WO2018155114A1 - 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法 - Google Patents

硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法 Download PDF

Info

Publication number
WO2018155114A1
WO2018155114A1 PCT/JP2018/003275 JP2018003275W WO2018155114A1 WO 2018155114 A1 WO2018155114 A1 WO 2018155114A1 JP 2018003275 W JP2018003275 W JP 2018003275W WO 2018155114 A1 WO2018155114 A1 WO 2018155114A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
reaction
sulfide
nickel
sulfuric acid
Prior art date
Application number
PCT/JP2018/003275
Other languages
English (en)
French (fr)
Inventor
亨紀 鈴木
和典 谷嵜
二郎 早田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2018155114A1 publication Critical patent/WO2018155114A1/ja
Priority to PH12019501841A priority Critical patent/PH12019501841A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a sulfide production method for producing nickel sulfide from a sulfuric acid aqueous solution containing nickel based on a sulfurization reaction with a sulfurizing agent, and a hydrometallurgical method of nickel oxide ore to which the method is applied.
  • HPAL method High Pressure Acid Leach
  • valuable metals such as nickel and cobalt leached from nickel oxide ore by the HPAL method
  • they are recovered as sulfides by adding a sulfurizing agent such as hydrogen sulfide gas to sulfuric acid aqueous solution containing valuable metals under pressure. The method is generally done.
  • a method of adjusting the pressure in the reaction tank, the reaction time, the pH of the reaction solution, the addition of seed crystals, etc. is known as a method for efficiently performing the sulfidation reaction.
  • Patent Document 1 discloses a method of adding sodium hydrosulfide to the reaction tank. Specifically, in this method, an aqueous sodium hydrosulfide solution obtained by recovering excessive hydrogen sulfide gas blown into the reaction tank with an aqueous sodium hydroxide solution is added to the reaction tank again. According to this method, it is possible to suppress a decrease in pH of the reaction solution accompanying the progress of the sulfidation reaction, and to suppress re-dissolution of the generated sulfide.
  • the concentration of nickel and cobalt in the final reaction solution can be kept low, thereby improving the reaction efficiency of the sulfurization reaction and recovering valuable metals such as nickel and cobalt with high efficiency. Can do.
  • an impurity removing step is provided as necessary so that the impurity quality of the product satisfies the standard value, but the amount of impurities in the raw material When there are many, the load in an impurity removal process will be increased.
  • the present invention has been proposed in view of such a situation, and when a sulfide containing nickel is obtained by adding a sulfiding agent to an aqueous sulfuric acid solution containing nickel, the chromium quality in the produced sulfide is reduced. It aims to provide a method that can be used.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • unreacted hydrogen sulfide gas out of hydrogen sulfide gas added to the sulfuric acid aqueous solution is recovered with a sodium hydroxide aqueous solution.
  • the sodium hydrosulfide aqueous solution to be repeatedly supplied to the reaction vessel the chromium grade in the generated sulfide is effectively reduced by controlling the flow rate of the sodium hydrosulfide aqueous solution supplied to the second and subsequent reaction vessels.
  • the present invention has been completed by finding out what can be done.
  • the first invention of the present invention is a method for producing a sulfide, wherein a sulfuric acid aqueous solution containing nickel is charged into a reaction vessel, and a sulfide containing nickel is produced by adding a sulfiding agent, wherein the reaction
  • the tank is composed of a plurality of reaction vessels connected in series, and unreacted hydrogen sulfide gas of the hydrogen sulfide gas added as a sulfiding agent to the sulfuric acid aqueous solution is recovered with a sodium hydroxide aqueous solution.
  • a sodium sulfide aqueous solution is generated, and the obtained sodium hydrosulfide aqueous solution is added to the reaction vessel as a part of a sulfiding agent.
  • the sodium hydrosulfide aqueous solution is added to the reaction Add to the reaction vessel in the second and subsequent stages of the reaction tank at a flow rate of 0.17% by volume or less with respect to the flow rate of the aqueous sulfuric acid solution supplied to the tank. It added to the reaction vessel of stage a production process of a sulfide.
  • the second invention of the present invention is the method for producing sulfide according to the first invention, wherein the internal pressure of each of the plurality of reaction vessels is 100 kPa to 300 kPa.
  • a third invention of the present invention is a method for producing a sulfide according to the first or second invention, wherein the sulfuric acid aqueous solution has a pH of 3.0 to 3.8.
  • a fourth invention of the present invention is a method for producing a sulfide according to any one of the first to third inventions, wherein the temperature of the sulfuric acid aqueous solution is 65 ° C. to 90 ° C.
  • a nickel oxide ore is produced by wet leaching of nickel oxide ore using sulfuric acid under high temperature and high pressure to produce a sulfide containing nickel from the obtained leachate.
  • a smelting step wherein the leaching solution is supplied to a reaction vessel formed by connecting a plurality of stages of reaction vessels in series, and a sulfiding step is performed in which a sulfiding agent is added to the leaching solution to produce a sulfide containing nickel.
  • unreacted hydrogen sulfide gas of the hydrogen sulfide gas added as a sulfiding agent to the leachate is recovered with an aqueous sodium hydroxide solution to form an aqueous sodium hydrosulfide solution, and the obtained hydrosulfide
  • An aqueous sodium solution is added to the reaction vessel as a part of the sulfiding agent, and the aqueous sodium hydrosulfide solution is supplied to the reaction vessel during the addition of the aqueous sodium hydrosulfide solution.
  • a sulfide containing nickel is obtained by adding a sulfiding agent to an aqueous sulfuric acid solution containing nickel, it is possible to reduce the chromium quality in the produced sulfide.
  • Sulfide production method >> In the sulfide production method according to the present embodiment (hereinafter also referred to as “sulfurization treatment method”), a sulfuric acid aqueous solution containing nickel is charged into a reaction vessel, and a sulfurizing agent is added to the aqueous solution to perform a sulfurization reaction. To produce a sulfide containing nickel. Specifically, the sulfide production method based on this sulfurization reaction is performed using a reaction vessel constituted by connecting a plurality of stages of reaction vessels in series.
  • the sodium hydrosulfide aqueous solution obtained based on the unreacted hydrogen sulfide gas is reduced to a flow rate of 0. 0 with respect to the flow rate of the sulfuric acid aqueous solution supplied to the reaction tank.
  • a flow rate of 17% by volume or less it is added to the second and subsequent reaction vessels of the reaction vessel composed of a plurality of reaction vessels, while the remaining amount of the sodium hydrosulfide aqueous solution is one step. It is characterized by being added to the eye reaction vessel.
  • a sulfidation treatment method as described later, it is possible to suppress sulfidation of iron contained in a sulfuric acid aqueous solution, and to suppress the precipitation of chromium by coprecipitation or adsorption along with the sulfidation of iron. It is possible to effectively reduce the chromium quality in the obtained sulfide. Specifically, the chromium quality in the sulfide can be reduced to less than 0.0100% by weight.
  • FIG. 1 surplus hydrogen sulfide gas that did not contribute to the sulfidation reaction was recovered and subjected to an alkali treatment with sodium hydroxide (NaOH), and the sodium hydrosulfide (NaHS) aqueous solution obtained by the alkali treatment was subjected to a sulfidation reaction.
  • NaOH sodium hydroxide
  • NaHS sodium hydrosulfide
  • a reaction tank 1 used for a sulfidation treatment method usually includes an introduction port 10 for introducing a sulfidation reaction start liquid, and a gas blow-in for blowing a hydrogen sulfide gas having a purity of 95% to 99% as a sulfiding agent.
  • This is a closed type reaction facility having an outlet 11, an exhaust gas outlet 12 that discharges a part of the gas in the reaction tank 1 as exhaust gas, and an exhaust outlet 13 that discharges the slurry after reaction.
  • the reaction tank 1 is configured by connecting a plurality of (two or more) reaction vessels in series.
  • a multistage continuous stirring sulfidation reaction facility constituted by connecting four stages of reaction vessels in series can be used.
  • a sulfurization reaction starting solution is introduced from an inlet 10 into a first stage reaction vessel which is the most upstream reaction vessel.
  • a sulfuric acid aqueous solution containing nickel is introduced, and hydrogen sulfide gas is blown into the gas phase portion in the reaction vessel from the gas blowing port 11.
  • nickel in the aqueous solution in the vessel becomes nickel sulfide.
  • the sulfuric acid aqueous solution containing nickel sulfide generated in the first-stage reaction vessel is transferred into the second-stage reaction vessel, and the gas is appropriately transferred into the second-stage reaction vessel.
  • Hydrogen sulfide gas is supplied from the inlet 11 to cause a sulfurization reaction. Thereafter, the sulfidation reaction proceeds sequentially in the third-stage reaction container and the fourth-stage reaction container, and the post-reaction slurry obtained in the fourth-stage reaction container is discharged from the outlet 13. It is discharged and separated into nickel sulfide and a poor liquid which is a final sulfurization reaction liquid by a solid-liquid separator such as thickener.
  • nickel sulfide formation reaction based on the sulfidation reaction occurs mainly in the first-stage reaction vessel, and the subsequent second-stage and subsequent steps are performed.
  • growth of the produced nickel sulfide occurs in the reaction vessel. Therefore, when nickel sulfide is generated from a sulfuric acid aqueous solution containing nickel by a sulfidation reaction, the generation of nickel sulfide and the generated nickel sulfide are obtained by using the reaction tank 1 configured by providing multistage reaction vessels in series. The growth of an object to a desired size can be efficiently generated.
  • part of the hydrogen sulfide dissolved in the aqueous solution after the sulfidation reaction is discharged as hydrogen sulfide gas depending on the equilibrium condition when the temperature or pressure decreases.
  • the discharged hydrogen sulfide gas is recovered from the exhaust gas port 12 to the H 2 S gas cleaning tower 2 and subjected to alkali treatment with an aqueous sodium hydroxide solution.
  • the sodium hydrosulfide aqueous solution thus obtained is added to the sulfidation reaction starting solution charged into the reaction tank 1 using a pump or the like. That is, it is added to the sulfidation reaction starting liquid as part of the sulfiding agent used for the sulfidation reaction together with the hydrogen sulfide gas. Then, in addition to the sulfurization reaction by the hydrogen sulfide gas as shown by the following formula (1), the sulfurization reaction by the sodium hydrosulfide aqueous solution as shown by the following formula (2) occurs (formula (1) ), (2), M represents Ni, Co and Fe). MSO 4 + H 2 S ⁇ MS + H 2 SO 4 (1) 2NaHS + MSO 4 ⁇ Na 2 SO 4 + MS + H 2 S (2)
  • the aqueous sodium sulfide solution repeatedly added to the reaction tank 1 is also used for the sulfidation reaction, and the decrease in pH in the reaction system accompanying the sulfidation reaction is suppressed. Then, remelting of the produced NiS and CoS is reduced.
  • the inventors have increased the addition flow rate of the aqueous sodium hydrosulfide solution to the reaction vessel in the second and subsequent stages, but the re-dissolution of the generated sulfide is suppressed, but the chromium in the sulfide is reduced.
  • grade and iron grade we found that there is a tendency for grade and iron grade to increase.
  • the solubility product of chromium sulfide is larger than the solubility product of sulfides of nickel, cobalt, and iron, and does not precipitate as sulfide in the sulfurization reaction of this process. Therefore, it can be inferred that another mechanism works for the precipitation of chromium. And, as shown in FIG. 2, since there is a strong correlation between the iron grade and the chromium grade in the sulfide, the mechanism that chromium coprecipitates or adsorbs when iron precipitates as a sulfide by the sulfurization reaction, This is thought to be the mechanism of chromium deposition from the liquid.
  • the present inventors can reduce the chromium quality in the sulfide by suppressing the iron sulfidation reaction, that is, suppressing the iron sulfide formation reaction in which chromium is coprecipitated or adsorbed. Thought it would be possible.
  • the inventors of the present invention in the reaction vessel 1 in which a plurality of reaction vessels are connected in series, in the first reaction vessel, the sulfurization reaction of nickel or cobalt having a low sulfide solubility product is dominant.
  • the sulfurization reaction of nickel or cobalt having a low sulfide solubility product is dominant.
  • the second and subsequent reaction vessels in which the sulfidation of nickel or cobalt has progressed sufficiently the sulfidation of iron having a relatively high sulfide solubility product is likely to proceed (see FIG. 3). It was thought that precipitation of chromium was also progressing by coprecipitation or adsorption of chromium.
  • the sodium hydrosulfide aqueous solution when adding a sodium hydrosulfide aqueous solution to the sulfurization reaction starting solution as a part of the sulfiding agent, the sodium hydrosulfide aqueous solution is supplied to the reaction tank 1 as a sulfuric acid aqueous solution. Is added to the second and subsequent reaction vessels at a flow rate of 0.17% by volume or less, while the remaining amount of the sodium hydrosulfide aqueous solution is added to the first reaction vessel. To do.
  • the addition flow rate of the aqueous sodium hydrosulfide solution when the addition flow rate of the aqueous sodium hydrosulfide solution to the reaction vessel after the second stage exceeds 0.17% by volume of the flow rate of the aqueous sulfuric acid solution supplied to the reaction tank, The liquidity of the sulfuric acid aqueous solution to be subjected to the sulfidation treatment shifts to the alkali side, and iron sulfidation proceeds, and accordingly, precipitation of chromium by coprecipitation or adsorption also proceeds.
  • the lower limit of the addition flow rate of the aqueous sodium hydrosulfide solution to the reaction vessel after the second stage is not limited, and may be 0% by volume.
  • the internal pressure of each of a plurality of reaction vessels constituting the reaction tank 1 is 100 kPa to 300 kPa.
  • the sulfurization reaction of nickel and cobalt can be advanced more efficiently.
  • the internal pressure of the first-stage reaction vessel on the most upstream side is set to 250 kPa to 300 kPa, and the reaction vessels of the second and subsequent stages are used.
  • the internal pressure is gradually lowered to 100 kPa to 150 kPa in the most downstream reaction vessel.
  • the hydrogen sulfide gas supplied as a sulfiding agent can be efficiently used for the reaction, and can be appropriately controlled according to the reaction in which the sulfide is generated and the reaction in which the precipitated sulfide is grown.
  • the pH of the sulfuric acid aqueous solution containing nickel to be subjected to the sulfidation treatment is not particularly limited, but is preferably 3.0 to 3.8 from the viewpoint of efficiently proceeding the sulfidation reaction. That is, when the pH of the sulfuric acid aqueous solution is less than 3.0, there is a possibility that iron, aluminum, etc. may not be sufficiently removed in the neutralization step preceding the sulfidation step in the nickel oxide ore hydrometallurgical process. It becomes a sulfurization treatment starting solution containing a large amount of impurities. On the other hand, when the pH of the sulfuric acid aqueous solution exceeds 3.8, nickel or cobalt hydroxide may be generated.
  • the temperature of the sulfuric acid aqueous solution is not particularly limited, but is preferably about 65 ° C. to 90 ° C. That is, in general, the sulfidation reaction itself is promoted as the temperature increases, and in particular, the reaction can be promoted more efficiently by setting the temperature to 65 ° C. or higher. On the other hand, when the temperature of the aqueous solution exceeds 90 ° C., there is a problem that, in addition to the cost for raising the temperature, the reaction rate is increased, so that sulfides adhere to the reaction tank 1 and cannot be effectively recovered. May occur.
  • a sulfuric acid aqueous solution containing at least nickel is used as an object of the sulfidation treatment.
  • the aqueous sulfuric acid solution containing nickel is a reaction starting solution for the sulfurization reaction, and has a nickel concentration of 2 to 6 g / L, for example.
  • this sulfuric acid aqueous solution may contain cobalt, iron, manganese, magnesium, aluminum, chromium, lead, etc. as elements other than nickel.
  • the sulfidation treatment method according to the present embodiment can be applied, for example, to a treatment in a sulfidation step in a nickel oxide ore wet smelting method.
  • a sulfuric acid aqueous solution containing nickel a leachate obtained by subjecting a raw material nickel oxide ore slurry to a leaching treatment using sulfuric acid under high temperature and high pressure can be used.
  • this leachate contains cobalt as a valuable metal.
  • a post-neutralization solution obtained by neutralizing a leachate obtained through the leaching treatment using a neutralizing agent may be used.
  • FIG. 4 is a process diagram showing an example of the flow of a method for hydrometallizing nickel oxide ore.
  • the hydrometallurgical method of nickel oxide ore produces a ore slurry by pulverizing and classifying raw nickel oxide ore (pretreatment step S1), and adding sulfuric acid to the ore slurry to add high-temperature and high-pressure.
  • pretreatment step S1 pretreatment step S1
  • sulfuric acid sulfuric acid
  • a leaching process is performed below (leaching step S2), and the leaching residue is separated from the leaching slurry to obtain a leachate containing nickel and cobalt (solid-liquid separation step S3).
  • the pH of the leachate is adjusted to separate the impurity elements in the leachate as a neutralized starch slurry to obtain a neutralized solution (neutralization step S4), and hydrogen sulfide gas is added to the neutralized solution.
  • a nickel-cobalt mixed sulfide and a nickel poor solution are obtained (sulfurization step S5).
  • the leaching residue generated in the solid-liquid separation step S3 and the nickel poor solution generated in the sulfurization step S5 are rendered harmless (detoxification step S6).
  • Pretreatment step S1 for example, nickel oxide ore, which is a raw ore, is classified at a predetermined classification point to remove oversized ore particles, and then water is added to the undersized ore particles.
  • the method for classifying nickel oxide ore is not particularly limited as long as it can be classified based on a desired particle size, and can be performed by sieving using a grizzly or vibrating sieve.
  • the classification point for obtaining the ore slurry which consists of an ore particle below a desired particle size value can be set suitably.
  • Nickel oxide ores include so-called laterite ores such as limonite ore and saprolite ore.
  • Laterite ore usually has a nickel content of 0.8% to 2.5% by weight and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral.
  • the iron content is 10% to 50% by weight and is mainly in the form of trivalent hydroxide (goethite), but partly divalent iron is contained in the siliceous clay.
  • oxide ores containing valuable metals such as nickel, cobalt, manganese, and copper, such as manganese nodules existing in the deep sea floor, can be used.
  • the leaching process in the leaching step S2 for example, a leaching reaction represented by the following formulas (i) to (v) and a high-temperature thermal hydrolysis reaction occur, leaching as sulfates such as nickel and cobalt, and leached iron sulfate. Is fixed as hematite. However, since the immobilization of iron ions does not proceed completely, the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.
  • the pH of the obtained leachate is 0.1 to 1.0 from the viewpoint of filterability of the leaching residue containing hematite produced in the next solid-liquid separation step S3. It is preferable to adjust.
  • the amount of sulfuric acid added to the autoclave charged with the ore slurry is not particularly limited, but an excessive amount such that iron in the ore is leached is used.
  • an excessive amount such that iron in the ore is leached is used.
  • it is about 300 kg to 400 kg per ton of ore.
  • the leaching slurry is mixed with the cleaning liquid, and then subjected to solid-liquid separation processing using a solid-liquid separation device such as a thickener, and the leaching liquid containing valuable metals such as nickel and cobalt. Separated into (crude nickel sulfate aqueous solution) and leaching residue. Specifically, the leaching slurry is first diluted with a cleaning liquid, and then the leaching residue in the leaching slurry is concentrated as a thickener sediment. Thereby, nickel and cobalt adhering to a leaching residue can be reduced according to the dilution degree. In actual operation, the recovery rate of nickel and cobalt can be improved by connecting the thickeners having such functions in multiple stages.
  • a solid-liquid separation device such as a thickener
  • the pH of the resulting neutralized solution is 4 or less, preferably 3.0 to 3.5, more preferably 3, while suppressing oxidation of the separated leachate.
  • a neutralizing agent such as calcium carbonate to the leachate so that it becomes 1 to 3.2, and then neutralize containing trivalent iron as an impurity element, and a neutralized solution as the base of the mother liquor for nickel recovery A starch slurry is formed.
  • the neutralization step S4 by performing the neutralization treatment (cleaning treatment) on the leachate in this way, the excess acid used in the leach treatment by the HPAL method is neutralized to generate a neutralized final solution, and the solution Impurities such as trivalent iron ions and aluminum ions remaining therein are removed as neutralized starch.
  • the post-neutralization solution is a solution based on a leaching solution obtained by subjecting a raw material nickel oxide ore to leaching with sulfuric acid (leaching step S2), and sulfuric acid containing nickel and cobalt. It is an aqueous solution.
  • This neutralized solution is a reaction starting solution for the sulfurization reaction in the sulfurization step S5 described later, and the total concentration of nickel concentration and cobalt concentration is not particularly limited, but is usually in the range of 2 g / L to 6 g / L. is there.
  • the nickel concentration is usually in the range of 2 g / L to 5 g / L
  • the cobalt concentration is usually in the range of 0.1 g / L to 0.6 g / L.
  • the post-neutralization solution may contain trace amounts of iron, manganese, magnesium, aluminum, chromium, lead and the like in addition to nickel and cobalt.
  • a neutralized solution which is an aqueous sulfuric acid solution containing nickel and cobalt
  • a sulfurization reaction is caused by blowing hydrogen sulfide gas into the sulfidation reaction start solution, resulting in less impurity components.
  • a sulfide of nickel and cobalt and a poor liquid (post-sulfurized liquid) in which the concentrations of nickel and cobalt are stabilized at a low level are generated.
  • the sulfidation treatment in the sulfidation step S5 can be performed using a sulfidation reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase portion in the reaction tank with respect to the sulfidation reaction starting liquid introduced into the sulfidation reaction tank.
  • a sulfurization reaction is caused by dissolving hydrogen sulfide gas therein.
  • the obtained slurry containing nickel and cobalt sulfides is charged into a settling separator such as a thickener and subjected to settling separation, and only the sulfide is separated from the bottom of the thickener. to recover.
  • a settling separator such as a thickener and subjected to settling separation, and only the sulfide is separated from the bottom of the thickener. to recover.
  • the aqueous solution component overflows from the upper part of the thickener and is recovered as a poor solution.
  • unreacted gas in the hydrogen sulfide gas added to the sulfuric acid aqueous solution is recovered in the sulfiding step S5, and water is added to the recovered hydrogen sulfide gas.
  • Sodium oxide is added to produce sodium hydrosulfide, and the obtained aqueous sodium hydrosulfide solution is added as a part of the sulfiding agent to the sulfuric acid aqueous solution.
  • the aqueous sodium hydrosulfide solution when adding the aqueous sodium hydrosulfide solution, the aqueous sodium hydrosulfide solution is added to the reaction vessel in the second and subsequent stages at a flow rate of 0.17% by volume or less with respect to the flow rate of the sulfuric acid aqueous solution supplied to the reaction vessel. The remaining amount of the obtained aqueous sodium hydrosulfide solution is added to the first stage reaction vessel.
  • Nickel recovery rate (reaction start volume x reaction start solution nickel concentration-reaction end solution volume x reaction end solution nickel concentration) ⁇ (reaction start solution volume x reaction start solution nickel concentration)
  • Example 1 Using a reaction tank composed of four-stage reaction vessels connected in series, a sulfuric acid aqueous solution containing nickel was used as a reaction starting solution, and hydrogen sulfide gas was blown as a sulfiding agent to perform sulfiding treatment.
  • a sulfuric acid aqueous solution as a reaction starting solution is supplied to the first-stage reaction vessel on the most upstream side, and the first-stage reaction vessel is continued.
  • a sulfurization reaction was caused in the second stage reaction vessel.
  • the third-stage reaction container and the fourth-stage reaction container were used as storage tanks.
  • a post-reaction slurry of sulfide and a poor solution that is a post-reaction solution is obtained.
  • an aqueous solution having a nickel concentration of 3.7 g / L to 4.0 g / L is used as the sulfurization reaction start solution (sulfuric acid aqueous solution), and the reaction start solution is supplied to the first stage reaction vessel.
  • the liquid flow rate was supplied at 400 m 3 / Hr to 450 m 3 / Hr.
  • the flow rate of hydrogen sulfide gas was 650 Nm 3 / Hr to 750 Nm 3 / Hr, and the entire amount was blown into the first stage reaction vessel.
  • the gas remaining in the reaction vessel which was an unreacted portion of the blown hydrogen sulfide gas, was recovered, and sodium hydroxide was added to the recovered hydrogen sulfide gas to produce a sodium hydrosulfide aqueous solution.
  • Addition flow rate (generation amount) of sodium hydrosulfide aqueous solution was 2.0m 3 /Hr ⁇ 3.0m 3 / Hr, the sodium hydrosulfide solution in the reaction vessel and the reaction vessel of the second stage of the first stage On the other hand, it added with the addition ratio shown in the following Table 1.
  • the flow rate of addition of the sodium hydrosulfide aqueous solution to the second stage reaction vessel is adjusted to 0.05% by volume of the reaction start liquid flow rate, and the remaining sodium hydrosulfide aqueous solution is added to the first stage reaction. Added to the container.
  • the nickel recovery rate in the entire treatment in the sulfidation process was 98.3%, and the chromium quality in the sulfide was 0.0087% by weight, and good results were obtained.
  • Example 2 In Example 2, the flow rate of addition of the sodium hydrosulfide aqueous solution to the second stage reaction vessel was adjusted to 0.15% by volume of the reaction start liquid flow rate, and the remaining sodium hydrosulfide aqueous solution was used for the first stage reaction. Added to the container. Except for this, the treatment was performed in the same manner as in Example 1.
  • the nickel recovery rate in the entire treatment in the sulfiding process was 98.6%, and the chromium quality in the sulfide was 0.0095% by weight, and good results were obtained.
  • Example 3 In Example 3, the aqueous sodium hydrosulfide solution was not added to the second-stage reaction vessel, but the entire amount of the generated sodium hydrosulfide aqueous solution was added to the first-stage reaction vessel. Except for this, the treatment was performed in the same manner as in Example 1.
  • the nickel recovery rate in the entire treatment in the sulfidation process was 98.2%, and the chromium quality in the sulfide was 0.0079% by weight, and good results were obtained.
  • Comparative Example 1 In Comparative Example 1, the flow rate of addition of the aqueous sodium hydrosulfide solution to the second stage reaction vessel was adjusted to 0.21% by volume of the reaction start liquid flow rate, and the remaining aqueous sodium hydrosulfide solution was used for the first stage reaction. Added to the container. Except for this, the treatment was performed in the same manner as in Example 1.
  • the nickel recovery rate in the entire treatment in the sulfidation process was 98.8%, satisfying the requirement.
  • the chromium quality in the sulfide was 0.0100% by weight, which was higher than that of the examples. It became.
  • Comparative Example 2 In Comparative Example 2, the addition flow rate of the sodium hydrosulfide aqueous solution to the second stage reaction vessel was adjusted to 0.23% by volume of the reaction start flow rate, and the remaining sodium hydrosulfide aqueous solution was used for the first stage reaction. Added to the container. Except for this, the treatment was performed in the same manner as in Example 1.
  • the nickel recovery rate in the entire treatment in the sulfidation process was 98.6%, which met the requirement.
  • the chromium quality in the sulfide was 0.0115% by weight, which is higher than in the examples. It became.
  • the chromium grade in the obtained sulfide is effectively less than 0.0100% by weight by controlling the addition ratio of the sodium hydrosulfide aqueous solution added to the reaction vessel in the second and subsequent stages. It was found that it can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

ニッケルを含む硫酸水溶液に硫化剤を添加してニッケルを含む硫化物を得るに際して、生成する硫化物中のクロム品位を低減させることができる方法を提供する。 ニッケルを含む硫酸水溶液を反応槽に装入し、硫化剤を添加してニッケルを含む硫化物を生成させる硫化物の製造方法であって、反応槽1は、複数段の反応容器が直列に連結して構成され、硫酸水溶液に硫化剤として添加した硫化水素ガスのうちの未反応の硫化水素ガスを水酸化ナトリウム水溶液で回収して水硫化ナトリウム水溶液を生成させ、得られた水硫化ナトリウム水溶液を硫化剤の一部として反応槽1に添加するようにし、水硫化ナトリウム水溶液の添加に際しては、水硫化ナトリウム水溶液を、反応槽1に供給される硫酸水溶液の流量に対して0.17体積%以下となる流量でその反応槽のうちの2段目以降の反応容器に添加し、水硫化ナトリウム水溶液の残量を1段目の反応容器に添加する。

Description

硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
 本発明は、ニッケルを含む硫酸水溶液から硫化剤による硫化反応に基づきニッケルの硫化物を生成させる硫化物の製造方法、及びその方法を適用したニッケル酸化鉱石の湿式製錬方法に関するものである。
 ニッケル酸化鉱石を原料とする湿式製錬方法においては、近年、高温高圧を利用した酸浸出法(HPAL法:High Pressure Acid Leach)による低ニッケル品位鉱石からの有価金属の回収が実用化されている。HPAL法によってニッケル酸化鉱石より浸出されたニッケル、コバルト等の有価金属の回収については、加圧下で有価金属を含む硫酸水溶液に硫化水素ガス等の硫化剤を添加することにより、硫化物として回収する方法が一般的に行われている。
 その硫化処理においては、効率よく硫化反応を行うための方法として、反応槽内の圧力、反応時間、反応溶液のpH、種晶の添加等を調整する方法が知られている。
 また、硫化反応の反応効率の改善手段の一つとして、例えば特許文献1には、反応槽に水硫化ナトリウムを添加するという方法が開示されている。具体的に、この方法は、反応槽に過剰に吹き込んだ硫化水素ガスを水酸化ナトリウム水溶液で回収することにより得られる水硫化ナトリウム水溶液を、再度その反応槽に添加するというものである。この方法によれば、硫化反応の進行に伴う反応溶液のpH低下を抑制し、生成した硫化物の再溶解を抑制することができる。また、硫化物の再溶解を抑制できることから、反応終液におけるニッケルやコバルトの濃度を低く維持でき、これにより硫化反応の反応効率を向上させ、ニッケルやコバルトといった有価金属を高効率で回収することができる。
 ところで、上述した硫化物を原料として使用しニッケル製錬を行う際には、製品の不純物品位が規格値を満たすように、必要に応じて不純物除去工程が設けられるが、原料中の不純物の量が多いと、不純物除去工程での負荷を増大させてしまう。
 HPAL法を用いてニッケル酸化鉱石から浸出を行う際には、ニッケル、コバルト等の有価金属だけではなく、クロム、鉄、マンガン、マグネシウム等の不純物も同時に浸出される。硫化反応により浸出液からニッケルやコバルト等の有機金属を硫化物として析出させ回収する処理においては、特に、浸出液に含まれるクロムも析出するため、硫化物に含まれるクロム品位を可能な限り低く抑えるようにする技術が求められている。
特開2010-126778号公報
 本発明は、このような実情に鑑みて提案されたものであり、ニッケルを含む硫酸水溶液に硫化剤を添加してニッケルを含む硫化物を得るに際して、生成する硫化物中のクロム品位を低減させることができる方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、複数段の反応容器が直列に連結された反応槽を用いた硫化処理において、硫酸水溶液に添加した硫化水素ガスのうちの未反応の硫化水素ガスを水酸化ナトリウム水溶液で回収して得られる水硫化ナトリウム水溶液を反応槽に繰り返し供給するに際し、2段目以降の反応容器に供給する水硫化ナトリウム水溶液の添加流量を制御することで、生成する硫化物中のクロム品位を効果的に低減できることを見出し、本発明を完成させた。
 (1)本発明の第1の発明は、ニッケルを含む硫酸水溶液を反応槽に装入し、硫化剤を添加してニッケルを含む硫化物を生成させる硫化物の製造方法であって、前記反応槽は、複数段の反応容器が直列に連結して構成されており、前記硫酸水溶液に硫化剤として添加した硫化水素ガスのうちの未反応の硫化水素ガスを水酸化ナトリウム水溶液で回収して水硫化ナトリウム水溶液を生成させ、得られた該水硫化ナトリウム水溶液を硫化剤の一部として前記反応槽に添加するようにし、前記水硫化ナトリウム水溶液の添加に際しては、前記水硫化ナトリウム水溶液を、前記反応槽に供給される前記硫酸水溶液の流量に対して0.17体積%以下となる流量で該反応槽のうちの2段目以降の反応容器に添加し、該水硫化ナトリウム水溶液の残量を1段目の反応容器に添加する、硫化物の製造方法である。
 (2)本発明の第2の発明は、第1の発明において、前記複数段の反応容器のそれぞれの内部の圧力は100kPa~300kPaである、硫化物の製造方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記硫酸水溶液のpHは3.0~3.8である、硫化物の製造方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記硫酸水溶液の温度は65℃~90℃である、硫化物の製造方法である。
 (5)本発明の第5の発明は、ニッケル酸化鉱石に対して高温高圧下で硫酸を用いてニッケルを浸出し、得られた浸出液からニッケルを含む硫化物を生成するニッケル酸化鉱石の湿式製錬方法であって、前記浸出液を、複数段の反応容器が直列に連結して構成される反応槽に供給し、該浸出液に硫化剤を添加してニッケルを含む硫化物を生成させる硫化工程を含み、前記硫化工程では、前記浸出液に硫化剤として添加した硫化水素ガスのうちの未反応の硫化水素ガスを水酸化ナトリウム水溶液で回収して水硫化ナトリウム水溶液を生成させ、得られた該水硫化ナトリウム水溶液を硫化剤の一部として前記反応槽に添加するようにし、前記水硫化ナトリウム水溶液の添加に際しては、前記水硫化ナトリウム水溶液を、前記反応槽に供給される前記浸出液の流量に対して0.17体積%以下となる流量で該反応槽のうちの2段目以降の反応容器に添加し、該水硫化ナトリウム水溶液の残量を1段目の反応容器に添加する、ニッケル酸化鉱石の湿式製錬方法である。
 本発明によれば、ニッケルを含む硫酸水溶液に硫化剤を添加してニッケルを含む硫化物を得るに際して、生成する硫化物中のクロム品位を低減させることができる。
余剰の硫化水素ガスを回収してアルカリ処理に供し、得られた水硫化ナトリウム水溶液を硫化剤として硫化反応に供給する流れを模式的に示す図である。 硫化物中の鉄品位とクロム品位との関係を示す図である。 溶液のpHと、各種金属硫化物の溶解度との関係を示す図である。 ニッケル酸化鉱石の湿式製錬方法の流れの一例を示す工程図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について図面を参照しながら詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。なお、本明細書において、「X~Y」(X、Yは任意の数値)と表現する場合、特にことわらない限り「X以上Y以下」であることを意味する。
 ≪1.硫化物の製造方法≫
 本実施の形態に係る硫化物の製造方法(以下、「硫化処理方法」ともいう)は、ニッケルを含む硫酸水溶液を反応槽に装入し、その水溶液に対して硫化剤を添加して硫化反応によりニッケルを含む硫化物を生成させる方法である。具体的に、この硫化反応に基づく硫化物の製造方法は、複数段の反応容器が直列に連結して構成される反応槽を用いて行う。
 この硫化処理方法では、例えば純度95%~99%程度の硫化水素ガスを硫化剤として用い、硫化反応により硫化物を生成させるための必要理論当量よりも多い過剰量の硫化水素ガスを、硫化反応始液であるその硫酸水溶液に添加する。これにより、硫酸水溶液に含まれるニッケルを硫化物として高い回収率で回収することができる。
 一方で、この硫化処理方法では、過剰量の硫化水素ガスを添加しているために、硫化反応に関与しなかった未反応のガスが反応槽内に残存するようになる。そこで、この硫化処理方法では、添加した硫化水素ガスのうちの未反応の硫化水素ガスを回収し、回収した硫化水素ガスに水酸化ナトリウムを添加して水硫化ナトリウムを生成させ、得られた水硫化ナトリウム水溶液を硫化剤の一部として反応槽に供給している。これにより、硫酸水溶液中のニッケルを、ニッケル硫化物としてより一層高い回収率で回収することが可能になるとともに、硫化水素ガスの利用効率を向上させることもできる。
 そして、このとき、本実施の形態に係る硫化処理方法においては、未反応の硫化水素ガスに基づいて得られた水硫化ナトリウム水溶液を、反応槽に供給される硫酸水溶液の流量に対して0.17体積%以下となる流量で、複数段の反応容器で構成される反応槽のうちの2段目以降の反応容器に添加するようにし、一方で、その水硫化ナトリウム水溶液の残量を1段目の反応容器に添加することを特徴としている。
 このような硫化処理方法によれば、後述するように、硫酸水溶液中に含まれる鉄の硫化を抑制し、鉄の硫化に伴ってクロムが共沈又は吸着して析出することを抑制することができ、得られる硫化物中のクロム品位を有効に低減することができる。具体的には、硫化物中のクロム品位を0.0100重量%未満にまで低減することが可能となる。
 以下、図面を参照しながらより具体的に説明する。図1に、硫化反応に寄与しなかった余剰分の硫化水素ガスを回収して水酸化ナトリウム(NaOH)によるアルカリ処理に供し、そのアルカリ処理により得られた水硫化ナトリウム(NaHS)水溶液を硫化反応に供給する流れを模式的に示す。
 図1に示すように、硫化処理方法に用いられる反応槽1は、通常、硫化反応始液を導入する導入口10と、硫化剤としての純度95%~99%の硫化水素ガスを吹き込むガス吹き込み口11と、反応槽1内のガスの一部を排ガスとして排出する排ガス口12と、反応後のスラリーを排出する排出口13と、を備えた密閉型の反応設備である。
 また、図示しないが、反応槽1は、複数段(2基以上)の反応容器を直列に連結して構成されている。例えば、反応槽1としては、4段の反応容器が直列に連結して構成される多段連続撹拌硫化反応設備を用いることができる。硫化処理を行うに際しては、効率よく硫化反応を進めるために硫化反応が生じている水溶液の滞留時間を長くすることが有利であり、反応槽に供給した水溶液のショートパスを防止するために、複数段の反応容器を直列に並べることが好ましい。
 例えば、4段の反応容器を直列に連結して構成されてなる反応槽1では、先ず、最上流側の反応容器である第1段目の反応容器内に、導入口10から硫化反応始液であるニッケルを含む硫酸水溶液が導入されるとともに、ガス吹き込み口11から反応容器内の気相部分に硫化水素ガスが吹き込まれる。そして、第1段目の反応容器において所定の時間で硫化反応を生じさせることによって、その容器内の水溶液中のニッケルがニッケル硫化物となる。次に、第1段目の反応容器内で生成したニッケル硫化物を含んだ硫酸水溶液は、第2段目の反応容器内に移送され、適宜、その第2段目の反応容器内にもガス吹き込み口11から硫化水素ガスが供給して硫化反応を生じさせる。以降、順次、第3段目の反応容器、第4段目の反応容器において硫化反応が進行していき、第4段目の反応容器内に得られた反応後のスラリーは、排出口13から排出され、シックナー等の固液分離装置によりニッケル硫化物と硫化反応終液である貧液とに分離される。
 このように、例えば、4段の反応容器から構成される反応槽1において、主として第1段目の反応容器にて硫化反応に基づくニッケル硫化物の生成反応が生じ、続く第2段目以降の反応容器においては、生成したニッケル硫化物のいわゆる成長が生じる。したがって、ニッケルを含む硫酸水溶液から硫化反応によりニッケル硫化物を生成させるに際して、多段の反応容器を直列に設けて構成される反応槽1を用いることによって、ニッケル硫化物の生成と、生成したニッケル硫化物の所望とする大きさへの成長を効率的に生じさせることができる。
 ここで、硫化反応によりニッケルを硫化物として高い回収率で回収するためには、硫化剤となる硫化水素は必要理論当量よりも過剰に添加する必要がある。したがって、例えば第1段目の反応容器内には、硫化反応後において、有価金属の硫化反応に寄与しなかった余剰の硫化水素ガスが溶存している状態となり、この余剰の硫化水素ガスは、排ガス口12から硫化反応処理外へと排出される。また、硫化反応後の水溶液に溶存している硫化水素は、温度や圧力が下がると平衡条件により一部が硫化水素ガスとして排出される。これら排出される硫化水素ガスは、排ガス口12からHSガス洗浄塔2へと回収され、水酸化ナトリウム水溶液によりアルカリ処理が施される。
 このアルカリ処理においては、硫化水素ガスを水酸化ナトリウム水溶液に接触させて吸収させる反応が生じ、下記の反応式に示すように水硫化ナトリウム水溶液が得られる。なお、HSガス洗浄塔2では、アルカリ溶液と硫化水素ガスとの接触を効率的に行うため、スクラバー等の除害設備を設けることが好ましい。
  NaOH+HS→NaHS+H
 本実施の形態に係る硫化処理方法では、このようにして得られた水硫化ナトリウム水溶液を、ポンプ等を用いて、反応槽1に装入された硫化反応始液に添加する。すなわち、硫化水素ガスと共に硫化反応に用いる硫化剤の一部として、硫化反応始液に添加する。そうすると、下記の(1)式で示されるような硫化水素ガスによる硫化反応に加えて、下記(2)式で示されるような水硫化ナトリウム水溶液による硫化反応が発生することになる(式(1)、(2)において、Mは、Ni、Co及びFeを表す)。
  MSO+HS→MS+HSO  ・・・(1)
  2NaHS+MSO→NaSO+MS+HS  ・・・(2)
 このような方法によれば、反応槽1に繰り返し添加される硫化ナトリウム水溶液も硫化反応に使用され、その硫化反応に伴う反応系内におけるpHの低下が抑制されることになる。すると、生成したNiS及びCoSの再溶解が低減される。
 ところが、本発明者らは、第2段目以降の反応容器に対して水硫化ナトリウム水溶液の添加流量を増加させると、生成した硫化物の再溶解は抑制されるものの、その硫化物中のクロム品位及び鉄品位が増加する傾向があることを発見した。
 このようなクロムの析出機構に関しては、先ず、クロムの硫化物の溶解度積が、ニッケルやコバルト、鉄の硫化物の溶解度積と比較して大きく、本プロセスの硫化反応においては硫化物として析出しないため、クロムの析出には別の機構が働いていると推測できる。そして、図2に示すように、硫化物中の鉄品位とクロム品位には強い相関があることから、鉄が硫化反応により硫化物として析出する際にクロムが共沈又は吸着するというメカニズムが、液中からクロムが析出する機構であると考えられる。
 したがって、このことから本発明者らは、鉄の硫化反応を抑制する、すなわちクロムが共沈又は吸着する鉄の硫化物の生成反応を抑制することで、硫化物中のクロム品位を低減させることが可能になると考えた。
 さらに、本発明者らは、複数段の反応容器が直列に連結されてなる反応槽1において、第1段目の反応容器では、硫化物の溶解度積の低いニッケル又はコバルトの硫化反応が支配的であるが、ニッケル又はコバルトの硫化が十分に進行した第2段目以降の反応容器では、比較的硫化物の溶解度積の高い鉄の硫化が進行しやすくなり(図3参照)、鉄の硫化に伴うクロムの共沈又は吸着によってクロムの析出も進行していると考えた。
 そこで、本実施の形態に係る硫化処理方法においては、硫化剤の一部として水硫化ナトリウム水溶液を硫化反応始液に添加するに際して、その水硫化ナトリウム水溶液を、反応槽1に供給される硫酸水溶液の流量に対して0.17体積%以下となる流量として第2段目以降の反応容器に添加するようにし、一方で、その水硫化ナトリウム水溶液の残量を第1段目の反応容器に添加する。
 このように、第2段目以降の反応容器への水硫化ナトリウム水溶液の添加流量を低減させることにより、鉄の硫化反応を抑制させてクロムの析出を抑えることができ、その結果、得られる硫化物中のクロム品位を有効に低減させることができる。
 水硫化ナトリウム水溶液の添加流量に関して、第2段目以降の反応容器への水硫化ナトリウム水溶液の添加流量が、反応槽に供給される硫酸水溶液の流量の0.17体積%を超える場合には、硫化処理対象の硫酸水溶液の液性がアルカリ側に移行し、鉄の硫化が進行してしまい、それに伴って共沈又は吸着によるクロムの析出も進行する。なお、第二段目以降の反応容器への水硫化ナトリウム水溶液の添加流量の下限としては、限定されず、0体積%であってもよい。
 以下、硫化処理におけるその他の具体的な条件について説明する。
 硫化処理においては、特に限定されないが、反応槽1を構成する複数段の反応容器のそれぞれの内部圧力を100kPa~300kPaであることが好ましい。これにより、ニッケル及びコバルトの硫化反応をより効率的に進行させることができる。また、複数段の反応容器のすべてを同じ圧力に制御しなくてもよく、例えば、最上流側の第1段目の反応容器の内部圧力を250kPa~300kPaとし、2段目以降の反応容器の内部圧力を徐々に降下させ、最下流側の反応容器では100kPa~150kPaとする。これにより、硫化剤として供給する硫化水素ガスを効率的に反応に供することができ、硫化物が生成する反応と析出した硫化物が成長する反応とに応じて適切に制御することができる。
 また、硫化処理に供するニッケルを含む硫酸水溶液のpHとしては、特に限定されないが、硫化反応を効率的に進行させる観点から、3.0~3.8とすることが好ましい。すなわち、硫酸水溶液のpHが3.0未満であると、例えばニッケル酸化鉱石の湿式製錬プロセスにおける硫化工程の前段にある中和工程にて、鉄、アルミニウム等を十分に除去できない可能性があり、不純物を多く含む硫化処理始液となる。一方、硫酸水溶液のpHが3.8を超えると、ニッケルやコバルトの水酸化物が生成する可能性がある。
 また、硫酸水溶液の温度としては、特に限定されないが、65℃~90℃程度とすることが好ましい。すなわち、一般的に、硫化反応自体は高温であるほど促進され、特に65℃以上とすることにより、より効率的に反応を促進させることができる。一方で、水溶液温度が90℃を超えると、温度を上昇させるためにコストがかかることのほか、反応速度が速くなるために反応槽1内に硫化物が付着して有効に回収できない等の問題が生じることがある。
 ≪2.ニッケル酸化鉱石の湿式製錬方法での適用≫
 本実施の形態に係る硫化処理方法では、上述したように、その硫化処理の対象として、少なくともニッケルを含む硫酸水溶液を用いる。このニッケルを含む硫酸水溶液は、硫化反応の反応始液であり、例えば、ニッケル濃度は2~6g/Lである。また、この硫酸水溶液は、ニッケル以外の元素として、コバルト、鉄、マンガン、マグネシウム、アルミニウム、クロム、鉛等を含むものであってもよい。
 本実施の形態に係る硫化処理方法は、例えば、ニッケル酸化鉱石の湿式製錬方法における硫化工程での処理に適用することができる。このとき、ニッケルを含む硫酸水溶液としては、原料のニッケル酸化鉱石のスラリーに対して高温高圧下で硫酸を用いた浸出処理を施して得られた浸出液を用いることができる。この浸出液には、ニッケルのほか、有価金属としてコバルトを含有する。なお、後述するように、その浸出処理を経て得られた浸出液に対して中和剤を用いて中和処理を行うことで得られた中和後液を用いてもよい。
 以下では、ニッケル酸化鉱石の湿式製錬方法についての概要を説明して、その湿式製錬方法における硫化工程での処理に、上述した硫化処理方法を適用した具体的な態様について説明する。なお、ニッケル酸化鉱石の湿式製錬方法として、高温高圧下で浸出を行う高温加圧酸浸出法(HPAL法)による湿式製錬方法を例に挙げて説明する。
  <2-1.ニッケル酸化鉱石の湿式製錬方法の各工程について>
 図4は、ニッケル酸化鉱石の湿式製錬方法の流れの一例を示した工程図である。図4に示すように、ニッケル酸化鉱石の湿式製錬方法は、原料のニッケル酸化鉱石を解砕分級して鉱石スラリーを製造し(前処理工程S1)、鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施し(浸出工程S2)、浸出スラリーから浸出残渣を分離してニッケル及びコバルトを含む浸出液を得る(固液分離工程S3)。さらに、浸出液のpHを調整して浸出液中の不純物元素を中和澱物スラリーとして分離し中和後液を得て(中和工程S4)、中和後液に硫化水素ガスを添加することでニッケル・コバルト混合硫化物とニッケル貧液とを得る(硫化工程S5)。また、固液分離工程S3で発生した浸出残渣と、硫化工程S5で発生したニッケル貧液は、無害化する(無害化工程S6)。
 (1)前処理工程
 前処理工程S1では、例えば、原料鉱石であるニッケル酸化鉱石を、所定の分級点で分級してオーバーサイズの鉱石粒子を除去した後に、アンダーサイズの鉱石粒子に水を添加して鉱石スラリーを調製する。ニッケル酸化鉱石の分級方法は、所望とする粒径に基づいて分級できれば特に限定されず、グリズリーや振動篩等を用いた篩分けによって行うことができる。また、その分級点についても、所望とする粒径値以下の鉱石粒子からなる鉱石スラリーを得るための分級点を適宜設定することができる。
 ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、鉄の含有量は、10重量%~50重量%であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。また、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等を用いることができる。
 (2)浸出工程
 浸出工程S2では、オートクレーブ等の高温加圧反応槽を用い、前処理工程S1で調製された鉱石スラリーに硫酸を添加して、温度230℃~270℃程度、圧力3~5MPa程度の条件下で撹拌し、浸出液と浸出残渣とからなる浸出スラリーを生成させる。
 浸出工程S2における浸出処理では、例えば下記式(i)~(v)で表される浸出反応と高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。なお、この浸出工程S2では、次工程の固液分離工程S3で生成されるヘマタイトを含む浸出残渣の濾過性の観点から、得られる浸出液のpHが0.1~1.0にとなるように調整することが好ましい。
 ・浸出反応
MO+HSO⇒MSO+HO  ・・・(i)
(なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
2Fe(OH)+3HSO⇒Fe(SO+6H
                          ・・・(ii)
FeO+HSO⇒FeSO+HO  ・・・(iii)
 ・高温熱加水分解反応
2FeSO+HSO+1/2O⇒Fe(SO+H
                          ・・・(iv)
Fe(SO+3HO⇒Fe+3HSO  ・・・(v)
 なお、鉱石スラリーを装入したオートクレーブへの硫酸の添加量としては、特に限定されないが、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300kg~400kg程度とする。
 (3)固液分離工程
 固液分離工程S3では、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離装置を用いて固液分離処理を施し、ニッケルやコバルト等の有価金属を含む浸出液(粗硫酸ニッケル水溶液)と浸出残渣とに分離する。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケルやコバルトをその希釈度合に応じて減少させることができる。なお、実操業では、このような機能を持つシックナーを多段に連結して用いることにより、ニッケル及びコバルトの回収率の向上を図ることができる。
 (4)中和工程
 中和工程S4では、分離された浸出液の酸化を抑制しながら、得られる中和後液のpHが4以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加し、ニッケル回収用の母液の元となる中和後液と、不純物元素として3価の鉄を含む中和澱物スラリーとを形成する。中和工程S4では、このように浸出液に対する中和処理(浄液処理)を施すことで、HPAL法による浸出処理で用いた過剰の酸を中和して中和終液を生成するとともに、溶液中に残留する3価の鉄イオンやアルミニウムイオン等の不純物を中和澱物として除去する。
 なお、中和後液は、上述したように、原料のニッケル酸化鉱石に対して硫酸による浸出処理(浸出工程S2)を施して得られた浸出液に基づく溶液であって、ニッケル及びコバルトを含む硫酸水溶液である。この中和後液は、後述する硫化工程S5における硫化反応の反応始液となるものであり、ニッケル濃度及びコバルト濃度の合計濃度は特に限定されないが、通常2g/L~6g/Lの範囲である。ここで、ニッケル濃度は通常2g/L~5g/Lの範囲であり、コバルト濃度は通常0.1g/L~0.6g/Lの範囲である。また、この中和後液中には、ニッケルやコバルト以外に、微量に残存した鉄、マンガン、マグネシウム、アルミニウム、クロム、鉛等が含まれることがある。
 (5)硫化工程(ニッケル回収工程)
 硫化工程S5では、ニッケル及びコバルトを含む硫酸水溶液である中和後液を硫化反応始液として、その硫化反応始液に対して硫化水素ガスを吹き込むことによって硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの硫化物と、ニッケルやコバルトの濃度を低い水準で安定させた貧液(硫化後液)とを生成させる。
 硫化工程S5における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に硫化水素ガスを溶解させることで硫化反応を生じさせる。この硫化処理により、硫化反応始液中に含まれるニッケル及びコバルトを硫化物として固定化して回収する。
 なお、硫化反応の終了後においては、得られたニッケル及びコバルトの硫化物を含むスラリーをシックナー等の沈降分離装置に装入して沈降分離処理を施し、その硫化物のみをシックナーの底部より分離回収する。一方で、水溶液成分は、シックナーの上部からオーバーフローさせて貧液として回収する。
  <2-2.硫化工程における硫化処理方法について>
 ここで、硫化工程S5での処理、つまりニッケル及びコバルトを含む硫酸水溶液である中和終液からニッケル及びコバルトの硫化物を生成させる硫化処理においては、上述した硫化処理方法を適用することができる。
 すなわち、本実施の形態に係るニッケル酸化鉱石の湿式製錬方法では、その硫化工程S5において、硫酸水溶液に添加した硫化水素ガスのうちの未反応のガスを回収し、回収した硫化水素ガスに水酸化ナトリウムを添加して水硫化ナトリウムを生成させ、得られた水硫化ナトリウム水溶液を硫化剤の一部として硫酸水溶液に添加する。そして、その水硫化ナトリウム水溶液を添加するに際しては、水硫化ナトリウム水溶液を、反応槽に供給される硫酸水溶液の流量に対して0.17体積%以下となる流量で第2段目以降の反応容器に添加するようにし、得られた水硫化ナトリウム水溶液の残量を第1段目の反応容器に添加する。
 具体的な硫化処理の方法についての詳細は、上述した内容と同様であるため、ここでの説明は省略するが、本実施の形態においては、このようにして硫化剤として用いる化合物のうちの水硫化ナトリウム水溶液の各反応槽への添加量を制御することによって、硫化反応の反応効率を維持してニッケルの硫化物としての回収率を高めながら、得られる硫化物のクロム品位を低減させることができ、安定的な操業を実現することができる。
 以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
 実施例及び比較例で用いた金属の分析は、ICP発光分析法により行った。また、ニッケル回収率は、下記式により算出する。
 ニッケル回収率=(反応始液体積×反応始液ニッケル濃度-反応終液体積×反応終液ニッケル濃度)÷(反応始液体積×反応始液ニッケル濃度)
 [実施例1]
 直列に連結された4段の反応容器からなる反応槽を用いて、ニッケルを含む硫酸水溶液を反応始液とし、硫化剤として硫化水素ガスを吹き込んで硫化処理を行った。なお、直列に連結された4段の反応容器のうち、最上流側にある第1段目の反応容器に反応始液である硫酸水溶液を供給し、その第1段目の反応容器と、続く第2段目の反応容器とにおいて硫化反応を生じさせた。第3段目の反応容器及び第4段目の反応容器は、貯留槽として使用した。なお、第4段目の反応容器からは、硫化物と反応後液である貧液との反応後スラリーが得られる。
 具体的に、硫化反応始液(硫酸水溶液)としては、ニッケル濃度は3.7g/L~4.0g/Lである水溶液を用い、第1段目の反応容器に対して反応始液の給液流量を400m/Hr~450m/Hrとして供給した。また、硫化水素ガスの吹き込み流量は650Nm/Hr~750Nm/Hrとして、その全量を第1段目の反応容器に吹き込んだ。
 一方、吹き込んだ硫化水素ガスのうちの未反応分である、反応容器内に残存したガスを回収し、回収した硫化水素ガスに水酸化ナトリウムを添加して水硫化ナトリウム水溶液を生成させた。水硫化ナトリウム水溶液の添加流量(生成量)は2.0m/Hr~3.0m/Hrであり、この水硫化ナトリウム水溶液を第1段目の反応容器及び第2段目の反応容器に対して、下記表1に示す添加比率で添加した。
 具体的には、水硫化ナトリウム水溶液の第2段目の反応容器への添加流量を、反応始液流量の0.05体積%に調整し、残りの水硫化ナトリウム水溶液を第1段目の反応容器に添加した。
 その結果、硫化工程における処理全体でのニッケル回収率は98.3%、硫化物中のクロム品位は0.0087重量%となり、良好な結果が得られた。
 [実施例2]
 実施例2では、水硫化ナトリウム水溶液の第2段目の反応容器への添加流量を、反応始液流量の0.15体積%に調整し、残りの水硫化ナトリウム水溶液を第1段目の反応容器に添加した。そのこと以外は、実施例1と同様にして処理した。
 その結果、硫化工程における処理全体でのニッケル回収率は98.6%、硫化物中のクロム品位は0.0095重量%となり、良好な結果が得られた。
 [実施例3]
 実施例3では、水硫化ナトリウム水溶液を第2段目の反応容器へは添加せず、生成させた水硫化ナトリウム水溶液の全量を第1段目の反応容器に添加した。そのこと以外は、実施例1と同様にして処理した。
 その結果、硫化工程における処理全体でのニッケル回収率は98.2%、硫化物中のクロム品位は0.0079重量%となり、良好な結果が得られた。
 [比較例1]
 比較例1では、水硫化ナトリウム水溶液の第2段目の反応容器への添加流量を、反応始液流量の0.21体積%に調整し、残りの水硫化ナトリウム水溶液を第1段目の反応容器に添加した。そのこと以外は、実施例1と同様にして処理した。
 その結果、硫化工程における処理全体でのニッケル回収率は98.8%となり要求を満たすものであったが、硫化物中のクロム品位が0.0100重量%となり、実施例に比して高い品位となった。
 [比較例2]
 比較例2では、水硫化ナトリウム水溶液の第2段目の反応容器への添加流量を、反応始液流量の0.23体積%に調整し、残りの水硫化ナトリウム水溶液を第1段目の反応容器に添加した。そのこと以外は、実施例1と同様にして処理した。
 その結果、硫化工程における処理全体でのニッケル回収率は98.6%となり要求を満たすものであったが、硫化物中のクロム品位は0.0115重量%となり、実施例に比して高い品位となった。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果のまとめから、第2段目以降の反応容器に添加する水硫化ナトリウム水溶液の添加比率を制御することで、得られる硫化物中のクロム品位を0.0100重量%未満に有効に低減できることが分かった。
 1  反応槽
 2  HSガス洗浄塔
 10  導入口
 11  ガス吹き込み口
 12  排ガス口
 13  排出口

Claims (5)

  1.  ニッケルを含む硫酸水溶液を反応槽に装入し、硫化剤を添加してニッケルを含む硫化物を生成させる硫化物の製造方法であって、
     前記反応槽は、複数段の反応容器が直列に連結して構成されており、
     前記硫酸水溶液に硫化剤として添加した硫化水素ガスのうちの未反応の硫化水素ガスを水酸化ナトリウム水溶液で回収して水硫化ナトリウム水溶液を生成させ、得られた該水硫化ナトリウム水溶液を硫化剤の一部として前記反応槽に添加するようにし、
     前記水硫化ナトリウム水溶液の添加に際しては、
     前記水硫化ナトリウム水溶液を、前記反応槽に供給される前記硫酸水溶液の流量に対して0.17体積%以下となる流量で該反応槽のうちの2段目以降の反応容器に添加し、該水硫化ナトリウム水溶液の残量を1段目の反応容器に添加する
     硫化物の製造方法。
  2.  前記複数段の反応容器のそれぞれの内部の圧力は100kPa~300kPaである
     請求項1に記載の硫化物の製造方法。
  3.  前記硫酸水溶液のpHは3.0~3.8である
     請求項1又は2に記載の硫化物の製造方法。
  4.  前記硫酸水溶液の温度は65℃~90℃である
     請求項1乃至3のいずれかに記載の硫化物の製造方法。
  5.  ニッケル酸化鉱石に対して高温高圧下で硫酸を用いてニッケルを浸出し、得られた浸出液からニッケルを含む硫化物を生成するニッケル酸化鉱石の湿式製錬方法であって、
     前記浸出液を、複数段の反応容器が直列に連結して構成される反応槽に供給し、該浸出液に硫化剤を添加してニッケルを含む硫化物を生成させる硫化工程を含み、
     前記硫化工程では、
     前記浸出液に硫化剤として添加した硫化水素ガスのうちの未反応の硫化水素ガスを水酸化ナトリウム水溶液で回収して水硫化ナトリウム水溶液を生成させ、得られた該水硫化ナトリウム水溶液を硫化剤の一部として前記反応槽に添加するようにし、
     前記水硫化ナトリウム水溶液の添加に際しては、
     前記水硫化ナトリウム水溶液を、前記反応槽に供給される前記浸出液の流量に対して0.17体積%以下となる流量で該反応槽のうちの2段目以降の反応容器に添加し、該水硫化ナトリウム水溶液の残量を1段目の反応容器に添加する
     ニッケル酸化鉱石の湿式製錬方法。
PCT/JP2018/003275 2017-02-24 2018-01-31 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法 WO2018155114A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12019501841A PH12019501841A1 (en) 2017-02-24 2019-08-08 Method for producing sulfide, and method for hydrometallurgically refining nickle oxide ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034152A JP6388043B2 (ja) 2017-02-24 2017-02-24 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP2017-034152 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155114A1 true WO2018155114A1 (ja) 2018-08-30

Family

ID=63252665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003275 WO2018155114A1 (ja) 2017-02-24 2018-01-31 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法

Country Status (3)

Country Link
JP (1) JP6388043B2 (ja)
PH (1) PH12019501841A1 (ja)
WO (1) WO2018155114A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827951A (zh) * 2019-01-24 2019-05-31 山东省医疗器械产品质量检验中心 一种评价镍钛合金金属植入物镍释放的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6747620B2 (ja) * 2018-03-07 2020-08-26 住友金属鉱山株式会社 Ni・Co硫化物製造方法及び鉄品位安定化システム
JP7293873B2 (ja) * 2019-05-30 2023-06-20 住友金属鉱山株式会社 ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
CN110669980B (zh) * 2019-11-14 2021-06-22 中南大学湘雅医院 一种不锈钢3d打印粉料的制备方法及其产品
JP7355186B1 (ja) 2022-08-29 2023-10-03 住友金属鉱山株式会社 ニッケルコバルト混合硫化物の粒径制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681050A (ja) * 1991-10-31 1994-03-22 Taiheiyo Kinzoku Kk ニッケル、コバルトの回収方法
JP2010126778A (ja) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd ニッケル及びコバルトを含む硫化物の製造方法
WO2015114913A1 (ja) * 2014-01-28 2015-08-06 住友金属鉱山株式会社 硫化物の製造設備および製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681050A (ja) * 1991-10-31 1994-03-22 Taiheiyo Kinzoku Kk ニッケル、コバルトの回収方法
JP2010126778A (ja) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd ニッケル及びコバルトを含む硫化物の製造方法
WO2015114913A1 (ja) * 2014-01-28 2015-08-06 住友金属鉱山株式会社 硫化物の製造設備および製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827951A (zh) * 2019-01-24 2019-05-31 山东省医疗器械产品质量检验中心 一种评价镍钛合金金属植入物镍释放的方法
CN109827951B (zh) * 2019-01-24 2021-10-08 山东省医疗器械产品质量检验中心 一种评价镍钛合金金属植入物镍释放的方法

Also Published As

Publication number Publication date
JP6388043B2 (ja) 2018-09-12
JP2018141179A (ja) 2018-09-13
PH12019501841A1 (en) 2020-03-16

Similar Documents

Publication Publication Date Title
WO2018155114A1 (ja) 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP6213586B2 (ja) 硫化処理方法、硫化物の製造方法、及びニッケル酸化鉱石の湿式製錬方法
WO2011145644A1 (ja) 硫化反応工程の反応制御方法
AU2015384934B2 (en) Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
WO2019172392A1 (ja) Ni・Co硫化物製造方法及び鉄品位安定化システム
WO2016194709A1 (ja) 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法
JP6589950B2 (ja) 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
JP5892301B2 (ja) ニッケル酸化鉱石の湿式製錬における中和方法
JP7293873B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP7200698B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP2020180314A (ja) 水硫化ナトリウム溶液の製造方法、硫化処理方法、ニッケル硫化物の製造方法、及びニッケル酸化鉱石の湿式製錬方法
JP2017061733A (ja) ニッケル酸化鉱石の湿式製錬方法、浸出処理設備
JP7035735B2 (ja) 低ニッケル品位酸化鉱石からのニッケルコバルト混合硫化物の製造方法
JP2020117750A (ja) 硫酸水溶液からの有価金属の回収方法及び回収設備
JP2021008654A (ja) ニッケル酸化鉱石の浸出処理方法及びこれを含む湿式製錬方法
JP7285427B2 (ja) ニッケル酸化鉱石の浸出処理方法
JP2022150719A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2024017958A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2019157161A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2022055767A (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756554

Country of ref document: EP

Kind code of ref document: A1