WO2014080665A1 - 中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法 - Google Patents

中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法 Download PDF

Info

Publication number
WO2014080665A1
WO2014080665A1 PCT/JP2013/070476 JP2013070476W WO2014080665A1 WO 2014080665 A1 WO2014080665 A1 WO 2014080665A1 JP 2013070476 W JP2013070476 W JP 2013070476W WO 2014080665 A1 WO2014080665 A1 WO 2014080665A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutralized
slurry
nickel
oxide ore
nickel oxide
Prior art date
Application number
PCT/JP2013/070476
Other languages
English (en)
French (fr)
Inventor
浩史 庄司
達也 檜垣
佳智 尾崎
学 榎本
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201380060595.3A priority Critical patent/CN104955968A/zh
Priority to CA2891877A priority patent/CA2891877C/en
Priority to US14/443,870 priority patent/US20150315671A1/en
Priority to EP13857192.2A priority patent/EP2924133B1/en
Priority to AU2013349084A priority patent/AU2013349084A1/en
Publication of WO2014080665A1 publication Critical patent/WO2014080665A1/ja
Priority to PH12015501111A priority patent/PH12015501111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a sedimentation separation method of a neutralized slurry and a hydrometallurgy method of nickel oxide ore, and more specifically, neutralization obtained by subjecting a leachate obtained by leaching nickel and cobalt from nickel oxide ore to neutralization treatment.
  • the present invention relates to a method for settling and separating slurry, and a method for hydrometallizing nickel oxide ore to which the method is applied.
  • HPAL method High-Pressure-Acid-Leach method
  • an operation is performed in which the surplus acid concentration at the end of leaching is maintained at 25 to 50 g / L (see, for example, Patent Document 1).
  • the surplus acid contained in the leachate is neutralized by adding a neutralizing agent such as alkali in the neutralization step.
  • a neutralizing agent used for the neutralization treatment an inexpensive Ca-based material typified by calcium carbonate is often employed.
  • the leaching slurry is a sulfuric acid solution, a large amount of gypsum is generated as a by-product, so that a large facility is required for solid-liquid separation after neutralization.
  • leaching residue mainly composed of hematite produced by the HPAL method due to insufficient supply of iron ore can be used as a raw material for steel.
  • the leaching residue contains many components in addition to hematite, it is desirable to efficiently separate these components from hematite.
  • sulfur in the leach residue has a problem of generating sulfurous acid gas in the steelmaking process, and it is desired to separate the sulfur so as not to contain sulfur as much as possible (for example, refer to Patent Document 2).
  • Patent Document 3 discloses a recovery method including a pre-neutralization step in which the pH of the solution obtained in the previous step is increased using magnesium oxide.
  • neutralization using magnesium oxide can effectively convert the impurity component in the leachate into a neutralized starch.
  • a filter cloth is used.
  • the neutralized starch becomes SS (floating substance) and is mixed into the supernatant after solid-liquid separation, causing further filtration failure and a decrease in filtration rate.
  • the present invention has been proposed in order to solve the above-described problems.
  • the leachate obtained by leaching nickel and cobalt from nickel acid ore is subjected to efficient neutralization treatment and filtration.
  • a neutralization slurry sedimentation separation method capable of separating and removing neutralized starch that effectively precipitates impurity components while suppressing defects, etc., and a nickel oxide ore hydrometallurgy method using the method The purpose is to provide.
  • the inventors of the present invention have made extensive studies in order to achieve the above-described object.
  • the leachate is subjected to neutralization treatment using magnesium oxide as a neutralizing agent, and by adding a cationic flocculant to the slurry after neutralization treatment (neutralization slurry),
  • neutralization slurry The filterability of the produced neutralized starch was improved, and it was found that the neutralized starch can be separated and removed effectively, thereby completing the present invention.
  • the method for sedimentation and separation of a neutralized slurry according to the present invention is a method for sedimentation and separation of a neutralized slurry obtained by subjecting a leachate obtained by leaching nickel and cobalt from nickel oxide ore to neutralization treatment.
  • neutralization treatment is performed using magnesium oxide, and the neutralized starch is separated and removed by adding a cationic flocculant to the obtained neutralized slurry.
  • magnesium oxide one obtained by pulverizing the parent rock of the nickel oxide ore can be used.
  • the leaching solution a leaching solution obtained by leaching nickel and cobalt from the nickel oxide ore by a high-temperature pressure acid leaching method using a sulfuric acid solution can be used.
  • the addition amount of the cationic flocculant is preferably 650 to 1350 g / t (solid content) with respect to the solid content in the leaching slurry. Further, the addition amount of the cationic flocculant is more preferably 900 to 1100 g / t (solid content) with respect to the solid content in the leaching slurry.
  • the wet smelting method of nickel oxide ore according to the present invention is a wet process in which nickel and cobalt are recovered from nickel oxide ore by a high-temperature pressure acid leaching method including a leaching step, a solid-liquid separation step, and a neutralization step.
  • the leachate obtained by leaching in the neutralization step is neutralized using magnesium oxide, and a cationic flocculant is added to the resulting neutralized slurry. It is characterized by separating and removing Japanese starch.
  • a leachate containing nickel and cobalt is neutralized using magnesium oxide as a neutralizing agent, and a cationic flocculant is added to the neutralized slurry to neutralize the starch. Therefore, the neutralized starch can be effectively separated and removed by suppressing filtration failure and reduction in filtration speed.
  • the SS concentration can be effectively reduced, and filterability is further improved by preventing clogging of the filter cloth, resulting in high productivity.
  • a mother liquor for recovering nickel and cobalt with high clarity can be obtained.
  • FIG. 1 is a process diagram of a method for hydrometallizing nickel oxide ore.
  • FIG. 2 is a graph showing the relationship between the SS concentration (mg / l) with respect to the addition amount of the cationic flocculant and the filtration time (seconds).
  • the neutralization slurry precipitation method according to the present embodiment is a neutralization obtained by performing a neutralization treatment on a leachate obtained by leaching nickel and cobalt from nickel oxide ore by a leaching treatment using a sulfuric acid solution or the like. This is a method for sedimentation and separation of slurry.
  • the method for settling and separating the neutralized slurry is a method in which a leachate obtained by leaching nickel and cobalt from nickel oxide ore is neutralized using magnesium oxide, and the resulting neutralized slurry is subjected to a cationic system. A flocculant is added to separate and remove the neutralized starch.
  • the neutralization treatment for the leachate can be efficiently performed, and the generated neutralized starch can be effectively separated and removed while suppressing the occurrence of defective filtration and the like. it can.
  • the addition amount of the cationic flocculant to be added to the neutralized slurry it is possible to effectively reduce the SS (floating substance) concentration in the supernatant liquid.
  • a highly neutralized solution that is, a mother liquor for recovering nickel and cobalt can be obtained.
  • the SS concentration can be reduced in this way, even in the solid-liquid separation process for separating and removing the neutralized starch, the filter cloth used for the process is prevented from being clogged, and the filtration failure and the filtration rate are prevented. Can be more effectively suppressed, and a mother liquor with high clarity can be obtained with high productivity.
  • the method for settling and separating the neutralized slurry will be described in more detail.
  • a method for hydrometallizing nickel oxide ore to which this method can be applied will be described.
  • the following nickel oxide ore wet smelting method shows a specific example of recovering nickel and cobalt by a high-temperature pressure acid leaching method (HPAL method) using a sulfuric acid solution.
  • HPAL method high-temperature pressure acid leaching method
  • the hydrometallurgical method using the HPAL method of nickel oxide ore includes a leaching step S1 in which a sulfuric acid solution is added to a slurry of nickel oxide ore and leached under high temperature and high pressure, as shown in the process diagram of FIG.
  • Leaching step S1 a sulfuric acid solution is added to a slurry of nickel oxide ore using a high-temperature pressurized container (autoclave) or the like and stirred at a temperature of 220 to 280 ° C. A leach slurry consisting of the leach liquor is formed.
  • Nickel oxide ores include so-called laterite ores such as limonite ore and saprolite ore.
  • Laterite ore usually has a nickel content of 0.8 to 2.5% by weight and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral.
  • the iron content is 10 to 50% by weight and is mainly in the form of trivalent hydroxide (goethite), but partly divalent iron is contained in the siliceous clay.
  • an oxidized ore containing valuable metals such as nickel, cobalt, manganese, and copper, for example, a manganese nodule that exists in the deep sea bottom is used.
  • Solid-liquid separation step S2 the leaching slurry formed in the leaching step S1 is washed in multiple stages to separate the leaching solution containing nickel and cobalt from the leaching residue.
  • an anionic or nonionic (weak anionic) flocculant is added to the leaching slurry to perform a solid-liquid separation process.
  • Neutralization process In the neutralization process S3, while suppressing oxidation of the leachate, a neutralizing agent is added to neutralize excess acid in the leachate and impurities such as trivalent iron contained in the leachate A neutralization treatment is carried out with the ingredients as neutralized starch.
  • the neutralized starch in the neutralized slurry (neutralized slurry) obtained by neutralization is settled and solidified using a solid-liquid separator such as thickener.
  • a liquid separation treatment is applied to separate and remove the neutralized starch. Thereby, the neutralization starch slurry and the neutralization final liquid used as the mother liquor for collect
  • this neutralization step S3 neutralization using magnesium oxide as a neutralizing agent is performed, and a cationic flocculant is added to the obtained neutralized slurry for neutralization. It is characterized by performing a solid-liquid separation process for separating and removing starch. Details will be described later.
  • the obtained nickel / cobalt mixed sulfide slurry is subjected to settling separation using a settling separator such as a thickener to separate and recover the nickel / cobalt mixed sulfide from the bottom of the thickener,
  • the aqueous solution component is overflowed and recovered as a liquid after sulfidation.
  • a neutralization treatment using magnesium oxide as a neutralizing agent and a solid-liquid separation treatment in which a cationic flocculant is added to the obtained neutralized slurry. And done.
  • neutralization process S3 in this Embodiment the neutralization process is performed by adding magnesium oxide as a neutralizing agent with respect to the leaching liquid containing nickel and cobalt obtained by solid-liquid separation of the leaching slurry.
  • This neutralization treatment neutralization of excess acid in the leachate and hydroxideization (precipitation) of the impurity components contained in the leachate, after neutralization treatment containing neutralized final solution and neutralized starch Slurry (neutralized slurry) is obtained.
  • the magnesium oxide used as the neutralizing agent for example, a mother rock of nickel oxide ore containing magnesium silicate such as saprolite ore and magnesium hydroxide can be used.
  • the host rock use is made of the mother rock crushed to an appropriate size (for example, approximately 100 to 300 mm).
  • the neutralization processing cost can be effectively reduced by using the host rock as a neutralizing agent.
  • the pH condition in the neutralization treatment is not particularly limited, but it is preferable to neutralize by adding magnesium oxide so that the pH is 4.0 or less. If the pH exceeds 4.0, hydroxides of nickel and cobalt in the leachate are generated and are contained in the neutralized starch, resulting in a recovery loss of these valuable metals.
  • Solid-liquid separation process In the solid-liquid separation treatment, the neutralized starch is precipitated and separated from the neutralized slurry obtained by the neutralization treatment described above, and the neutralized starch is separated and removed using a solid-liquid separation device such as a thickener. A neutralized final solution (post-neutralized solution) is obtained as a mother liquor for recovering cobalt.
  • the present inventors can efficiently produce a neutralized starch by using magnesium oxide as a neutralizing agent in the neutralization treatment described above, filtration of the produced neutralized starch is possible.
  • the knowledge that the property falls was obtained.
  • magnesium oxide obtained by pulverizing nickel oxide ore such as saprorai ore is used as the magnesium oxide, the mother rock contains a lot of amorphous silica.
  • the neutralization treatment is performed, the clarity of the supernatant of the neutralized final solution is lowered and the filterability is remarkably lowered.
  • the neutralization step S3 in the present embodiment is characterized in that a cationic flocculant is added to the neutralized slurry for solid-liquid separation.
  • a cationic flocculant is added to the neutralized slurry for solid-liquid separation.
  • a neutralized starch (residue) having excellent filterability can be obtained by adding a cationic flocculant to the neutralized slurry and performing solid-liquid separation treatment. And neutralized starch can be separated and removed effectively.
  • the cationic aggregating agent is not particularly limited, and those commonly used can be used. Specifically, for example, polyacrylic acid ester type, polymethacrylic acid ester type, polyamine type, dicyandiamide type, polyacrylamide type, vinyl formaldehyde type polymer and the like can be mentioned.
  • the amount of the cationic flocculant added is not particularly limited, but the solid content is preferably in the range of 650 to 1350 g / t.
  • the SS concentration in the neutralized final solution is generally preferably less than 100 mg / l, more preferably less than 50 mg / l, and less than 10 mg / l. It is said that there is almost no problem in clarity and its filterability is also improved.
  • the SS concentration can be reduced to 100 mg / l or less by setting the addition amount of the cationic flocculant in the range of 650 to 1350 g / t, and the mother liquor with high clarity (for recovering nickel and cobalt). Mother liquor). Further, since the SS concentration can be effectively reduced in this way, clogging of the filter cloth can be prevented during the filtration treatment, and the filterability can be further improved.
  • the addition amount of the cationic flocculant is preferably in the range of 750 to 1200 g / t, more preferably in the range of 900 to 1100 g / t in terms of solid content.
  • the filtration rate is further increased, and neutralized starch can be effectively separated and removed while suppressing poor filtration.
  • the SS concentration can be reduced to about 50 mg / l or less, and further to less than 10 mg / l, and a mother liquor having a higher clarity can be obtained.
  • magnesium oxide is used as a neutralizing agent in the neutralization step of neutralizing excess acid and removing impurity components in the leachate leached with sulfuric acid by the HPAL method.
  • a neutralization treatment is performed, and a cationic flocculant is added to the resulting neutralized slurry to separate and remove neutralized starch.
  • This enables efficient neutralization treatment, improves the filterability of the produced neutralized starch, and can be effectively separated and removed to the solid side by a solid-liquid separator such as a thickener.
  • the amount of cationic flocculant added to the neutralized slurry can be effectively reduced, and clogging of filter cloth and the like can be prevented.
  • Table 2 shows the measurement results of SS (floating matter) concentration and filtration time at this time.
  • Table 2 shows the SS concentration of the leachate (mother liquor) before and after the neutralization treatment and the filtration time are also shown for comparison.
  • FIG. 2 is a graph showing the relationship between the SS concentration (mg / l) and the filtration time (seconds) with respect to the addition amount of the cationic flocculant.
  • the filtration time is 60 seconds or less and the SS concentration in the mother liquor is 100 mg / l or less.
  • the filtration time is more rapid, about 30 seconds or less, and the SS concentration in the mother liquor is 50 mg / l or less.
  • the addition amount of the cationic flocculant is preferably in the range of 650 to 1350 g / t (solid content), more preferably in the range of 750 to 1200 g / t (solid content), further preferably 900 to 1100 g / t. It is understood that by setting the range of (solid content), neutralized starch can be separated and removed effectively while suppressing poor filtration, and a mother liquor with high clarity (mother liquor for nickel and cobalt recovery) can be obtained. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)

Abstract

 ニッケル酸鉱石からニッケル及びコバルトを浸出して得られた浸出液に対して、効率的な中和処理を施すとともに、濾過不良を抑制しながら効果的に不純物成分を沈殿物化した中和澱物を分離除去することができる中和スラリーの沈降分離方法、並びにその方法を適用したニッケル酸化鉱石に湿式製錬方法を提供することを目的とする。本発明では、ニッケル酸化鉱石からニッケル及びコバルトを浸出させた浸出液に対してマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーにカチオン系凝集剤を添加して中和澱物を分離除去する。

Description

中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法
 本発明は、中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法に関し、より詳しくは、ニッケル酸化鉱石からニッケル及びコバルトを浸出させた浸出液に中和処理を施して得られる中和スラリーの沈降分離方法、並びにその方法を適用したニッケル酸化鉱石の湿式製錬方法に関する。
 本出願は、日本国において2012年11月20日に出願された日本特許出願番号特願2012-254569を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
 ニッケル酸化鉱石からの有価金属の回収方法として、高圧酸浸出法(High Pressure Acid Leach法;以下、HPAL法と称する。)が行われている。HPAL法では、有価金属であるニッケルやコバルトを効率良く回収するため、浸出終了時の余剰酸濃度を25~50g/Lに維持した操業が行われる(例えば、特許文献1参照。)。
 このため、浸出液に含まれる余剰酸は、中和工程にてアルカリ等の中和剤が添加されて中和される。ここで、その中和処理に用いる中和剤としては、炭酸カルシウムを代表とする安価なCa系のものが採用される場合が多い。しかしながら、浸出スラリーが硫酸溶液である場合には、多量の石膏が副産物として生成するため、中和後の固液分離のために大きな設備を要することになる。
 また、近年は、鉄鉱石の供給不足等からHPAL法にて生成される、ヘマタイトを主成分とした浸出残渣を鉄鋼原料として活用できないかと期待されている。しかしながら、その浸出残渣中には、ヘマタイト以外にも多くの成分が含有されているため、それら成分とヘマタイトとの分離を効率的に行うことが望まれる。特に、浸出残渣中のイオウは、製鋼工程で亜硫酸ガスを発生させる等の問題があり、イオウをできるだけ含有させないように分離することが望まれる(例えば、特許文献2参照。)。
 このような社会的情勢からHPAL法で使用する中和剤として、カルシウム酸化物等の石膏が副産物として生成しない、いわゆるCaレスの中和剤が注目されてきている。
 例えば、特許文献3には、マグネシウム酸化物を用いて、前工程で得られた溶液のpHを上昇させる予備中和工程を含む回収方法が示されている。
 しかしながら、マグネシウム酸化物を使用した中和では、浸出液中の不純物成分を効果的に中和澱物とすることはできるものの、その中和澱物を後工程で固液分離する際に、濾布の閉塞等の濾過不良や濾過速度の低下を生じさせてしまうという問題がある。さらに、その中和澱物がSS(浮遊物質)となって固液分離後の上澄み液中に混入し、更なる濾過不良や濾過速度の低下の原因となってしまうという問題がある。このため、中和処理により生成した中和澱物を、濾過不良を抑制しながら効果的に分離除去することができる方法が求められている。
特許4525428号公報 特開2010-95788号公報 特開2007-77459号公報
 本発明は、上述した問題点に解決するために提案されたものであり、ニッケル酸鉱石からニッケル及びコバルトを浸出して得られた浸出液に対して、効率的な中和処理を行うとともに、濾過不良等を抑制しながら、効果的に不純物成分を沈殿物化した中和澱物を分離除去することができる中和スラリーの沈降分離方法、並びにその方法を適用したニッケル酸化鉱石の湿式製錬方法を提供することを目的とする。
 本発明者らは、上述した目的を達成するために鋭意検討を重ねた。その結果、浸出液に対してマグネシウム酸化物を中和剤として用いて中和処理を施し、得られた中和処理後のスラリー(中和スラリー)に対してカチオン系凝集剤を添加することによって、生成した中和澱物の濾過性を向上させて、その中和澱物を効果的に分離除去できることを見出し、本発明を完成させた。
 すなわち、本発明に係る中和スラリーの沈降分離方法は、ニッケル酸化鉱石からニッケル及びコバルトを浸出させた浸出液に中和処理を施して得られる中和スラリーの沈降分離方法であって、上記浸出液に対してマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーにカチオン系凝集剤を添加して中和澱物を分離除去することを特徴とする。
 ここで、上記マグネシウム酸化物としては、上記ニッケル酸化鉱石の母岩を粉砕したものを用いることができる。
 また、上記浸出液としては、硫酸溶液を用いた高温加圧酸浸出法により上記ニッケル酸化鉱石からニッケル及びコバルトを浸出して得られたものを用いることができる。
 また、上記カチオン系凝集剤の添加量としては、上記浸出スラリー中の固形分に対し650~1350g/t(固形分)の量であることが好ましい。さらに、上記カチオン系凝集剤の添加量は、上記浸出スラリー中の固形分に対し900~1100g/t(固形分)の量であることがより好ましい。
 また、本発明に係るニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石からのニッケル及びコバルトの回収を、浸出工程、固液分離工程、中和工程を含む高温加圧酸浸出法により行う湿式製錬方法において、上記中和工程にて、浸出して得られた浸出液に対してマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーにカチオン系凝集剤を添加して中和澱物を分離除去することを特徴とする。
 本発明によれば、ニッケル及びコバルトを含む浸出液に対してマグネシウム酸化物を中和剤として用いて中和処理を施し、その中和スラリーに対してカチオン系凝集剤を添加して中和澱物を分離除去するようにしているので、濾過不良や濾過速度の低下を抑制して、中和澱物を効果的に分離除去することができる。
 また、そのカチオン系凝集剤の添加量を調整することにより、SS濃度を効果的に低減させることができ、濾布の目詰まり等を防止してより一層に濾過性を向上させ、高い生産性で以って、清澄度の高いニッケル及びコバルト回収用の母液を得ることができる。
図1は、ニッケル酸化鉱石の湿式製錬方法の工程図である。 図2は、カチオン系凝集剤の添加量に対するSS濃度(mg/l)と、濾過時間(秒)との関係を示すグラフ図である。
 以下、本発明に係る中和スラリーの沈降分離方法を適用した具体的な実施形態(以下、本実施の形態という。)について、以下の順で詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を変更しない限りにおいて適宜変更することができる。
 1.概要
 2.ニッケル酸化鉱石の湿式製錬方法
 3.中和スラリーの沈降分離方法
  3-1.中和処理
  3-2.固液分離処理
 <1.概要>
 本実施の形態に係る中和スラリーの沈降分離方法は、硫酸溶液等を用いた浸出処理によりニッケル酸化鉱石からニッケル及びコバルトを浸出させた浸出液に対して中和処理を施すことで得られる中和スラリーの沈降分離方法である。
 具体的に、この中和スラリーの沈降分離方法は、ニッケル酸化鉱石からニッケル及びコバルトを浸出させた浸出液に対してマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーにカチオン系凝集剤を添加して中和澱物を分離除去する。
 このような方法によれば、浸出液に対する中和処理を効率的に行うことができるとともに、生成した中和澱物を、濾過不良等の発生を抑制しながら、効果的に分離し除去することができる。
 また、この方法によれば、中和スラリーに添加するカチオン系凝集剤の添加量を調整することによって、上澄み液中のSS(浮遊物質)濃度を効果的に低減させることができ、清澄度の高い中和処理後液、すなわちニッケル及びコバルトの回収用の母液を得ることができる。また、このようにSS濃度を低減させることができることにより、中和澱物を分離除去するための固液分離処理においても、処理に用いる濾布の閉塞等を防止して、濾過不良や濾過速度の低下をより効果的に抑制することができ、高い生産性で以って清澄度の高い母液を得ることができる。
 以下、より具体的に、この中和スラリーの沈降分離方法について説明するが、その説明に先立ち、この方法を適用することができるニッケル酸化鉱石の湿式製錬方法について説明する。なお、以下のニッケル酸化鉱石の湿式製錬方法は、硫酸溶液を用いた高温加圧酸浸出法(HPAL法)によりニッケル及びコバルトを回収する形態を具体例として示す。
 <2.ニッケル酸化鉱石の湿式製錬方法>
 ニッケル酸化鉱石のHPAL法を用いた湿式製錬方法は、図1の工程図に示すように、ニッケル酸化鉱石のスラリーに硫酸溶液を添加して高温高圧下で浸出する浸出工程S1と、浸出スラリーを多段洗浄しながら浸出残渣を分離してニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程S2と、浸出液のpHを調整し浸出液中の余剰酸を中和するとともに不純物元素を含む中和澱物を分離除去してニッケル及びコバルトを含む中和終液を得る中和工程S3と、その中和終液に対し硫化処理を施してニッケル及びコバルトを含む混合硫化物を形成する硫化工程S4とを有する。
 (1)浸出工程
 浸出工程S1では、高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱石のスラリーに硫酸溶液を添加して220~280℃の温度下で撹拌処理して、浸出残渣と浸出液からなる浸出スラリーを形成する。
 ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、鉄の含有量は、10~50重量%であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。また、浸出工程S1では、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等が用いられる。
 (2)固液分離工程
 固液分離工程S2では、浸出工程S1で形成される浸出スラリーを多段洗浄して、ニッケル及びコバルトを含む浸出液と浸出残渣を分離する。この固液分離工程S2においては、浸出スラリーに対して、例えばアニオン系又はノニオン系(弱アニオン性)凝集剤を添加して固液分離処理を行う。
 (3)中和工程
 中和工程S3では、浸出液の酸化を抑制しながら、中和剤を添加して浸出液中の余剰酸を中和するとともに、浸出液中に含まれる3価の鉄等の不純物成分を中和澱物とする中和処理を施す。また、この中和工程S3では、中和処理して得られた中和処理後のスラリー(中和スラリー)中の中和澱物を沈降分離させ、シックナー等の固液分離装置を用いて固液分離処理を施し、中和澱物を分離除去する。これにより、中和澱物スラリーと、ニッケル及びコバルトを回収するための母液となる中和終液とを得る。
 本実施の形態においては、この中和工程S3において、マグネシウム酸化物を中和剤として用いた中和処理を施すとともに、得られた中和スラリーに対してカチオン系凝集剤を添加して中和澱物を分離除去する固液分離処理を施すことを特徴としている。詳しくは後述する。
 (4)硫化工程
 硫化工程S4では、ニッケル及びコバルトの回収用の母液である中和終液に対して硫化水素ガスを吹きこみ、不純物成分の少ないニッケル及びコバルトを含む混合硫化物(ニッケル・コバルト混合硫化物)と、ニッケル濃度を低い水準で安定させた貧液(硫化後液)とを得る。なお、この硫化工程S4では、ニッケル及びコバルト回収用の母液に亜鉛が含まれる場合には、ニッケル及びコバルトを硫化物として分離するに先立って、亜鉛を硫化物として選択的に分離することができる。
 また、この硫化工程S4では、得られたニッケル・コバルト混合硫化物のスラリーをシックナー等の沈降分離装置を用いて沈降分離処理し、ニッケル・コバルト混合硫化物をシックナーの底部から分離回収するとともに、水溶液成分はオーバーフローさせて硫化後液として回収する。
 <3.中和スラリーの沈降分離方法>
 上述したように、ニッケル酸化鉱石の湿式製錬方法では、浸出工程S1にて生成した浸出スラリーを、固液分離工程S2にて固液分離することによって浸出液が得られる。そして、その浸出液に対して中和工程S3にて中和処理を施すことにより、浸出液中に含まれる余剰酸の中和と不純物成分の分離除去が行われる。
 このとき、本実施の形態においては、その中和工程S3において、マグネシウム酸化物を中和剤として用いた中和処理と、得られた中和スラリーにカチオン系凝集剤を添加する固液分離処理とが行われる。
  <3-1.中和処理>
 本実施の形態における中和工程S3では、浸出スラリーを固液分離して得られた、ニッケル及びコバルトを含む浸出液に対して、マグネシウム酸化物を中和剤として添加して中和処理を施す。この中和処理によって、浸出液中の余剰酸に対する中和と、浸出液中に含まれる不純物成分の水酸化物化(沈殿物化)を行い、中和終液と中和澱物とを含む中和処理後のスラリー(中和スラリー)を得る。
 より具体的に、中和剤として用いるマグネシウム酸化物としては、例えばサプロライト鉱等の珪酸マグネシウムや水酸化マグネシウムを含有するニッケル酸化鉱石の母岩を用いることができる。母岩の使用に際しては、その母岩を適当な大きさ(例えば、概ね100~300mm)に粉砕したものを用いる。このように母岩を中和剤として用いることによって、中和処理コストを効果的に削減することができる。
 中和処理におけるpH条件としては、特に限定されないが、pH4.0以下となるように、マグネシウム酸化物を添加して中和することが好ましい。pHが4.0を超えると、浸出液中のニッケルやコバルトの水酸化物が発生して中和澱物に含まれるようになり、これら有価金属の回収ロスとなる。
  <3-2.固液分離処理>
 固液分離処理では、上述した中和処理により得られた中和スラリーから、中和澱物を沈降分離させ、シックナー等の固液分離装置を用いて中和澱物を分離除去し、ニッケル及びコバルトの回収用の母液となる中和終液(中和後液)を得る。
 ここで、本発明者らは、上述した中和処理においてマグネシウム酸化物を中和剤として用いることにより、効率的な中和澱物の生成が可能となるものの、生成した中和澱物の濾過性が低下するという知見を得た。特に、マグネシウム酸化物として、サプロライ鉱等のニッケル酸化鉱石の母岩を粉砕したものを用いた場合、その母岩にはアモルファスシリカが多く含まれていることから、これを中和剤として用いて中和処理を施すと、中和終液の上澄みの清澄度が下がり、濾過性が著しく低下する。
 そこで、本実施の形態における中和工程S3では、中和スラリーに対してカチオン系凝集剤を添加して固液分離することを特徴としている。詳細なメカニズムは定かではないが、マグネシウム酸化物により中和処理して得られた中和スラリーに、カチオン系凝集剤を添加することで、アモルファスシリカ等のアモルファスの表面電荷を変化させることができると考えられる。これにより、中和澱物の凝集化を促進させて濾過性を向上させるとともに、その中和澱物からSS(浮遊物質)が発生することを防止して、SSに起因する濾布の目詰まり等の濾過不良を抑制することができると考えられる。
 このように、本実施の形態においては、中和スラリーに対してカチオン系凝集剤を添加して固液分離処理を行うことによって、濾過性に優れた中和澱物(残渣)を得ることができ、効果的に中和澱物を分離除去することができる。
 カチオン系凝集剤としては、特に限定されず、一般的に使用されているものを用いることができる。具体的には、例えばポリアクリル酸エステル系、ポリメタクリル酸エステル系、ポリアミン系、ジシアンジアミド系、ポリアクリルアミド系、ビニルホルムアルデヒド系のポリマー等が挙げられる。
 カチオン系凝集剤の添加量は、特に限定されないが、その固形分として、650~1350g/tの範囲とすることが好ましい。ここで、中和終液中のSS濃度としては、一般的には、100mg/l未満の濃度に抑えることが好ましく、50mg/l以下にまで抑えることがより好ましく、10mg/l未満まで抑えることで殆ど清澄度に問題がなく、その濾過性も高まるとされている。この点において、カチオン系凝集剤の添加量を650~1350g/tの範囲とすることにより、SS濃度を100mg/l以下に低減させることができ、清澄度の高い母液(ニッケル及びコバルト回収用の母液)を得ることができる。また、このようにSS濃度を効果的に低減させることができることにより、濾過処理に際して濾布の目詰まり等を防止することができ、より一層に濾過性を向上させることができる。
 さらに、そのカチオン系凝集剤の添加量としては、固形分で、750~1200g/tの範囲とすることがより好ましく、900~1100g/tの範囲とすることがさらに好ましい。添加量をこのような範囲とすることによって、その濾過速度がさらに速くなり、濾過不良を抑制しながら効果的に中和澱物を分離除去することができる。また、添加量を上述した範囲とすることによって、SS濃度を約50mg/l以下、さらには10mg/l未満まで低減させることができ、より一層に清澄度の高い母液を得ることができる。
 以上のように、本実施の形態においては、例えばHPAL法によって硫酸浸出された浸出液中の余剰酸の中和と不純物成分の除去を行う中和工程において、中和剤としてマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーに対してカチオン系凝集剤を添加して中和澱物を分離除去する。これにより、効率的な中和処理を可能にするとともに、生成した中和澱物の濾過性を向上させて、シックナー等の固液分離装置によって効果的に固形側に分離除去することができる。
 また、中和スラリーに添加するカチオン系凝集剤の添加量を制御することによって、中和終液(上澄み液)中のSS濃度を効果的に低減させることができ、濾布等の目詰まりを防止してより一層に濾過性を向上させるとともに、清澄度の高いニッケル及びコバルト回収用の母液を得ることができる。
 以下に、本発明についての実施例を説明するが、本発明は下記の実施例に限定されるものではない。
 [中和澱物の沈降分離効果の検討]
 ニッケル酸化鉱石をHPAL法にて硫酸浸出し、固液分離して得られた浸出液に対してマグネシウム酸化物(珪酸マグネシウム及び水酸化マグネシウム)を用いて中和処理を施し、浸出液中の余剰酸の中和と不純物成分の水酸化物除去を実施した。この中和処理により、母液と中和澱物とを含む中和スラリーを得た。
 その後、得られた中和スラリーを、目盛りが100mlのメスシリンダーに100ml移し、下記表1に一覧を示す凝集剤を、下記表2に示す水準(添加量)で添加し、上下振とうを3回実施した後に静置して固液分離を行った。静置30分後に上澄み液を50ml採取し、目開きが0.45μmのセルロース製メンブランフィルターを用いて濾過面積17.3cmにて100torrの吸引ろ過を実施した。
 下記表2に、このときのSS(浮遊物質)濃度とろ過時間の測定結果を示す。なお、この表2には、比較として、中和処理の実施前後の浸出液(母液)のSS濃度と濾過時間も併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、中和処理前の浸出液の濾過時間と中和処理後の母液の濾過時間の結果から、マグネシウム酸化物を中和剤として用いた中和処理によって、浸出液中に含まれていた不純物を効果的に沈殿物化して中和澱物とすることができることが分かった。
 次に、このように生成した中和澱物の分離除去に関して、試験例1及び2の結果から、ノニオン系、アニオン系凝集剤では、中和澱物の分離効果が低く、またその中和澱物がSSとして上澄み液中に残存するようになった。その結果、濾過時間が2000秒以上も掛かって濾過不良が生じてしまい、効果的に中和澱物を除去することができなかった。これに対して、カチオン系凝集剤を加えた場合では、その濾過時間が著しく速くなり、効果的に中和澱物を分離除去できていることが分かる。
 このことから、浸出液をマグネシウム酸化物を中和剤として中和処理することで得られた中和スラリーに対して、カチオン系凝集剤を添加して中和澱物を分離させることによって、濾過不良を抑制しながら効果的に分離除去できることが分かった。
 [カチオン系凝集剤の添加量の検討]
 次に、浸出液を中和処理して得られた中和スラリーに対して、そのカチオン系凝集剤の添加量を下記表3に示すように変化させたときの、中和終液(母液)中のSS濃度と濾過時間を測定した。
 表3に、測定結果を示す。また、図2に、カチオン系凝集剤の添加量に対するSS濃度(mg/l)と、濾過時間(秒)との関係を示すグラフを示す。
Figure JPOXMLDOC01-appb-T000003
 表3及び図2に示される結果から分かるように、カチオン系凝集剤を添加して中和澱物を濾過分離することによって、濾過不良を抑制して効果的に分離除去することができるが、添加量が1350g/t(固形分)を超えると、濾過時間が若干長くなることが分かる。また、その添加量が500g/t(固形分)より少ない場合でも、同様に、濾過時間が若干長くなることが分かる。さらに、この1350g/t(固形分)を超える添加量、及び、500g/t(固形分)より少ない添加量では、母液中のSS濃度も大きくなることが分かる。
 一方で、カチオン系凝集剤の添加量が650~1350g/t(固形分)の範囲では、濾過時間が60秒以下となり、母液中のSS濃度も100mg/l以下と好ましい値となることが分かる。また、カチオン系凝集剤を750~1200g/t(固形分)の範囲で添加することにより、濾過時間が約30秒以下とより迅速となり、母液中のSS濃度も50mg/l以下と低濃度となることが分かる。さらに、カチオン系凝集剤を900~1100g/t(固形分)の範囲で添加することにより、濾過時間が15秒以下と極めて迅速となり、母液中のSS濃度も10mg/l未満と非常に低濃度となることが分かる。
 このことから、カチオン系凝集剤の添加量として、好ましくは650~1350g/t(固形分)の範囲、より好ましくは750~1200g/t(固形分)の範囲、さらに好ましくは900~1100g/t(固形分)の範囲とすることによって、濾過不良を抑制しながら効果的に中和澱物を分離除去できるとともに、清澄度の高い母液(ニッケル及びコバルト回収用の母液)が得られることが分かった。

Claims (9)

  1.  ニッケル酸化鉱石からニッケル及びコバルトを浸出させた浸出液に中和処理を施して得られる中和スラリーの沈降分離方法であって、
     上記浸出液に対してマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーにカチオン系凝集剤を添加して中和澱物を分離除去することを特徴とする中和スラリーの沈降分離方法。
  2.  上記マグネシウム酸化物は、上記ニッケル酸化鉱石の母岩を粉砕したものであることを特徴とする請求項1に記載の中和スラリーの沈降分離方法。
  3.  上記浸出液は、硫酸溶液を用いた高温加圧酸浸出法により上記ニッケル酸化鉱石からニッケル及びコバルトを浸出して得られたものであることを特徴とする請求項1に記載の中和スラリーの沈降分離方法。
  4.  上記カチオン系凝集剤の添加量が、上記浸出スラリー中の固形分に対し650~1350g/t(固形分)の量であることを特徴とする請求項1に記載の中和スラリーの沈降分離方法。
  5.  上記カチオン系凝集剤の添加量が、上記浸出スラリー中の固形分に対し900~1100g/t(固形分)の量であることを特徴とする請求項1に記載の中和スラリーの沈降分離方法。
  6.  ニッケル酸化鉱石からのニッケル及びコバルトの回収を、浸出工程、固液分離工程、中和工程を含む高温加圧酸浸出法により行う湿式製錬方法において、
     上記中和工程にて、浸出して得られた浸出液に対してマグネシウム酸化物を用いて中和処理を施し、得られた中和スラリーにカチオン系凝集剤を添加して中和澱物を分離除去することを特徴とするニッケル酸化鉱石の湿式製錬方法。
  7.  上記マグネシウム酸化物は、上記ニッケル酸化鉱石の母岩を粉砕したものであることを特徴とする請求項6に記載のニッケル酸化鉱石の湿式製錬方法。
  8.  上記カチオン系凝集剤の添加量が、上記浸出スラリー中の固形分に対し650~1350g/t(固形分)の量であることを特徴とする請求項6に記載のニッケル酸化鉱石の湿式製錬方法。
  9.  上記カチオン系凝集剤の添加量が、上記浸出スラリー中の固形分に対し900~1100g/t(固形分)の量であることを特徴とする請求項6に記載のニッケル酸化鉱石の湿式製錬方法。
PCT/JP2013/070476 2012-11-20 2013-07-29 中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法 WO2014080665A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380060595.3A CN104955968A (zh) 2012-11-20 2013-07-29 中和浆料的沉降分离方法、以及氧化镍矿石的湿式冶炼方法
CA2891877A CA2891877C (en) 2012-11-20 2013-07-29 Settling separation process for neutralized slurry and hydrometallurgical process for nickel oxide ore
US14/443,870 US20150315671A1 (en) 2012-11-20 2013-07-29 Settling separation process for nuetralized slurry and hydrometallurgical process for nickel oxide ore
EP13857192.2A EP2924133B1 (en) 2012-11-20 2013-07-29 Settling separation method for nuetralized slurry and wet smelting method for nickel oxide ore
AU2013349084A AU2013349084A1 (en) 2012-11-20 2013-07-29 Settling separation method for nuetralized slurry and wet smelting method for nickel oxide ore
PH12015501111A PH12015501111A1 (en) 2012-11-20 2015-05-19 Settling separation method for neutralized slurry and wet smelting method for nickel oxide ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254569A JP5904100B2 (ja) 2012-11-20 2012-11-20 中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法
JP2012-254569 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080665A1 true WO2014080665A1 (ja) 2014-05-30

Family

ID=50775857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070476 WO2014080665A1 (ja) 2012-11-20 2013-07-29 中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法

Country Status (8)

Country Link
US (1) US20150315671A1 (ja)
EP (1) EP2924133B1 (ja)
JP (1) JP5904100B2 (ja)
CN (1) CN104955968A (ja)
AU (1) AU2013349084A1 (ja)
CA (1) CA2891877C (ja)
PH (1) PH12015501111A1 (ja)
WO (1) WO2014080665A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828359B2 (ja) * 2016-10-07 2021-02-10 住友金属鉱山株式会社 ニッケル酸化鉱の湿式製錬方法
JP6984191B2 (ja) * 2017-06-20 2021-12-17 住友金属鉱山株式会社 ニッケル高圧浸出残渣の固液分離方法
JP6551481B2 (ja) * 2017-09-11 2019-07-31 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
JP7115170B2 (ja) * 2018-09-12 2022-08-09 住友金属鉱山株式会社 ニッケル酸化鉱石の処理方法及び該処理方法を含んだニッケルコバルト混合硫化物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256353A (ja) * 2001-02-28 2002-09-11 National Institute Of Advanced Industrial & Technology 酸廃液中の亜鉛及び鉄を沈殿物として回収する方法及びその装置
JP2007077459A (ja) 2005-09-15 2007-03-29 Taiheiyo Kinzoku Kk ニッケルまたはコバルトの回収方法
JP2009102742A (ja) * 2004-03-31 2009-05-14 Taiheiyo Kinzoku Kk ニッケルまたはコバルトの浸出方法及び回収方法
JP2010095788A (ja) 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP4525428B2 (ja) 2004-05-13 2010-08-18 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298379A (en) * 1980-01-31 1981-11-03 The Hanna Mining Company Production of high purity and high surface area magnesium oxide
JPH05125464A (ja) * 1991-10-17 1993-05-21 Nisshin Steel Co Ltd ケイ酸苦土ニツケル鉱石の処理方法
AU2007271672A1 (en) * 2006-07-03 2008-01-10 Curlook Enterprises Inc. Metal recovery system as applied to the high pressure leaching of limonitic nickel laterite ores
JP2011005448A (ja) * 2009-06-26 2011-01-13 Mitsubishi Heavy Ind Ltd 河川水利用排煙脱硫システム及び腐植物質除去方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256353A (ja) * 2001-02-28 2002-09-11 National Institute Of Advanced Industrial & Technology 酸廃液中の亜鉛及び鉄を沈殿物として回収する方法及びその装置
JP2009102742A (ja) * 2004-03-31 2009-05-14 Taiheiyo Kinzoku Kk ニッケルまたはコバルトの浸出方法及び回収方法
JP4525428B2 (ja) 2004-05-13 2010-08-18 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
JP2007077459A (ja) 2005-09-15 2007-03-29 Taiheiyo Kinzoku Kk ニッケルまたはコバルトの回収方法
JP2010095788A (ja) 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法

Also Published As

Publication number Publication date
CA2891877A1 (en) 2014-05-30
JP2014101548A (ja) 2014-06-05
EP2924133A1 (en) 2015-09-30
CA2891877C (en) 2020-03-31
AU2013349084A1 (en) 2015-07-09
PH12015501111B1 (en) 2015-08-10
US20150315671A1 (en) 2015-11-05
EP2924133B1 (en) 2019-01-02
PH12015501111A1 (en) 2015-08-10
EP2924133A4 (en) 2016-08-17
CN104955968A (zh) 2015-09-30
JP5904100B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5800255B2 (ja) 製鉄用ヘマタイトの製造方法
JP5644878B2 (ja) 固液分離処理方法、並びにニッケル酸化鉱石の湿式製錬方法
JP6439530B2 (ja) スカンジウムの回収方法
WO2013027603A1 (ja) ニッケル回収ロスの低減方法、ニッケル酸化鉱石の湿式製錬方法、並びに硫化処理システム
WO2014080665A1 (ja) 中和スラリーの沈降分離方法、並びにニッケル酸化鉱石の湿式製錬方法
JP5692458B1 (ja) 固液分離処理方法、並びにニッケル酸化鉱石の湿式製錬方法
JP2013112538A (ja) 高純度硫酸ニッケルの製造方法、及びニッケルを含む溶液からの不純物元素除去方法
JP6996328B2 (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6984191B2 (ja) ニッケル高圧浸出残渣の固液分離方法
JP6816410B2 (ja) スカンジウムの回収方法
WO2013187367A1 (ja) 中和処理方法
JP6256491B2 (ja) スカンジウムの回収方法
JP2008231470A (ja) 硫化工程の反応制御方法
JP5617877B2 (ja) ニッケル酸化鉱製錬における排水処理方法
JP7005909B2 (ja) 中和処理方法、及び中和終液の濁度低減方法
JP6888359B2 (ja) 金属酸化鉱の製錬方法
WO2015125821A1 (ja) スカンジウム回収方法
WO2021024878A1 (ja) 濾過膜の洗浄方法
JP6206518B2 (ja) 中和処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6750698B2 (ja) ニッケル高圧浸出残渣の固液分離方法
JP2022055767A (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2891877

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14443870

Country of ref document: US

Ref document number: 12015501111

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013857192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201503794

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013349084

Country of ref document: AU

Date of ref document: 20130729

Kind code of ref document: A