WO2014025062A1 - 窒化珪素質焼結体および熱伝導部材 - Google Patents

窒化珪素質焼結体および熱伝導部材 Download PDF

Info

Publication number
WO2014025062A1
WO2014025062A1 PCT/JP2013/071840 JP2013071840W WO2014025062A1 WO 2014025062 A1 WO2014025062 A1 WO 2014025062A1 JP 2013071840 W JP2013071840 W JP 2013071840W WO 2014025062 A1 WO2014025062 A1 WO 2014025062A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
mass
oxide
sintered body
region
Prior art date
Application number
PCT/JP2013/071840
Other languages
English (en)
French (fr)
Inventor
義宜 平野
瑞穂 大田
和洋 石川
織田 武廣
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014529592A priority Critical patent/JP5944996B2/ja
Priority to EP13827569.8A priority patent/EP2883854A4/en
Priority to CN201380038715.XA priority patent/CN104470872A/zh
Publication of WO2014025062A1 publication Critical patent/WO2014025062A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • the present invention relates to a silicon nitride sintered body and a heat conduction member.
  • silicon nitride sintered bodies are used as industrial parts such as engine parts, molten metal parts, cutting tools, fast reactor parts and molten metal parts.
  • Patent Document 1 As an example of such a silicon nitride sintered body, for example, in Patent Document 1, 2 to 15 wt% of calcium oxide, 0.01 to 10 wt% of magnesium oxide and 0.01 to 10 wt% of aluminum oxide are converted in terms of oxides. A spark plug for an internal combustion engine made of a sintered body containing 0 to 15 wt% has been proposed.
  • the sintered body mainly composed of silicon nitride described in Patent Document 1 has a problem that it is corroded when exposed to a cleaning liquid or a coolant containing an alkali component.
  • a component having high corrosion resistance to an alkali metal is used as a sintering aid, there is a problem that if the content is too large, the thermal conductivity of the sintered silicon nitride sintered body is lowered. It was.
  • the present invention has been proposed in order to solve the above-described problems, and an object thereof is to provide a silicon nitride sintered body and a heat conductive member having high corrosion resistance and high thermal conductivity against an alkali component. is there.
  • the silicon nitride based sintered body of the present invention has a silicon nitride crystal and a grain boundary phase containing at least one of an oxide of sodium and an oxide of potassium, and the oxide of sodium and the oxidation of potassium object content, and is characterized in that the total weight respectively of at Na 2 O, less than 1 wt% to 0.2 wt% in total of the values in terms of K 2 O.
  • the heat conducting member of the present invention contains a magnesium oxide in the grain boundary phase, a first region having a relatively large value of the characteristic X-ray intensity of the magnesium, and the characteristic X of the magnesium.
  • a silicon nitride sintered body having a second region having a relatively small line diffraction value, at least the first region being exposed, and a heat source, wherein the heat source is disposed on the first region side. It is characterized by being arranged.
  • the silicon nitride sintered body of the present invention it is possible to have both high corrosion resistance against alkali components and high thermal conductivity.
  • the corrosion resistance against the alkali component is highly reliable, and the heat of the heat source can be efficiently transmitted.
  • FIG. 1 An example of a structure made of a silicon nitride sintered body of the present embodiment is shown, (a) is a longitudinal sectional view, and (b) is an enlarged view of a section taken along line XX ′ of (a). . It is a longitudinal section showing an example of a heat conduction device provided with a heat conduction member of this embodiment.
  • the silicon nitride-based sintered body of the present embodiment includes a silicon nitride crystal and a grain boundary phase containing at least one of a sodium oxide and a potassium oxide, and includes a sodium oxide and a potassium oxide. Is a total of values converted to Na 2 O and K 2 O in the total mass, respectively, and is 0.2 mass% or more and 1 mass% or less.
  • the presence of the silicon nitride crystal can be confirmed by measuring and identifying it with an X-ray diffractometer (XRD), for example.
  • XRD X-ray diffractometer
  • the silicon nitride crystal may contain inevitable impurities.
  • the grain boundary phase refers to a region other than the silicon nitride crystal, and there are crystals other than silicon nitride and an amorphous phase.
  • sodium oxide or potassium oxide is, for example, a sodium oxide, an electron beam irradiated to the grain boundary phase in an analysis using an energy dispersive X-ray analyzer (EDX). It is only necessary that Na and O (oxygen) are contained in the element detected by spectrally analyzing the energy of the characteristic X-rays generated by the above. Moreover, the presence position of Na and the presence position of O should just overlap by the confirmation of the mapping using an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • the total mass is the total mass (content) of all components constituting the silicon nitride sintered body, and the total mass is 100% by mass.
  • the total content of sodium oxide and potassium oxide in terms of Na 2 O and K 2 O in the total mass is 0.2% by mass or more, so that the oxides of sodium and potassium are oxidized. Since the product is difficult to react with the alkali component, the corrosion resistance of the silicon nitride sintered body to the alkali component is increased.
  • the content of sodium oxide and potassium oxide is 1% by mass or less in terms of the total of the values converted to Na 2 O and K 2 O, respectively, in the total mass, so that the silicon nitride-based sintered body In the firing step, the number of pores existing in the sintered silicon nitride sintered body due to vaporization of the oxide of sodium and the oxide of potassium can be reduced. Therefore, there is little decrease in the thermal conductivity of the silicon nitride sintered body, and the thermal conductivity of the silicon nitride sintered body is kept high.
  • the content of sodium oxide and potassium oxide is 0.2% by mass or more in total of the values converted to Na 2 O and K 2 O, respectively, out of the total mass. By being 1 mass% or less, it can have high corrosion resistance with respect to an alkali component, and high heat conductivity.
  • the silicon nitride-based sintered body of the present embodiment has a silicon nitride content of 80% by mass or more in terms of Si 3 N 4 in the total mass, and particularly 85% by mass or more. This is preferable because conductivity and mechanical strength tend to increase.
  • the content of silicon nitride in terms of Si 3 N 4 is determined by measuring the nitrogen content in the silicon nitride sintered body with a nitrogen analyzer, and converting the nitrogen content into Si 3 N 4 . What is necessary is just to convert and calculate.
  • the content of sodium oxide in terms of Na 2 O and the content of potassium oxide in terms of K 2 O are determined by X-ray fluorescence analyzer or ICP (Inductively Coupled Plasma) emission. using a spectroscopic analyzer, Na, after obtaining the content of K, can be obtained by converting the Na 2 O, K 2 O, respectively.
  • the silicon nitride sintered body of the present embodiment includes calcium oxide in the grain boundary phase, and the content of calcium oxide is 2.2% by mass or more and 5.2% by mass in terms of CaO in the total mass. % Or less is preferable.
  • the content of calcium oxide is in the above range, calcium oxide promotes densification of silicon nitride crystals and increases mechanical strength. Therefore, the mechanical strength of the silicon nitride-based sintered body is increased. Since the ratio of the grain boundary phase containing calcium oxide is not too high, the thermal conductivity of the silicon nitride sintered body can be kept high.
  • the silicon nitride sintered body of this embodiment includes magnesium oxide in the grain boundary phase, and the content of magnesium oxide is 0.1% by mass or more and 0.6% by mass in terms of MgO in the total mass. It is preferable that:
  • the magnesium oxide content is in the above range, the inclusion of magnesium oxide in the grain boundary phase can increase the fracture toughness of the silicon nitride-based sintered body, and silicon nitride during sintering. Since the crystal densification and the crystallization of crystals other than silicon nitride in the grain boundary phase are promoted, the mechanical strength of the silicon nitride sintered body can be increased.
  • the thermal conductivity of the silicon nitride-based sintered body can be maintained high, and the content of magnesium oxide having a negative redox potential is set in the above range.
  • the oxidation resistance of the silicon nitride sintered body can be maintained.
  • the silicon nitride sintered body of this embodiment includes aluminum oxide in the grain boundary phase, and the aluminum oxide content is 5.3% by mass in terms of Al 2 O 3 in the total mass.
  • the content is preferably 8.6% by mass or less.
  • the inclusion of aluminum oxide in the grain boundary phase can increase the fracture toughness of the silicon nitride-based sintered body, and the denseness of the silicon nitride crystals.
  • the mechanical strength of the silicon nitride sintered body can be increased by promoting the formation and suppressing the abnormal grain growth. Furthermore, since the content is not so high that sialon having a thermal conductivity lower than that of silicon nitride is easily formed, the thermal conductivity of the silicon nitride based sintered body can be kept high.
  • the presence of calcium oxide, magnesium oxide, and aluminum oxide in the grain boundary phase may be confirmed using EDX or EPMA as in the case of the above-described confirmation of sodium oxide.
  • the content may be measured and calculated using a fluorescent X-ray analyzer or an ICP emission spectroscopic analyzer.
  • the silicon nitride sintered body of this embodiment it is suitable for the silicon nitride sintered body of this embodiment that gehlenite is included in the grain boundary phase.
  • gehlenite is included in the grain boundary phase, since the ratio of the amorphous phase in the grain boundary phase can be reduced, the rigidity of the silicon nitride based sintered body can be increased.
  • the composition formula of Gehlenite for example, but as it can be shown as Ca 2 Al 2 SiO 7, is not limited to the stoichiometric composition.
  • the silicon nitride sintered body of this embodiment has magnesium and sodium dissolved in gehlenite.
  • the contents of magnesium and sodium in the silicon nitride sintered body are the same, when magnesium and sodium are dissolved in gehlenite, the abundance of crystals (gehlenite) in the grain boundary phase increases, and the amorphous Since the existence ratio of the mass phase becomes low, the deformation of the grain boundary phase can be suppressed and the rigidity of the silicon nitride sintered body can be increased.
  • composition formula of gehlenite magnesium and sodium are dissolved in, for example, ((Ca 1- (a + b), Na a, Mg b) 2 (Al 1- (c + d), Si c, Mg d) 2 (Si 1-(e + f) , Al e , Mg f ) O 7 ) (where 0 ⁇ a + b ⁇ 1, 0 ⁇ c + d ⁇ 1, 0 ⁇ e + f ⁇ 1).
  • the confirmation of the existence of gehlenite in the grain boundary phase of the silicon nitride sintered body can be confirmed by measuring and identifying using XRD. Whether or not magnesium and sodium are dissolved in gehlenite is determined using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray spectrometer (EDS) or a wavelength dispersive X-ray spectrometer (WDS). When the element contained in gehlenite is confirmed by using it, if magnesium and sodium are contained, it is considered that magnesium and sodium are dissolved in gehlenite.
  • TEM transmission electron microscope
  • EDS energy dispersive X-ray spectrometer
  • WDS wavelength dispersive X-ray spectrometer
  • the surface layer is dotted with first compounds containing iron and silicon, and the number of first compounds having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less is 1 mm. It is preferable that the number is 2.0 ⁇ 10 4 or more and 2.0 ⁇ 10 5 or less per two .
  • the surface layer in this embodiment means the part in the range less than 1 mm deep from the surface of a silicon nitride sintered body.
  • the first compound containing iron and silicon is a compound composed of iron and silicon (for example, FeSi 3 , FeSi 2, etc.), or iron and silicon, and oxygen, aluminum, magnesium, calcium, sodium, and potassium. It is a compound consisting of at least one of the elements.
  • the surface layer is dotted with second compounds containing tungsten and silicon, and the number of second compounds having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less is 1 mm. It is preferable that the number is 2.0 ⁇ 10 4 or more and 2.0 ⁇ 10 5 or less per two .
  • the surface of the silicon nitride sintered body has a strong tendency to blacken, so that the surface is less likely to have color unevenness, and even if mechanical stress is applied, the generation of cracks is suppressed. Can do.
  • the second compound containing tungsten and silicon is a compound made of tungsten and silicon (for example, W 5 Si 3 , W 3 Si 2, etc.), or tungsten and silicon, and oxygen, aluminum, magnesium, calcium.
  • the first compound containing iron and silicon and the second compound containing tungsten and silicon are interspersed in the surface layer is EPMA if it is the first compound containing iron and silicon.
  • EPMA Whether or not the first compound containing iron and silicon and the second compound containing tungsten and silicon are interspersed in the surface layer.
  • the number per 1 mm 2 of the first compound containing iron and silicon having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less and the second compound containing tungsten and silicon is set to a magnification of 1000 using a scanning electron microscope.
  • a range is set so that the area is 10.8 ⁇ 10 4 ⁇ m 2 (the length in the horizontal direction is 127 ⁇ m and the length in the vertical direction is 85.3 ⁇ m).
  • the image analysis software “A Image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) may be used for analysis by a technique called particle analysis.
  • the threshold value is an index indicating the brightness of the reflected electron image
  • each point (each pixel) in the reflected electron image is For example, it may be set to 1.5 times to 1.8 times the peak value of the histogram indicating brightness.
  • the threshold values can be appropriately set so that each compound can be identified by color tone.
  • An optical microscope may be used instead of the scanning electron microscope.
  • the silicon nitride sintered body of this embodiment includes magnesium aluminate in the grain boundary phase.
  • magnesium aluminate is included in the grain boundary phase, magnesium aluminate has higher corrosion resistance to the alkali component than silicon nitride, so that the corrosion resistance to the alkali component can be further increased.
  • the silicon nitride sintered body of the present embodiment preferably has a low rare earth metal content and a rare earth metal content of 0.1% in order to have high corrosion resistance to not only the alkali component but also the acid component. It is suitable that it is below mass%.
  • FIG. 1A and 1B show an example of a structure made of a silicon nitride sintered body according to the present embodiment.
  • FIG. 1A is a longitudinal sectional view
  • FIG. 1B is an enlarged view taken along line XX ′ of FIG. FIG.
  • a structure 10 made of a silicon nitride-based sintered body shown in FIG. 1 is a cylindrical body having a bottom.
  • heat from a heat source arranged in the cylindrical body is transmitted to the outside of the cylindrical body, or outside the cylindrical body. It is used for the purpose of transmitting the heat of the heat source arranged in the cylinder to the cylindrical body.
  • the silicon nitride-based sintered body has a silicon nitride crystal and a grain boundary phase containing at least one of a sodium oxide and a potassium oxide.
  • the content of the oxide are each Na 2 O of the total weight, with 1% by mass or less than 0.2 mass% in total of the values in terms of K 2 O, further comprising an oxide of magnesium in the grain boundary phase,
  • a first region 1 having a relatively large value of the characteristic X-ray intensity of magnesium and a second region 2 having a relatively small value of the characteristic X-ray intensity of magnesium are provided, and the first region 1 is provided on the heat source side. Is located, that is, the first region 1 is preferably exposed.
  • FIG. 1 shows an example in which the inner peripheral surface side of the cylindrical body is the first region 1 and the outer peripheral surface side is the second region 2.
  • the structure 10 shown in FIG. 1 is made of a silicon nitride-based sintered body that satisfies the above-described configuration, the density in the first region 1 is higher than that in the second region 2, so that heat from the heat source is generated.
  • the first area 1 can be received efficiently and transmitted to the outside via the second area 2.
  • the characteristic X-ray intensity value of magnesium is compared with the thickness from one surface (inner periphery in FIG. 1) of the cross section of the structure 10 in FIG. 1B by, for example, magnesium color mapping using EPMA. The 20% portion in the direction and the 20% portion in the thickness direction from the other surface (the outer periphery in FIG. 1) are confirmed.
  • the color mapping if the value of the characteristic X-ray intensity is small, it is indicated by a cold color system, and if the value of the characteristic X-ray intensity is large, it is indicated by a warm color system.
  • the first region 1 is shown in a color tone on the warm color side from the second region 2, and the second region 2 is shown in a color tone on the cold color system side than the first region 1.
  • the number of pores per unit area is preferably smaller in the first region 1 than in the second region 2. With such a configuration, the density in the first region 1 becomes higher, so that heat from the heat source can be received and transmitted more efficiently.
  • the number of pores in the first region 1 and the second region 2 may be obtained by obtaining the number per unit area in each cross section.
  • the cross section is polished and an optical microscope is used to obtain a magnification.
  • the cross section was photographed with a CCD camera at a magnification of 200, and an image analysis device (LUZEX series manufactured by Nireco Corp.) used a visual field measurement area of 2.25 ⁇ 10 ⁇ 2 mm 2 and a measurement field number of 20, that is,
  • the total number of measured areas may be 4.5 ⁇ 10 ⁇ 1 mm 2
  • the number of pores per unit area may be counted
  • the number of pores in the first region 1 and the second region 2 may be compared.
  • the grain boundary phase further contains an oxide of aluminum
  • the second region 2 Is provided with a third region having a relatively large value of characteristic X-ray intensity of aluminum and a fourth region having a relatively small value of characteristic X-ray intensity of aluminum, and the third region is exposed. It is preferable that When such a configuration is satisfied, the mechanical strength of the third region is increased, so that damage from impact due to contact during handling can be reduced, and corrosion resistance to alkaline components and molten aluminum is increased. be able to.
  • the third area and the fourth area can be confirmed by the following method.
  • the color mapping of aluminum using EPMA is observed for the second region 2.
  • FIG. 1 (b) the color tone of the inner side and the outer side in the portion of 20% in the thickness direction from the outer peripheral surface is confirmed, and the color tone that is relatively warm is shown.
  • the fourth region is the third region, which is indicated by a relatively cold color tone.
  • FIG. 1 although the cylindrical body which has the bottom by which the one end was sealed was shown, it is not specified to this shape, and the cylindrical shape (rings, such as a ring, etc.) which are not sealed at both ends is also shown. Or a housing-like shape.
  • Specific applications of the structure 10 made of the silicon nitride sintered body of the present embodiment include a burner tube, a radiant tube, a thermocouple protection tube, a ladle, a stalk, a degassing rotor, a seal ring, and a firing container. , Spherical or roller-like rolling elements, and the like.
  • FIG. 2 is a longitudinal sectional view showing an example of a heat conduction device including the heat conduction member of the present embodiment.
  • a heat conduction device 20 shown in FIG. 2 is used to heat a molten metal such as aluminum, and includes a heater 5 as a heat source and a silicon nitride-based sintered body for enclosing and protecting the heater 5.
  • a heat conducting member 11 as a body 10 and a power source 6 for supplying power to the heater 5 are provided.
  • the structure 10 satisfies the configuration described with reference to FIG. 1. In the configuration shown in FIG. 2, the structure 10 has a first region on the inner peripheral surface, that is, the heat source is the structure 10. Of the first region.
  • the heat conduction device 20 is arranged such that at least a part of the structure 10 in the heat conduction member 11 is immersed in a molten metal (not shown), and the heater 5 is heated by the power supplied from the power source 6.
  • the molten metal is heated through the body 10.
  • the heat source is arrange
  • the heat conducting member 11 can be used for heating purposes other than molten metal.
  • the example of the heat conductive member 11 using the structure 10 was shown in FIG. 2, you may use the structure of the structure which contains aluminum in a grain boundary phase.
  • metal silicon powder and silicon nitride powder having a ⁇ conversion ratio of 20% or less are prepared, and the mass ratio of (metal silicon powder) / (silicon nitride powder) is 1 or more and 10 or less. So as to obtain a first powder.
  • the metal silicon powder is cumulative when the total volume of the particle size distribution curve is 100%.
  • a particle size (D 90 ) with a volume of 90% is 10 ⁇ m or less, preferably 6 ⁇ m or less.
  • a second powder obtained by weighing at least one of a sodium oxide powder and a potassium oxide powder, a magnesium aluminate powder, and a metal compound powder is obtained.
  • the first powder and the second powder are, as a starting material, a powder weighed so that the second powder is 10% by mass to 23% by mass when the total of the first powder and the second powder is 100% by mass.
  • the metal compound is aluminum oxide, silicon dioxide, calcium carbonate, or the like.
  • a silicon nitride-based sintered body having a total of values converted to Na 2 O and K 2 O of 0.2% by mass or more and 1% by mass or less, respectively, in the increase in mass due to nitriding of metal silicon powder and in the firing step In consideration of evaporation, sodium oxide powder and / or potassium oxide powder may be weighed.
  • the manufacturing method described here is to generate silicon nitride by nitriding using metal silicon powder, and the mass increase due to nitridation of metal silicon occurs.
  • magnesium oxide powder is added and magnesium oxide is present in the silicon nitride sintered body, the mass of magnesium oxide out of 100% by mass of the starting material and the total mass of the silicon nitride sintered body The mass of magnesium oxide is not the same. Therefore, the magnesium aluminate powder and the metal compound powder are weighed in consideration of mass increase due to nitridation of metal silicon.
  • the starting material is mixed and pulverized together with a solvent by a known method such as a barrel mill, a rotating mill, a vibration mill, a bead mill, a sand mill, an agitator mill or the like to obtain a slurry.
  • a known method such as a barrel mill, a rotating mill, a vibration mill, a bead mill, a sand mill, an agitator mill or the like.
  • pulverizing media used in such pulverization those composed of a silicon nitride sintered body, a zirconium oxide sintered body, an aluminum oxide sintered body, etc. can be used.
  • a particle size ( D90 ) it is suitable to perform grinding
  • the outer diameter, amount, grinding time, etc. of the grinding media may be adjusted.
  • an organic binder such as paraffin wax, polyvinyl alcohol (PVA), polyethylene glycol (PEG) or the like is appropriately selected according to the molding method so that it is 1 to 10 parts by mass with respect to 100 parts by mass of the starting material.
  • the moldability can be improved by weighing and mixing with the slurry.
  • the surface layer is dotted with first compounds containing iron and silicon, and the number of first compounds having a circle-equivalent diameter of 0.05 ⁇ m or more and 5 ⁇ m or less is 2.0 ⁇ 10 4 or more and 2.0 ⁇ 10 2 per 1 mm 2.
  • ferric oxide powder having a specific surface area of 0.5 m 2 / g or more and 50 m 2 / g or less is added to and mixed with the slurry. The amount of ferric oxide powder added is weighed so that the amount of ferric oxide powder is 1 to 1.7 parts by mass with respect to 100 parts by mass of the starting material.
  • the surface layer is dotted with second compounds containing tungsten and silicon, and the number of second compounds having a circle-equivalent diameter of 0.05 ⁇ m or more and 5 ⁇ m or less is 2.0 ⁇ 10 4 or more and 2.0 ⁇ 10 5 per mm 2.
  • a powder of tungsten oxide having a specific surface area of 0.5 m 2 / g or more and 50 m 2 / g or less is added to the slurry.
  • the addition amount of the tungsten oxide powder is weighed so that the tungsten oxide powder is 0.6 mass% or more and 0.9 mass% or less with respect to 100 mass parts of the starting material.
  • granulated granules are obtained using a spray dryer. Thereafter, the obtained granule is used for press molding or CIP molding (Cold Isostatic Pressing) or the like to obtain a molded product having a relative density of 45 to 60% and having a desired shape.
  • press molding or CIP molding Cold Isostatic Pressing
  • a molded body obtained in a carbon mortar whose surface is covered with silicon carbide or silicon nitride crystal particles is placed and degreased in a nitrogen atmosphere or in a vacuum.
  • the degreasing temperature varies depending on the kind of the added organic binder, but is preferably 900 ° C. or less. In particular, it is preferably 450 ° C. or higher and 800 ° C. or lower.
  • a product obtained by removing lipid components such as an organic binder from the molded body is called a degreased body.
  • nitriding is performed by raising the temperature further from the temperature when degreasing. Note that nitriding is preferably performed after the first nitriding step by a second nitriding step having a temperature higher than that of the first nitriding step.
  • the nitrogen partial pressure is set to 10 to 200 kPa and held at a temperature of 1000 to 1200 ° C. for 15 to 25 hours, so that 10 to 70% by mass of metallic silicon in the degreased body is obtained.
  • the remaining portion of the metal silicon in the degreased body is nitrided to be a nitride by holding at a temperature between the temperature of the first nitriding step and 1400 ° C. for 5 to 15 hours.
  • the temperature of the second nitriding step is higher than the temperature of the first nitriding step and not more than 1400 ° C., and it is preferable that the first nitriding step and the second nitriding step are performed continuously. is there.
  • the temperature rise is continued, the firing temperature is set to 1700 ° C. or higher and 1860 ° C. or lower, the nitrogen pressure is maintained at, for example, 100 kPa or higher and 160 kPa or lower, and held for 6 to 14 hours. Cool at a rate of less than 230 ° C. In order to obtain a silicon nitride sintered body containing gehlenite in the grain boundary phase, it may be cooled at a rate of 190 ° C. or more and less than 210 ° C. per hour.
  • silicon nitride sintered body in which magnesium and sodium are solid-dissolved in gehlenite it may be cooled at a rate of 170 ° C. or more and less than 190 ° C. per hour.
  • magnesium oxide from the inner peripheral surface side when the molded body is placed on the mortar In order to suppress the volatilization, for example, a gas supply pipe may be disposed on the inner peripheral surface side of the molded body, and a nitriding step may be performed while supplying nitrogen, and the temperature may be further raised and fired.
  • the inner peripheral surface side is the first region, and the outer peripheral surface side is the second region.
  • a porous firing container is filled and disposed on the inner peripheral surface side of the molded body.
  • the grain boundary phase contains an oxide of aluminum
  • the second region has a relatively high value of the characteristic X-ray intensity of aluminum
  • the value of the characteristic X-ray intensity of aluminum is relatively high.
  • an oxidizing agent is used as an atmosphere adjusting agent. What is necessary is just to lay the powder which consists of at least any one of aluminum and aluminum nitride in the outer position which does not contact the molded object on the bottom plate of a mortar.
  • a slurry obtained by mixing a powder composed of at least one of aluminum oxide and aluminum nitride and water, applying the slurry to the side wall, and drying the slurry may be used.
  • the particle size of the atmosphere adjusting agent is, for example, the particle size specified in JIS R 6001-1998, considering that it is easy to handle and that high reactivity can be obtained by increasing the specific surface area. It is preferable to use powders that are F16 to F220.
  • the silicon nitride sintered body obtained by the above-described manufacturing method may be subjected to processing such as polishing, blasting, cutting and drilling as necessary.
  • a metal silicon powder and a silicon nitride powder having a ⁇ conversion ratio of 10% were prepared, and the mass of (metal silicon powder) / (silicon nitride powder)
  • the first powder was obtained by weighing and mixing so that the ratio was 5.4.
  • the metal silicon powder having a particle size (D 90 ) of 5 ⁇ m was used.
  • each powder was weighed as the second powder.
  • the total amount of the second powder was the mass shown in Table 1, and the remainder was weighed so as to be the first powder, and these were used as starting materials.
  • the starting material was put in a barrel mill together with a grinding medium composed of water and a silicon nitride sintered body, and mixed and pulverized until the particle size (D 90 ) became 1 ⁇ m or less to obtain a slurry.
  • PVA polyvinyl alcohol
  • the molded body was placed in a mortar made of a silicon carbide sintered body and degreased by holding at 500 ° C. for 5 hours in a nitrogen atmosphere. Subsequently, the temperature was further raised, and nitriding was carried out in a nitrogen partial pressure of 150 kPa consisting essentially of nitrogen by successively holding at 1050 ° C. for 20 hours and at 1250 ° C. for 10 hours. Then, the temperature was further raised, and the pressure of nitrogen was set to 100 kPa, and the mixture was held at 1730 ° C. for 12 hours for firing. Thereafter, by cooling at a rate of 180 ° C. per hour, 1 to 38 silicon nitride sintered bodies were obtained.
  • Each sample was identified by measurement by XRD, and it had silicon nitride crystals. Furthermore, sample no.
  • the silicon content in 1 to 38 was measured with a nitrogen analyzer and the nitrogen content in the silicon nitride sintered body was converted to Si 3 N 4 from the nitrogen content.
  • the silicon nitride content was 80% by mass or more.
  • the amount of mass reduction per unit area is shown in Table 2 by comparing the mass after each sample was immersed in a 30% by mass sodium hydroxide solution at 90 ° C. for 100 hours with the mass before immersion. Indicated.
  • the thermal diffusivity ⁇ in the thickness direction of each sample was measured by a two-dimensional method using a laser flash using a thermal constant measuring device (TC-7000, manufactured by ULVAC-RIKO).
  • the specific heat capacity C of each sample was measured by a suggested scanning calorimetry (DSC method) using an ultrasensitive differential scanning calorimeter (DSC-6200, manufactured by Seiko Instruments Inc.).
  • the bulk density ⁇ (kg / m 3 ) of each sample was measured according to JIS R 1634-1998. Then, the values obtained by these methods are substituted into the following formula (1) to calculate the thermal conductivity ⁇ (W / (m ⁇ K)) in the thickness direction of each sample, and the values are shown in Table 1. It was shown in 2.
  • ⁇ ⁇ C ⁇ ⁇ ⁇ ⁇ ⁇ (1)
  • the mechanical strength of each sample four-point bending strength was measured according to JIS R 1601-2008, and the measured values are shown in Table 2.
  • the converted value shown in Table 2 is described as content.
  • Table 2 when sample Nos. 1, 2 , 9 and 16 to 18 having the same content of CaO, MgO and Al 2 O 3 and different contents of Na 2 O are compared, the content of Na 2 O However, the sample No. is 0.2 mass% or more and 1 mass% or less of the total mass. 2, 9, 16 and 17 have a mass reduction per unit area of 0.29 mg / cm 2 or less, a thermal conductivity of 21 W / (m ⁇ K) or more, high corrosion resistance against alkali components and high heat It was found that it also has conductivity.
  • the sample No. total content of Na 2 O and K 2 O is at most 1 mass% 0.2 mass% or more of the total weight 37 and 38 were also found to have both high corrosion resistance against alkali components and high thermal conductivity.
  • sample Nos. 2 having the same contents of Na 2 O, MgO and Al 2 O 3 and different contents of CaO were used.
  • 6, 9 and 12 have a mass loss per unit area of 0.24 mg / cm 2 or less, a thermal conductivity of 24 W / (m ⁇ K) or more, a four-point bending strength of 740 MPa or more, an alkali It was found that both high corrosion resistance to the components and high thermal conductivity were obtained, and the mechanical properties were high and good.
  • the sample Nos. 2 having the same contents of K 2 O, MgO and Al 2 O 3 and different contents of CaO. Comparing 23, 24, 27, 30 and 31, the sample No. 2 contained CaO in the total mass of 2.2 mass% or more and 5.2 mass% or less. 24, 27 and 30 have a mass loss per unit area of 0.24 mg / cm 2 or less, a thermal conductivity of 23 W / (m ⁇ K) or more, a four-point bending strength of 740 MPa or more, an alkali It was found that both high corrosion resistance to the components and high thermal conductivity were obtained, and the mechanical properties were high and good.
  • sample Nos. 2 having the same contents of Na 2 O, CaO and Al 2 O 3 but different contents of MgO were used. When comparing 3, 4, 9, 14 and 15, sample no. It was found that the characteristics of 4, 9 and 14 were good. Furthermore, the sample Nos. 2 in which the contents of K 2 O, CaO and Al 2 O 3 are the same and the contents of MgO are different. Comparing 21, 22, 27, 32 and 33, sample no. The characteristics of 22, 27 and 32 were found to be good.
  • sample Nos. 2 having the same contents of Na 2 O, CaO and MgO but different contents of Al 2 O 3 .
  • sample no. It was found that the characteristics of 8 to 10 were good.
  • sample Nos. 25 to 29 having the same contents of K 2 O, CaO and MgO but different contents of Al 2 O 3 are compared, It was found that the characteristics of 26 to 28 were good.
  • a first powder was prepared in the same manner as in Example 1.
  • sodium oxide powder, calcium carbonate powder, magnesium aluminate powder and aluminum oxide powder are prepared as the second powder.
  • the first powder is 78.8% by mass
  • the sodium oxide powder is 3.6% by mass
  • the calcium powder was 11.3% by mass
  • the magnesium aluminate powder was 2.6% by mass
  • the aluminum oxide powder was 3.7% by mass.
  • ferric oxide powder having a specific surface area as shown in Table 3 was weighed so as to be 1.4 parts by mass with respect to 100 parts by mass of the starting material, and added to the slurry.
  • the other methods up to the production of the molded body were the same as in Example 1.
  • the nitriding step was carried out in the same manner as in Example 1, and the firing was carried out while maintaining the nitrogen pressure at the value shown in Table 3 at 1775 ° C. for 12 hours. Thereafter, by cooling at a rate of 225 ° C. per hour, 39 to 50 silicon nitride sintered bodies were obtained.
  • the range was set so that the area was 10.8 ⁇ 10 4 ⁇ m 2 (the length in the horizontal direction was 127 ⁇ m and the length in the vertical direction was 85.3 ⁇ m) with a magnification of 1000 using a scanning electron microscope. Then, a reflected electron image in this range is captured with a CCD camera, and silicidation with a circle equivalent diameter of 0.05 ⁇ m or more and 5 ⁇ m or less on the surface layer is performed using image analysis software “A Image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Corp.). The number of iron was determined by particle analysis.
  • the threshold value is an index indicating the brightness of the reflected electron image
  • each point (each pixel) in the reflected electron image is It was set to 1.6 times the peak value of the histogram indicating brightness.
  • Table 3 shows the number per 1 mm 2 of the first compound having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less in the surface layer.
  • a thermal shock test of the sample was performed. Specifically, a test piece having a thickness of 3 mm, an axial direction of 40 mm, and a vertical direction of 4 mm from the outer peripheral side of each sample was cut out, held at 800 ° C., and dropped into 20 ° C. water. The presence or absence of cracks in the surface layer of the test piece after dropping was visually observed. In addition, a test piece of the same size was cut out and the same test was performed at a holding temperature of 900 ° C. The results are shown in Table 3.
  • Example 2 Except that the powder to be added to the slurry was changed to ferric oxide powder to obtain tungsten oxide powder, the same procedure as in Example 2 was followed until the nitriding step, and the nitrogen pressure was 1775 as shown in Table 4. Baked at 12 ° C. for 12 hours. Thereafter, by cooling at a rate of 225 ° C. per hour, 51 to 62 silicon nitride sintered bodies were obtained.
  • the number per 1 mm 2 of the second compound having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less on the surface layer was determined in the same manner as in Example 2. Only the peak value of the histogram was set to 1.7 times. The results are shown in Table 4.
  • test pieces according to JIS R 1601-2008 were cut out from each sample, and the 4-point bending strength at room temperature was measured.
  • a color difference meter Konica Minolta Holdings, Inc. CM-3700A
  • the light source was set to CIE standard light source D65
  • the viewing angle was set to 10 °
  • the measurement range was set to 3 mm ⁇ 5 mm
  • JIS Z 8722- The color tone of the surface of each sample was measured according to 2000, and the measured values of the brightness index L * and chromaticness index a * , b * are shown in Table 4.
  • Sample No. Nos. 52 to 61 are dotted with second compounds containing tungsten and silicon in the surface layer, and the number of second compounds having an equivalent circle diameter of 0.05 ⁇ m or more and 5 ⁇ m or less is 2.0 ⁇ 10 4 or more per 1 mm 2. by ⁇ 10 5 or less, the value of the lightness index L * is small, the surface of the silicon nitride sintered body has the shape of a color having low lightness, with color unevenness is less likely to occur, a high mechanical strength Therefore, it was found that the occurrence of cracks can be suppressed even when mechanical stress is applied.
  • Sample No. Sample No. 6 63 was produced.
  • a gas supply pipe was arranged, and while supplying nitrogen from the gas supply pipe, Sample No. 64 silicon nitride sintered bodies were produced.
  • Sample No. No. 64 is a sample No. 64 for the composition and production method other than the different conditions when the molded body is positioned in the mortar. Same as 63.
  • sample no. The size of the characteristic X-ray intensity value was confirmed by the color tone by color mapping of magnesium using EPMA for the 63 and 64 cross sections. As a result, sample no. For No. 63, there was no difference in the value of the characteristic X-ray intensity of magnesium. About 64, it had the 1st field on the inner skin side, and the 2nd field on the outer skin side.
  • each heater After each heater is placed on the inner peripheral surface of each sample, it is immersed in a container containing 10 liters of water at a temperature of 5 ° C., and the time until the water reaches 100 ° C. is heated. It was measured. As a result, sample no. In 64, the time until water reached 100 ° C was faster.
  • the heat of the heat source can be efficiently transmitted by the first region being located on the heat source side, that is, the first region is exposed.
  • sample no. Sample no. 65 was produced.
  • aluminum oxide powder having a particle size of F16 as defined in JIS R 6001-1998 is used as an atmosphere adjusting agent.
  • Aluminum oxide powder having a particle size of F16 as defined in JIS R 6001-1998 is used as an atmosphere adjusting agent.
  • Aluminum oxide powder having a particle size of F16 as defined in JIS R 6001-1998 is used as an atmosphere adjusting agent.
  • 66 silicon nitride sintered bodies were produced.
  • Sample No. No. 66 is the same as that of Sample No. Same as 65.
  • sample no. for 65 and 66 cross sections the value of the characteristic X-ray intensity was confirmed by color tone by aluminum color mapping using EPMA.
  • sample no. For No. 65 no difference was found in the value of the characteristic X-ray intensity of aluminum, and it did not have the third region and the fourth region.
  • about 66 it had the 3rd field on the perimeter side in the 2nd field, and had the 4th field on the inner skin side in the 2nd field.
  • sample no. A test piece according to JIS R 1601-2008 was cut out from the third area of 66.
  • Sample No. 65, sample no. A test piece was cut out from the same position as the third region of 66. Then, in the same manner as in Example 1, the four-point bending strength of the sample pieces of sample Nos. 65 and 66 was measured.
  • sample No. 66 had a higher 4-point bending strength. From this, it was found that since the third region is exposed, the mechanical strength is high, so that damage from impact due to contact during handling can be reduced.
  • First area 2 First area 2: Second area 10: Structure 11: Heat conduction member 20: Heat conduction device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

 【課題】 アルカリ成分に対する耐食性および熱伝導率の高い窒化珪素質焼結体および熱伝導部材を提供する。 【解決手段】 窒化珪素の結晶と、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかを含む粒界相とを有し、前記ナトリウムの酸化物および前記カリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下の窒化珪素質焼結体である。この構成を満たすことにより、アルカリに対する高い耐食性と高い熱伝導率を兼ね備えることができる。

Description

窒化珪素質焼結体および熱伝導部材
 本発明は、窒化珪素質焼結体および熱伝導部材に関するものである。
 現在、エンジン部品,溶湯金属用部材,切削工具,高速炉用部品および溶湯用部材などの産業用部材として窒化珪素質焼結体が使用されている。
 このような窒化珪素質焼結体の例として、例えば、特許文献1では、窒化ケイ素を主成分として、酸化物換算で酸化カルシウムを2~15wt%、酸化マグネシウムを0.01~10wt%、酸化アルミニウムを0~15wt%を含有した焼結体からなる内燃機関用スパークプラグが提案されている。
特開平5-36464号公報
 しかしながら、特許文献1に記載された窒化ケイ素を主成分とする焼結体は、アルカリ成分を含む洗浄液や冷却剤に曝されると腐食するという問題があった。また、アルカリ金属に対して耐食性の高い成分を焼結助剤として用いた場合、その含有量が多すぎると、焼結後の窒化珪素質焼結体の熱伝導率が低下するという問題があった。
 本発明は上述のような課題を解決するために提案されたものであって、その目的は、アルカリ成分に対する耐食性および熱伝導率の高い窒化珪素質焼結体および熱伝導部材を提供するものである。
 本発明の窒化珪素質焼結体は、窒化珪素の結晶と、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかを含む粒界相とを有し、前記ナトリウムの酸化物および前記カリウムの酸化物含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下であることを特徴とするものである。
 本発明の熱伝導部材は、上記構成に加え、前記粒界相にマグネシウムの酸化物を含み、該マグネシウムの特性X線強度の値が相対的に大きい第1の領域と、前記マグネシウムの特性X線回折の値が相対的に小さい第2の領域とを備え、少なくとも第1の領域が露出している窒化珪素質焼結体と、熱源とを備え、前記第1の領域側に前記熱源を配置してなることを特徴とするものである。
 本発明の窒化珪素質焼結体によれば、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えることができる。
 また、本発明の熱伝導部材によれば、アルカリ成分に対する耐食性について高い信頼性を有するとともに、熱源の熱を効率よく伝達することができる。
本実施形態の窒化珪素質焼結体からなる構造体の一例を示す、(a)は縦断面図であり、(b)は(a)のX-X’線における断面を拡大した図である。 本実施形態の熱伝導部材を備える熱伝導装置の一例を示す縦断面図である。
 本実施形態の窒化珪素質焼結体は、窒化珪素の結晶と、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかを含む粒界相とを有し、ナトリウムの酸化物およびカリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下である。
 ここで、窒化珪素の結晶の存在は、例えば、X線回折装置(XRD)で測定して同定することにより確認することができる。なお、窒化珪素の結晶には、不可避不純物が含まれる場合がある。そして、粒界相とは、窒化珪素の結晶以外の領域を指し、窒化珪素以外の結晶や非晶質相が存在する。
 また、ナトリウムの酸化物やカリウムの酸化物の存在は、例えば、ナトリウムの酸化物であれば、エネルギー分散型X線分析装置(EDX)を用いた分析において、粒界相に照射された電子線によって生じた特性X線のエネルギーを分光して検出された元素にNaとO(酸素)が含まれていればよい。また、電子線マイクロアナライザ(EPMA)を用いたマッピングの確認により、Naの存在位置とOの存在位置とが重なっていればよい。
 また、全質量とは、窒化珪素質焼結体を構成する全成分の質量(含有量)の合計のことであり、全質量は100質量%である。
 ナトリウムの酸化物およびカリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上であることにより、ナトリウムの酸化物やカリウムの酸化物は、アルカリ成分と反応しにくいものであることから、窒化珪素質焼結体のアルカリ成分に対する耐食性が高くなる。
 また、ナトリウムの酸化物およびカリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で1質量%以下であることにより、窒化珪素質焼結体の焼成工程時において、ナトリウムの酸化物およびカリウムの酸化物が気化することによる焼結後の窒化珪素質焼結体中に存在する気孔の数を少なくできる。そのため、窒化珪素質焼結体の熱伝導率の低下は少なく、窒化珪素質焼結体の熱伝導率は高く維持される。
 以上のことから、窒化珪素質焼結体において、ナトリウムの酸化物およびカリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下あることにより、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えることができる。
 そして、本実施形態の窒化珪素質焼結体は、窒化珪素の含有量が、全質量のうちSiに換算した値で80質量%以上であり、特に85質量%以上であれば熱伝導率および機械的強度がより高まる傾向があるため好適である。
 なお、Siに換算した値での窒化珪素の含有量は、窒化珪素質焼結体中の窒素の含有量を窒素分析装置により測定し、その窒素の含有量からSiに換算して算出すればよい。また、NaOに換算した値でのナトリウムの酸化物の含有量およびKOに換算した値でのカリウムの酸化物の含有量は、蛍光X線分析装置またはICP(Inductively Coupled Plasma)発光分光分析装置を用いて、Na,Kの含有量を求めた後、それぞれNaO,KOに換算することにより求めることができる。
 また、本実施形態の窒化珪素質焼結体は、粒界相にカルシウムの酸化物を含み、カルシウムの酸化物の含有量が、全質量のうちCaOに換算した値で2.2質量%以上5.2質量%以下であることが好適である。カルシウムの酸化物の含有量が上記範囲であるときには、カルシウムの酸化物は、窒化珪素の結晶の緻密化を促進して機械的強度を高くするため、窒化珪素質焼結体の機械的強度を高くでき、かつ、カルシウムの酸化物を含む粒界相の占める比率は高すぎないため、窒化珪素質焼結体の熱伝導率を高く維持することができる。
 また、本実施形態の窒化珪素質焼結体は、粒界相にマグネシウムの酸化物を含みマグネシウムの酸化物の含有量が、全質量のうちMgOに換算した値で0.1質量%以上0.6質量%以下であることが好適である。マグネシウムの酸化物の含有量が上記範囲であるときには、粒界相にマグネシウムの酸化物を含むことによって、窒化珪素質焼結体の破壊靭性を高くすることができるとともに、焼結時において窒化珪素の結晶の緻密化および粒界相における窒化珪素以外の結晶の結晶化が促進されるため、窒化珪素質焼結体の機械的強度を高くできる。また、フォノンの散乱を抑制できることから、窒化珪素質焼結体の熱伝導率を高く維持することができ、さらには、酸化還元電位が負に大きいマグネシウムの酸化物の含有量を上記範囲とすることで窒化珪素質焼結体の耐酸化性を維持することができる。
 また、本実施形態の窒化珪素質焼結体は、粒界相にアルミニウムの酸化物を含み、アルミニウムの酸化物の含有量が、全質量のうちAlに換算した値で5.3質量%以上8.6質量%以下であることが好適である。アルミニウムの酸化物の含有量が上記範囲であるときには、粒界相にアルミニウムの酸化物を含むことによって、窒化珪素質焼結体の破壊靭性を高くすることができるとともに、窒化珪素の結晶の緻密化の促進および異常な粒成長の抑制によって、窒化珪素質焼結体の機械的強度を高くすることができる。さらに、熱伝導率が窒化珪素より低いサイアロンが形成されやすい程の含有量ではないため、窒化珪素質焼結体の熱伝導率を高く維持することができる。
 なお、粒界相におけるカルシウムの酸化物、マグネシウムの酸化物、アルミニウムの酸化物の存在の確認は、上述したナトリウムの酸化物の確認のときと同様に、EDXやEPMAを用いて確認すればよい。また、含有量についても、上述したように、蛍光X線分析装置またはICP発光分光分析装置を用いた測定および算出を行なえばよい。
 また、本実施形態の窒化珪素質焼結体は、粒界相に、ゲーレナイトを含むことが好適である。粒界相にゲーレナイトを含むときには、粒界相における非晶質相の占める比率を小さくできるため、窒化珪素質焼結体の剛性を高めることができる。なお、ゲーレナイトの組成式は、例えば、CaAlSiOとして示すことができるものであるが、定比組成に限定されるものではない。
 また、本実施形態の窒化珪素質焼結体は、ゲーレナイトにマグネシウムおよびナトリウムが固溶していることが好適である。窒化珪素質焼結体中におけるマグネシウムおよびナトリウムの含有量が同じであるとき、ゲーレナイトにマグネシウムおよびナトリウムが固溶しているときには、粒界相における結晶(ゲーレナイト)の存在割合が高くなり、非晶質相の存在割合が低くなることから、粒界相の変形を抑制し、窒化珪素質焼結体の剛性を高めることができる。
 なお、マグネシウムおよびナトリウムが固溶しているゲーレナイトの組成式は、例えば、((Ca1-(a+b),Na,Mg(Al1-(c+d),Si,Mg(Si1-(e+f),Al,Mg)O)(但し、0<a+b<1,0<c+d<1,0<e+f<1)として示すことができる。
 また、窒化珪素質焼結体の粒界相におけるゲーレナイトの存在の確認については、XRDを用いて測定し同定することにより確認することができる。また、ゲーレナイトにマグネシウムおよびナトリウムが固溶しているか否かについては、エネルギー分散型X線分光器(EDS)もしくは波長分散型X線分光器(WDS)を備えた透過型電子顕微鏡(TEM)を用いてゲーレナイトに含まれる元素を確認したとき、マグネシウムおよびナトリウムが含まれていれば、ゲーレナイトにマグネシウムおよびナトリウムが固溶しているとみなす。
 また、本実施形態の窒化珪素質焼結体は、表層において、鉄および珪素を含む第1の化合物が点在し、円相当径が0.05μm以上5μm以下の第1の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下であることが好適である。なお、本実施形態における表層とは、窒化珪素質焼結体の表面から深さ1mm未満の範囲にある部分をいう。上記構成を満たしているときには、鉄および珪素を含む第1の化合物は熱力学的に安定したものであることから、窒化珪素質焼結体の耐熱衝撃性を向上させることができるとともに、第1の化合物が酸化して変色したとしても、窒化珪素質焼結体そのものの変色を抑制できる。
 ここで、鉄および珪素を含む第1の化合物とは、鉄および珪素からなる化合物(例えば、FeSi,FeSi等)、または、鉄および珪素と、酸素,アルミニウム,マグネシウム,カルシウム,ナトリウムおよびカリウムの少なくともいずれかの元素とからなる化合物である。
 また、本実施形態の窒化珪素質焼結体は、表層において、タングステンおよび珪素を含む第2の化合物が点在し、円相当径が0.05μm以上5μm以下の第2の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下であることが好適である。上記構成を満たしているときには、窒化珪素質焼結体の表面の黒色化傾向が強くなるため、表面に色ムラが生じにくく、さらに、機械的な応力がかかってもクラックの発生を抑制することができる。
 ここで、タングステンおよび珪素を含む第2の化合物とは、タングステンおよび珪素からなる化合物(例えば、WSi,WSi等)、または、タングステンおよび珪素と、酸素,アルミニウム,マグネシウム,カルシウム,ナトリウムおよびカリウムの少なくともいずれかの元素とからなる化合物である。
 また、表層における鉄および珪素を含む第1の化合物やタングステンおよび珪素を含む第2の化合物が点在しているか否かについては、鉄および珪素を含む第1の化合物であれば、EPMAを用いたマッピングの確認により、Feの存在位置とSiの存在位置とが重なっている箇所が複数存在するか否かで確認することができる。また、タングステンおよび珪素を含む第2の化合物であれば、Wの存在位置とSiの存在位置とが重なっている箇所が複数存在するか否かで確認することができる。なお、それぞれの化合物の同定は、XRDで測定して同定すればよい。
 また、円相当径が0.05μm以上5μm以下の鉄および珪素を含む第1の化合物とタングステンおよび珪素を含む第2の化合物との1mm当たりの個数は、走査型電子顕微鏡を用いて倍率を1000倍として、例えば、面積が10.8×10μm(横方向の長さが127μm、縦方向の長さが85.3μm)となるように範囲を設定し、CCDカメラでこの範囲の反射電子像を取り込み、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて、粒子解析という手法で解析すればよい。
 ここで、この手法の設定条件としては、明度を明、2値化の方法を手動、反射電子像の明暗を示す指標であるしきい値を、反射電子像内の各点(各ピクセル)が有する明るさを示すヒストグラムのピーク値の例えば、1.5倍~1.8倍に設定すればよい。また、鉄および珪素を含む第1の化合物とタングステンおよび珪素を含む第2の化合物とが両方とも存在する場合、それぞれの化合物が色調により識別ができるしきい値に適宜設定すればよい。なお、走査型電子顕微鏡の代わりに光学顕微鏡を用いても構わない。
 また、本実施形態の窒化珪素質焼結体は、粒界相に、アルミン酸マグネシウムを含むことが好適である。粒界相に、アルミン酸マグネシウムを含むときには、アルミン酸マグネシウムは窒化珪素よりもアルカリ成分に対する耐食性が高いため、アルカリ成分に対する耐食性をさらに高くすることができる。
 また、本実施形態の窒化珪素質焼結体は、アルカリ成分のみならず、酸成分に対する耐食性を高いものとするには、希土類金属の含有量が少ない方がよく、希土類金属の含有量が0.1質量%以下であることが好適である。
 図1は、本実施形態の窒化珪素質焼結体からなる構造体の一例を示す、(a)は縦断面図であり、(b)は(a)のX-X’線における断面を拡大した図である。
 図1に示す窒化珪素質焼結体からなる構造体10は、底を有する筒状体であり、例えば、筒状体内に配置された熱源の熱を筒状体外に伝えたり、若しくは筒状体外に配置された熱源の熱を筒状体内に伝えたりする用途に用いられるものである。このような構造において、窒化珪素質焼結体は、窒化珪素の結晶と、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかを含む粒界相とを有し、ナトリウムの酸化物およびカリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下であるとともに、さらに粒界相にマグネシウムの酸化物を含み、マグネシウムの特性X線強度の値が相対的に大きい第1の領域1と、マグネシウムの特性X線強度の値が相対的に小さい第2の領域2とを備え、熱源側に第1の領域1が位置している、すなわち、第1の領域1が露出していることが好適である。なお、図1においては、筒状体の内周面側を第1の領域1とし、外周面側を第2の領域2とした例を示している。
 図1に示す構造体10が上述した構成を満たす窒化珪素質焼結体からなるときには、第2の領域2よりも第1の領域1における密度が高いものとなることから、熱源からの熱を第1の領域1が効率よく受けて、第2の領域2を介して外部に伝達することができる。
 なお、マグネシウムの特性X線強度の値の比較は、例えば、EPMAを用いたマグネシウムのカラーマッピングにより、図1(b)における構造体10の断面の一方の表面(図1では内周)から厚み方向の20%の部分と、他方の表面(図1では外周)から厚み方向に20%の部分の確認を行なう。そのとき、カラーマッピングにおいては、特性X線強度の値が小さければ寒色系で示され、特性X線強度の値が大きければ暖色系で示されるものである。すなわち、第1の領域1は、第2の領域2よりも暖色系側の色調で示され、第2の領域2は、第1の領域1よりも寒色系側の色調で示される。
 また、本実施形態の窒化珪素質焼結体は、単位面積当たりの気孔の個数が、第1の領域1が第2の領域2よりも少ないことが好適である。このような構成であると、第1の領域1における密度はさらに高いものとなることから、熱源からの熱をさらに効率よく受けて伝達することができる。
 また、第1の領域1および第2の領域2の気孔の個数は、断面において、単位面積当たりの個数をそれぞれの領域で求めればよく、例えば、断面を研磨し、光学顕微鏡を用いて、倍率を200倍にしてその断面をCCDカメラで撮影し、画像解析装置((株)ニレコ製LUZEXシリーズ)により画像内の1視野測定面積を2.25×10-2mm、測定視野数を20、つまり測定総面積を4.5×10-1mmとして単位面積当たりの気孔の個数をカウントし、第1の領域1および第2の領域2における気孔の個数を比較すればよい。
 また、窒化珪素質焼結体からなる構造体の他の例としては、図1で説明した構造体10の構成に加えて、さらに粒界相にアルミニウムの酸化物を含み、第2の領域2が、アルミニウムの特性X線強度の値が相対的に大きい第3の領域と、アルミニウムの特性X線強度の値が相対的に小さい第4の領域とを備え、第3の領域が露出していることが好適である。このような構成を満たしているときには、第3の領域の機械的強度が高まるため、取り扱い時における接触等による衝撃からの破損を少なくすることができるとともに、アルカリ成分やアルミ溶湯への耐食性を高めることができる。
 ここで、第3の領域および第4の領域とは、以下の方法で確認することができる。上述したようにEPMAを用いたマグネシウムのカラーマッピングにより、第1の領域1と第2の領域2とを確認した後、第2の領域2について、EPMAを用いたアルミニウムのカラーマッピングを観察する。具体的には、図1(b)によれば、外周面から厚み方向に20%の部分における内側と外側との色調を確認し、相対的に暖色系側の色調で示されている方が第3の領域であり、相対的に寒色系側の色調で示されている方が第4の領域である。
 なお、図1においては、一方端が封止された底を有する筒状体を示したが、この形状に特定されるものではなく、両端ともに封止されていない筒状(リング等の環状も含む)のものや,筐体状等であってもよい。
 本実施形態の窒化珪素質焼結体からなる構造体10の具体的な用途としては、バーナーチューブ,ラジアントチューブ,熱電対用保護管,ラドル,ストーク,脱ガス用ロータ,シールリング,焼成用容器,球状またはころ状の転動体等が挙げられる。
 図2は、本実施形態の熱伝導部材を備える熱伝導装置の一例を示す縦断面図である。
 図2に示す熱伝導装置20は、アルミニウムなどの金属溶湯を加熱するために用いられるものであり、熱源であるヒーター5およびヒーター5を内包し保護するための窒化珪素質焼結体からなる構造体10である熱伝導部材11と、ヒーター5に電力を供給するための電源6とを備えている。なお、構造体10は、図1において説明した構成を満たすものであり、図2に示す構成において、構造体10は内周面が第1の領域となっており、すなわち、熱源が構造体10の第1の領域側に配置されている。
 熱伝導装置20は、熱伝導部材11における構造体10の少なくとも一部が溶湯金属(図示せず)中に浸漬するように配置され、電源6から供給された電力によりヒーター5が加熱され、構造体10を介して金属溶湯を加熱するものである。そして、熱伝導部材11において、第1の領域側に熱源が配置されていることから、ヒーター5から発せられる熱を金属溶湯に効率良く伝えることができる。なお、熱伝導部材11は、金属溶湯以外の加熱用途に用いることができることはいうまでもない。また、図2では、構造体10を用いた熱伝導部材11の例を示したが、粒界相にアルミニウムを含む構成の構造体を用いてもよい。
 次に、本実施形態の窒化珪素質焼結体の製造方法について説明する。
 まず、金属シリコンの粉末と、β化率が20%以下である窒化珪素の粉末とを準備して、(金属シリコンの粉末)/(窒化珪素の粉末)の質量比が1以上10以下となるように混合して第1粉末を得る。ここで、金属シリコンの粉末の粒径によっては、窒化不足および焼結不足の原因となるおそれがあるので、金属シリコンの粉末は、粒度分布曲線の累積体積の総和を100%としたときの累積体積が90%となる粒径(D90)を10μm以下、好ましくは6μm以下のものを用いる。
 また、焼結助剤として、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかの粉末,アルミン酸マグネシウムの粉末ならびに金属化合物の粉末を秤量した第2粉末を得る。
 第1粉末と第2粉末とは、第1粉末および第2粉末の合計100質量%としたとき、第2粉末が10質量%以上23質量%以下となるように秤量した粉末を出発原料とする。なお、金属化合物とは、酸化アルミニウム,二酸化珪素および炭酸カルシウム等である。また、アルミン酸マグネシウムの粉末の代わりに、水酸化マグネシウム,酸化マグネシウムおよび炭酸マグネシウム等の粉末を用いても構わない。
 ここで、窒化珪素の結晶と、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかを含む粒界相とを有し、ナトリウムの酸化物およびカリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下である窒化珪素質焼結体を得るためには、金属シリコンの粉末の窒化による質量増加および焼成工程における蒸発を考慮して、ナトリウムの酸化物の粉末および/またはカリウムの酸化物の粉末を秤量すればよい。
 なお、ここで説明する製造方法は、金属シリコンの粉末を用いて窒化させることにより窒化珪素を生じさせるというものであり、金属シリコンの窒化による質量増加が生じるものであることから、例えば、出発原料として酸化マグネシウムの粉末を加えて、窒化珪素質焼結体に酸化マグネシウムが存在するものであるとき、出発原料100質量%のうちの酸化マグネシウムの質量と、窒化珪素質焼結体の全質量における酸化マグネシウムの質量とは同じとはならない。そのため、アルミン酸マグネシウムの粉末および金属化合物の粉末の秤量においても、金属シリコンの窒化による質量増加を考慮して秤量する。
 次に、出発原料を溶媒とともに、公知の方法、例えばバレルミル,回転ミル,振動ミル,ビーズミル,サンドミル,アジテーターミルなどによって混合・粉砕してスラリーとする。このような粉砕で用いる粉砕用メディアとしては、窒化珪素質焼結体、酸化ジルコニウム質焼結体、酸化アルミニウム質焼結体等からなるものが使用可能であるが、狙いの組成からのずれ等による影響を少なくするには、作製する窒化珪素質焼結体と同じ材料組成または近似組成の窒化珪素質焼結体からなる粉砕用メディアを用いることが好適である。
 なお、粉砕は、焼結性向上の観点から、粒径(D90)が3μm以下となるまで行なうことが好適である。なお、得ようとする粒度分布とするには、粉砕用メディアの外径,量,粉砕時間等を調整すればよい。以上の粉砕を短時間で行なうには、第2粉末を構成する粉末として、累積体積が50%となる粒径(D50)が1μm以下の粉末を用いることが好適である。
 また、パラフィンワックス,ポリビニルアルコール(PVA),ポリエチレングリコール(PEG)などの有機バインダを成形方法にあわせて適宜選択し、出発原料100質量部に対して1質量部以上10質量部以下となるように秤量してスラリーに混合することで成形性を向上させることができる。さらに、増粘安定剤,分散剤,pH調整剤,消泡剤等を添加してもよい。
 ここで、表層に、鉄および珪素を含む第1の化合物が点在し、円相当径が0.05μm以上5μm以下の第1の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下である窒化珪素質焼結体を得るには、上記スラリーに、比表面積が0.5m/g以上50m/g以下である酸化第2鉄の粉末を添加して混合する。なお、酸化第2鉄の粉末の添加量は、出発原料100質量部に対して、酸化第2鉄の粉末が1質量部以上1.7質量部以下となるように秤量する。
 また、表層に、タングステンおよび珪素を含む第2の化合物が点在し、円相当径が0.05μm以上5μm以下の第2の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下である窒化珪素質焼結体を得るには、上記スラリーに、比表面積を0.5m/g以上50m/g以下である酸化タングステンの粉末を添加する。酸化タングステンの粉末の添加量は、出発原料100質量部に対して、酸化タングステンの粉末が0.6質量%以上0.9質量%以下となるように秤量する。
 次に、スラリーを篩いに通した後に、噴霧乾燥装置を用いて造粒された顆粒を得る。その後、得られた顆粒を用いてプレス成形またはCIP成形(Cold Isostatic Pressing)などによって相対密度45~60%であり、所望の形状を有する成形体を得る。なお、プレス成形やCIP成形以外の成形法を用いて成形体を作製しても構わない。
 以下、図1に示す構造体10の形状に成形した成形体で説明する。
 炭化珪素または窒化珪素の結晶粒子で表面が覆われたカーボン製のこう鉢中に得られた成形体を載置して、窒素雰囲気または真空中などで脱脂する。脱脂する温度は添加した有機バインダの種類によって異なるが900℃以下であることが好適である。特に、好ましくは450℃以上800℃以下である。なお、このように成形体から有機バインダなどの脂質の成分を取り除いたものを脱脂体という。
 次に、窒素雰囲気中において、脱脂したときの温度からさらに温度を上げて窒化する。なお、窒化は、第1の窒化工程の後、第1の窒化工程よりも温度の高い第2の窒化工程により行なうことが好適である。
 具体的には、第1の窒化工程として、窒素分圧を10~200kPaとし、1000~1200℃の温度で15~25時間保持することで、脱脂体中の金属シリコンの10~70質量%を窒化する。次に、第2の窒化工程として、第1の窒化工程の温度から1400℃の間の温度で5~15時間保持することで脱脂体中の金属シリコンの残部を窒化させ窒化体とする。ここで、第2の窒化工程の温度は、第1の窒化工程の温度よりも高く1400℃以下であり、第1の窒化工程と第2の窒化工程とは連続して実施することが好適である。
 そして、第2の窒化工程後、昇温を続け、焼成温度を1700℃以上1860℃以下とし、窒素の圧力を、例えば、100kPa以上160kPa以下として6~14時間保持し、その後時間当たり170℃以上230℃未満の速度で冷却する。なお、ゲーレナイトを粒界相に含む窒化珪素質焼結体を得るには、時間当たり190℃以上210℃未満の速度で冷却すればよい。
 また、ゲーレナイトに、マグネシウムおよびナトリウムが固溶している窒化珪素質焼結体を得るには、時間当たり170℃以上190℃未満の速度で冷却すればよい。
 また、粒界相にマグネシウムの酸化物を含む、マグネシウムの特性X線強度の値が相対的に大きい第1の領域と、マグネシウムの特性X線強度の値が相対的に小さい第2の領域とを備え、少なくとも第1の領域が露出している構造体10(窒化珪素質焼結体)を得るには、成形体をこう鉢に載置する際、内周面側からのマグネシウムの酸化物の揮散を抑制するために、成形体の内周面側に、例えば、気体供給管を配置して窒素を供給しながら、窒化工程を行ない、さらに昇温を続けて焼成すればよい。
 ここで、単位面積当たりの気孔の個数が、第1の領域の方が第2の領域よりも少ない構造体10を得るには、内周面側が第1の領域であり、外周面側が第2の領域であるときには、内周面側の熱容量が大きくなるように、金属シリコン(Si)および二酸化珪素(SiO)の各粉末を、モル比をSi:SiO=0.6~1.4:1として混合して多孔質の焼成用容器に充填し、成形体の内周面側に配置すればよい。
 また、粒界相にアルミニウムの酸化物を含み、第2の領域が、アルミニウムの特性X線強度の値が相対的に大きい第3の領域と、アルミニウムの特性X線強度の値が相対的に小さい第4の領域とを備え、第3の領域が露出している構造体を得るには、例えば、外周側に第3の領域が露出している場合であれば、雰囲気調整剤として、酸化アルミニウムおよび窒化アルミニウムの少なくともいずれかからなる粉末をこう鉢の底板上の成形体と接触しない外側の位置に敷けばよい。または、酸化アルミニウムおよび窒化アルミニウムの少なくともいずれかからなる粉末と水とを混合したスラリーを作製し、このスラリーを側壁に塗布して乾燥させたこう鉢を用いればよい。
 ここで、雰囲気調整剤の粒度は、扱いが容易であることおよび比表面積を高くすることにより、高い反応性が得られることを考慮して、例えば、JIS R 6001-1998で規定される粒度がF16~F220である粉末を用いることが好適である。
 また、上述した製造方法によって得られた窒化珪素質焼結体は、必要に応じて研磨,ブラスト処理,切断,穿設等の加工を施しても構わない。
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 まず、金属シリコンの粉末と、β化率が10%(即ち、α化率が90%)の窒化珪素の粉末とを準備して、(金属シリコンの粉末)/(窒化珪素の粉末)の質量比が5.4となるように秤量し混合して第1粉末を得た。ここで、金属シリコンの粉末は、粒径(D90)が5μmのものを用いた。
 次に、第2粉末として、表1に示すように各粉末を秤量した。なお、第2粉末の合計が表1に示す質量であり、残部が第1粉末となるように秤量し、これらを出発原料とした。次に、出発原料を、水および窒化珪素質焼結体からなる粉砕用メディアとともにバレルミルに入れて、粒径(D90)が1μm以下となるまで混合・粉砕してスラリーを得た。
 その後、ポリビニルアルコール(PVA)を、出発原料100質量部に対して5質量部秤量して、スラリーに添加して混合した。そして、このスラリーを篩いに通した後に、噴霧乾燥装置を用いて造粒し顆粒を得た。
 次に、得られた顆粒を用いてCIP成形した後に切削加工を施し、焼結後の寸法として、外径および内径がそれぞれ150mm,130mmで、長さが1000mmの底を有する筒状体となる成形体を得た。
 そして、炭化珪素質焼結体からなるこう鉢中に成形体を載置し、窒素雰囲気中500℃で5時間保持することにより脱脂した。続けて、さらに温度を上げて、実質的に窒素からなる150kPaの窒素分圧中にて、1050℃で20時間、1250℃で10時間順次保持して窒化した。そして、さらに昇温して、窒素の圧力を100kPaとして1730℃で12時間保持して焼成した。その後、時間当たり180℃の速度で冷却することにより、試料No.1~38の窒化珪素質焼結体を得た。
 そして、各試料について、EPMAを用いたマッピングの確認により、ナトリウム,カリウム,カルシウム,マグネシウムおよびアルミニウムについて、それぞれの存在位置と酸素の存在位置とが重なっていることを確認し、ICP発光分光分析装置を用いて、Na,K,Ca,Mg,Alの含有量を求め、それぞれNaO,KO,CaO,MgO,Alに換算し、換算した値を表2に示した。
 また、各試料について、XRDで測定して同定したところ、窒化珪素の結晶を有していた。さらに、試料No.1~38に含まれる珪素の含有量を窒化珪素質焼結体中の窒素の含有量を窒素分析装置により測定し、その窒素の含有量からSiに換算したところ、いずれの試料も窒化珪素の含有量は80質量%以上であった。
 また、各試料を温度が90℃の30質量%水酸化ナトリウム溶液に100時間浸漬した後の質量と、浸漬する前の質量とを比較して、単位面積当たりの質量の減少量を表2に示した。
 また、各試料の厚み方向における熱拡散率αを、レーザフラッシュによる2次元法によって熱定数測定装置(アルバック理工(株)製、TC-7000)を用いて測定した。また、各試料の比熱容量Cを、示唆走査熱量法(DSC法)によって超高感度型示差走査熱量計(セイコーインスツルメンツ(株)製、DSC-6200)を用いて測定した。さらに、各試料のかさ密度ρ(kg/m)を、JIS R 1634-1998に準拠して測定した。そして、これらの方法によって求められた値を以下の式(1)に代入して、各試料の厚み方向における熱伝導率κ(W/(m・K))をそれぞれ算出し、その値を表2に示した。
κ=α・C・ρ・・・(1)
 また、各試料の機械的強度については、JIS R 1601-2008に準拠して4点曲げ強度を測定し、その測定値を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以下の記載においては、表2に示す換算した値を含有量と記載する。表2において、CaO,MgOおよびAlの含有量が同じで、NaOの含有量がそれぞれ異なる試料No.1,2,9および16~18を比べると、NaOの含有量が、全質量のうち0.2質量%以上1質量%以下である試料No.2,9,16および17は、単位面積当たりの質量の減少量が0.29mg/cm以下であり、熱伝導率が21W/(m・K)以上であり、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えていることがわかった。
 また、CaO,MgOおよびAlの含有量が同じで、KOの含有量が異なる試料No.19,20,27および34~36を比べると、KOの含有量が、全質量のうち0.2質量%以上1質量%以下である試料No.20,27,34および35は、単位面積当たり質量減少量が0.29mg/cm以下であり、熱伝導率が21W/(m・K)以上であり、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えていることがわかった。
 また、NaOとKOとを含有し、NaOおよびKOの含有量の合計が、全質量のうち0.2質量%以上1質量%以下である試料No.37および38についても、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えていることがわかった。
 また、NaO,MgOおよびAlの含有量が同じで、CaOの含有量が異なる試料No.5,6,9,12および13を比べると、CaOの含有量が、全質量のうち2.2質量%以上5.2質量%以下である試料No.6,9および12は、単位面積当たり質量減少量が0.24mg/cm以下であり、熱伝導率が24W/(m・K)以上であり、かつ4点曲げ強度が740MPa以上であり、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えているとともに、機械的特性が高く良好であることがわかった。
 さらに、KO,MgOおよびAlの含有量が同じで、CaOの含有量が異なる試料No.23,24,27,30および31を比べると、CaOの含有量が、全質量のうち2.2質量%以上5.2質量%以下含有する試料No.24,27および30は、単位面積当たり質量減少量が0.24mg/cm以下であり、熱伝導率が23W/(m・K)以上であり、かつ4点曲げ強度が740MPa以上であり、アルカリ成分に対する高い耐食性と高い熱伝導率とを兼ね備えているとともに、機械的特性が高く良好であることがわかった。
 また、NaO,CaOおよびAlの含有量が同じで、MgOの含有量が異なる試料No.3,4,9,14および15を比べると、試料No.4,9および14の特性が良好であることがわかった。さらに、KO,CaOおよびAlの含有量が同じで、MgOの含有量が異なる試料No.21,22,27,32および33を比べると、試料No.22,27および32の特性が良好であることがわかった。
 また、NaO,CaOおよびMgOの含有量が同じで、Alの含有量が異なる試料No.7~11を比べると、試料No.8~10の特性が良好であることがわかった。さらに、KO,CaOおよびMgOの含有量が同じで、Alの含有量が異なる試料No25~29を比べると、試料No.26~28の特性が良好であることがわかった。
 まず、実施例1と同様にして第1粉末を用意した。次に、第2粉末として、酸化ナトリウムの粉末,炭酸カルシウムの粉末,アルミン酸マグネシウムの粉末および酸化アルミニウムの粉末を用意し、第1粉末が78.8質量%,酸化ナトリウムの粉末が3.6質量%,炭酸カルシウムの粉末が11.3質量%,アルミン酸マグネシウムの粉末が2.6質量%,酸化アルミニウムの粉末が3.7質量%秤量し、出発原料とした。
 そして、比表面積が表3に示す値の酸化第2鉄の粉末を、出発原料100質量部に対して1.4質量部となるように秤量してスラリーに添加した。なお、成形体を作製するまでの他の方法は実施例1と同様にした。
 次に、実施例1と同様の方法により窒化工程まで行ない、窒素の圧力を表3に示す値として、1775℃で12時間保持して焼成した。その後、時間当たり225℃の速度で冷却することにより試料No.39~50の窒化珪素質焼結体を得た。
 そして、各試料について、XRDで測定して同定したところ、窒化珪素の結晶が存在し、珪化鉄(FeSi)の結晶が存在することを確認した。また、EPMAを用いたマッピングの確認により、Feの存在位置とSiの存在位置とが重なっている箇所が複数存在することを確認した。
 また、走査型電子顕微鏡を用いて倍率を1000倍として、面積が10.8×10μm(横方向の長さが127μm、縦方向の長さが85.3μm)となるように範囲を設定した。そして、CCDカメラでこの範囲の反射電子像を取り込み、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて、表層における円相当径が0.05μm以上5μm以下の珪化鉄の個数を粒子解析することにより求めた。ここで、この手法の設定条件としては、明度を明、2値化の方法を手動、反射電子像の明暗を示す指標であるしきい値を、反射電子像内の各点(各ピクセル)が有する明るさを示すヒストグラムのピーク値の1.6倍に設定した。表層における円相当径が0.05μm以上5μm以下の第1の化合物の1mm当たりの個数を表3に示した。
 次に、試料の熱衝撃試験を行なった。具体的には、各試料の外周側から厚み3mm、軸線方向に40mm、軸線に垂直な方向に4mmとなる試験片を切り出し、試験片を800℃に保持した後、20℃の水中に投下し、投下後の試験片の表層におけるクラックの有無を目視で観察した。また、同じ大きさの試験片を切り出し、保持する温度を900℃として同様の試験を行なった。その結果を表3に示した。
 次に、試料の酸化試験を行なった。具体的には、大気雰囲気中、温度を900℃として200時間保持してから、空冷した後、表層を目視で観察した。表3に表層が赤色に変色している試料には赤色と記入し、表層において変色が確認されていない試料は棒線で示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料No.40~49は、表層において、鉄および珪素を含む第1の化合物が点在し、円相当径が0.05μm以上5μm以下の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下であることにより、800℃における耐熱衝撃試験においてクラックが生じておらず、耐熱衝撃性に優れていることがわかった。また、酸化試験の結果から、試料No.40~49は、変色は確認されておらず、変色を抑制できることがわかった。
 さらに、円相当径が0.05μm以上5μm以下の第1の化合物の個数が、1mm当たり5.1×10個以上2.0×10個以下であるとき、900℃における耐熱衝撃試験においてクラックが生じておらず、さらに耐熱衝撃性に優れていることがわかった。
 スラリーに添加する粉末を酸化第2鉄の粉末に変えて酸化タングステンの粉末としたこと以外は、実施例2と同様の方法により窒化工程まで行ない、窒素の圧力を表4に示す値として、1775℃で12時間保持して焼成した。その後、時間当たり225℃の速度で冷却することにより試料No.51~62の窒化珪素質焼結体を得た。
  そして、各試料について、XRDで測定して同定したところ、窒化珪素の結晶が存在し、珪化タングステン(WSi)の結晶が存在することを確認した。また、EPMAを用いたマッピングの確認により、Wの存在位置とSiの存在位置とが重なっている箇所が複数存在することを確認した。
 また、表層における円相当径が0.05μm以上5μm以下の第2の化合物の1mm当たりの個数を実施例2と同様の方法で求めた。なお、ヒストグラムのピーク値のみ1.7倍に設定した。結果を表4に示す。
 また、各試料からJIS R 1601-2008に準ずる試験片を10本切り出し、室温における4点曲げ強度を測定した。また、色彩色差計(コニカミノルタホールディングス社(製)CM-3700A)を用い、光源をCIE標準光源D65に、視野角を10°に、測定範囲を3mm×5mmに設定して、JIS Z 8722-2000に準拠して、各試料の表面の色調を測定し、明度指数L*,クロマティクネス指数a,bの測定値を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試料No.52~61は、表層において、タングステンおよび珪素を含む第2の化合物が点在し、円相当径が0.05μm以上5μm以下の第2の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下であることにより、明度指数L*の値が小さいため、窒化珪素質焼結体の表面が明度の低い色を呈しており、色ムラが生じにくいとともに、機械的強度が高いため、機械的な応力がかかってもクラックの発生を抑制できることがわかった。
 成形体をこう鉢に載置する際の条件を異ならせた試料を作製し、熱の伝達率の比較を行なった。まず、実施例1に記載した方法により、試料No.6と同じ試料No.63を作製した。これに対し、炭化珪素質焼結体からなるこう鉢に成形体を載置する際、内周面側からのマグネシウムの酸化物の揮散を抑制するために、成形体の内周面側に、気体供給管を配置し、窒化工程および焼成工程に関し、気体供給管から窒素を供給しながら試料No.64の窒化珪素質焼結体を作製した。なお、試料No.64は、成形体をこう鉢に差位置する際の条件を異ならせたこと以外の組成や作製方法は、試料No.63と同じである。
 そして、試料No.63,64の断面につき、EPMAを用いたマグネシウムのカラーマッピングにより、特性X線強度の値の大きさを色調により確認した。その結果、試料No.63については、マグネシウムの特性X線強度の値の大きさに違いが見られず、試料No.64については、内周面側に第1の領域、外周面側に第2の領域を有していた。
 そして、各試料の内周面側にヒーターをそれぞれ配置した後、温度が5℃で10リットルの水の入った容器に浸漬して、ヒーターを加熱して水が100℃になるまでの時間を測定した。その結果、試料No.64の方が、水が100℃になるまでの時間が早かった。
 このことから、熱源側に第1の領域が位置している、すなわち、第1の領域が露出していることにより、熱源の熱を効率よく伝達することができることがわかった。
 成形体をこう鉢に載置する際の条件を異ならせた試料を作製し、4点曲げ強度の比較を行なった。まず、実施例4に記載した方法により、試料No.64と同じ試料No.65を作製した。これに対し、炭化珪素質焼結体からなるこう鉢に成形体を載置した後、雰囲気調整剤としてJIS R 6001-1998で規定される粒度がF16である酸化アルミニウムの粉末をこう鉢の底板上の成形体と接触しない外側の位置に敷いて、試料No.66の窒化珪素質焼結体を作製した。なお、試料No.66は、雰囲気調整剤を用いたこと以外の組成や作製方法は、試料No.65と同じである。
 そして、試料No.65,66の断面につき、EPMAを用いたアルミニウムのカラーマッピングにより、特性X線強度の値の大きさを色調により確認した。その結果、試料No.65については、アルミニウムの特性X線強度の値の大きさに違いが見られず、第3の領域および第4の領域を有しておらず、試料No.66については、第2の領域における外周面側に第3の領域を有し、第2の領域における内周面側に第4の領域を有していた。
 そして、試料No.66の第3の領域から、JIS R 1601-2008に準ずる試験片を切り出した。また、試料No.65において、試料No.66の第3の領域と同様の位置にある部位から、試験片を切り出した。そして、実施例1と同様にして、試料No.65,66の試料片の4点曲げ強度を測定した。
 その結果、試料No.66の方が、4点曲げ強度の値が高かった。このことから、第3の領域が露出していることにより、機械的強度が高いため、取り扱い時における接触等による衝撃からの破損を少なくできることがわかった。
1:第1の領域 
2:第2の領域
10:構造体
11:熱伝導部材
20:熱伝導装置

Claims (10)

  1.  窒化珪素の結晶と、ナトリウムの酸化物およびカリウムの酸化物の少なくともいずれかを含む粒界相とを有し、前記ナトリウムの酸化物および前記カリウムの酸化物の含有量が、全質量のうちそれぞれNaO,KOに換算した値の合計で0.2質量%以上1質量%以下であることを特徴とする窒化珪素質焼結体。
  2.  前記粒界相に、カルシウムの酸化物を含み、該カルシウムの酸化物の含有量が、全質量のうちCaOに換算した値で2.2質量%以上5.2質量%以下であることを特徴とする請求項1に記載の窒化珪素質焼結体。
  3.  前記粒界相に、マグネシウムの酸化物を含み、該マグネシウムの酸化物の含有量が、全質量のうちMgOに換算した値で0.1質量%以上0.6質量%以下であることを特徴とする請求項1または請求項2に記載の窒化珪素質焼結体。
  4.  前記粒界相に、アルミニウムの酸化物を含み、該アルミニウムの酸化物の含有量が、全質量のうちAlに換算した値で5.3質量%以上8.6質量%以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の窒化珪素質焼結体。
  5.  前記粒界相に、ゲーレナイトを含むことを特徴とする請求項4に記載の窒化珪素質焼結体。
  6.  表層において、鉄および珪素を含む第1の化合物が点在し、円相当径が0.05μm以上5μm以下の前記第1の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下であることを特徴とする請求項1乃至請求項5のいずれかに記載の窒化珪素質焼結体。
  7.  表層において、タングステンおよび珪素を含む第2の化合物が点在し、円相当径が0.05μm以上5μm以下の前記第2の化合物の個数が、1mm当たり2.0×10個以上2.0×10個以下であることを特徴とする請求項1乃至請求項6のいずれかに記載の窒化珪素質焼結体。
  8.  前記粒界相に、マグネシウムの酸化物を含み、該マグネシウムの特性X線強度の値が相対的に大きい第1の領域と、前記マグネシウムの特性X線強度の値が相対的に小さい第2の領域とを備え、少なくとも前記第1の領域が露出していることを特徴とする請求項1に記載の窒化珪素質焼結体。
  9.  前記粒界相に、アルミニウムの酸化物を含み、前記第2の領域が、前記アルミニウムの特性X線強度の値が相対的に多い第3の領域と、前記アルミニウムの特性X線強度の値が相対的に少ない第4の領域とを備え、前記第3の領域が露出していることを特徴とする請求項8に記載の窒化珪素質焼結体。
  10.  請求項8または請求項9に記載の窒化珪素質焼結体と、熱源とを備え、前記第1の領域側に熱源を配置してなることを特徴とする熱伝導部材。
PCT/JP2013/071840 2012-08-10 2013-08-12 窒化珪素質焼結体および熱伝導部材 WO2014025062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014529592A JP5944996B2 (ja) 2012-08-10 2013-08-12 窒化珪素質焼結体および熱伝導部材
EP13827569.8A EP2883854A4 (en) 2012-08-10 2013-08-12 SINTERED SILICON NITRIDE PRESSING AND HEATING ELEMENT
CN201380038715.XA CN104470872A (zh) 2012-08-10 2013-08-12 氮化硅质烧结体及导热构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-178462 2012-08-10
JP2012178462 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014025062A1 true WO2014025062A1 (ja) 2014-02-13

Family

ID=50068275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071840 WO2014025062A1 (ja) 2012-08-10 2013-08-12 窒化珪素質焼結体および熱伝導部材

Country Status (4)

Country Link
EP (1) EP2883854A4 (ja)
JP (1) JP5944996B2 (ja)
CN (1) CN104470872A (ja)
WO (1) WO2014025062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001194A (ja) * 2016-06-29 2018-01-11 京セラ株式会社 溶接用エンドタブ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027852B1 (ja) * 1967-07-22 1975-09-10
JPS59146983A (ja) * 1983-02-10 1984-08-23 東芝タンガロイ株式会社 高靭性窒化硅素焼結体
JPH01157466A (ja) * 1987-09-02 1989-06-20 Ngk Spark Plug Co Ltd 切削工具用窒化ケイ素焼結体
JPH02271966A (ja) * 1989-04-12 1990-11-06 Mitsubishi Materials Corp 耐食性および耐溶損性に優れたSi↓3 N↓4基セラミックス
JPH02271982A (ja) * 1989-04-13 1990-11-06 Hitachi Metals Ltd 耐食性セラミックス材料及びその製造方法
JPH0477365A (ja) * 1990-07-20 1992-03-11 Ngk Insulators Ltd 半導体製造装置用セラミックス材およびその製造方法
JPH0536464A (ja) 1991-07-30 1993-02-12 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JPH07187793A (ja) * 1993-12-27 1995-07-25 Toshiba Corp 高熱伝導性窒化けい素構造部材および半導体パッケージ
JP2002316875A (ja) * 2001-04-17 2002-10-31 Ngk Spark Plug Co Ltd 窒化珪素焼結体
JP2012092006A (ja) * 2010-09-29 2012-05-17 Kyocera Corp 窒化珪素質焼結体およびこれを用いた回路基板ならびに電子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098450A (ja) * 1983-11-02 1985-06-01 Ricoh Co Ltd 両面複写機
JPS63159258A (ja) * 1986-12-23 1988-07-02 工業技術院長 耐酸化性窒化ケイ素材料の製造方法
DE3875879T2 (de) * 1987-09-02 1993-03-18 Ngk Spark Plug Co Gesinterte siliciumnitridkoerper.
JP2001354481A (ja) * 2000-06-08 2001-12-25 Toshiba Corp 窒化珪素焼結体およびそれを用いた耐摩耗性部材
JP2003095747A (ja) * 2001-09-20 2003-04-03 Ngk Spark Plug Co Ltd 窒化珪素焼結体及びそれを用いてなる回路基板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027852B1 (ja) * 1967-07-22 1975-09-10
JPS59146983A (ja) * 1983-02-10 1984-08-23 東芝タンガロイ株式会社 高靭性窒化硅素焼結体
JPH01157466A (ja) * 1987-09-02 1989-06-20 Ngk Spark Plug Co Ltd 切削工具用窒化ケイ素焼結体
JPH02271966A (ja) * 1989-04-12 1990-11-06 Mitsubishi Materials Corp 耐食性および耐溶損性に優れたSi↓3 N↓4基セラミックス
JPH02271982A (ja) * 1989-04-13 1990-11-06 Hitachi Metals Ltd 耐食性セラミックス材料及びその製造方法
JPH0477365A (ja) * 1990-07-20 1992-03-11 Ngk Insulators Ltd 半導体製造装置用セラミックス材およびその製造方法
JPH0536464A (ja) 1991-07-30 1993-02-12 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JPH07187793A (ja) * 1993-12-27 1995-07-25 Toshiba Corp 高熱伝導性窒化けい素構造部材および半導体パッケージ
JP2002316875A (ja) * 2001-04-17 2002-10-31 Ngk Spark Plug Co Ltd 窒化珪素焼結体
JP2012092006A (ja) * 2010-09-29 2012-05-17 Kyocera Corp 窒化珪素質焼結体およびこれを用いた回路基板ならびに電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2883854A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001194A (ja) * 2016-06-29 2018-01-11 京セラ株式会社 溶接用エンドタブ

Also Published As

Publication number Publication date
EP2883854A4 (en) 2016-01-06
JPWO2014025062A1 (ja) 2016-07-25
JP5944996B2 (ja) 2016-07-05
EP2883854A1 (en) 2015-06-17
CN104470872A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
KR102376825B1 (ko) 알루미나 소결체 및 광학 소자용 하지 기판
CN101218188B (zh) 氧化钇烧结体和耐腐蚀性部件、其制造方法
JP5787722B2 (ja) 溶湯金属用部材およびヒーターチューブ
JP5894288B2 (ja) 窒化珪素質焼結体および加熱装置ならびに吸着装置
KR101540751B1 (ko) 질화규소기 복합 세라믹스 및 그 제조방법
JP5944996B2 (ja) 窒化珪素質焼結体および熱伝導部材
JP6645848B2 (ja) 溶接用エンドタブ
JP6023337B2 (ja) 窒化珪素質焼結体およびこれを用いた耐食性部材、摺動部材ならびに製紙機械用部材
JP2014129223A (ja) セラミック焼結体およびこれを備える耐磨耗性部材
US9257210B2 (en) Lanthanum boride sintered body and method for producing the same
JP2022103596A (ja) 耐熱衝撃性部材
JP5385774B2 (ja) 耐熱衝撃性窒化珪素焼結体及びその製造方法
JP5825962B2 (ja) 窒化珪素質焼結体およびこれを用いた溶湯金属用部材ならびに耐磨耗性部材
CN106132908B (zh) 氮化硅衬底的制造方法
JP2008174432A (ja) 透光性セラミックスとその製造方法、及び光学部材
JP2014024740A (ja) セラミック焼結体および熱処理用部材
JP2006104060A (ja) 黒色AlN系セラミックス
JPWO2020158882A1 (ja) セラミックス焼結体及びその製造方法、並びにノズル部材
JP2015086116A (ja) 窒化珪素質焼結体および耐磨耗性部材
JP2011132069A (ja) 耐熱衝撃性窒化珪素焼結体及びその製造方法
JP5937506B2 (ja) セラミック部材および熱伝導部材
WO2020203697A1 (ja) 窒化ケイ素粉末及びその製造方法、並びに窒化ケイ素焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529592

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013827569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013827569

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE