WO2014027503A1 - ニッケル酸化鉱製錬における排水処理方法 - Google Patents

ニッケル酸化鉱製錬における排水処理方法 Download PDF

Info

Publication number
WO2014027503A1
WO2014027503A1 PCT/JP2013/066589 JP2013066589W WO2014027503A1 WO 2014027503 A1 WO2014027503 A1 WO 2014027503A1 JP 2013066589 W JP2013066589 W JP 2013066589W WO 2014027503 A1 WO2014027503 A1 WO 2014027503A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
nickel oxide
oxide ore
solid
slurry
Prior art date
Application number
PCT/JP2013/066589
Other languages
English (en)
French (fr)
Inventor
康雄 吉井
敬介 柴山
京田 洋治
佳智 尾崎
中井 修
宏之 三ツ井
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US14/419,543 priority Critical patent/US9561972B2/en
Priority to AU2013303653A priority patent/AU2013303653B2/en
Priority to EP13879291.6A priority patent/EP2883969B1/en
Priority to CN201380040874.3A priority patent/CN104508160B/zh
Publication of WO2014027503A1 publication Critical patent/WO2014027503A1/ja
Priority to PH12015500251A priority patent/PH12015500251A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]

Definitions

  • the present invention relates to a wastewater treatment method in nickel oxide ore smelting, and more specifically, to generate aluminum starch with high density from acidic wastewater containing aluminum ions discharged in smelting of nickel oxide ore. It relates to a wastewater treatment method that can be performed.
  • This application claims priority on the basis of Japanese Patent Application No. 2012-179413 filed on Aug. 13, 2012 in Japan. By referring to these applications, the present application Incorporated.
  • the heavy metal ions are released by separating the heavy metal ions from the wastewater as wastewater starch by providing a wastewater treatment process. To prevent it from being contained in wastewater.
  • a method for separating heavy metals from the acidic wastewater it is generally performed to adjust the pH of the wastewater by adding an alkali such as limestone or slaked lime to precipitate and fix the heavy metal as a starch as a slurry. Is called.
  • an alkali such as limestone or slaked lime
  • non-ferrous metals ore of low-grade nickel oxide ore such as laterite ore tends to contain a relatively large amount of manganese, which is a heavy metal.
  • HPAL process high-temperature pressure acid leaching process
  • Patent Document 1 discloses a so-called oxidation / neutralization method in which the pH of acidic waste water is adjusted to a range of 8.2 to 8.8, and then oxygen gas is blown to maintain a redox potential in a range of 50 to 300 mV. A method for selectively precipitating and separating only manganese without using magnesium to coprecipitate has been reported.
  • Patent Document 2 discloses a method of separating aluminum by adjusting the pH of the wastewater in the range of 4 to 6 in advance prior to the oxidation neutralization treatment of the acidic wastewater. By using this method, coprecipitation of magnesium and aluminum can be prevented, and aluminum can be effectively separated.
  • the aluminum starch formed by the method of Patent Document 2 has a problem of becoming very bulky and bulky when handled. This is because the aluminum starch particles are fine, the water content in the starch is high, and a significant portion of magnesium in the waste water tends to be contained as adhering water. Further, the specific gravity of aluminum starch is as light as 1.05 to 1.10 g / ml, which is almost the same as that of waste water, so that the starch is difficult to settle. Furthermore, there are many inconvenient features such that air is engulfed during stirring and a honeycomb-like void is easily generated in the starch. In particular, in the case of acidic waste water in which the concentration of aluminum ions exceeds 2 g / l, these tendencies tend to be remarkable.
  • thickeners are often used for industrial solid-liquid separation.
  • a flocculant is added, and the solid content in the slurry supplied to the thickener settles at the bottom of the thickener to form a starch called underflow, which is taken out from the thickener as appropriate. Since some liquid adheres to the taken out underflow, it is necessary to dispose of the dehydrated starch by fine filtration using a filter press or the like.
  • Patent Document 3 discloses a method for solid-liquid separation of a hard-to-settling and hard-to-filter slurry.
  • the method described in Patent Document 3 is a method of treating a hard-to-seduce and hard-to-filter slurry containing colloidal silica, and a method for improving the sedimentation and filterability has been proposed.
  • bentonite is added to a slurry containing colloidal silica to improve sedimentation and filterability.
  • Patent Document 3 has little effect on components other than colloidal silica such as magnesium, and since bentonite is newly added from the outside, the amount of starch is increased by the addition of bentonite. Cannot be ignored, and there is a limit to application.
  • high-density aluminum starch and waste water from which aluminum is removed are obtained from acidic waste water containing aluminum in addition to manganese and magnesium, such as waste water discharged in the smelting of nickel oxide ore. No suitable method has been developed.
  • the present invention has been proposed in view of such a situation, and high concentration aluminum having a high density and a small amount of adhering water from an acidic drainage containing aluminum ions discharged in nickel oxide ore refining.
  • a wastewater treatment method capable of separating and recovering starch is provided.
  • the present inventors added a solid material containing iron to the acidic wastewater containing aluminum ions when neutralizing with an alkali. As a result, it was found that high-density and high-concentration aluminum starch can be formed, and the present invention has been completed.
  • the wastewater treatment method in the nickel oxide ore smelting according to the present invention is a treatment method of acidic wastewater discharged in the smelting of nickel oxide ore, and in the acidic wastewater containing aluminum ions, alkali and iron It is characterized in that an aluminum starch and waste water are produced by adding a solid containing a slurry to form a slurry, and solidifying the slurry by solid-liquid separation.
  • the pH of the acidic waste water it is preferable to adjust the pH of the acidic waste water to 4.0 or more by adding the alkali.
  • the solid matter containing iron in an amount corresponding to 50% by weight or more and 200% by weight or less of the amount of aluminum starch produced when the solid is not added. Furthermore, among them, it is preferable to add the solid material containing iron so that the specific gravity of the slurry is in the range of 1.1 g / ml to 1.4 g / ml.
  • the solid containing iron is preferably a leaching residue obtained by adding sulfuric acid to the nickel oxide ore and leaching at a high temperature.
  • the present invention since solids containing iron are added to perform neutralization treatment, formation of voids in the obtained starch is suppressed, and a high-density aluminum starch is obtained. Can do. Further, since the formation of voids is suppressed, the adhering liquid component can be reduced, a high-concentration aluminum starch can be obtained, and an efficient recovery process is possible.
  • FIG. 1 is a diagram schematically showing a cross-sectional state (a state of void formation) of aluminum starch obtained by (A) a conventional wastewater treatment method, and (B) is a wastewater according to the present embodiment. It is the figure which showed typically the mode of the cross section of the aluminum starch obtained by a processing method.
  • FIG. 2 is a process diagram of a hydrometallurgical method using high-temperature pressure acid leaching of nickel oxide ore.
  • FIG. 3 is a photograph of an aluminum starch obtained by a conventional wastewater treatment method (Comparative Example 1).
  • FIG. 4 is a photograph of an aluminum starch obtained by the wastewater treatment method (Example 1) according to this embodiment.
  • this embodiment of a wastewater treatment method in nickel oxide ore smelting according to the present invention will be described in detail in the following order with reference to the drawings.
  • this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably.
  • Overview 2. Hydrometallurgical method of nickel oxide ore Wastewater treatment method 4.
  • the wastewater treatment method according to the present embodiment is a wastewater treatment method for acidic wastewater discharged in the smelting of nickel oxide ore.
  • This wastewater treatment method makes it possible to separate and collect high-concentration aluminum starch with high density and low adhesion moisture from acidic wastewater containing aluminum in addition to manganese and magnesium, and is easy to handle.
  • a chemical agent such as a neutralizing agent
  • the wastewater treatment method in this nickel oxide ore smelting is carried out by adding an alkali and solid matter containing iron to acidic wastewater containing aluminum ions to form a slurry, which is left to stand and solidify. By separating the liquid, aluminum starch and waste water are produced.
  • the neutralization treatment is performed by adding an alkali and the solid matter containing iron is added.
  • the solid containing the added iron acts as a nucleus (seed) for starch formation.
  • the formation of voids in the starch is suppressed, and an aluminum starch having a large specific gravity is obtained.
  • the aluminum starch in which the formation of such voids is suppressed does not increase its bulk and is easy to handle.
  • the amount of adhering water decreases, resulting in high-concentration aluminum starch, enabling efficient starch recovery without increasing the equipment capacity during solid-liquid separation, and neutralization used after recovery. The agent can be saved effectively.
  • High ⁇ Pressure Acid Leach has attracted attention as a method for hydrometallizing nickel oxide ore. Unlike conventional general nickel oxide ore dry smelting methods, this method does not include dry processes such as reduction and drying processes, and is a consistent wet process, which is advantageous in terms of energy and cost. . Moreover, it has the advantage that the nickel sulfide which improved nickel quality can be obtained (refer patent document 5). Below, the hydrometallurgical method using the high temperature pressurization acid leaching method is demonstrated as a specific example.
  • FIG. 2 shows an example of a process diagram of a hydrometallurgical method using high-temperature pressure acid leaching of nickel oxide ore.
  • the hydrometallurgical method of nickel oxide ore is a solid-liquid separation into a leaching step S1 for leaching a metal such as nickel or cobalt from nickel oxide ore, and a leaching solution and a leaching residue from the obtained leaching slurry.
  • a solid-liquid separation step S2 a neutralization step S3 for neutralizing the leachate and separating it into a nickel recovery mother liquor and a neutralized starch slurry, and performing sulfuration treatment by blowing hydrogen sulfide gas into the sulfuric acid aqueous solution as the mother liquor
  • a sulfiding step S4 for obtaining a sulfide containing nickel and cobalt and a poor liquid (acidic drainage).
  • Leaching step S1 sulfuric acid is added to the nickel oxide ore slurry, and the mixture is stirred at a temperature of 220 to 280 ° C. to form a leaching slurry composed of a leaching solution and a leaching residue.
  • a high-temperature pressurized container autoclave
  • laterite ores such as limonite or saprolite ore are mainly mentioned.
  • the nickel content of this laterite ore is usually 0.8 to 2.5% by weight, and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral.
  • the iron content is 10 to 50% by weight and is mainly in the form of trivalent hydroxide (goethite), but partly divalent iron is contained in the siliceous clay.
  • the leaching step S1 a leaching reaction represented by the following formulas (i) to (v) and a high-temperature thermal hydrolysis reaction occurred, leaching as sulfates such as nickel and cobalt, and leaching. Immobilization of iron sulfate as hematite is performed. However, since the immobilization of iron ions does not proceed completely, the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
  • the slurry concentration in the leaching step S1 is not particularly limited, but is preferably adjusted so that the slurry concentration of the leaching slurry is 15 to 45% by weight.
  • the addition amount of sulfuric acid used in the leaching step S1 is not particularly limited, and an excessive amount is used so that iron in the ore is leached. For example, 300 to 400 kg per ton of ore. If the amount of sulfuric acid added per ton of ore exceeds 400 kg, the sulfuric acid cost increases, which is not preferable.
  • the multistage washing method in the solid-liquid separation step S2 is not particularly limited, but it is preferable to use a continuous countercurrent washing method (CCD method: Counter Current Decantation) in which a countercurrent is brought into contact with a nickel-free washing solution. .
  • CCD method Counter Current Decantation
  • the cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be 95% or more.
  • the leaching residue separated and recovered is a solid substance containing iron, which can be added in a wastewater treatment method described in detail later, and is a core for fixing aluminum in wastewater as starch. Can act as
  • Neutralization step S3 the pH of the leachate is 4.0 or less, preferably 3.2 to 3.8, while suppressing oxidation of the leachate separated in the solid-liquid separation step S2. Calcium carbonate or the like is added to form a mother liquor for nickel recovery and a neutralized starch slurry containing trivalent iron.
  • the neutralization treatment of the leachate is performed in this manner, so that the excess acid used in the leaching step S1 by high-temperature pressure acid leaching is neutralized, and the trivalent remaining in the solution Remove iron and aluminum ions.
  • the pH of the leachate exceeds 4.0, the generation of nickel hydroxide increases.
  • the neutralized starch slurry obtained in the neutralization step S3 can be sent to the solid-liquid separation step S2 as necessary. Thereby, nickel contained in the neutralized starch slurry can be effectively recovered. Specifically, by repeating the neutralized starch slurry to the solid-liquid separation step S2 operated at a low pH condition, the neutralized starch adhering water and the neutralized starch surface are simultaneously cleaned with the leaching residue. The dissolution of nickel hydroxide produced by the local reaction can be promoted, and the nickel content that causes recovery loss can be reduced.
  • the zinc When zinc is contained in the mother liquor, the zinc can be selectively separated as sulfides prior to the formation of nickel and cobalt sulfides by the sulfurization reaction.
  • the sulfurization reaction As a process for selectively separating this zinc, by creating weak conditions during the sulfidation reaction and suppressing the speed of the sulfidation reaction, the coprecipitation of nickel with a high concentration compared to zinc is suppressed, and zinc is selectively used. To remove.
  • the mother liquor is an aqueous sulfuric acid solution containing nickel and cobalt obtained through leaching of nickel oxide ore and neutralization step S3 as described above.
  • the pH is 3.2 to 4.0
  • the nickel concentration is 2 to 5 g / L
  • the cobalt concentration is 0.1 to 1.0 g / L
  • the impurity component is, for example, iron, Including magnesium, manganese, aluminum, etc.
  • This impurity metal component varies greatly depending on the redox potential of leaching, the operating conditions of the autoclave, and the ore quality, but generally, iron, magnesium, manganese, aluminum, and other impurity metal elements are about several g / L. include.
  • Metals such as iron, magnesium, manganese, and aluminum, which are impurity metal components contained in the sulfuric acid aqueous solution, are present in a relatively large amount relative to the recovered nickel and cobalt, but the stability in the form of sulfide is low. Therefore, these impurity metal components are not contained in the formed sulfide, but are contained in a poor solution (sulfurization treatment final solution) obtained by removing the formed sulfide. .
  • the poor solution has a pH of about 1.0 to 3.0.
  • the sulfide containing nickel and cobalt and the poor liquid containing impurity metal components produced in the sulfidation step S4 are separated and recovered by subjecting the slurry to sedimentation separation using a sedimentation separator such as thickener. Specifically, the sulfide as a precipitate is recovered from the bottom of the thickener, and the poor liquid as an aqueous solution component is overflowed and recovered.
  • a poor liquid containing an impurity metal component separated and recovered here is treated as a wastewater source liquid.
  • Wastewater treatment method Next, the waste water treatment method in the smelting of nickel oxide ore according to the present embodiment will be described.
  • the poor liquid obtained through the above-described sulfurization step S4 of nickel oxide ore smelting is treated as a wastewater source liquid.
  • the poor solution obtained through the sulfidation step S4 is waste water after recovering the sulfide of nickel or cobalt obtained by subjecting the sulfuric acid aqueous solution, which is the mother liquor, to sulfidation, iron, Acidic wastewater containing aluminum in addition to magnesium, manganese, etc. Therefore, when discharging this poor liquid (acid waste water) out of the system, it is necessary to perform a waste water treatment for removing residual metal ions in the poor liquid.
  • Solids containing iron have a higher specific gravity than the resulting aluminum starch, and by adding this together with alkali, the wastewater is neutralized, and at the same time, the solids become the core of the formed aluminum starch. (Seed). This improves the sedimentation and filterability during solid-liquid separation, can suppress the formation of honeycomb-like voids in the gaps between the fine aluminum starches, and increase the bulk. It is possible to produce a high-concentration aluminum starch by suppressing the liquid component (water) from adhering to the surface.
  • FIG. 3 shows a photograph of an aluminum starch obtained by a conventional wastewater treatment method.
  • FIG. 3 it can be seen that the formed aluminum starch has dents due to the formation of voids therein and is very bulky.
  • FIG. 4 shows the wastewater treatment method according to the present embodiment, that is, an aluminum starch obtained by adding an alkali to acidic wastewater and adding a solid containing iron and separating the slurry into solid and liquid. It is a photograph figure of a thing. As shown in FIG. 4, it can be seen that the voids are clearly reduced, the density is increased, and the bulk is very low as compared with the aluminum starch obtained by the conventional method.
  • the alkali is not particularly limited as long as it can be neutralized by raising the pH of the acidic waste water.
  • calcium carbonate or calcium hydroxide can be used, and among them, calcium carbonate from the viewpoint of economy. Is preferably used.
  • the pH adjustment of acidic wastewater it is not necessary to raise the pH to about 6.0, which is necessary for the formation of aluminum starch, because a solid material containing iron, which is the core of starch generation described later, is added. Moreover, it is not necessary to adjust from the beginning to the pH range of 8.5 to 9.5, which is necessary for discharging the waste water. Specifically, the pH value to be adjusted may be raised to about pH 4.0 to 5.0 which can prevent dissolution of the solid material containing iron added to the acidic waste water.
  • the iron-containing solid matter is not particularly limited as long as it is a core of the generation of aluminum starch.
  • the leaching residue obtained in the leaching step of nickel oxide ore smelting is obtained by mixing nickel oxide ore and sulfuric acid and leaching at a high temperature and high pressure of 240 to 260 ° C., as described above. Mainly hematite.
  • the leaching residue recovered in the smelting process can be effectively utilized, and an efficient treatment can be performed. it can.
  • this leaching residue has a relatively small specific gravity difference from the slurry obtained by adding an alkali, it is possible to more efficiently produce a high-density aluminum starch.
  • the amount of iron-containing solids added is not particularly limited, but the amount corresponding to 50% to 200% by weight of the aluminum starch produced when the solids are not added (when not added) It is preferable to set the amount corresponding to 50% by weight or more and 100% by weight or less. In addition, about this addition amount, the test of not adding a solid substance may be performed in advance, and may be appropriately determined based on the test result.
  • the amount of solids containing iron is preferably an amount corresponding to 50% by weight or more and 200% by weight or less of the aluminum starch when not added, and 50% by weight in view of clarity. More preferably, the amount corresponds to not less than 100% and not more than 100% by weight.
  • the amount of the solid containing iron is such that the concentration of the slurry obtained by adding the alkali and the solid is in the range of 1.1 g / ml to 1.4 g / ml. It is more preferable.
  • the specific gravity of the aluminum starch obtained by the conventional wastewater treatment method is as small as around 1.1 g / ml. For this reason, for example, if a heavy leaching residue of about 5.24 g / ml or more is added as it is, the difference in specific gravity is too large to make starch nuclei difficult to form, and only the leaching residue precipitates first to form a layer, It may not be possible to prevent the formation of starch.
  • the aluminum ion concentration of acidic wastewater discharged in nickel oxide ore smelting can be as high as about 2 to 6 g / l, so that honeycomb-like starch is easily formed.
  • the solid matter such as leaching residue so that the concentration of the resulting slurry is in the range of 1.1 g / ml to 1.4 g / ml, the solid matter is generated into aluminum starch. It is possible to effectively act as a nucleus of the honeycomb and to reliably prevent the formation of a honeycomb-like starch.
  • the specific gravity of pure hematite is about 5.2 to 5.3 g / ml, but the leaching residue obtained by high-temperature pressure leaching of industrial nickel oxide ore includes silicon (SiO 2) in addition to hematite. 2 )
  • Main components include gangue, chromite (Cr 3 O 4 ), manganese oxide, various components such as gypsum produced by neutralization, and their specific gravity may be smaller than hematite, The specific gravity of the actual leach residue is smaller than this.
  • the timing of addition of the alkali and the solid containing iron is not particularly limited, but first, the alkali is added to the acid wastewater to increase the pH, and then the pH is adjusted. It is more preferable to add a solid material containing.
  • Patent Document 4 proposes a method for reducing the SS of the supernatant liquid by improving the sedimentation characteristics of the neutralized starch to improve the filterability as well as making the neutralization facility compact.
  • the pH of the acidic wastewater is increased by adding an alkali so that the added solid matter such as leaching residue does not dissolve, A solid containing iron is added to the pH-adjusted slurry.
  • a solid containing iron is added to the pH-adjusted slurry.
  • the obtained slurry is allowed to stand and solid-liquid separation is performed.
  • solid-liquid separation is performed in this manner, the aluminum starch having improved sedimentation properties gradually settles and can be separated and recovered from the bottom by a solid-liquid separation device such as a thickener.
  • the waste water obtained by separating the aluminum starch overflows and is recovered.
  • the wastewater treatment method in the nickel oxide ore smelting according to the present embodiment includes an alkali and an iron-containing solid matter in acidic drainage containing aluminum ions discharged by smelting. Add and neutralize. Then, the obtained slurry is allowed to stand and subjected to solid-liquid separation to produce aluminum starch and waste water.
  • Nickel oxide ore was mixed by adding 200 to 300 kg of concentrated sulfuric acid per ton of ore so that the slurry concentration was 1400 to 1500 g / l.
  • the slurry was charged into a pressure leaching device, heated to a temperature of 245 ° C. and subjected to a leaching treatment over 1 hour, and the slurry was taken out after 1 hour.
  • the extracted slurry was maintained at 90 ° C., and 20 wt% calcium carbonate slurry was added to the slurry, and neutralized until the pH became 2.2 (25 ° C. conversion). Thereafter, solid-liquid separation was performed using Nutsche and filter paper to obtain a leachate and a leach residue. The obtained leaching residue was recovered by washing with water to remove the attached acid.
  • the drainage source liquid having the composition shown in Table 1 above is placed in a cylindrical container made of transparent acrylic having an inner diameter of 100 mm and a height of 800 mm while maintaining a liquid temperature of about 50 to 65 ° C. Calcium slurry was added to adjust the pH to 5.0.
  • the above-described leaching residue was added as a seed crystal and stirred, and the liquid was allowed to stand to observe the sedimentation of the residue (aluminum starch) visually.
  • the addition amount of the leaching residue was determined in advance by measuring the amount of neutralized starch generated when only slaked lime was added to the wastewater (corresponding to Comparative Example 1 described later), and the amount was equivalent to this amount (equivalent). .
  • the supernatant is collected, passed through a membrane filter having a pore size of 0.5 ⁇ m, the filter is dried at 60 ° C. for 48 hours, and the weight is measured to determine the concentration of suspended solids (SS).
  • SS suspended solids
  • Example 2 Example 1 except that the drainage source liquid having the composition shown in Table 1 above was used, and the amount of leaching residue added was equivalent to 50% by weight of the amount of neutralized starch generated when only slaked lime was added. It processed in the same way.
  • the precipitated starch was observed, no void was found in the starch, and a high-density starch was obtained. Moreover, when the height of the starch was measured, it was 67 mm from the bottom. The drainage up to the upper surface of the starch was separated, the dry weight of the collected starch was measured, and the packed density was calculated from the measured starch height, which was 25%.
  • the SS concentration was 400 mg / l.
  • Example 3 In the neutralization treatment using the drainage source liquid having the composition shown in Table 1 above, first, the calcium carbonate slurry was added to adjust the pH to the range of 4 to 6, and then it was confirmed that the pH became stable. In the same manner as in Example 1, except that the leaching residue was added. The leaching residue was added and dispersed uniformly, and then the pH was maintained at 4 to 6 while stirring was continued.
  • the SS concentration measured after collecting the supernatant after standing was 100 mg / l, and the clarity was high. However, when the height of the starch was measured, it was 140 mm from the bottom, and the density was very low at 15 to 17%. Further, when the porridge was collected and observed, ant nest-like voids were observed, and when the starch was poke with the collecting spoon, the voids were crushed and dents were formed as shown in the photographic diagram of FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

 ニッケル酸化鉱製錬において排出されるアルミニウムイオンを含有する酸性排水 から、密度が高く、高濃度なアルミニウム澱物を分離回収することを可能にする排水処理方法を提供することを目的とする。本発明では、アルミニウムイオンを含有する酸性排水に、アルカリと鉄を含有する固形物とを添加してスラリーとし、そのスラリーを静置して固液分離することによって、アルミニウム澱物と排水とを生成させる。

Description

ニッケル酸化鉱製錬における排水処理方法
 本発明は、ニッケル酸化鉱製錬における排水処理方法に関し、より詳しくは、ニッケル酸化鉱の製錬において排出される、アルミニウムイオンを含有する酸性排水から、密度の高いアルミニウム澱物を生成させることができる排水処理方法に関する。
 本出願は、日本国において2012年8月13日に出願された日本特許出願番号特願2012-179413を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
 非鉄金属の鉱山や製錬所等の重金属イオンを含有する酸性排水が発生する工場においては、排水処理工程を設けて排水から重金属イオンを排水澱物として分離することで、その重金属イオンが放流される排水に含有されないようにする処理が行われる。
 例えば、その酸性排水から重金属を分離する方法としては、石灰石や消石灰等のアルカリを添加することによって、排水のpHを調整してスラリーとして重金属を澱物として析出させ固定することが一般的に行われる。
 非鉄金属の中でも、ラテライト鉱のような低品位のニッケル酸化鉱の鉱石には、重金属であるマンガンが比較的多量に含有される傾向がある。近年多く用いられるようになってきた高温加圧酸浸出プロセス(HPALプロセス)を用いたニッケル製錬では、マンガンはニッケルを回収した後の排水に残留する。このため、そのまま放流されて河川を着色する等の影響が生じないように、排水にアルカリを添加し、中和澱物としてマンガンを分離する方法が採られる。
 しかしながら、その際、マグネシウム等の沈殿分離の必要がない他の金属イオンも同時に澱物を形成し、澱物量が増加するという問題があった。沈殿分離の必要のない金属イオンまでもが澱物を形成すると、中和に要するアルカリの使用量やコストが増加したり、廃棄場所の容量を圧迫する等の好ましくない影響が生じる。
 そこで、沈殿の不要なマグネシウムを共沈殿させずに、マンガンのみを選択的に沈殿させて分離する方法が求められてきた。
 例えば、特許文献1では、酸性排水のpHを8.2~8.8の範囲に調整した後、酸素ガスを吹き込んで酸化還元電位を50~300mVの範囲に維持する、いわゆる酸化・中和法を用いることで、マグネシウムを共沈殿させることなく、マンガンのみを選択的に沈殿させて分離する方法が報告されている。
 しかしながら、この方法においても、液中にアルミニウムイオンが含まれている場合には、マグネシウムとアルミニウムが同時に沈澱してしまい、中和剤がマンガンを除去する以上にマグネシウムを中和する分まで必要となることや、澱物発生量が増加するという課題は十分に解消されていなかった。
 そのため、特許文献2では、酸性排水の酸化中和処理に先立って、予め排水のpHを4~6の範囲に調整してアルミニウムを分離する方法が示されている。この方法を用いることにより、マグネシウムとアルミニウムとの共沈澱を防ぎ、アルミニウムを効果的に分離することが可能となる。
 しかしながら、特許文献2の方法で形成されるアルミニウム澱物は、非常に嵩高い澱物となり、取り扱う際にかさ張るという問題があった。これは、アルミニウム澱物の粒子が微細で、澱物中の含水率が高く、排水中のマグネシウムのかなりの部分が付着水として含有される傾向があるためである。また、アルミニウム澱物の比重は、1.05~1.10g/ml程度とほとんど排水と変わらない程度に軽いので、澱物が沈降し難い。さらに、攪拌時に空気を巻き込んで澱物内に蜂の巣状の空隙を生成し易い等の不都合な特徴が多くある。特に、アルミニウムイオンの濃度が2g/lを超えるような酸性排水の場合には、これらの傾向が顕著となる性質があった。
 さらに、固液分離を工業的に行うに際しては、シックナーを用いることが多い。シックナーを用いた操業では、凝集剤が添加され、シックナーに供給されたスラリー中の固体分はシックナーの底部に沈降してアンダーフローと呼ばれる澱物となり、適宜シックナーから取り出される。取り出されたアンダーフローには、多少の液が付着するので、フィルタープレス等を用いて精濾過して脱水された澱物を処分することを要する。
 このとき、アンダーフローに付着する液が少ない、すなわち高濃度なアンダーフローであれば、シックナーやフィルタープレス等の濾過設備の大きさを節約でき、さらに分離後の付着液を中和処理するために添加する中和剤も節約できる等、好ましいことになる。しかしながら、特に、上述したような蜂の巣状の澱物が形成された場合では、精濾過に要するアンダーフローの物量が増加してしまうので、それだけ設備容量が増加する等のコスト的な問題もある。
 難沈降性及び難濾過性のスラリーを固液分離する方法としては、例えば特許文献3に示される方法がある。この特許文献3に記載の方法は、コロイド状シリカを含有する難沈降性で難濾過性のスラリーの処理方法であって、沈降性及び濾過性を改善するための方法が提案されている。具体的には、コロイド状シリカを含むスラリーにベントナイトを添加し、沈降性及び濾過性を向上させるというものである。
 しかしながら、この特許文献3に記載の方法は、マグネシウム等のコロイダル状シリカ以外の成分に対しては殆ど効果がなく、また新たに外部からベントナイトを添加するため、そのベントナイトの添加による澱物量の増加が無視できず、適用するには限界がある。
 以上のように、ニッケル酸化鉱の製錬において排出される排水のように、マンガン、マグネシウムのほかにアルミニウムを含有する酸性排水から、密度の高いアルミニウム澱物とアルミニウムを除去した排水とを得ることができる適切な方法は開発されていない。
特開平09-248576号公報 特開2010-207674号公報 特開2000-126510号公報 特開2004-225120号公報 特開2005-350766号公報
 そこで、本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱製錬において排出されるアルミニウムイオンを含有する酸性排水から、密度が高く、付着水分の少ない高濃度なアルミニウム澱物を分離回収することができる排水処理方法を提供する。
 本発明者らは、上述した目的を達成するために鋭意検討を重ねた結果、そのアルミニウムイオンを含有する酸性排水に対して、アルカリによる中和処理を行うに際し、鉄を含有する固形物を添加することにより、密度が高く、また高濃度なアルミニウム澱物を形成させることができることを見出し、本発明を完成させた。
 すなわち、本発明に係るニッケル酸化鉱製錬における排水処理方法は、ニッケル酸化鉱の製錬において排出される酸性排水の処理方法であって、アルミニウムイオンを含有する上記酸性排水に、アルカリと、鉄を含有する固形物とを添加してスラリーとし、該スラリーを静置して固液分離することによって、アルミニウム澱物と排水とを生成させること特徴とする。
 ここで、上述した排水処理方法において、上記酸性排水に上記アルカリを添加して得られたスラリーに、上記鉄を含有する固形物を添加することが好ましい。
 また、上記アルカリを添加して、上記酸性排水のpHを4.0以上に調整することが好ましい。
 また、上記鉄を含有する固形物を、該固形物を添加しない場合において生成するアルミニウム澱物量の50重量%以上200重量%以下に相当する量添加することが好ましい。さらに、その中でも、上記スラリーの比重が1.1g/ml以上1.4g/ml以下の範囲となるように、上記鉄を含有する固形物を添加することが好ましい。
 また、上記鉄を含有する固形物は、上記ニッケル酸化鉱を硫酸を添加して高温加圧浸出して得られた浸出残渣であることが好ましい。
 本発明によれば、鉄を含有する固形物を添加して中和処理を行うようにしているので、得られる澱物中における空隙の形成が抑制されて、密度の高いアルミニウム澱物を得ることができる。また、空隙の形成が抑制されるので、付着する液体成分を低減することができ、高濃度なアルミニウム澱物を得ることができ、効率的な回収処理を可能にする。
 さらに好ましくは、アルカリを添加した後に鉄を含有する固形物を添加することによって、排水中における浮遊固形物の生成を抑制して、アルミニウム澱物を分離して得られる排水の清澄度を高めることができる。
図1は、(A)が従来の排水処理方法により得られるアルミニウム澱物の断面の様子(空隙形成の様子)を模式的に示した図であり、(B)が本実施の形態に係る排水処理方法により得られるアルミニウム澱物の断面の様子を模式的に示した図である。 図2は、ニッケル酸化鉱石の高温加圧酸浸出法による湿式製錬方法の工程図である。 図3は、従来の排水処理方法(比較例1)により得られたアルミニウム澱物の写真図である。 図4は、本実施の形態に係る排水処理方法(実施例1)により得られたアルミニウム澱物の写真図である。
 以下、本発明に係るニッケル酸化鉱製錬における排水処理方法の具体的な実施形態(以下、「本実施の形態」という。)について、図面を参照しながら以下の順序で詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更することができる。
 1.概要
 2.ニッケル酸化鉱石の湿式製錬方法
 3.排水処理方法
 4.実施例
 <1.概要>
 本実施の形態に係る排水処理方法は、ニッケル酸化鉱の製錬において排出される酸性排水の排水処理方法である。この排水処理方法は、マンガン、マグネシウムのほかにアルミニウムを含有する酸性排水から、密度が高く、付着水分の少ない高濃度なアルミニウム澱物を分離回収することを可能にするものであり、取り扱いが容易で、中和剤等の薬剤の使用量を低減させるとともに濾過処理等の効率を向上させることを可能にする。
 具体的に、このニッケル酸化鉱製錬における排水処理方法は、アルミニウムイオンを含有する酸性排水に、アルカリと、鉄を含有する固形物とを添加してスラリーとし、そのスラリーを静置して固液分離することによって、アルミニウム澱物と排水とを生成させる。
 従来、アルミニウムを含有する酸性排水に対して、中和剤を添加してpH4~6の範囲に調整して中和処理を施すことで、他の不純物金属成分と分離してアルミニウム澱物を回収するようにしていた。しかしながら、このような方法によって得られるアルミニウム澱物は、例えば図1(A)にその断面模式図を示すように、非常に多数の大きな空隙(図中の丸○形状表示)が形成され、蜂の巣状の澱物となり、そのために嵩が高くなって取り扱いが困難であった。また、空隙が形成されることにより、その空隙を介して付着する液体成分(水分)が多くなり、固液分離に際しては設備容量を大きくしなければならず、非常に手間とコストを要していた。さらに、澱物回収後、その付着水分を多量の中和剤を用いて中和処理することが必要となっていた。
 これに対して、本実施の形態に係る排水処理方法では、上述したように、アルカリを添加して中和処理を施すとともに鉄を含有する固形物を添加するようにしているので、中和によってアルミニウム澱物が形成される過程において、添加した鉄を含有する固形物が澱物形成の核(種)として作用するようになる。
 これにより、例えば図1(B)にその断面模式図を示すように、澱物中において空隙の形成が抑制されて、比重の大きなアルミニウム澱物となる。このような空隙の形成が抑制されたアルミニウム澱物では、その嵩が高くならず、取り扱いが容易となる。また、付着する水分量も減少するので、高濃度なアルミニウム澱物となり、固液分離に際して設備容量を大きくすることなく、効率的な澱物回収を行うことができ、さらに回収後に使用する中和剤を効果的に節約することができる。
 以下、より具体的に、本実施の形態に係るニッケル酸化鉱の製錬において発生する排水の処理方法について順に説明する。
 <2.ニッケル酸化鉱石の湿式製錬方法>
 先ず、本実施の形態に係る排水処理方法の具体的な説明に先立ち、ニッケル酸化鉱の湿式製錬方法について説明する。
 近年、ニッケル酸化鉱の湿式製錬方法として、硫酸を用いた高温加圧酸浸出法(High Pressure Acid Leach)が注目されている。この方法は、従来の一般的なニッケル酸化鉱石の乾式製錬法とは異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利となる。また、ニッケル品位を向上させたニッケル硫化物を得ることができるという利点を有している(特許文献5を参照。)。以下では、その高温加圧酸浸出法を用いた湿式製錬方法を具体例として説明する。
 図2に、ニッケル酸化鉱石の高温加圧酸浸出法による湿式製錬方法の工程図の一例を示す。図2に示すように、ニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石からニッケル、コバルト等の金属を浸出する浸出工程S1と、得られた浸出スラリーから浸出液と浸出残渣とに固液分離する固液分離工程S2と、浸出液を中和しニッケル回収用の母液と中和澱物スラリーとに分離する中和工程S3と、母液である硫酸水溶液に硫化水素ガスを吹き込んで硫化処理を行いニッケル及びコバルトを含む硫化物と貧液(酸性排水)とを得る硫化工程S4とを有する。
 (1)浸出工程
 浸出工程S1では、ニッケル酸化鉱石のスラリーに硫酸を添加し、220~280℃の温度下で攪拌処理して、浸出液と浸出残渣とからなる浸出スラリーを形成する。浸出工程S1では、例えば高温加圧容器(オートクレーブ)が用いられる。
 浸出工程S1で用いるニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。このラテライト鉱のニッケル含有量は、通常0.8~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、鉄の含有量は、10~50重量%であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。
 具体的に、浸出工程S1においては、下記の式(i)~(v)で表される浸出反応と高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。
 ・浸出反応
MO+HSO ⇒ MSO+HO  ・・(i)
 (なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す。)
2Fe(OH)+3HSO ⇒ Fe(SO+6HO  ・・(ii)
FeO+HSO ⇒ FeSO+HO  ・・(iii)
 ・高温熱加水分解反応
2FeSO+HSO+1/2O ⇒ Fe(SO+HO  
                                                   ・・(iv)
Fe(SO+3HO⇒ Fe+3HSO  ・・(v)
 浸出工程S1におけるスラリー濃度は、特に限定されるものではないが、浸出スラリーのスラリー濃度が15~45重量%になるように調整することが好ましい。また、浸出工程S1で用いる硫酸添加量は、特に限定されるものではなく、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300~400kgとする。鉱石1トン当りの硫酸添加量が400kgを超えると、硫酸コストが大きくなり好ましくない。
 (2)固液分離工程
 固液分離工程S2では、浸出工程S1で形成される浸出スラリーを多段洗浄して、ニッケル及びコバルトを含む浸出液と浸出残渣とを得る。
 固液分離工程S2における多段洗浄方法としては、特に限定されるものではないが、ニッケルを含まない洗浄液で向流に接触させる連続向流洗浄法(CCD法:Counter Current Decantation)を用いることが好ましい。これによって、系内に新たに導入する洗浄液を削減できるとともに、ニッケル及びコバルトの回収率を95%以上とすることができる。
 なお、ここで、分離回収された浸出残渣は、鉄を含有する固形物であり、後で詳述する排水処理方法において添加することができ、排水中のアルミニウムを澱物として固定する際の核として作用させることができる。
 (3)中和工程
 中和工程S3では、固液分離工程S2にて分離された浸出液の酸化を抑制しながら、その浸出液のpHが4.0以下、好ましくは3.2~3.8となるように炭酸カルシウム等を添加し、ニッケル回収用の母液と3価の鉄を含む中和澱物スラリーとを形成する。中和工程S3では、このようにして浸出液の中和処理を行うことで、高温加圧酸浸出による浸出工程S1で用いた過剰の酸の中和を行うとともに、溶液中に残留する3価の鉄イオンやアルミニウムイオン等を除去する。なお、浸出液のpHが4.0を超えると、ニッケルの水酸化物の発生が多くなる。
 中和工程S3で得られる中和澱物スラリーは、必要に応じて固液分離工程S2へ送ることができる。これによって、中和澱物スラリーに含まれるニッケルを効果的に回収することができる。具体的には、中和澱物スラリーを、低いpH条件で操業される固液分離工程S2へ繰返すことによって、浸出残渣の洗浄と同時に中和澱物の付着水と中和澱物表面での局所反応により生成した水酸化ニッケルの溶解を促進させることができ、回収ロスとなるニッケル分を低減することができる。
 (4)硫化工程
 硫化工程S4では、中和工程S3において得られたニッケル回収用の母液である硫酸水溶液に硫化水素ガスを吹き込んで硫化反応を生じさせ、ニッケル及びコバルトを含む硫化物と貧液とを生成する。
 母液中に亜鉛が含まれる場合には、硫化反応によりニッケル及びコバルトの硫化物を形成させるに先立って、亜鉛を硫化物として選択的に分離する処理を行うことができる。この亜鉛を選択分離する処理としては、硫化反応の際に弱い条件を作り出して硫化反応の速度を抑制することによって、亜鉛と比較して濃度の高いニッケルの共沈を抑制し、亜鉛を選択的に除去する。
 母液は、上述のようにニッケル酸化鉱石を浸出して中和工程S3を経て得られた、ニッケル及びコバルトを含む硫酸水溶液である。具体的には、例えば、pHが3.2~4.0で、ニッケル濃度が2~5g/L、コバルト濃度が0.1~1.0g/Lであり、また不純物成分として、例えば鉄、マグネシウム、マンガン、アルミニウム等を含む。この不純物金属成分は、浸出の酸化還元電位、オートクレーブの操業条件、及び鉱石品位により大きく変化するが、一般的には、鉄、マグネシウム、マンガン、アルミニウム、その他の不純物金属元素が数g/L程度含まれている。
 硫酸水溶液に含まれる不純物金属成分である鉄、マグネシウム、マンガン、アルミニウム等の金属は、回収するニッケル及びコバルトに対して比較的多く存在するが、硫化物の形態での安定性は低い。そのため、これらの不純物金属成分は、形成される硫化物に含有されることはなく、その形成された硫化物を除去して得られる貧液(硫化処理終液)中に含有されることになる。なお、この貧液は、pHが1.0~3.0程度である。
 硫化工程S4で生成された、ニッケル及びコバルトを含む硫化物と、不純物金属成分を含む貧液とは、そのスラリーをシックナー等の沈降分離装置を用いて沈降分離処理することによって分離回収される。具体的には、沈殿物である硫化物がシックナーの底部より回収され、水溶液成分である貧液がオーバーフローして回収される。以下に詳述する排水処理方法では、例えばここで分離回収された不純物金属成分を含む貧液を排水元液として処理する。
 <3.排水処理方法>
 次に、本実施の形態に係るニッケル酸化鉱の製錬における排水処理方法について説明する。この排水処理方法は、例えば、上述したニッケル酸化鉱製錬の硫化工程S4を経て得られた貧液を排水元液として処理する。
 上述のように、硫化工程S4を経て得られた貧液は、母液である硫酸水溶液に対して硫化処理を施して得られたニッケルやコバルトの硫化物を回収した後の排水であり、鉄、マグネシウム、マンガン等のほかにアルミニウムを含有している酸性排水である。そのため、この貧液(酸性排水)を系外に排出するにあたっては、貧液中の残留金属イオンを除去する排水処理を施すことが必要となる。
 このとき、本実施の形態に係る排水処理方法では、その酸性排水を中和してアルミニウムを主成分とする澱物を得るに際して、その酸性排水にアルカリを添加するとともに鉄を含有する固形物を添加し、そのスラリーを静置して固液分離することを特徴とする。
 鉄を含有する固形物は、生成するアルミニウム澱物よりも比重が重く、これをアルカリと共に添加することによって、排水が中和されると同時に、その固形分が、形成されるアルミニウム澱物の核(種)となる。このことにより、固液分離時の沈降性や濾過性が改善され、微細なアルミニウム澱物の隙間に蜂の巣状の空隙が形成されて嵩高くなることを抑制することができ、また、その澱物に液体成分(水分)が付着することを抑制して、高濃度なアルミニウム澱物を生成させることができる。
 ここで、図3に従来の排水処理方法で得られたアルミニウム澱物の写真図を示す。この図3に示されるように、形成されたアルミニウム澱物は、その中に空隙が形成されたことにより凹みが生じ、また非常に嵩高くなっていることが分かる。一方で、図4は、本実施の形態に係る排水処理方法、すなわち酸性排水にアルカリを添加するとともに鉄を含有する固形物を添加して、そのスラリーを固液分離して得られたアルミニウム澱物の写真図である。この図4に示されるように、従来の方法によるアルミニウム澱物と比べて明らかに空隙が減少して密度が高くなり、非常に嵩が低くなっていることが分かる。
 アルカリとしては、酸性排水のpHを上昇させて中和させることができれば特に限定されるものではなく、例えば炭酸カルシウムや水酸化カルシウム等を用いることができ、その中でも、経済性の観点から炭酸カルシウムを用いることが好ましい。
 そして、このアルカリの添加により、酸性排水のpHを4.0以上に調整することが好ましい。
 酸性排水のpH調整に関して、後述する澱物発生の核となる、鉄を含有する固形物を添加することから、必ずしもアルミニウム澱物の形成に必要なpH6.0程度にまで上昇させる必要はなく、また排水を放流するために必要なpH8.5~9.5の領域まで最初から調整する必要はない。具体的に、調整するpH値としては、酸性排水中に添加する鉄を含有する固形物の溶解を防止できるpH4.0~5.0程度に上昇させればよい。
 鉄を含有する固形物としては、アルミニウム澱物の発生の核となるものであれば特に限定されるものではないが、例えば、ニッケル酸化鉱の湿式製錬の浸出工程にて分離回収した浸出残渣を用いることができる。ニッケル酸化鉱製錬の浸出工程にて得られる浸出残渣は、上述したように、ニッケル酸化鉱石と硫酸とを混合して240~260℃の高温高圧下で浸出して得られたものであり、ヘマタイトを主成分とする。このようにしてニッケル酸化鉱製錬の浸出工程にて得られた浸出残渣を用いることにより、製錬処理において回収される浸出残渣を有効に活用することができ、効率的な処理を行うことができる。また、この浸出残渣は、アルカリを添加して得られるスラリーとの比重差が比較的小さいため、より効果的に密度の高いアルミニウム澱物を生成させることができる。
 鉄を含有する固形物の添加量としては、特に限定されないが、その固形物を添加しない場合(未添加の場合)において生成するアルミニウム澱物量の50重量%以上200重量%以下に相当する量とすることが好ましく、50重量%以上100重量%以下に相当する量とすることがより好ましい。なお、この添加量については、固形物未添加の試験を予め行っておき、その試験結果に基づいて適宜決定すればよい。
 固形物の添加量を未添加時のアルミニウム澱物の50重量%相当量未満であると、その固形物が澱物発生の核として作用しない可能性がある。一方で、固形物の添加量を未添加時のアルミニウム澱物の200重量%相当量より多くしても、得られるアルミニウム澱物の粒度分布に差異は見られず沈降速度も増加しない。また、むしろ取り扱い物量が増加するとともに、浮遊固形物(SS)濃度が増加して清澄度が悪くなる可能性がある。したがって、鉄を含有する固形物の添加量としては、未添加時のアルミニウム澱物の50重量%以上200重量%以下に相当する量とすることが好ましく、清澄度の観点をより考慮すると50重量%以上100重量%以下に相当する量とすることがより好ましい。
 また、その中でも、鉄を含有する固形物の添加量としては、アルカリと固形物を添加して得られるスラリーの濃度が1.1g/ml以上1.4g/ml以下の範囲となるようにすることがより好ましい。
 上述したように、従来の排水処理方法で得られたアルミニウム澱物の比重は、1.1g/ml前後と非常に小さい。そのため、例えば5.24g/ml程度以上の重い浸出残渣をそのまま添加すると、比重差が大きすぎて澱物の核が形成され難くなり、浸出残渣だけが先に沈殿して層状となり、蜂の巣状の澱物の生成を防止することができない可能性がある。また、ニッケル酸化鉱製錬において排出される酸性排水のアルミニウムイオン濃度は、2~6g/l程度の高濃度になることもあり、蜂の巣状の澱物が形成され易くなる。
 その点、得られるスラリーの濃度が1.1g/ml以上1.4g/ml以下の範囲となるように、例えば浸出残渣等の固形物を添加することにより、その固形物をアルミニウム澱物の発生の核として効果的に作用させることができ、蜂の巣状の澱物形成を確実に防止することができる。
 なお、純粋なヘマタイトの比重は、5.2~5.3g/ml程度であるが、工業的なニッケル酸化鉱石の高温加圧浸出で得られる浸出残渣には、ヘマタイトの他にも珪素(SiO)を主とする脈石やクロマイト(Cr)、あるいはマンガン酸化物、中和によって生成した石膏等の様々な成分が含まれており、これらの比重はヘマタイトより小さいこともあり、実際の浸出残渣の比重はこれよりは小さな値となる。
 ここで、上述したアルカリと鉄を含有する固形物との添加タイミングに関しては、特に限定されないが、先ず、酸性排水にアルカリを添加してpHを上昇させてpHを調整した後に、次に、鉄を含有する固形物を添加することが、より好ましい。
 浸出残渣やヘマタイト等を固形物として単に添加した場合、固液分離後の濾液のSS濃度が増加して、排水の清澄度が悪化する可能性がある。このことは、例えば添加した固形物である浸出残渣の一部が、酸性あるいは弱酸性である排水によって再溶解し、それがSS分として液中に懸濁するためと考えられる。また、特許文献4には、中和澱物の沈降特性を改善することによって中和設備のコンパクト化と共に濾過性を向上させて、上澄み液のSSを減少させる方法が提案されており、具体的には、被中和液に予め所定量のヘマタイトを加えた後、炭酸カルシウムや水酸化カルシウム等を加えて中和を行い、生成する中和澱物の沈降特性を改善させ、中和澱物の嵩を低減させる方法が示されている。しかしながら、この方法では、得られる排水のSS濃度は減少するといっても未だ高濃度であり、一般に清澄であるとされる100~150mg/l以下の濃度までには減少しない。そのため、環境保全や設備のコンパクト化という観点からは十分に効率的とは言えない。
 そこで、本実施の形態に係る排水処理方法では、より好ましくは、先ず、酸性排水のpHをアルカリを添加することによって上昇させ、添加した浸出残渣等の固形物が溶解しない状態とし、次に、そのpH調整したスラリーに対して鉄を含有する固形物を添加する。このように、アルカリによってpH調整を行って得られたスラリーに対して固形物を添加することによって、添加した固形物の溶解を抑制して、その固形物に由来するSSの発生を低減させることができ、清澄度の高い排水を得ることができる。また、固形物の溶解を抑制できるので、その固形物を軽いアルミニウムを固定する核として効率的に作用させることができ、より効果的に高密度なアルミニウム澱物を得ることができる。
 本実施の形態に係る排水処理方法では、上述のようにして酸性排水にアルカリと鉄を含有する固形物とを添加した後、得られたスラリーを静置して固液分離する。このようにして固液分離させると、沈降性が向上したアルミニウム澱物が次第に沈降分離して、シックナー等の固液分離装置によって、その底部から分離回収することができる。一方で、アルミニウム澱物が分離して得られた排水は、オーバーフローして回収される。
 以上詳述したように、本実施の形態に係るニッケル酸化鉱製錬における排水処理方法は、製錬によって排出されるアルミニウムイオンを含有する酸性排水に、アルカリと、鉄を含有する固形物とを添加して中和処理を行う。そして、得られたスラリーを静置して固液分離することによってアルミニウム澱物と排水とを生成させる。
 このような排水処理方法によれば、得られるアルミニウム澱物中において空隙の形成が抑制されて密度の高い澱物となり、嵩が高くなって取り扱いが困難となることを防止することができる。また、空隙の形成が抑制されることから、澱物に付着する水分量が減少して高濃度なアルミニウム澱物となり、重量の増大を抑制した効率的な回収処理を行うことができる。
 また、特に、アルカリを添加して排水のpHを調整した後に、鉄を含有する固形物を添加するようにすることで、排水中の浮遊固形物(SS)の発生を抑制することができ、アルミニウム澱物を回収除去して得られる排水(上澄み)の清澄度を高めることができる。
 <4.実施例>
 以下に、本発明についての実施例を説明するが、本発明は下記の実施例に限定されるものではない。
 [実施例1]
 ニッケル酸化鉱石をスラリー濃度が1400~1500g/lになるように鉱石1トン当たり200~300kgの濃硫酸を加えて混合してスラリーとした。そのスラリーを加圧浸出装置に装入し、温度245℃まで昇温して1時間かけて浸出処理を行い、1時間経過後スラリーを取り出した。
 取り出したスラリーを90℃に維持し、そのスラリーに20重量%の炭酸カルシウムスラリーを添加して、pHが2.2(25℃換算)になるまで中和した。その後、ヌッチェと濾紙を用いて固液分離して浸出液と浸出残渣を得た。得られた浸出残渣は、水を用いて洗浄して付着する酸を除去して回収した。
 続いて、得られた浸出液に、炭酸カルシウムスラリーを添加してpHを約3.5に調整して不純物を分離した。その後、中和液に硫化剤として硫化水素ガスを添加してニッケル及びコバルトを硫化物として分離し、分離後の液として下記表1に示す組成の酸性排水を得た。この排水を排水元液とした。
Figure JPOXMLDOC01-appb-T000001
 次に、上記表1に示す組成の排水元液を、概ね50~65℃の液温に維持しながら、内径100mm、高さ800mmの透明なアクリルで作製した円筒容器に入れ、攪拌しながら炭酸カルシウムスラリーを添加してpHを5.0に調整した。同時に、上述の浸出残渣を種結晶として添加して攪拌し、液を静置して残渣(アルミニウム澱物)の沈降を目視で観察した。なお、浸出残渣の添加量は、予め排水に消石灰のみを加えた場合(後述の比較例1に相当)に発生した中和澱物量を測定しておき、この量に等しい量(当量)とした。
 アルミニウム澱物が沈降し終わった後、上澄みを採取して、孔径0.5μmのメンブランフィルターに通液し、フィルターを60℃で48時間乾燥して重量を測定して浮遊固形分(SS)濃度を算出した。測定されたSS濃度を排水の清澄度の評価指標とした。
 沈降した澱物を観察したところ、図4の写真図に示すように、その澱物に空隙は見られず、密度の高い澱物が得られた。また、澱物の高さを測定すると、底から60mmだった。澱物の上面までの排水を分離して、回収した澱物の乾燥重量を測定し、測定した澱物の高さから充填された密度を算出したところ30%であった。また、SS濃度は500mg/lだった。
 [実施例2]
 上記表1に示す組成の排水元液を使用し、浸出残渣の添加量を、消石灰のみを加えた場合に発生した中和澱物量の50重量%相当量としたこと以外は、実施例1と同様にして処理した。
 沈降した澱物を観察したところ、その澱物に空隙は見られず、密度の高い澱物が得られた。また、澱物の高さを測定すると、底から67mmだった。澱物の上面までの排水を分離して、回収した澱物の乾燥重量を測定し、測定した澱物の高さから充填された密度を算出したところ25%であった。また、SS濃度は400mg/lだった。
 [実施例3]
 上記表1に示す組成の排水元液を使用し、中和処理において、先ず炭酸カルシウムスラリーを添加してpHを4~6の範囲に調整し、その後、pHが安定になったのを確認して浸出残渣を添加したこと以外は、実施例1と同様にして処理した。なお、浸出残渣を添加して均一に分散させた後に、攪拌を継続しながらpH4~6に維持されるようにした。
 沈降した澱物を観察したところ、その澱物に空隙は見られず、密度の高い澱物が得られた。また、澱物の高さを測定すると、底から60mmだった。澱物の上面までの排水を分離して、回収した澱物の乾燥重量を測定し、測定した澱物の高さから充填された密度を算出したところ30%であった。また、SS濃度は100mg/lだった。このように、アルカリを添加してpH調整した後に、浸出残渣を添加して澱物を形成させることにより、得られる排水の清澄度を極めて向上させることができることが分かった。
 [比較例1]
 上記表1に示す組成の排水元液を使用し、浸出残渣を添加せずに、消石灰スラリーのみを添加してpH5.0になるように調整したこと以外は、実施例1と同様にして処理した。
 静置後に上澄みを採取して測定したSS濃度は100mg/lであり、清澄度は高かった。しかしながら、澱物の高さを測定すると、底から140mmとなり、密度は15~17%と非常に低かった。また、殿物を採取して観察すると、蟻の巣状の空隙が見られ、採取スプーンで澱物を突くと、図3の写真図に示すように、空隙がつぶれて凹みが生じた。

Claims (6)

  1.  ニッケル酸化鉱の製錬において排出される酸性排水の処理方法であって、
     アルミニウムイオンを含有する上記酸性排水に、アルカリと、鉄を含有する固形物とを添加してスラリーとし、該スラリーを静置して固液分離することによって、アルミニウム澱物と排水とを生成させること特徴とするニッケル酸化鉱製錬における排水処理方法。
  2.  上記酸性排水に上記アルカリを添加して得られたスラリーに、上記鉄を含有する固形物を添加することを特徴とする請求項1記載のニッケル酸化鉱製錬における排水処理方法。
  3.  上記アルカリを添加して、上記酸性排水のpHを4.0以上に調整することを特徴とする請求項1記載のニッケル酸化鉱製錬における排水処理方法。
  4.  上記鉄を含有する固形物を、該固形物を添加しない場合において生成するアルミニウム澱物量の50重量%以上200重量%以下に相当する量添加することを特徴とする請求項1記載のニッケル酸化鉱製錬における排水処理方法。
  5.  上記スラリーの比重が1.1g/ml以上1.4g/ml以下の範囲となるように、上記鉄を含有する固形物を添加することを特徴とする請求項4記載のニッケル酸化鉱製錬における排水処理方法。
  6.  上記鉄を含有する固形物は、上記ニッケル酸化鉱を硫酸を添加して高温加圧浸出して得られた浸出残渣であることを特徴とする請求項1記載のニッケル酸化鉱製錬における排水処理方法。
PCT/JP2013/066589 2012-08-13 2013-06-17 ニッケル酸化鉱製錬における排水処理方法 WO2014027503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/419,543 US9561972B2 (en) 2012-08-13 2013-06-17 Method for effluent treatment in smelting of nickel oxide ore
AU2013303653A AU2013303653B2 (en) 2012-08-13 2013-06-17 Method for effluent treatment in smelting of nickel oxide ore
EP13879291.6A EP2883969B1 (en) 2012-08-13 2013-06-17 Method for effluent treatment in smelting of nickel oxide ore
CN201380040874.3A CN104508160B (zh) 2012-08-13 2013-06-17 镍氧化矿冶炼中的排水处理方法
PH12015500251A PH12015500251A1 (en) 2012-08-13 2015-02-05 Method for effluent treatment in smelting of nickel oxide ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-179413 2012-08-13
JP2012179413A JP5617877B2 (ja) 2012-08-13 2012-08-13 ニッケル酸化鉱製錬における排水処理方法

Publications (1)

Publication Number Publication Date
WO2014027503A1 true WO2014027503A1 (ja) 2014-02-20

Family

ID=50285924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066589 WO2014027503A1 (ja) 2012-08-13 2013-06-17 ニッケル酸化鉱製錬における排水処理方法

Country Status (7)

Country Link
US (1) US9561972B2 (ja)
EP (1) EP2883969B1 (ja)
JP (1) JP5617877B2 (ja)
CN (1) CN104508160B (ja)
AU (1) AU2013303653B2 (ja)
PH (1) PH12015500251A1 (ja)
WO (1) WO2014027503A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194709A1 (ja) * 2015-06-02 2016-12-08 住友金属鉱山株式会社 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206518B2 (ja) * 2016-02-17 2017-10-04 住友金属鉱山株式会社 中和処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6500811B2 (ja) * 2016-03-02 2019-04-17 住友金属鉱山株式会社 澱物ケーキ高さ測定器、および澱物ケーキ高さ測定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248576A (ja) 1996-03-14 1997-09-22 Taiheiyo Kinzoku Kk マグネシュウムを含有するマンガン酸性溶液からのマンガンの優先的除去法
JP2000126510A (ja) 1998-10-27 2000-05-09 Dowa Mining Co Ltd コロイド状シリカを含むスラリーの処理方法
JP2004225120A (ja) 2003-01-23 2004-08-12 Sumitomo Metal Mining Co Ltd 中和澱物の沈降性改善方法
JP2005350766A (ja) 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010207674A (ja) 2009-03-09 2010-09-24 Sumitomo Metal Mining Co Ltd 排水からのマンガンの除去方法
JP2011206757A (ja) * 2010-03-10 2011-10-20 Sumitomo Metal Mining Co Ltd アルミニウム、マグネシウムおよびマンガンを含む排水の排水処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA922903A (en) * 1970-07-08 1973-03-20 The International Nickel Company Of Canada Acid leaching of lateritic ore
CA1061568A (en) * 1975-01-17 1979-09-04 Antoine Van Peteghem Process for extracting metal values from manganiferous ocean floor nodule ore
US4548794A (en) * 1983-07-22 1985-10-22 California Nickel Corporation Method of recovering nickel from laterite ores
JPH0986925A (ja) * 1995-09-29 1997-03-31 Nippon Light Metal Co Ltd アルミニウム材表面処理廃液を用いたアルミナゲルの製造法及び結晶性水酸化アルミニウムの製造法
US6984328B2 (en) * 2000-02-02 2006-01-10 University Of Akron Method for removing metals from aqueous solutions using mixed lithic materials
AUPR105400A0 (en) * 2000-10-27 2000-11-23 Nauveau Technology Investments Ltd Processes and compositions for water treatment
US6656247B1 (en) * 2002-08-08 2003-12-02 Dynatec Corporation Selective precipitation of manganese from magnesium-containing solutions
FR2925482B1 (fr) 2007-12-20 2010-01-15 Otv Sa Procede de traitement d'eau par oxydation avancee et floculation lestee, et installation de traitement correspondante.
US20100102007A1 (en) * 2008-10-23 2010-04-29 Abdel Magid Kalo Process for Treatment of Sewage Waste Water
FI123646B (fi) * 2010-02-25 2013-08-30 Outotec Oyj Menetelmä kiintoaine-neste-erotuksen tehostamiseksi lateriittien liuotuksen yhteydessä

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248576A (ja) 1996-03-14 1997-09-22 Taiheiyo Kinzoku Kk マグネシュウムを含有するマンガン酸性溶液からのマンガンの優先的除去法
JP2000126510A (ja) 1998-10-27 2000-05-09 Dowa Mining Co Ltd コロイド状シリカを含むスラリーの処理方法
JP2004225120A (ja) 2003-01-23 2004-08-12 Sumitomo Metal Mining Co Ltd 中和澱物の沈降性改善方法
JP2005350766A (ja) 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010207674A (ja) 2009-03-09 2010-09-24 Sumitomo Metal Mining Co Ltd 排水からのマンガンの除去方法
JP2011206757A (ja) * 2010-03-10 2011-10-20 Sumitomo Metal Mining Co Ltd アルミニウム、マグネシウムおよびマンガンを含む排水の排水処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2883969A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194709A1 (ja) * 2015-06-02 2016-12-08 住友金属鉱山株式会社 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法

Also Published As

Publication number Publication date
JP5617877B2 (ja) 2014-11-05
US9561972B2 (en) 2017-02-07
CN104508160B (zh) 2017-11-21
PH12015500251B1 (en) 2015-03-30
EP2883969A1 (en) 2015-06-17
AU2013303653A1 (en) 2015-02-26
EP2883969A4 (en) 2016-03-02
JP2014037563A (ja) 2014-02-27
US20150225269A1 (en) 2015-08-13
EP2883969B1 (en) 2018-08-29
CN104508160A (zh) 2015-04-08
PH12015500251A1 (en) 2015-03-30
AU2013303653B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP4525428B2 (ja) ニッケル酸化鉱石の湿式製錬方法
WO2014203661A1 (ja) ヘマタイトの製造方法、並びにそのヘマタイト
WO2014175093A1 (ja) ニッケル酸化鉱石の湿式製錬方法
WO2013027603A1 (ja) ニッケル回収ロスの低減方法、ニッケル酸化鉱石の湿式製錬方法、並びに硫化処理システム
JP5617877B2 (ja) ニッケル酸化鉱製錬における排水処理方法
WO2014080665A1 (ja) 中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法
JP5971364B1 (ja) 鉱石スラリーの前処理方法、鉱石スラリーの製造方法
JPH06212304A (ja) 亜鉛製錬法
JP7005909B2 (ja) 中和処理方法、及び中和終液の濁度低減方法
JP7147362B2 (ja) ニッケル酸化鉱石の湿式製錬法における臭気低減方法
JP7279546B2 (ja) ニッケル酸化鉱石の浸出処理方法及びこれを含む湿式製錬方法
WO2015125821A1 (ja) スカンジウム回収方法
JP6888359B2 (ja) 金属酸化鉱の製錬方法
JP2021030101A (ja) 中和処理方法
JP2020028858A (ja) ニッケル酸化鉱石の湿式製錬プロセスにおける最終中和方法
JP6206518B2 (ja) 中和処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2015105396A (ja) 中和処理方法
JP2019049020A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2022148784A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法
RU2365641C2 (ru) Способ очистки cульфатных растворов цветных металлов от железа
JP2019181349A (ja) 硫化剤の除去方法及びニッケル酸化鉱石の湿式製錬方法
JP2019210514A (ja) 固液分離処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419543

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12015500251

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2013879291

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013303653

Country of ref document: AU

Date of ref document: 20130617

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201501425

Country of ref document: ID