WO2016194709A1 - 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法 - Google Patents

遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法 Download PDF

Info

Publication number
WO2016194709A1
WO2016194709A1 PCT/JP2016/065334 JP2016065334W WO2016194709A1 WO 2016194709 A1 WO2016194709 A1 WO 2016194709A1 JP 2016065334 W JP2016065334 W JP 2016065334W WO 2016194709 A1 WO2016194709 A1 WO 2016194709A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
neutralizing agent
free acid
slurry
added
Prior art date
Application number
PCT/JP2016/065334
Other languages
English (en)
French (fr)
Inventor
幸弘 合田
貴雄 大石
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2016194709A1 publication Critical patent/WO2016194709A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a free acid removal facility and a free acid removal method, and more specifically, neutralization treatment is performed by adding a neutralizing agent to a leach slurry obtained by high pressure acid leaching of nickel oxide ore.
  • the present invention relates to a facility for removing free acid contained in a leach slurry, a method for removing the free acid, and a method for producing a mixed sulfide of nickel and cobalt including a pre-neutralization step based on the method.
  • HPAL high-pressure acid leaching
  • preliminary neutralization process a free acid removal process
  • It consists of processes such as a liquid separation process, a neutralization process, a zinc removal process, a sulfurization process, and a final neutralization process.
  • the free acid in the slurry is removed by adjusting the pH in the subsequent pre-neutralization process. Perform the process.
  • the pH of the leaching slurry is maintained as high as possible in order to promote precipitation of iron as an impurity.
  • the turbidity of the overflow liquid obtained from a solid-liquid separation device such as a thickener in the solid-liquid separation process provided subsequent to the preliminary neutralization process is increased.
  • the pH of the leachate to be adjusted can be maintained at a high level to promote iron precipitation, and can be adjusted to a range that does not cause an increase in turbidity of the thickener overflow solution. It has been demanded.
  • Patent Document 1 in an actual operation of refining hematite having a sulfur component low enough to be used as an ironmaking raw material from a leaching residue containing iron oxide produced through the leaching step of the HPAL process, The manufacturing method of the hematite for iron manufacture using the neutralizing agent and neutralizing agents other than Ca type
  • it is a method for producing (high purity) hematite for iron making in a process of adding mineral acid and an oxidizing agent to ore containing iron and valuable metal and leaching the valuable metal under high temperature and high pressure.
  • High pressure acid leaching step (2) pre-neutralization step, (3) solid-liquid separation step 1, (4) neutralization step 1, (5) neutralization step 2, (6) solid-liquid separation step 3, (7 ) A step of adding and treating a part of the Fe-enriched slurry as a seed crystal in the neutralization step 1 of (4), and (8) a solid-liquid separation step 2.
  • the present invention has been proposed in view of such circumstances, and in the pre-neutralization treatment for the leaching slurry generated in the hydrometallurgical process for nickel oxide ore, it is desired to suppress the pH variation of the leaching slurry.
  • the object is to provide a method that can be adjusted to a range.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, using a facility equipped with two or more reaction tanks, the neutralizing agent is divided into the two or more reaction tanks and added in multiple stages to carry out neutralization treatment. The present inventors have found that the variation can be stabilized and an increase in turbidity of the overflow liquid obtained by solid-liquid separation can be suppressed, and the present invention has been completed. In other words, the present invention provides the following.
  • a neutralizing treatment is performed by adding a neutralizing agent to a leaching slurry obtained by high-pressure acid leaching of nickel oxide ore, and free acid contained in the leaching slurry.
  • 2 or more reaction tanks for continuously treating the leaching slurry, a chemical addition unit for adding a neutralizing agent to the reaction tank, and an addition amount of the neutralizing agent A free acid removal facility in which the neutralizing agent is added in multiple stages in two or more reaction vessels.
  • the controller controls the amount of the neutralizing agent added to the first reaction tank, which is the reaction tank to be processed first, for all reactions. Control to a ratio of 70% or more and less than 95% of the total amount of the neutralizing agent added to the tank, and the total amount of the neutralizing agent added to the second and subsequent reaction tanks is 5% of the total added amount. This is a free acid removal facility that is controlled to a ratio of less than 30%.
  • the third invention of the present invention is the free acid removing facility according to the first or second invention, wherein the neutralizing agent is a limestone slurry.
  • a fourth invention of the present invention is the free acid removal facility according to any one of the first to third inventions, wherein the concentration of the free acid contained in the leaching slurry is 30 to 60 g / L.
  • the concentration of nickel contained in the leaching slurry is 5 to 10 g / L, and the concentration of iron is 3 to 10 g / L.
  • L is a free acid removal facility that is L.
  • a sixth invention of the present invention is the free acid removing equipment according to any one of the first to fifth inventions, wherein the concentration of the leaching slurry is 30 to 50% by mass.
  • a neutralizing treatment is performed by adding a neutralizing agent to a leaching slurry obtained by high pressure acid leaching of nickel oxide ore, and free acid contained in the leaching slurry.
  • a neutralizing agent is added to the two or more reaction vessels in multiple stages, and continuously performing the neutralization treatment on the leach slurry. This is a method for removing free acid.
  • the amount of the neutralizing agent added to the first reaction tank which is the reaction tank to be treated first, is added to all the reaction tanks.
  • a ratio of 70% or more and less than 95% of the total addition amount of the neutralizing agent, and a total of the addition amount of the neutralizing agent to the second and subsequent reaction tanks, a ratio of 5% or more and less than 30% of the total addition amount is a method for removing free acid.
  • a ninth invention of the present invention is a method for producing a mixed sulfide of nickel and cobalt from a leaching slurry obtained by high-pressure acid leaching of nickel oxide ore, and a neutralizing agent for the leaching slurry
  • the amount of the neutralizing agent added to the first reaction tank which is the reaction tank to be treated first is added to all the reaction tanks.
  • a ratio of 70% or more and less than 95% of the total addition amount of the neutralizing agent, and a total of the addition amount of the neutralizing agent to the second and subsequent reaction tanks, a ratio of 5% or more and less than 30% of the total addition amount The nickel and cobalt mixed sulfide manufacturing method.
  • the solid-liquid separation step for solid-liquid separation of the leaching slurry obtained through the preliminary neutralization step into a leaching solution and a leaching residue in an eleventh aspect of the present invention, in the ninth or tenth aspect, the solid-liquid separation step for solid-liquid separation of the leaching slurry obtained through the preliminary neutralization step into a leaching solution and a leaching residue. And a nickel-cobalt mixed sulfide production method in which the leaching residue obtained in the solid-liquid separation step has an iron grade of 40 to 55% by mass.
  • the pH variation of the leaching slurry can be suppressed and appropriately adjusted to a desired range.
  • precipitation of iron contained in the leaching slurry can be promoted, and an increase in turbidity of an overflow liquid such as a thickener obtained by solid-liquid separation of the leaching slurry can be suppressed.
  • the nickel oxide ore hydrometallurgical process for recovering nickel and cobalt from the leachate obtained by leaching the nickel oxide ore as the raw material under high temperature and high pressure includes, for example, a leaching step S1 by high pressure acid leaching and pre-neutralization It includes a step S2, a solid-liquid separation step S3, a neutralization step S4, a sulfurization step S5, and a final neutralization step (detoxification step) S6.
  • a leaching step S1 by high pressure acid leaching and pre-neutralization It includes a step S2, a solid-liquid separation step S3, a neutralization step S4, a sulfurization step S5, and a final neutralization step (detoxification step) S6.
  • the pH of the leaching slurry obtained in the leaching step S1 is adjusted to a predetermined range.
  • the leaching step S1 in which the leaching process by the high-pressure acid leaching method described above is performed excess sulfuric acid is added from the viewpoint of improving the leaching rate. Therefore, the obtained leaching slurry contains free sulfuric acid (hereinafter also referred to as “free acid”), that is, excess sulfuric acid that did not participate in the leaching reaction in the leaching step S1, and its pH is very high. Low.
  • the pH of the leaching slurry is adjusted to a predetermined range so that the processing in the subsequent steps and thereafter is efficiently performed.
  • the preliminary neutralization step S2 it is preferable to adjust so that the pH of the obtained leaching slurry is maintained as high as possible. If the pH of the leaching slurry is too low, it is necessary to make the treatment equipment used in the subsequent steps acid-resistant and costly. Moreover, in order to promote precipitation of iron, which is an impurity contained in the leaching slurry, it is necessary to adjust the pH to be higher. For example, after the neutralization treatment is performed on the leaching slurry in the preneutralization step S2, the precipitation of iron is performed so that the iron quality of the leaching residue obtained by solid-liquid separation of the leaching slurry is 40 to 55% by mass. Is preferably promoted.
  • nickel leached in the leaching slurry may precipitate as a residue in the solid-liquid separation process in the next step and remain as a residue, which may reduce the nickel recovery rate.
  • an appropriate set value is selected according to the operation status of the leaching process in the leaching process S1, the pH condition of the washing water used for the process in the solid-liquid separation process S3, and the like.
  • the preliminary neutralization step S2 In the neutralization treatment in, it was found desirable to adjust the pH of the leaching slurry obtained from the free acid removal facility to be 2.8 to 3.2.
  • the addition amount of the neutralizing agent to the first reaction vessel which is the reaction vessel to be treated first is a specific ratio with respect to the total addition amount of the neutralizing agent added to all reaction vessels.
  • the pH of the leaching slurry can be more effectively stabilized, and for example, the pH of the leaching slurry can be appropriately adjusted to a range of about 2.8 to 3.2.
  • the free acid removal equipment according to the present embodiment is equipment for removing free acid in a leaching slurry obtained by high-pressure acid leaching of nickel oxide ore.
  • Drawing 1 is a figure showing an example of composition of free acid removal equipment.
  • the free acid removal equipment 1 includes two or more reaction tanks 11 for continuously treating the leaching slurry, and a chemical addition for adding a neutralizing agent to the leaching slurry to be treated.
  • reaction tank 11 In the reaction tank 11, the leaching slurry obtained by the leaching process in the leaching step S1, that is, the mixed slurry of the leaching liquid and the leaching residue, is stored, and the neutralization process based on the pH adjustment is performed. In the free acid removal equipment 1, two or more reaction tanks 11 are provided, and the leaching slurry is continuously neutralized.
  • reaction tank 11 (1) which is the reaction tank to be treated first, and neutralization is performed by adding a neutralizing agent, next, is transferred to the second reaction vessel 11 to leach slurry are provided in succession (2), neutralized by addition of a neutralizing agent at its second reaction vessel 11 (2) is performed.
  • reaction tank 11 (n) the n-th reaction tank
  • reaction tank 11 (n) the first reaction tank 11 (1) and the second reaction tank The structure of the equipment which consists of 2 tanks with the tank 11 (2) is shown.
  • the chemical addition unit 12 adds a predetermined amount of neutralizing agent to the reaction tank containing the leaching slurry. By the addition of the neutralizing agent to the leaching slurry via the chemical addition section 12, the leaching slurry accommodated in the reaction tank 11 is neutralized.
  • the chemical addition unit 12 can be individually provided in each of the two or more reaction vessels 11, and a predetermined amount of neutralizing agent is added to the corresponding reaction vessel 11 through each chemical addition unit 12. Can be added. In addition, you may provide the chemical
  • medical agent addition part 12 adds It is preferable that it is a limestone slurry.
  • Limestone slurry is easy to handle and inexpensive, and is particularly suitable for adjusting the leaching slurry to a pH range of about 2.8 to 3.2, for example.
  • the concentration thereof is not particularly limited, but is preferably 20 to 35% by mass, more preferably 25 to 30% by mass.
  • the concentration of the limestone slurry is less than 20% by mass, the amount of the limestone slurry increases, so that the amount of the leaching slurry after adding the limestone slurry increases, that is, the amount of the process liquid to be processed increases, which is not preferable.
  • concentration of a limestone slurry exceeds 35 mass%, since the reactivity of the limestone slurry and a leaching slurry falls, it is unpreferable.
  • the addition of the neutralizing agent via the chemical addition unit 12 may be directly added to the reaction tank 11 described above, or may be added to a pipe or a soot for introducing a leaching slurry into the reaction tank 11. Good. Any addition mode is included in the meaning of “added to the reaction vessel”.
  • the control unit 13 controls the addition of the neutralizing agent from the drug addition unit 12 and the addition amount thereof. For example, when two or more drug addition units 12 are provided so as to correspond to each of two or more reaction vessels 11, the control unit 13 sends an electrical signal to each drug addition unit 12. Connected for transmission. Based on the control signal from the control unit 13, the amount of neutralizing agent added from the chemical addition unit 12 to the reaction tank 11 is controlled.
  • the same type of neutralizing agent is divided into two or more reaction tanks 11 and added in multiple stages. That is, the amount of neutralizing agent necessary for the neutralization treatment of the leach slurry to be treated is not added only to a single reaction tank, but divided into two or more reaction tanks 11 in multiple stages. Added.
  • the neutralizing agent for performing the neutralization process with respect to the leaching slurry is divided into two or more reaction tanks 11 using the free acid removal equipment 1 provided with two or more reaction tanks 11.
  • the free acid removal equipment 1 provided with two or more reaction tanks 11.
  • the neutralizing agent is added to all the reaction tanks 11 (1) to (n) with respect to the first reaction tank 11 (1), which is the reaction tank to be treated first. It is added at a specific ratio with respect to the total added amount of the agent. Specifically, the amount of neutralizing agent with respect to the first reaction vessel 11 (1), all the reaction vessel 11 (1) ⁇ (n) over 70% of the total amount of neutralizing agent added 95 The ratio of the neutralizer added to the second and subsequent reactors 11 (2) to (n) is controlled to a ratio of 5% to less than 30% of the total added quantity. It is preferable to add them.
  • the neutralizing agent when the neutralizing agent is divided into two or more reaction tanks 11 and added in multiple stages and continuously processed, the amount of neutralizing agent added to the first reaction tank 11 (1) is leached.
  • the pH of the leaching slurry can be more effectively stabilized, for example, about pH 2.8 to 3.2 The range can be adjusted more appropriately.
  • control unit 13 controls the addition amount of the neutralizing agent described above. And based on the control signal regarding the addition amount from the control part 13, the chemical
  • each reaction vessel 11 is provided with a pH meter 14, and the pH of the leached slurry in the reaction vessel 11 is measured over time, and a signal relating to the measurement result is sent to the control unit. 13 may be transmitted.
  • the control unit 13 feedback-controls the addition amount of the neutralizing agent added to each reaction tank 11 via the chemical addition unit 12 based on the measurement result of the pH. Further, the control unit 13 may perform an equivariance test based on the measurement result of pH, and may feedback control the addition amount of the neutralizing agent by measuring the variation in pH.
  • the concentration of the free acid contained in the leaching slurry is not particularly limited, but is preferably 30 to 60 g / L.
  • the concentration of the free acid is 30 g / L or more, the effect of adding the neutralizer in two or more reaction tanks 11 in stages is particularly significant. If the free acid concentration exceeds 60 g / L, it is necessary to increase the number of reaction tanks installed, which may increase the equipment cost.
  • the concentration of nickel contained in the leaching slurry is not particularly limited, but is preferably 5 to 10 g / L. Further, the iron concentration is not particularly limited, but is preferably 3 to 10 g / L.
  • concentration of the leachate slurry is not particularly limited, but is preferably 30 to 50% by mass.
  • nickel and cobalt mixed sulfides by hydrometallurgical process
  • nickel and cobalt are leached from the raw nickel oxide ore, and a mixed sulfide of nickel and cobalt (hereinafter also referred to as “nickel and cobalt mixed sulfide”) is extracted from the leachate. It is a manufacturing method.
  • FIG. 2 is a process diagram showing an example of the flow of a hydrometallurgical process for nickel oxide ore.
  • the hydrometallurgical process of nickel oxide ore includes a leaching step S1 in which sulfuric acid is added to a slurry of nickel oxide ore and leaching is performed under high temperature and high pressure, and the pH of the obtained leaching slurry is set to a predetermined value.
  • Pre-neutralization step S2 in which pre-neutralization is carried out by adjusting the range, and solid-liquid separation step S3 in which the residue is separated while washing the pH-adjusted leaching slurry in multiple stages to obtain a leachate containing impurity elements together with nickel and cobalt And neutralizing step S4 for adjusting the pH of the leachate to separate neutralized starch containing impurity elements and obtaining a neutralized final solution containing nickel and cobalt, and adding a sulfurizing agent to the neutralized final solution And a sulfiding step S5 for producing a nickel and cobalt mixed sulfide. Furthermore, this hydrometallurgical process has a final neutralization step S6 for recovering and detoxifying the leaching residue separated in the solid-liquid separation step S3 and the poor liquid discharged in the sulfurization step S5.
  • Leaching step S1 sulfuric acid is added to a slurry of nickel oxide ore using a high-temperature pressure reaction tank such as an autoclave, and stirred under conditions of a temperature of about 230 to 270 ° C. and a pressure of about 3 to 5 MPa. And a leaching slurry comprising the leaching solution and the leaching residue is produced.
  • a high-temperature pressure reaction tank such as an autoclave
  • Nickel oxide ores include so-called laterite ores such as limonite ore and saprolite ore.
  • Laterite ore usually has a nickel content of 0.8 to 2.5% by weight and is contained as a hydroxide or magnesium silicate mineral.
  • the iron content is 10 to 50% by weight and is mainly in the form of a trivalent hydroxide, but a part of the divalent iron is contained in the siliceous clay.
  • a leaching reaction represented by the following formulas (a) to (e) and a high-temperature thermal hydrolysis reaction occur, leaching as sulfates such as nickel and cobalt, and leached iron sulfate. Is fixed as hematite.
  • the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
  • the amount of sulfuric acid added in the leaching step S1 is not particularly limited, but an excessive amount is used so that iron in the ore is leached. For example, 300 to 400 kg per ton of ore.
  • the pH of the obtained leaching solution is adjusted to 0.1 to 1.0 from the viewpoint of filterability of the leaching residue containing hematite produced in the subsequent solid-liquid separation step S3. It is preferable.
  • Pre-neutralization step S2 the pH of the leaching slurry obtained in the leaching step S1 is adjusted to a predetermined range.
  • the leaching step S1 since excessive sulfuric acid is added from the viewpoint of improving the leaching rate, the leaching slurry contains excess sulfuric acid that was not involved in the leaching reaction, that is, free acid. The pH is low.
  • a neutralizing agent is added to the leaching slurry to adjust the pH to a predetermined range to remove free acid, and the multistage washing in the solid-liquid separation step S3 of the next step is efficiently performed. Like that.
  • the same type of neutralizing agent is divided into two or more reaction tanks 11 in multiple stages.
  • a continuous neutralization process is performed by adding. That is, the neutralizing agent in an amount necessary for the neutralization treatment for the leaching slurry is not added only to a single reaction tank, but is added in two or more reaction tanks 11 in multiple stages. .
  • the neutralizing agent is divided into two or more reactors 11 and added in multiple stages and continuously processed, so that it becomes easy to cope with the flow rate fluctuation and pH fluctuation of the leaching slurry, The variation can be suppressed.
  • the pH of the leaching slurry can be stably adjusted to a desired range of about pH 2.8 to 3.2.
  • precipitation of iron in the leach slurry can be promoted, and an increase in the turbidity of the overflow liquid from the solid-liquid separation device such as thickener obtained in the next solid-liquid separation step S3 can be effectively suppressed. . And by suppressing the increase in the turbidity of the overflow liquid, it is possible to efficiently carry out the processing in the subsequent steps and further prevent the recovery rate of the nickel and cobalt mixed sulfide from being lowered.
  • the leaching slurry is mixed with the cleaning liquid, and then subjected to a solid-liquid separation process using a solid-liquid separation apparatus such as a thickener.
  • the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the leaching slurry is concentrated as a thickener sediment.
  • the nickel part adhering to a leaching residue can be reduced according to the dilution degree.
  • the recovery rate of nickel and cobalt can be improved by connecting the thickeners having such functions in multiple stages.
  • the cleaning liquid it is preferable to use an aqueous solution having a pH of 1 to 3 that does not affect the process.
  • the low pH poor liquid obtained in the sulfurization process S5 can be used repeatedly. .
  • the overflow liquid obtained from a solid-liquid separator such as thickener is recovered as a leachate separated from the leach residue and transferred to the next step.
  • neutralization is performed by adding the neutralizing agent in multiple stages in the above-described preneutralization step S2, so that an increase in turbidity of the overflow liquid can be suppressed.
  • Neutralization process S4 while suppressing oxidation of the leachate separated and recovered in the solid-liquid separation process S3, a neutralizing agent such as magnesium oxide or calcium carbonate is added and neutralized.
  • a neutralized starch slurry containing trivalent iron and a neutralized final solution which is a mother liquor for nickel recovery are obtained.
  • the pH of the neutralized final solution obtained is 4.0 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3 while suppressing oxidation of the leachate.
  • the neutralized starch slurry containing a neutralizer such as calcium carbonate is added to the leachate, and becomes a mother liquor for nickel and cobalt recovery, and trivalent iron as an impurity element. And form.
  • the neutralized final solution is recovered by solid-liquid separation of the slurry obtained by the neutralization treatment.
  • this neutralized final solution is a solution based on a leaching solution obtained by leaching the raw material nickel oxide ore with sulfuric acid in the leaching step S1, and is an acidic sulfuric acid solution containing nickel and cobalt. It is.
  • a sulfurization reaction is performed by blowing a hydrogen sulfide gas as a sulfiding agent into the sulfidation reaction start solution using a neutralization final solution that is a mother liquor for nickel and cobalt recovery as a sulfidation reaction start solution.
  • a neutralization final solution that is a mother liquor for nickel and cobalt recovery as a sulfidation reaction start solution.
  • the sulfidation treatment in the sulfidation step S5 can be performed using a sulfidation reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase portion in the reaction tank with respect to the sulfidation reaction starting liquid introduced into the sulfidation reaction tank.
  • a sulfurization reaction is caused by dissolving hydrogen sulfide gas therein.
  • the obtained slurry containing nickel and cobalt mixed sulfide is charged into a sedimentation apparatus such as a thickener and subjected to sedimentation separation, and only the mixed sulfide is separated and recovered from the bottom of the thickener.
  • nickel and cobalt mixed sulfide can be manufactured through the above-described processing steps.
  • the neutralizing agent is added and processed in multiple stages in the preliminary neutralization step S2
  • the pH variation of the leaching slurry can be effectively suppressed.
  • iron precipitation can be more effectively promoted to reduce the iron concentration in the leachate, and an increase in the turbidity of the overflow liquid obtained through solid-liquid separation, that is, the leachate can be suppressed.
  • the processing after the next step can be performed efficiently.
  • the aqueous solution component separated through the sulfiding step S5 is overflowed from the upper part of the thickener and recovered as a poor solution.
  • the recovered poor solution is a solution having a very low concentration of valuable metals such as nickel, and contains impurity elements such as iron, magnesium, and manganese remaining without being sulfided. This poor solution is transferred to the final neutralization step S6 and detoxified.
  • the pH adjustment method is not particularly limited, but can be adjusted to a predetermined range by adding a neutralizing agent such as calcium carbonate slurry.
  • Example 1 Using the leaching slurry obtained by leaching the nickel oxide ore based on the HPAL method, a free acid removal treatment was performed as a treatment in the preliminary neutralization step.
  • a free acid removal facility equipped with two reaction vessels capable of continuous treatment is used, and the pH of the leaching slurry is adjusted to 3.0 by adding limestone slurry to the reaction vessel containing the leaching slurry. And operated for 17 days.
  • limestone as a neutralizing agent is used using a free acid removal facility having two reaction tanks, a first reaction tank having a capacity of 315 m 3 and a second reaction tank having a capacity of 390 m 3 .
  • Multi-stage neutralization by adding 95% of the total amount of limestone slurry to the first reaction and 5% of the total amount of limestone slurry to the second reaction tank. Treatment by addition of agent was performed.
  • the flow rate of the leaching slurry transferred to this preliminary neutralization step was 296 m 3 / hr on average.
  • the nickel concentration in the leaching slurry was 7.8 g / L
  • the iron concentration was 7.2 g / L
  • the concentration of the leaching slurry was 39.9% by mass.
  • Table 1 shows the results of the treatment in the preliminary neutralization step.
  • Table 1 shows the concentration of the free acid in the leaching slurry and the pH adjusted by the treatment, and an equal dispersion test (F test) was performed on the pH to confirm the pH variation.
  • F test equal dispersion test
  • the leached slurry after the treatment in the preliminary neutralization step was transferred to a thickener, and the turbidity of the thickener overflow solution when the solid-liquid separation treatment was performed as the solid-liquid separation step was measured.
  • the iron quality in the leaching residue obtained by the solid-liquid separation treatment was 50.1% by mass.
  • the flow rate of the leaching slurry transferred to the preliminary neutralization step was 290 m 3 / hr on average.
  • the nickel concentration in the leaching slurry was 7.7 g / L
  • the iron concentration was 7.7 g / L
  • the concentration of the leaching slurry was 40.0% by mass.
  • Table 2 shows the processing results in the preliminary neutralization step of Comparative Example 1.
  • Table 2 shows the concentration of free acid in the leaching slurry and the pH adjusted by the treatment, as well as the treatment result in Example 1, and confirms the pH variation by performing an equal variance test (F test) on the pH. did.
  • the leached slurry after the treatment in the preliminary neutralization step was transferred to a thickener, and the turbidity of the thickener overflow solution when the solid-liquid separation treatment was performed as the solid-liquid separation step was measured.
  • the iron quality in the leaching residue obtained by the solid-liquid separation treatment was 50.6% by mass.
  • Example 1 As can be seen from the treatment results of Example 1 and Comparative Example 1, there is no significant difference in the average value of the pH of the leach slurry by the treatment in each pre-neutralization step, and it can be appropriately adjusted to about pH 3.0. It was. Moreover, the iron grade in the leaching residue obtained in the subsequent solid-liquid separation step was almost the same, and iron precipitation was promoted by adjusting the pH of the leaching slurry.
  • Example 1 As a result of conducting an equal dispersion test on the pH of the leaching slurry adjusted in the preliminary neutralization step, the result was that the dispersion of Example 1 was smaller than that of Comparative Example 1 at a significant level of 5%. That is, it adjusts by performing the addition of the limestone slurry which is a neutralizing agent in multiple steps using the free acid removal equipment provided with two or more reaction tanks like the process in Example 1. It has been found that the pH variation of the leach slurry can be reduced.
  • Example 1 As a result of conducting an equal variance test on the turbidity of the thickener overflow liquid obtained by the treatment in the solid-liquid separation step, the result is that the dispersion of Example 1 is smaller than that of Comparative Example 1 at a significance level of 5%. It became. That is, it was found that the turbidity variation of the overflow liquid can be suppressed by adding the neutralizing agent in multiple stages as in the treatment in Example 1.

Abstract

ニッケル酸化鉱石に対する湿式製錬プロセスで生じる浸出スラリーに対する予備中和処理において、その浸出スラリーに含まれる鉄の沈殿を促進させ、且つ、浸出スラリーに対する固液分離処理で得られるオーバーフロー液の濁度上昇を抑えることができる方法を提供する。 本発明に係る遊離酸除去方法は、ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーに対して中和剤を添加することによって中和処理を施し、浸出スラリーに含まれる遊離酸を除去する方法であって、2槽以上の反応槽を使用し、中和剤を2槽以上の反応槽に分けて多段階で添加して、浸出スラリー対する中和処理を連続的に行う。

Description

遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法
 本発明は、遊離酸除去設備、遊離酸除去方法に関するものであり、より詳しくは、ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーに対して中和剤を添加することによって中和処理を施して浸出スラリーに含まれる遊離酸を除去する設備、及びその遊離酸除去方法、並びにその方法に基づく予備中和工程を含むニッケル及びコバルトの混合硫化物の製造方法に関する。
 高圧酸浸出(以下、「HPAL」ともいう)法により、ニッケル酸化鉱石からニッケルを回収する湿式製錬方法は、浸出工程、遊離酸除去工程(以下、「予備中和工程」ともいう)、固液分離工程、中和工程、亜鉛除去工程、硫化工程、及び最終中和工程等のプロセスからなっている。
 高圧酸浸出法の浸出工程においてニッケル酸化鉱に対して浸出処理を施して得られた浸出スラリーに対しては、続く予備中和工程において、pHの調整を行うことによってスラリー中の遊離酸を除去する処理を行う。このとき、その予備中和工程における中和処理では、不純物である鉄の沈殿を促進させるために、その浸出スラリーのpHを極力高く維持している。また、調整する浸出スラリーpHによっては、予備中和工程に続いて設けられている固液分離工程でのシックナー等の固液分離装置から得られるオーバーフロー液の濁度上昇を引き起こす。
 そのため、予備中和工程では、調整する浸出液のpHとして、鉄の沈殿を促進するために高めに維持し、且つ、シックナーオーバーフロー液の濁度の上昇を生じさせることのない範囲に調整することが求められている。
 ここで、特許文献1には、HPALプロセスの浸出工程を経て産出された酸化鉄を含む浸出残渣から、製鉄原料に使用できる程度に硫黄成分の低いヘマタイトを精製する実操業において、従来のCa系中和剤と母岩由来のCa系以外の中和剤とを使用する製鉄用ヘマタイトの製造方法について開示している。
 具体的には、鉄と有価金属を含有する鉱石に鉱酸と酸化剤を添加し、高温高圧下で有価金属を浸出するプロセスにおける製鉄用(高純度)ヘマタイトの製造方法であって、(1)高圧酸浸出工程、(2)予備中和工程、(3)固液分離工程1、(4)中和工程1、(5)中和工程2、(6)固液分離工程3、(7)Fe富化スラリーの一部を(4)の中和工程1での種晶として添加して処理する工程、(8)固液分離工程2を有する。
 しかしながら、この特許文献1に記載の方法では、予備中和工程で調整する浸出液のpHを、鉄の沈殿を促進するために高めに維持し、且つ、固液分離工程でのシックナーオーバーフロー液の濁度上昇を生じさせることのない方法については開示されていない。
特開2014-189412号公報
 本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱石に対する湿式製錬プロセスで生じる浸出スラリーに対する予備中和処理において、その浸出スラリーのpHのバラつきを抑えて所望とする範囲に調整することができる方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、2槽以上の反応槽を備えた設備を用いて、中和剤をその2槽以上の反応槽に分けて多段階で添加して中和処理を施すことによって、浸出スラリーのpHのバラつきを安定化させ、固液分離して得られるオーバーフロー液の濁度上昇を抑えることができることを見出し、本発明を完成するに至った。すなわり、本発明は、以下のものを提供する。
 (1)本発明の第1の発明は、ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーに対して中和剤を添加することによって中和処理を施し、該浸出スラリーに含まれる遊離酸を除去する設備であって、前記浸出スラリーを連続的に処理するための2槽以上の反応槽と、前記反応槽に中和剤を添加する薬剤添加部と、前記中和剤の添加量を制御する制御部と、を備え、前記中和剤が、前記2槽以上の反応槽に分けて多段階で添加される遊離酸除去設備である。
 (2)本発明の第2の発明は、第1の発明において、前記制御部は、最初に処理される反応槽である第1の反応槽に対する前記中和剤の添加量を、全ての反応槽に添加する該中和剤の総添加量の70%以上95%未満の割合に制御し、2番目以降の反応槽に対する前記中和剤の添加量の合計を、前記総添加量の5%以上30%未満の割合に制御する遊離酸除去設備である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記中和剤は石灰石スラリーである遊離酸除去設備である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記浸出スラリーに含まれる遊離酸の濃度は30~60g/Lである遊離酸除去設備である。
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記浸出スラリーに含まれるニッケルの濃度は5~10g/Lであり、鉄の濃度は3~10g/Lである遊離酸除去設備である。
 (6)本発明の第6の発明は、第1乃至第5のいずれかの発明において、前記浸出スラリーの濃度は30~50質量%である遊離酸除去設備である。
 (7)本発明の第7の発明は、ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーに対して中和剤を添加することによって中和処理を施し、該浸出スラリーに含まれる遊離酸を除去する方法であって、2槽以上の反応槽を使用し、前記中和剤を前記2槽以上の反応槽に分けて多段階で添加して、前記浸出スラリー対する中和処理を連続的に行う遊離酸除去方法である。
 (8)本発明の第8の発明は、第7の発明において、最初に処理される反応槽である第1の反応槽に対する前記中和剤の添加量を、全ての反応槽に添加する該中和剤の総添加量の70%以上95%未満の割合とし、2番目以降の反応槽に対する前記中和剤の添加量の合計を、前記総添加量の5%以上30%未満の割合とする遊離酸除去方法である。
 (9)本発明の第9の発明は、ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーから、ニッケル及びコバルトの混合硫化物の製造方法であって、前記浸出スラリーに対して中和剤を添加することによって中和処理を施し、該浸出スラリーに含まれる遊離酸を除去する予備中和工程を含み、前記予備中和工程では、2槽以上の反応槽を使用し、前記中和剤を前記2槽以上の反応槽に分けて多段階で添加して、前記浸出スラリー対する中和処理を連続的に行うニッケル及びコバルト混合硫化物の製造方法である。
 (10)本発明の第10の発明は、第9の発明において、最初に処理される反応槽である第1の反応槽に対する前記中和剤の添加量を、全ての反応槽に添加する該中和剤の総添加量の70%以上95%未満の割合とし、2番目以降の反応槽に対する前記中和剤の添加量の合計を、前記総添加量の5%以上30%未満の割合とするニッケル及びコバルト混合硫化物の製造方法である。
 (11)本発明の第11の発明は、第9又は第10の発明において、前記予備中和工程を経て得られた浸出スラリーを、浸出液と浸出残渣とに固液分離する固液分離工程を有し、前記固液分離工程で得られる前記浸出残渣の鉄品位が40~55質量%であるニッケル及びコバルト混合硫化物の製造方法である。
 本発明によれば、浸出スラリーのpHのバラつきを抑えて所望とする範囲に適切に調整することができる。これにより、例えば、浸出スラリーに含まれる鉄の沈殿化を促進させることができ、また浸出スラリーを固液分離して得られる、シックナー等のオーバーフロー液の濁度上昇を抑えることができる。
遊離酸除去設備の構成の一例を示す図である。 ニッケル酸化鉱石の湿式製錬プロセスの工程図である。
 本発明の具体的な実施形態(以下、「本実施の形態」という)について、以下の順序で詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 1.ニッケル酸化鉱石の湿式製錬プロセスにおける予備中和工程
 2.予備中和工程における浸出スラリー中の遊離酸の除去
  2-1.遊離酸除去設備
  2-2.遊離酸除去方法
 3.湿式製錬プロセスによるニッケル及びコバルト混合硫化物の製造方法
 ≪1.ニッケル酸化鉱石の湿式製錬プロセスにおける予備中和工程≫
 原料であるニッケル酸化鉱石を高温高圧下で浸出して得られる浸出液から、ニッケル及びコバルトを回収するニッケル酸化鉱石の湿式製錬プロセスは、例えば、高圧酸浸出法による浸出工程S1と、予備中和工程S2と、固液分離工程S3と、中和工程S4と、硫化工程S5と、最終中和工程(無害化工程)S6とを有する。なお、ニッケル酸化鉱石の湿式製錬プロセスの各工程について詳細は、後で説明する。
 予備中和工程S2では、浸出工程S1にて得られた浸出スラリーのpHを所定範囲に調整する。上述した高圧酸浸出法による浸出処理を行う浸出工程S1では、浸出率を向上させる観点から過剰の硫酸を加えるようにしている。そのため、得られた浸出スラリーには遊離の硫酸(以下、「遊離酸」ともいう)、すなわち浸出工程S1での浸出反応に関与しなかった余剰の硫酸が含まれており、そのpHは非常に低い。このことから、予備中和工程S2では、次工程以降での処理が効率よく行われるように、浸出スラリーのpHを所定の範囲に調整する。
 具体的に、予備中和工程S2では、得られた浸出スラリーのpHを極力高めに維持するように調整することが好ましい。浸出スラリーのpHが低すぎると、次工程以降で使用する処理設備を耐酸性とする必要が生じてコストがかかる。また、浸出スラリーに含まれる不純物である鉄の沈殿を促進させるためには、pHを高めに調整する必要がある。例えば、予備中和工程S2にて浸出スラリーに対する中和処理を行ったのち、その浸出スラリーを固液分離して得られる浸出残渣の鉄品位が40~55質量%となるように、鉄の沈殿を促進させることが好ましい。
 なお、浸出スラリーのpHが高すぎると、浸出スラリー中に浸出したニッケルが次工程の固液分離処理において沈殿化して残渣として残り、ニッケルの回収率が低下する可能性がある。実操業においては、浸出工程S1における浸出処理の操業状況や、固液分離工程S3における処理に用いる洗浄水のpH条件等に応じて適切な設定値を選択する。
 ここで、浸出スラリーのpHによっては、その予備中和工程S2の続く固液分離工程S3でのシックナー等の固液分離装置のオーバーフロー液の濁度の上昇を引き起こすことが知られている。オーバーフロー液の濁度の上昇は、次工程以降の処理効率を低下させ、延いては、ニッケルやコバルトの回収率を低下させる。本発明者は、固液分離工程S3で得られるオーバーフロー液の濁度の上昇は、予備中和工程S2での遊離酸除去処理のための設備から得られる浸出スラリーのpHが高めに振れた際に発生することを見出した。
 上述したように、浸出工程S1を経て得られた浸出スラリーに含まれる鉄の沈殿を促進させるためには、浸出スラリーのpHを高めに調整する必要がある。ところが一方で、次工程の固液分離工程S3の処理で得られるオーバーフロー液の濁度の上昇を防ぐためには、その浸出スラリーのpHが過度に高めに振れることを抑える必要があり、pHのバラつきを抑制して、所望とするpH範囲に安定的に調整できることが望ましい。本発明者による検討の結果、浸出スラリーに含まれる鉄の沈殿を促進させる一方で、固液分離工程S3の処理で得られるオーバーフロー液の濁度の上昇を防ぐ観点からすると、予備中和工程S2における中和処理では、遊離酸除去設備から得られる浸出スラリーのpHが2.8~3.2となるように調整することが望ましいことが分かった。
 そこで、本実施の形態では、予備中和工程S2において使用する、浸出スラリー中の遊離酸を除去するため遊離酸除去設備において、2槽以上の反応槽を使用して、その浸出スラリーに対して中和処理を施すための中和剤を、2槽以上に分けて多段階で添加するようにする。このような遊離酸除去設備を用いて予備中和工程S2における中和処理を行うことによって、浸出スラリーのpHのバラつきを抑制して、pHが過度に高めに振れることを抑えることができる。
 また、より好ましくは、最初に処理される反応槽である第1の反応槽に対する中和剤の添加量を、全ての反応槽に添加する中和剤の総添加量に対して特定の割合とする。このことにより、より効果的に浸出スラリーのpHを安定化させて、例えば浸出スラリーのpHを2.8~3.2程度の範囲に適切に調整することが可能となる。
 ≪2.予備中和工程における浸出スラリー中の遊離酸の除去≫
 以下、より具体的に、浸出スラリー中の遊離酸を除去するための遊離酸除去設備、及びその遊離酸除去設備を用いた遊離酸の除去方法について説明する。
  <2-1.遊離酸除去設備>
 本実施の形態に係る遊離酸除去設備は、上述したように、ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリー中の遊離酸を除去する設備である。図1は、遊離酸除去設備の構成の一例を示す図である。
 図1に示すように、遊離酸除去設備1は、浸出スラリーに対して連続的に処理するための2槽以上の反応槽11と、処理対象である浸出スラリーに中和剤を添加する薬剤添加部12と、薬剤添加部を介した中和剤の添加量を制御する制御部13とを備える。
 [反応槽]
 反応槽11では、浸出工程S1における浸出処理により得られた浸出スラリー、すなわち浸出液と浸出残渣との混合スラリーが収容され、pH調整に基づく中和処理が行われる。遊離酸除去設備1においては、この反応槽11が2槽以上設けられており、浸出スラリーに対する中和処理が連続的に行われる。
 具体的には、最初に処理される反応槽である第1の反応槽11(1)に浸出スラリーが収容されて中和剤の添加により中和処理が行われると、次に、処理後の浸出スラリーが続けて設けられている第2の反応槽11(2)に移送され、その第2の反応槽11(2)にて中和剤の添加による中和処理が行われる。なお、本明細書では、第nの反応槽を「反応槽11(n)」と符号表記し、図1に一例を示す構成図では第1の反応槽11(1)と、第2の反応槽11(2)との2槽からなる設備の構成を示す。
 [薬剤添加部]
 薬剤添加部12は、浸出スラリーを収容した反応槽に対して所定量の中和剤を添加する。この薬剤添加部12を介した浸出スラリーに対する中和剤の添加により、反応槽11に収容された浸出スラリーに対する中和処理が生じる。
 薬剤添加部12は、2槽以上の反応槽11のそれぞれに個別に設けられるようにすることができ、それぞれの薬剤添加部12を介して、対応する反応槽11に所定量の中和剤を添加することができる。なお、遊離酸除去設備1において単一で薬剤添加部12を設けてもよく、その1つの薬剤添加部12を介して2槽以上の反応槽11のそれぞれに中和剤を添加するようにしてもよい。
 薬剤添加部12が添加する中和剤としては、特に限定されないが、石灰石スラリーであることが好ましい。石灰石スラリーは、取り扱いが容易であり、また安価であり、例えば浸出スラリーをpH2.8~3.2程度の範囲に調整するのに特に適している。中和剤として石灰石スラリーを用いた場合、その濃度としては特に限定されないが、20~35質量%であることが好ましく、25~30質量%であることがより好ましい。石灰石スラリーの濃度が20質量%未満であると、石灰石スラリーの量が増えるため、石灰石スラリーを添加した後の浸出スラリーの量が増加する、すなわち、処理する工程液の量が増加するため好ましくない。一方で、石灰石スラリーの濃度が35質量%を超えると、その石灰石スラリーと浸出スラリーとの反応性が低下するため好ましくない。
 なお、薬剤添加部12を介した中和剤の添加は、上述した反応槽11に対して直接添加してもよく、その反応槽11に浸出スラリーを導入する配管や樋等に添加してもよい。いずれの添加態様であっても、「反応槽に添加する」との意味に含まれる。
 [制御部]
 制御部13は、薬剤添加部12からの中和剤の添加及びその添加量を制御する。この制御部13は、例えば、薬剤添加部12が2槽以上の反応槽11のそれぞれに対応するように2つ以上設けられている場合には、それぞれの薬剤添加部12に電気的な信号を送信できるように接続される。この制御部13からの制御信号に基づいて、薬剤添加部12から反応槽11に対して添加する中和剤の添加量が制御される。
  <2-2.遊離酸除去方法>
 ここで、本実施の形態に係る遊離酸除去設備1においては、同一種類の中和剤が、2槽以上の反応槽11に分けて多段階で添加されることを特徴としている。つまり、処理対象とする浸出スラリーに対する中和処理に必要な量の中和剤が、単一の反応槽にのみに添加されるのではなく、2槽以上の反応槽11に分けて多段階で添加される。
 このように、2槽以上の反応槽11が設けられた遊離酸除去設備1を用いて、浸出スラリーに対して中和処理を施すための中和剤を、2槽以上の反応槽11に分けて多段階で添加して連続的に処理することで、処理する浸出スラリーの流量変動やpH変動への対応が容易となり、そのpHのバラつきを抑えて安定化させることができる。これにより、浸出スラリー中の鉄の沈殿を促進させることができる。具体的には、浸出スラリーを固液分離して得られる浸出残渣の鉄品位として40~55質量%程度とすることができる。また、このような中和処理によって、次工程の固液分離工程S3で得られるオーバーフロー液の濁度上昇を効果的に抑えることができる。
 また、より好ましくは、最初に処理される反応槽である第1の反応槽11(1)に対する中和剤の添加量を、全ての反応槽11(1)~(n)に添加する中和剤の総添加量に対して特定の割合に制御して添加する。具体的には、第1の反応槽11(1)に対する中和剤の添加量を、全ての反応槽11(1)~(n)に添加する中和剤の総添加量の70%以上95%未満の割合の制御し、また、2番目以降の反応槽11(2)~(n)に対する中和剤の添加量の合計を、その総添加量の5%以上30%未満の割合に制御して添加することが好ましい。
 このように、中和剤を2槽以上の反応槽11に分けて多段階で添加して連続的に処理するに際して、第1の反応槽11(1)に対する中和剤の添加量を、浸出スラリーの中和処理に要する中和剤の総添加量に対して特定の割合とすることによって、より効果的に浸出スラリーのpHを安定化させることができ、例えばpH2.8~3.2程度の範囲に、より適切に調整することができる。
 なお、遊離酸除去設備1においては、制御部13が、上述した中和剤の添加量の制御を行う。そして、その制御部13から添加量に関する制御信号に基づいて、薬剤添加部12が、その特定量の中和剤を特定の反応槽11に添加する。
 また、図1に示すように、それぞれの反応槽11においては、pH計14を設けるようにし、反応槽11内の浸出スラリーのpHを経時的に測定して、その測定結果に関する信号を制御部13に送信するようにしてもよい。制御部13では、そのpHの測定結果に基づいて、薬剤添加部12を介してそれぞれの反応槽11に添加される中和剤の添加量をフィードバック制御する。また、制御部13では、pHの測定結果に基づいて等分散検定を行うようにし、pHのバラつきを測定することによって、中和剤の添加量をフィードバック制御するようにしてもよい。
 ここで、遊離酸除去設備1を用いて中和処理する浸出スラリーに関して、その浸出スラリーに含まれる遊離酸の濃度としては、特に限定されないが、30~60g/Lであることが好ましい。遊離酸の濃度が30g/L以上であることにより、中和剤を2槽以上の反応槽11に分けて段階的に添加することによる効果が特に有意となる。なお、遊離酸濃度が60g/Lを超えると、反応槽の設置数を多くする必要が生じて、設備コストの上昇を招く可能性がある。
 また、浸出スラリーに含まれるニッケルの濃度としては、特に限定されないが、5~10g/Lであることが好ましい。また、鉄の濃度についても、特に限定されないが、3~10g/Lであることが好ましい。
 また、浸出液スラリーの濃度についても、特に限定されないが、30~50質量%であることが好ましい。
 ≪3.湿式製錬プロセスによるニッケル及びコバルト混合硫化物の製造方法≫
 次に、上述した予備中和工程S2を含むHPAL法に基づくニッケル酸化鉱石の湿式試練プロセスについて説明する。このニッケル酸化鉱石の湿式製錬プロセスは、原料であるニッケル酸化鉱石からニッケル及びコバルトを浸出させ、その浸出液からニッケル及びコバルトの混合硫化物(以下、「ニッケル及びコバルト混合硫化物」ともいう)を製造する方法である。
 図2は、ニッケル酸化鉱石の湿式製錬プロセスの流れの一例を示す工程図である。図2に示すように、ニッケル酸化鉱石の湿式製錬プロセスは、ニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1と、得られた浸出スラリーのpHを所定範囲に調整して予備中和を行う予備中和工程S2と、pH調整された浸出スラリーを多段洗浄しながら残渣を分離して、ニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程S3と、浸出液のpHを調整して不純物元素を含む中和澱物を分離し、ニッケル及びコバルトを含む中和終液を得る中和工程S4と、中和終液に硫化剤を添加することでニッケル及びコバルト混合硫化物を生成させる硫化工程S5とを有する。さらに、この湿式製錬プロセスでは、固液分離工程S3にて分離された浸出残渣や硫化工程S5にて排出された貧液を回収して無害化する最終中和工程S6を有する。
 (1)浸出工程
 浸出工程S1では、オートクレーブ等の高温加圧反応槽を用い、ニッケル酸化鉱石のスラリーに硫酸を添加して、温度230~270℃程度、圧力3~5MPa程度の条件下で攪拌し、浸出液と浸出残渣とからなる浸出スラリーを生成する。
 ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8~2.5重量%であり、水酸化物又はケイ酸マグネシウム鉱物として含有される。また、鉄の含有量は、10~50重量%であり、主として3価の水酸化物の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。
 浸出工程S1における浸出処理では、例えば下記式(a)~(e)で表される浸出反応と高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。
 ・浸出反応
MO+HSO⇒MSO+HO ・・(a)
 (なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
2Fe(OH)+3HSO⇒Fe(SO+6HO ・・(b)
FeO+HSO⇒FeSO+HO ・・(c)
 ・高温熱加水分解反応
2FeSO+HSO+1/2O⇒Fe(SO+HO ・・(d)
Fe(SO+3HO⇒Fe+3HSO ・・(e)
 浸出工程S1における硫酸の添加量としては、特に限定されないが、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300~400kgとする。そして、浸出工程S1では、後工程の固液分離工程S3で生成されるヘマタイトを含む浸出残渣の濾過性の観点から、得られる浸出液のpHが0.1~1.0となるように調整することが好ましい。
 (2)予備中和工程
 予備中和工程S2では、浸出工程S1にて得られた浸出スラリーのpHを所定範囲に調整する。上述したように、浸出工程S1では、浸出率を向上させる観点から過剰の硫酸を添加しているため、浸出スラリーには浸出反応に関与しなかった余剰の硫酸、すなわち遊離酸が含まれており、そのpHは低い。予備中和工程S2では、浸出スラリーに中和剤を添加してpHを所定範囲に調整することによって遊離酸を除去し、また次工程の固液分離工程S3における多段洗浄が効率的に行われるようにする。
 ここで、本実施の形態においては、図1に構成図に示すような遊離酸除去設備1を使用して、同一種類の中和剤を、2槽以上の反応槽11に分けて多段階で添加することによって連続的な中和処理を行う。つまり、浸出スラリーに対する中和処理に必要な量の中和剤を、単一の反応槽にのみに添加するのではなく、2槽以上の反応槽11に分けて多段階となるように添加する。
 このように、中和剤を2槽以上の反応槽11に分けて多段階で添加して連続的に処理することで、浸出スラリーの流量変動やpH変動への対応が容易となり、そのpHのバラつきを抑えることができる。具体的には、浸出スラリーのpHを、所望とする範囲である、pH2.8~3.2程度の範囲に安定的に調整することができる。
 これにより、浸出スラリー中の鉄の沈殿を促進させるとともに、次工程の固液分離工程S3で得られる、シックナー等の固液分離装置からのオーバーフロー液の濁度上昇を効果的に抑えることができる。そして、オーバーフロー液の濁度上昇を抑制できることにより、次工程以降での処理を効率的に行うことができ、延いては、ニッケル及びコバルト混合硫化物の回収率の低下も防ぐことができる。
 (3)固液分離工程
 固液分離工程S3では、予備中和工程S2にてpH調整を行った浸出スラリーを多段洗浄して、ニッケルやコバルト等の有価金属を含む浸出液と浸出残渣とを得る。
 固液分離工程S3では、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離装置を用いて固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈度合に応じて減少させることができる。実操業では、このような機能を持つシックナーを多段に連結して用いることにより、ニッケルやコバルトの回収率の向上を図ることができる。なお、洗浄液としては、工程に影響を及ぼさないものであって、pHが1~3の水溶液を用いることが好ましく、例えば硫化工程S5で得られる低pHの貧液を繰り返して利用することができる。
 シックナー等の固液分離装置から得られるオーバーフロー液は、浸出液として浸出残渣と分離して回収され、次工程に移送される。本実施の形態においては、上述した予備中和工程S2において中和剤を多段階で添加して中和処理を行っているため、そのオーバーフロー液の濁度の上昇を抑えることができる。
 (4)中和工程
 中和工程S4では、固液分離工程S3で分離回収された浸出液の酸化を抑制しながら、酸化マグネシウムや炭酸カルシウム等の中和剤を添加して中和処理を施し、3価の鉄を含む中和澱物スラリーとニッケル回収用母液である中和終液とを得る。
 具体的に、中和工程S4では、浸出液の酸化を抑制しながら、得られる中和終液のpHが4.0以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加し、ニッケル及びコバルト回収用の母液となる中和終液と、不純物元素として3価の鉄を含む中和澱物スラリーとを形成する。
 なお、中和終液は、中和処理により得られたスラリーを固液分離することによって回収される。この中和終液は、上述したように、浸出工程S1において原料のニッケル酸化鉱石に対して硫酸による浸出処理を施して得られた浸出液に基づく溶液であって、ニッケル及びコバルトを含む硫酸酸性溶液である。
 (5)硫化工程
 硫化工程S5では、ニッケル及びコバルト回収用母液である中和終液を硫化反応始液として、その硫化反応始液に対して硫化剤としての硫化水素ガスを吹き込むことによって硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの混合硫化物と、ニッケル及びコバルトの濃度を低い水準で安定させた貧液とを生成させる。
 なお、中和終液中に亜鉛が含まれる場合には、硫化物としてニッケルやコバルトを分離するに先立って、亜鉛を硫化物として選択的に分離することができる。
 硫化工程S5における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に硫化水素ガスを溶解させることで硫化反応を生じさせる。この硫化処理により、硫化反応始液中に含まれるニッケル及びコバルトを混合硫化物として固定化する。硫化反応の終了後、得られたニッケル及びコバルト混合硫化物を含むスラリーをシックナー等の沈降分離装置に装入して沈降分離処理を施し、その混合硫化物のみをシックナーの底部より分離回収する。
 本実施の形態においては、以上のような各処理工程を経ることによって、ニッケル及びコバルト混合硫化物を製造することができる。特に、本実施の形態においては、予備中和工程S2において、中和剤を多段階で添加して処理しているため、浸出スラリーのpHのバラつきを効果的に抑えることができる。これにより、より効果的に鉄の沈殿を促進させて浸出液中における鉄の濃度を減少させることができるとともに、固液分離を経て得られたオーバーフロー液、すなわち浸出液の濁度上昇を抑えることができ、次工程以降の処理を効率的に行うことができる。
 なお、この硫化工程S5を経て分離された水溶液成分は、シックナーの上部からオーバーフローさせて貧液として回収する。なお、回収した貧液は、ニッケル等の有価金属濃度の極めて低い溶液であり、硫化されずに残留した鉄、マグネシウム、マンガン等の不純物元素を含む。この貧液は、最終中和工程S6に移送されて無害化処理される。
 (6)最終中和工程
 最終中和工程S6では、上述した固液分離工程S3における固液分離処理により分離された浸出残渣や、硫化工程S5にて回収された、鉄、マグネシウム、マンガン等の不純物元素を含む貧液等に対して、排出基準を満たす所定のpH範囲に調整する中和処理(無害化処理)が施される。
 pHの調整方法としては、特に限定されないが、例えば炭酸カルシウムスラリー等の中和剤を添加することによって所定の範囲に調整することができる。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1]
 ニッケル酸化鉱石に対してHPAL法に基づいて浸出処理して得られた浸出スラリーを用い、予備中和工程における処理として遊離酸除去処理を行った。この処理では、連続的な処理が可能な2槽の反応槽を備える遊離酸除去設備を用い、浸出スラリーを収容させた反応槽に石灰石スラリーを添加して浸出スラリーのpHを3.0に調整するようにし、17日間の操業を行った。
 より具体的に、容量315mの第1の反応槽と、容量390mの第2の反応槽との、2槽の反応槽を備えた遊離酸除去設備を使用し、中和剤としての石灰石スラリーを、第1の反応へは石灰石スラリーの総添加量の95%を、第2の反応槽へは石灰石スラリーの総添加量の5%の割合でそれぞれを添加して、多段階の中和剤添加による処理を行った。
 なお、この予備中和工程に移送された浸出スラリーの流量は、平均で296m/hrであった。また、浸出スラリー中のニッケル濃度は7.8g/Lであり、鉄濃度は7.2g/Lであり、当該浸出スラリーの濃度は39.9質量%であった。
 表1に、このような予備中和工程における処理を行った結果を示す。表1には、浸出スラリー中の遊離酸の濃度と処理により調整したpHを示し、またpHについて等分散検定(F検定)を行ってpHのバラつきを確認した。さらに、この予備中和工程での処理後の浸出スラリーをシックナーに移送し、固液分離工程として固液分離処理を行ったときのシックナーオーバーフロー液の濁度を測定した。なお、固液分離処理で得られた浸出残渣中の鉄品位は50.1質量%であった。
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 予備中和工程において、第1の反応槽のみを備えた遊離酸除去設備を使用し、中和剤としての石灰石スラリーを添加して浸出スラリーのpHを3.0に調整する操業を2ヵ月間に亘って実施した。
 なお、この予備中和工程に移送された浸出スラリーの流量は、平均で290m/hrであった。また、浸出スラリー中のニッケル濃度は7.7g/Lであり、鉄濃度は7.7g/Lであり、当該浸出スラリーの濃度は40.0質量%であった。
 表2に、比較例1の予備中和工程における処理結果を示す。表2には、実施例1における処理結果と同様に、浸出スラリー中の遊離酸の濃度と処理により調整したpHを示し、またpHについて等分散検定(F検定)を行ってpHのバラつきを確認した。さらに、この予備中和工程での処理後の浸出スラリーをシックナーに移送し、固液分離工程として固液分離処理を行ったときのシックナーオーバーフロー液の濁度を測定した。なお、固液分離処理で得られた浸出残渣中の鉄品位は50.6質量%であった。
Figure JPOXMLDOC01-appb-T000002
 実施例1及び比較例1の処理結果から分かるように、それぞれの予備中和工程における処理による浸出スラリーのpHの平均値には大きな差はなく、およそpH3.0に適切に調整することができた。また、次工程の固液分離工程で得られた浸出残渣中の鉄品位もほぼ同等であり、浸出スラリーのpH調整により鉄の沈殿が促進された。
 しかしながら、予備中和工程にて調整した浸出スラリーのpHに関して等分散検定を行った結果、有意水準5%で、実施例1の方が比較例1よりも分散が小さいという結果となった。つまり、実施例1での処理のように、2槽以上の反応槽を備えた遊離酸除去設備を用いて、中和剤である石灰石スラリーの添加を多段階に分けて行うことによって、調整する浸出スラリーのpHのバラつきを小さくすることができることが分かった。
 また、固液分離工程における処理により得られたシックナーオーバーフロー液の濁度に関しても等分散検定を行った結果、有意水準5%で、実施例1の方が比較例1よりも分散が小さいという結果となった。つまり、実施例1での処理のように、中和剤の添加を多段階に分けて行うことによって、オーバーフロー液の濁度のバラつきも抑えることができることが分かった。
 1  遊離酸除去設備
 11  反応槽
 12  薬剤添加部
 13  制御部

Claims (11)

  1.  ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーに対して中和剤を添加することによって中和処理を施し、該浸出スラリーに含まれる遊離酸を除去する設備であって、
     前記浸出スラリーを連続的に処理するための2槽以上の反応槽と、
     前記反応槽に中和剤を添加する薬剤添加部と、
     前記中和剤の添加量を制御する制御部と、を備え、
     前記中和剤が、前記2槽以上の反応槽に分けて多段階で添加される
     ことを特徴とする遊離酸除去設備。
  2.  前記制御部は、
     最初に処理される反応槽である第1の反応槽に対する前記中和剤の添加量を、全ての反応槽に添加する該中和剤の総添加量の70%以上95%未満の割合に制御し、
     2番目以降の反応槽に対する前記中和剤の添加量の合計を、前記総添加量の5%以上30%未満の割合に制御する
     ことを特徴とする請求項1に記載の遊離酸除去設備。
  3.  前記中和剤は石灰石スラリーである
     ことを特徴とする請求項1又は2に記載の遊離酸除去設備。
  4.  前記浸出スラリーに含まれる遊離酸の濃度は30~60g/Lである
     ことを特徴とする請求項1乃至3のいずれか1項に記載の遊離酸除去設備。
  5.  前記浸出スラリーに含まれるニッケルの濃度は5~10g/Lであり、鉄の濃度は3~10g/Lである
     ことを特徴とする請求項1乃至4のいずれか1項に記載の遊離酸除去設備。
  6.  前記浸出スラリーの濃度は30~50質量%である
     ことを特徴とする請求項1乃至5のいずれか1項に記載の遊離酸除去設備。
  7.  ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーに対して中和剤を添加することによって中和処理を施し、該浸出スラリーに含まれる遊離酸を除去する方法であって、
     2槽以上の反応槽を使用し、
     前記中和剤を前記2槽以上の反応槽に分けて多段階で添加して、前記浸出スラリー対する中和処理を連続的に行う
     ことを特徴とする遊離酸除去方法。
  8.  最初に処理される反応槽である第1の反応槽に対する前記中和剤の添加量を、全ての反応槽に添加する該中和剤の総添加量の70%以上95%未満の割合とし、
     2番目以降の反応槽に対する前記中和剤の添加量の合計を、前記総添加量の5%以上30%未満の割合とする
     ことを特徴とする請求項7に記載の遊離酸除去方法。
  9.  ニッケル酸化鉱石を高圧酸浸出して得られる浸出スラリーから、ニッケル及びコバルトの混合硫化物の製造方法であって、
     前記浸出スラリーに対して中和剤を添加することによって中和処理を施し、該浸出スラリーに含まれる遊離酸を除去する予備中和工程を含み、
     前記予備中和工程では、
     2槽以上の反応槽を使用し、
     前記中和剤を前記2槽以上の反応槽に分けて多段階で添加して、前記浸出スラリー対する中和処理を連続的に行う
     ことを特徴とするニッケル及びコバルト混合硫化物の製造方法。
  10.  最初に処理される反応槽である第1の反応槽に対する前記中和剤の添加量を、全ての反応槽に添加する該中和剤の総添加量の70%以上95%未満の割合とし、
     2番目以降の反応槽に対する前記中和剤の添加量の合計を、前記総添加量の5%以上30%未満の割合とする
     ことを特徴とする請求項9に記載のニッケル及びコバルト混合硫化物の製造方法。
  11.  前記予備中和工程を経て得られた浸出スラリーを、浸出液と浸出残渣とに固液分離する固液分離工程を有し、
     前記固液分離工程で得られる前記浸出残渣の鉄品位が40~55質量%である
     ことを特徴とする請求項9又は10に記載のニッケル及びコバルト混合硫化物の製造方法。
PCT/JP2016/065334 2015-06-02 2016-05-24 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法 WO2016194709A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112147 2015-06-02
JP2015112147A JP2016222989A (ja) 2015-06-02 2015-06-02 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法

Publications (1)

Publication Number Publication Date
WO2016194709A1 true WO2016194709A1 (ja) 2016-12-08

Family

ID=57442328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065334 WO2016194709A1 (ja) 2015-06-02 2016-05-24 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法

Country Status (2)

Country Link
JP (1) JP2016222989A (ja)
WO (1) WO2016194709A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438328A (zh) * 2021-12-30 2022-05-06 云锡文山锌铟冶炼有限公司 处理湿法炼锌过程产生硫酸锌浸出液的装置和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791815B (zh) 2016-11-16 2020-08-14 住友电气工业株式会社 线束用线股和线束
JP2019077928A (ja) * 2017-10-26 2019-05-23 住友金属鉱山株式会社 中和処理方法およびニッケル酸化鉱石の湿式製錬方法
WO2019172392A1 (ja) * 2018-03-07 2019-09-12 住友金属鉱山株式会社 Ni・Co硫化物製造方法及び鉄品位安定化システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027503A1 (ja) * 2012-08-13 2014-02-20 住友金属鉱山株式会社 ニッケル酸化鉱製錬における排水処理方法
WO2014136487A1 (ja) * 2013-03-08 2014-09-12 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬プラント、並びにその湿式製錬プラントの操業方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027503A1 (ja) * 2012-08-13 2014-02-20 住友金属鉱山株式会社 ニッケル酸化鉱製錬における排水処理方法
WO2014136487A1 (ja) * 2013-03-08 2014-09-12 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬プラント、並びにその湿式製錬プラントの操業方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438328A (zh) * 2021-12-30 2022-05-06 云锡文山锌铟冶炼有限公司 处理湿法炼锌过程产生硫酸锌浸出液的装置和方法
CN114438328B (zh) * 2021-12-30 2023-09-22 云锡文山锌铟冶炼有限公司 处理湿法炼锌过程产生硫酸锌浸出液的装置和方法

Also Published As

Publication number Publication date
JP2016222989A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
EP3279344B1 (en) Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
AU2017218246B2 (en) Sulfuration treatment method, sulfide production method, and hydrometallurgical process for nickel oxide ore
WO2018155114A1 (ja) 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
WO2016194709A1 (ja) 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法
JP6222141B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP6953988B2 (ja) 硫化剤の除去方法
JP5892301B2 (ja) ニッケル酸化鉱石の湿式製錬における中和方法
WO2019035319A1 (ja) 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
EP3252177B1 (en) Wet smelting method for nickel oxide ore
JP7293873B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP7200698B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP2017201056A (ja) 中和処理方法、及び中和終液の濁度低減方法
JP2020180314A (ja) 水硫化ナトリウム溶液の製造方法、硫化処理方法、ニッケル硫化物の製造方法、及びニッケル酸化鉱石の湿式製錬方法
JP2022150719A (ja) ニッケル酸化鉱石の湿式製錬方法
WO2017130693A1 (ja) 残存硫化水素の除去方法
JP7035735B2 (ja) 低ニッケル品位酸化鉱石からのニッケルコバルト混合硫化物の製造方法
JP7087601B2 (ja) 硫化剤の除去方法及びニッケル酸化鉱石の湿式製錬方法
AU2017220174B2 (en) Neutralization method and nickel oxide ore hydrometallurgical method
JP2019157161A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2022055767A (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法
JP2019035132A (ja) 中和処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803144

Country of ref document: EP

Kind code of ref document: A1