層成長工程と
を備えていることを特徴とする赤色発光半導体素子の製造方法である。
 本請求項の発明においては、母材上にマスクを設けて選択成長法を用いて母材と同じ材質からなる立体構造を成長させることにより、立体構造の側面に母材よりも高指数面の層を形成させることができる。
 そして、立体構造の側面に形成された高指数面上に、有機金属気相エピタキシャル法(OMVPE法)を用いてEu添加GaN層などの活性層を成長させることにより、高い光出力の赤色発光半導体素子を得ることができる。
 請求項17に記載の発明は、
 前記マスクがSiO製のマスクであり、
 前記マスクを完全に覆うように前記立体構造を成長させる
ことを特徴とする請求項16に記載の赤色発光半導体素子の製造方法である。
 マスク材としては、SiOやSiNなどを使用することができるが、SiOマスク材は、安価で入手も容易であるため好ましい。
 母材上に形成するマスクの形状やサイズは、適宜設定することができるが、前記したように、SiがEuとともに添加されると赤色発光を得ることができなくなるため、マスクが完全に覆われるように立体構造を成長させることが好ましい。
 また、請求項18に記載の発明は、
 前記活性層成長工程において、成長温度を制御することにより、所望する指数面を有する前記活性層を成長させることを特徴とする請求項16または請求項17に記載の赤色発光半導体素子の製造方法である。
 前記したように、本発明者は形成された立体構造の側面にEu添加GaN層などの活性層を成長させた場合、成長温度の僅かな違いにより活性層の成長面が大きく変化して、光出力が飛躍的に向上するという予想もしない結果を得た。
 この結果は、母材の指数面に基づいて選択成長法を適用して立体構造を成長させ、さらに、立体構造の側面にEuやPrが添加された活性層を成長させた場合、成長温度を僅かに制御するだけで、広い範囲に亘って所望する指数面の活性層が得られることを示している。そして、このように所望する指数面の活性層を成長させることにより、所望の高い光出力の赤色発光半導体素子を得ることができる。
 本発明者の知る範囲において、このような知見は未だ知られていない。
 なお、成長温度を制御することにより活性層の成長モードを変えること以外に、他の制御方法により活性層の成長モードを変えることも考えられるが、成長温度は容易に制御することができるため、活性層の成長モードを制御する方法として好ましい。
 また、請求項19に記載の発明は、
 前記活性層成長工程において添加される元素が、Euであることを特徴とする請求項16ないし請求項18のいずれか1項に記載の赤色発光半導体素子の製造方法である。
 Euは、Prに比べて赤色発光効率が高いため、添加元素としてより好ましい。また、Euはカラーテレビの赤色蛍光体としての実績もあり、Prに比べてEu化合物の入手も容易である。
 なお、具体的なEu源としては、例えば、Eu[C(CH等の一般式Eu[C(CHR](R:アルキル基)で示されるEu化合物、Eu[C(CHH]、Eu{N[Si(CH、Eu(C、Eu(C1119等を挙げることができるが、これらの内でも、Eu{N[Si(CHやEu(C1119は、反応装置内での蒸気圧が高く、効率的な添加を行うことができるため好ましい。
 また、請求項20に記載の発明は、
 請求項16ないし請求項19のいずれか1項に記載の赤色発光半導体素子の製造方法を用いて作製されていることを特徴とする赤色発光半導体素子である。
 上記した各製造方法を用いることにより、従来の赤色発光半導体素子に比べて光出力が向上した赤色発光半導体素子を提供することができ、前記した「赤・緑・青」の光の三原色の発光ダイオード、小型かつ高精細なフルカラーディスプレイ、高輝度LED照明への応用など大きな経済的効果を提供することができる。
 本発明によれば、所望の指数面を有する窒化物半導体素子用基板および窒化物半導体素子を容易かつ安価に提供することができ、また、高い発光強度(光出力)を備えた赤色発光半導体素子を安価に提供することができる。
本発明に係る赤色半導体の製造工程を模式的に説明する図である。 選択成長法により形成されたGaN立体構造の断面の走査型電子顕微鏡写真である。 本発明に係る赤色半導体の製造方法において形成されたEu添加GaN層の走査型電子顕微鏡写真である。 本発明に係る赤色半導体の構成を模式的に示す図である。 赤色発光半導体素子のフォトルミネッセンスの測定結果の一例を示す図である。 従来の赤色発光半導体素子の構成を模式的に示す図である。 赤色発光半導体素子のX線吸収端近傍構造スペクトルの測定結果の一例を示す図である。 SiOマスク層が完全には覆われていない赤色発光半導体素子の構成を模式的に示す図である。
 以下、実施例を挙げて本発明を具体的に説明する。
1.赤色発光半導体素子の製造
 図1は、本実施の形態に係る赤色発光半導体素子の製造工程を模式的に示す図であり、10は母材テンプレートであり、サファイア基板11、GaNバッファ層12、およびアンドープGaN層13より構成されている。また、14はSiOマスク層である。
(1)母材テンプレートの作製
 最初に、厚さが430μmの(0001)面サファイア基板11を用意し、有機溶媒に浸して超音波洗浄し、さらに塩酸と超純水を混合した洗浄液、アンモニア水、超純水の順に浸して洗浄した。
 次に、サファイア基板11をMOVPE装置内にセットし、GaNバッファ層12およびアンドープGaN層13をサファイア基板11の(0001)面上に成長させた。
 具体的には、サファイア基板11をパスボックスに導入して窒素ガスで置換した後に、グローブボックス内の石英サセプタトレイにサファイア基板11を載置し、石英反応管のサセプタにセットした。
 その後、純化した水素ガスを石英反応管に導入し、圧力を大気圧状態に保持して、アンモニア(NH)ガスを流しながらサファイア基板11を475℃まで昇温させ、トリメチルガリウム(TMGa)を供給することにより、GaNバッファ層12を85秒間成長させた。
 その後、さらに、サファイア基板11を1150℃まで昇温させ、アンドープGaN層13を30分間成長させて、図1(a)に示す母材テンプレート10を作製した。
 なお、上記に替えて、予め上記の構造が形成された市販の母材テンプレートを用いることもできる。
(2)マスク層の形成
 次に、作製された母材テンプレート10をMOVPE装置から取り出し、電子ビーム蒸着法を用いて、膜厚100nmのSiOマスク層14をアンドープGaN層13の上に形成させて、図1(b)に示す選択成長用基板を作製した。
 具体的には、フォトリソグラフィーを用いてアンドープGaN層13に対して<11-20>方向に5μm幅のストライプ形状にフォトレジストの窓を間隔5μmにて形成した後、フッ化水素酸によりSiOマスク層14をエッチングすることにより、選択成長用基板を作製した。
(3)GaN立体構造の形成
 作製した選択成長用基板をMOVPE装置の反応管内へ導入し、成長圧力70kPa、成長温度960℃の雰囲気下、NHおよびTMGaを供給して、選択成長法により、図1(c)に示すようなGaN立体構造20を成長させた。
 このとき、次工程であるEu添加GaN層の形成において、Eu添加GaN層にSiが添加されると発光させることができないため、アンドープGaN層13およびSiOマスク層14がGaN立体構造20により完全に覆われるようにGaN立体構造20を成長させる必要がある。
 本実施例においては、GaN立体構造20の成長を以下の3段階に分けて行うことにより、GaN立体構造20によりSiOマスク層14を完全に覆った。即ち、最初の0.5時間はNHを1.5slm、TMGaを1.03sccm供給し、次の0.5時間はNHを3.0slm、TMGaを2.06sccm供給し、最後の1.0時間はNHを4.5slm、TMGaを3.09sccm供給して、GaN立体構造20の成長を行った。
 成長したGaN立体構造20の断面を走査型電子顕微鏡により観察したところ、図2に示すように、GaN立体構造20の側面には{1-101}ファセット面が形成されており、また、SiOマスク層14が完全に覆われていることが確認できた。
(4)Eu添加GaN層の形成
 次に、1.5slmのNHを反応管に流しながら、成長圧力70kPaの雰囲気下、
1.03sccmのTMGa、およびEu(DPM)(トリスジピバロイルメタナトユウロピウム)をキャリアガスに水素を用いて、キャリアガス流量1.5slmとして150℃に保持して反応管に供給することにより、GaN立体構造20の{1-101}ファセット面上にEu添加GaN層30を40分間成長させて、図1(d)に示す赤色発光半導体素子を得た。
 なお、このとき、成長温度を3点に分けて、成長温度940℃でEu添加GaN層を成長させた実施例1の赤色発光半導体素子、成長温度960℃でEu添加GaN層を成長させた実施例2の赤色発光半導体素子、および成長温度980℃でEu添加GaN層を成長させた実施例3の赤色発光半導体素子を得た。
 形成されたそれぞれのEu添加GaN層30の断面を走査型電子顕微鏡により観察したところ、図3に示すように、実施例1(成長温度940℃)ではGaN立体構造20に現れた側面の{1-101}ファセット面が保たれたまま成長していた。
 これに対して、実施例2(成長温度960℃)では、GaN立体構造20の成長温度と同じ成長温度でEu添加GaN層30を成長させたにも拘わらず、Euの添加によりGaN立体構造20の側面の傾きが約75°と大きくなって、より高指数の{2-201}ファセット面が現れていることが分かった。
 また、実施例3(成長温度980℃)の場合には、GaN立体構造20の側面の傾きが約80°とさらに大きくなって、さらに高指数の{3-301}ファセット面が現れていることが分かった。
 なお、このとき、図3に示すように、実施例2(成長温度960℃)、実施例3(成長温度980℃)、いずれの場合においても、GaN立体構造20の先端部分では、(0001)面が出現している。
 以上より、選択成長法を適用してGaN立体構造を形成させることにより、その側面に(0001)面よりも高指数面である{1-101}ファセット面を形成させることができ、さらに、Eu添加により僅かな温度制御を行うだけで、さらに高指数面である{2-201}ファセット面や{3-301}ファセット面を容易に形成させることができることが確認でき、Eu添加GaN層の形成に際してその成長条件を変化させることにより、図4に示すように、GaN立体構造20の{1-101}側面上に{n-n01}面30が形成され、GaN立体構造の側面に種々の指数面の活性層を形成できることが分かる。
2.光出力(フォトルミネッセンス)の評価
 実施例2の赤色発光半導体素子について、He-Cdレーザー励起によるフォトルミネッセンス(PL)測定を行った(10K)。測定結果を図5に示す。なお、図5において、横軸は波長(nm)、縦軸はPL強度(a.u.)である。
 なお、図5には、従来の方法、即ち、図6に示すように、母材テンプレートの平坦なアンドープGaN層13上にEu添加GaN層30を成長させることにより作製された赤色発光半導体素子を比較例1として、同様に測定を行った結果を併せて示した。
 図5より、実施例2の赤色発光半導体素子と比較例1の赤色発光半導体素子とではスペクトル形状が異なり、Euの発光中心を示す赤色発光のピークの強度比も異なっていることが分かる。即ち、実施例2の赤色発光半導体素子においては一つのピークが支配的になって、比較例1の赤色発光半導体素子に比べてPL強度(光出力)が大きく向上していることが分かる。
 このように一つのピークが支配的になっていることは、比較例1の赤色発光半導体素子においては数多く存在していた発光中心の種類が、実施例2の赤色発光半導体素子のように高指数面を使用することにより、発光中心の形成されやすさに違いが生じて、発光中心の形成が制御されていることを示している。
 これは、実施例2の赤色発光半導体素子と比較例1の赤色発光半導体素子とでは、発光中心へのエネルギー輸送効率が異なり、それぞれ特定の発光中心が優先的に励起されたためであると考えられる。
 そして、図5では、さらに、Eu原子周りの歪みが緩和されたことを示すピークの波長の長波長側へのシフトも観察されている。
 これは、実施例2の赤色発光半導体素子と比較例1の赤色発光半導体素子とでは、表面の異なる結晶面方位により表面付近における歪みの様子に違いが生じてEu周辺局所構造が変化したことにより、Eu3+イオンの準位に違いを生じさせて上記のピークシフトが生じたものと考えられる。
3.SiOマスク層の影響についての評価
 次に、Eu添加GaN層30の形成に際して、SiOマスク層14がGaN立体構造20により覆われていることの有無による赤色発光への影響をX線吸収端近傍構造スペクトルにより評価した。
 具体的には、上記と同様に、実施例2の赤色発光半導体素子を用いてX線吸収端近傍構造スペクトルを測定した。測定結果を図7に示す。なお、図7において、横軸は光子エネルギー(eV)、縦軸は蛍光X線強度(a.u.)である。
 なお、図7には、図8に示すSiOマスク層14がGaN立体構造20により完全には覆われていないGaN立体構造20上にEu添加GaN層30を形成して作製した赤色発光半導体素子を用いて比較例2として、同様に測定した結果を併せて示した。
 図7より、比較例2の場合、二価のEuイオンを持つEuSと同様なエネルギー位置に吸収ピークが示されていることから、二価のEuイオンとしてEuが添加されていることが分かる。これは、SiOマスク層14のSiがEu添加GaN層30に混入していることを示している。このため、この構造では、フォトルミネッセンスを測定しても、赤色発光しない二価のEuのため赤色発光が観察されていない。
 これに対して、実施例2の場合には、三価のEuイオンを持つEuClと同様なエネルギー位置に吸収ピークが示されていることから、三価のEuイオンとしてEuが添加されていることが分かり、SiOマスク層14をGaN立体構造20で覆うことにより、SiのEu添加GaN層30への混入が防止されていることが分かる。このことは、図5に示したフォトルミネッセンスにおいて、赤色発光を示していることからも分かる。
 そして、この結果より、SiOマスク層を完全に覆ってGaN立体構造を形成させる必要があることが分かる。
 以上の通り、本発明を適用することにより、母材のアンドープGaN上に高指数面の側面を有するGaN立体構造を成長させ、その後、このGaN立体構造の高指数面上にEu添加GaN層を成長させることにより、光出力がより向上した赤色発光半導体素子を安価に得ることができる。
 そして、この技術を窒化物半導体素子用基板の製造に適用することにより、広い範囲に亘って所望の指数面の活性層を有する窒化物半導体素子用基板を得ることができるため、種々の用途に適した特性の窒化物半導体素子を安価に提供することができる。
 以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。
10         母材テンプレート
11         サファイア基板
12         GaNバッファ層
13         アンドープGaN層
14         SiOマスク層
20         GaN立体構造
30         Eu添加GaN層

Claims (20)

  1.  金属窒化物を用いた窒化物半導体素子用基板の製造方法であって、
     金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
     前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
     前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
    を備えており、
     前記活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる
    ことを特徴とする窒化物半導体素子用基板の製造方法。
  2.  金属窒化物を用いた窒化物半導体素子用基板の製造方法であって、
     金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
     前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
     前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
    を備えており、
     前記立体構造成長工程において、立体構造の成長条件を制御することにより、立体構造の側面に所望する高指数面の活性層を形成させる
    ことを特徴とする窒化物半導体素子用基板の製造方法。
  3.  前記活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる
    ことを特徴とする請求項2に記載の窒化物半導体素子用基板の製造方法。
  4.  前記活性層の成長条件の制御が、成長温度により行われることを特徴とする請求項1または請求項3に記載の窒化物半導体素子用基板の製造方法。
  5.  前記立体構造の成長条件の制御が、成長温度により行われることを特徴とする請求項2または請求項3に記載の窒化物半導体素子用基板の製造方法。
  6.  前記マスクがSiO製のマスクであり、
     前記マスクを完全に覆うように前記立体構造を成長させる
    ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子用基板の製造方法。
  7.  前記マスクがSiO製のマスクであり、
     前記マスクを完全には覆わないように前記立体構造を成長させて、Siを意図的に活性層に添加する
    ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子用基板の製造方法。
  8.   前記マスクがSiO製のマスクであり、
     前記マスクを完全に覆うように前記立体構造を成長させた後、Siを意図的に活性層に添加する
    ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体素子用基板の製造方法。
  9.  前記金属窒化物が、GaNであることを特徴とする請求項1ないし請求項8のいずれか1項に記載の窒化物半導体素子用基板の製造方法。
  10.  前記活性層成長工程において添加される希土類元素が、Euであることを特徴とする請求項1ないし請求項9のいずれか1項に記載の窒化物半導体素子用基板の製造方法。
  11.  さらに、形成された前記活性層をマスクするマスク工程を備えていることを特徴とする請求項1ないし請求項10のいずれか1項に記載の窒化物半導体素子用基板の製造方法。
  12.  請求項1ないし請求項11のいずれか1項に記載の窒化物半導体素子用基板の製造方法を用いて作製されていることを特徴とする窒化物半導体素子用基板。
  13.  金属窒化物を用いた窒化物半導体素子用基板であって、
     金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
     前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
     前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
    を備えており、
     前記活性層成長工程において、活性層の成長条件を制御することにより、所望する高指数面の活性層を成長させる
    窒化物半導体素子用基板の製造方法を用いて作製されていることを特徴とする窒化物半導体素子用基板。
  14.  金属窒化物を用いた窒化物半導体素子用基板であって、
     金属窒化物を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
     前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
     前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、希土類元素が前記金属窒化物の金属元素と置換するように添加された活性層を成長させる活性層成長工程と
    を備えており、
     前記立体構造成長工程において、立体構造の成長条件を制御することにより、立体構造の側面に所望する高指数面の活性層を形成させる
    窒化物半導体素子用基板の製造方法を用いて作製されていることを特徴とする窒化物半導体素子用基板。
  15.  請求項12ないし請求項14のいずれか1項に記載の窒化物半導体素子用基板を用いて作製されていることを特徴とする窒化物半導体素子。
  16.  GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶を用いた赤色発光半導体素子の製造方法であって、
     GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶を母材として、前記母材上に所定の形状のマスクを形成するマスク形成工程と、
     前記マスクが形成された前記母材上に、選択成長法を用いて、前記母材よりも高指数面の層が側面に形成されるように、前記母材と同じ材質の立体構造を成長させる立体構造成長工程と、
     前記立体構造の側面上に、有機金属気相エピタキシャル法を用いて、EuまたはPrがGa、InあるいはAlと置換するように添加された活性層を成長させる活性層成長工程と
    を備えていることを特徴とする赤色発光半導体素子の製造方法。
  17.  前記マスクがSiO製のマスクであり、
     前記マスクを完全に覆うように前記立体構造を成長させる
    ことを特徴とする請求項16に記載の赤色発光半導体素子の製造方法。
  18.  前記活性層成長工程において、成長温度を制御することにより、所望する指数面を有する前記活性層を成長させることを特徴とする請求項16または請求項17に記載の赤色発光半導体素子の製造方法。
  19.  前記活性層成長工程において添加される元素が、Euであることを特徴とする請求項16ないし請求項18のいずれか1項に記載の赤色発光半導体素子の製造方法。
  20.  請求項16ないし請求項19のいずれか1項に記載の赤色発光半導体素子の製造方法を用いて作製されていることを特徴とする赤色発光半導体素子。
PCT/JP2013/070903 2012-08-23 2013-08-01 窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法 WO2014030516A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014531567A JP6048896B2 (ja) 2012-08-23 2013-08-01 窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法
US14/422,185 US9455376B2 (en) 2012-08-23 2013-08-01 Substrate for nitride semiconductor device and production method thereof, and red light emitting semiconductor device and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184347 2012-08-23
JP2012184347 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030516A1 true WO2014030516A1 (ja) 2014-02-27

Family

ID=50149826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070903 WO2014030516A1 (ja) 2012-08-23 2013-08-01 窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法

Country Status (4)

Country Link
US (1) US9455376B2 (ja)
JP (1) JP6048896B2 (ja)
TW (1) TWI597861B (ja)
WO (1) WO2014030516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181432A1 (ja) * 2021-02-25 2022-09-01 国立大学法人大阪大学 希土類添加窒化物半導体素子とその製造方法、半導体led、半導体レーザー

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716986B (zh) * 2018-09-03 2021-01-21 國立大學法人大阪大學 氮化物半導體裝置與其基板及添加稀土類元素之氮化物層的形成方法,以及紅色發光裝置
KR102620159B1 (ko) 2018-10-08 2024-01-02 삼성전자주식회사 반도체 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091703A (ja) * 1998-09-11 2000-03-31 Sony Corp 半導体発光素子およびその製造方法
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
JP2006005044A (ja) * 2004-06-16 2006-01-05 Rohm Co Ltd 窒化物系半導体発光素子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029301A (ko) 2001-08-22 2004-04-06 소니 가부시끼 가이샤 질화물 반도체소자 및 질화물 반도체소자의 제조방법
JP3899936B2 (ja) * 2002-01-18 2007-03-28 ソニー株式会社 半導体発光素子及びその製造方法
US7118928B2 (en) * 2002-12-02 2006-10-10 University Of Cincinnati Method of forming a semiconductor phosphor layer by metalorganic chemical vapor deposition for use in light-emitting devices
US8409897B2 (en) 2009-05-07 2013-04-02 Osaka University Production method of red light emitting semiconductor device
US20130313514A1 (en) * 2012-05-23 2013-11-28 Samsung Electronics Co., Ltd. Semiconductor light emitting device
US9136434B2 (en) * 2013-01-07 2015-09-15 Invenlux Limited Submicro-facet light-emitting device and method for fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091703A (ja) * 1998-09-11 2000-03-31 Sony Corp 半導体発光素子およびその製造方法
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
JP2006005044A (ja) * 2004-06-16 2006-01-05 Rohm Co Ltd 窒化物系半導体発光素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181432A1 (ja) * 2021-02-25 2022-09-01 国立大学法人大阪大学 希土類添加窒化物半導体素子とその製造方法、半導体led、半導体レーザー

Also Published As

Publication number Publication date
TW201414006A (zh) 2014-04-01
TWI597861B (zh) 2017-09-01
JPWO2014030516A1 (ja) 2016-07-28
US9455376B2 (en) 2016-09-27
US20150214434A1 (en) 2015-07-30
JP6048896B2 (ja) 2016-12-27

Similar Documents

Publication Publication Date Title
JP4631884B2 (ja) 閃亜鉛鉱型窒化物半導体自立基板、閃亜鉛鉱型窒化物半導体自立基板の製造方法、及び閃亜鉛鉱型窒化物半導体自立基板を用いた発光装置
US20090206320A1 (en) Group iii nitride white light emitting diode
JP2005286338A (ja) 4h型ポリタイプ基板上に形成された4h型ポリタイプ窒化ガリウム系半導体素子
JP5279006B2 (ja) 窒化物半導体発光素子
JP2001160627A5 (ja)
JP2010258096A (ja) 窒化物半導体発光素子
KR20010076261A (ko) 반도체 소자 및 그 제조 방법
JP6222684B2 (ja) 赤色発光半導体素子とその製造方法
WO2018159531A1 (ja) AlInN膜および2次元フォトニック結晶共振器とこれらの製造方法ならびに半導体発光素子
JP6048896B2 (ja) 窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法
JP2008028121A (ja) 半導体発光素子の製造方法
JP5896454B2 (ja) 赤色発光半導体素子とその製造方法
JPH09116130A (ja) 3−5族化合物半導体とその製造方法および発光素子
JP2017139247A (ja) エピタキシャルウエハ、半導体発光素子、発光装置及びエピタキシャルウエハの製造方法
JP4548117B2 (ja) 半導体発光素子の製造方法、集積型半導体発光装置の製造方法、画像表示装置の製造方法および照明装置の製造方法
JP4140595B2 (ja) 窒化ガリウム系化合物半導体
KR101210970B1 (ko) 산화아연 결정성 막대를 가지는 발광 다이오드 및 이의 제조방법
JP6450061B2 (ja) 赤色発光半導体素子とその製造方法
JP4172444B2 (ja) 窒化ガリウム系化合物半導体の製造方法
JP5251185B2 (ja) 化合物半導体基板及びそれを用いた発光素子並びに化合物半導体基板の製造方法
JP3661871B2 (ja) 窒化ガリウム化合物半導体の製造方法
WO2022181432A1 (ja) 希土類添加窒化物半導体素子とその製造方法、半導体led、半導体レーザー
JP2004200723A (ja) 3−5族化合物半導体の結晶性向上方法
JP2006310886A (ja) 3−5族化合物半導体発光素子
JP2005020025A (ja) 窒化ガリウム系化合物半導体及び半導体基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831596

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014531567

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831596

Country of ref document: EP

Kind code of ref document: A1