WO2014024848A1 - 密閉型電池の製造方法 - Google Patents

密閉型電池の製造方法 Download PDF

Info

Publication number
WO2014024848A1
WO2014024848A1 PCT/JP2013/071165 JP2013071165W WO2014024848A1 WO 2014024848 A1 WO2014024848 A1 WO 2014024848A1 JP 2013071165 W JP2013071165 W JP 2013071165W WO 2014024848 A1 WO2014024848 A1 WO 2014024848A1
Authority
WO
WIPO (PCT)
Prior art keywords
helium
exterior
battery
leak
concentration
Prior art date
Application number
PCT/JP2013/071165
Other languages
English (en)
French (fr)
Inventor
亮 津久井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201380041958.9A priority Critical patent/CN104604008B/zh
Priority to US14/418,537 priority patent/US9680186B2/en
Priority to KR1020157004993A priority patent/KR101672146B1/ko
Publication of WO2014024848A1 publication Critical patent/WO2014024848A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4228Leak testing of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a sealed battery in which a leak inspection process for detecting leakage of a detection gas introduced into a battery container is performed.
  • Patent Document 1 discloses the following technique. First, the battery can (battery container) is sealed except for the electrolyte injection hole, and the air in the battery can is discharged from the electrolyte injection hole by the exhaust means (the inside of the battery can is decompressed). Next, the battery can and the electrolytic solution pot are connected, and the electrolytic solution is injected into the battery can from the electrolytic solution injection port due to a pressure difference between the battery can and the electrolytic solution pot. At this time, helium is introduced into the battery can from the electrolyte injection port by pressurizing the inside of the electrolyte pot with helium. Finally, the electrolyte injection port is sealed, and the leak inspection process is performed by confirming the amount of helium contained in the leak gas leaked from the battery can using a helium leak detector.
  • the output value of the helium leak detector varies depending on the helium concentration of the leak gas. Specifically, the output value of the helium leak detector when a certain amount of leak gas leaks from the battery can becomes a large value when the helium concentration of the leak gas is high (see graph G11 shown in FIG. 7), and the helium leak gas When the density is low, the value is small (see graph G12 shown in FIG. 7).
  • the inspection threshold T1 In the leak inspection process, it is necessary to set the inspection threshold T1 based on the leak gas leakage amount when the helium concentration of the leak gas is low. Therefore, when the helium concentration of the leak gas is high, the output value of the helium leak detector is inspected even though the leak gas leak amount is smaller than the leak gas leak amount L corresponding to the inspection threshold T1 when the helium concentration is low.
  • the threshold value T1 may be exceeded (see range R1 shown in FIG. 7).
  • the helium concentration of the leak gas varies as in the technique disclosed in Patent Document 1, it is necessary to reduce the inspection threshold T1 by the amount of the variation, so that a non-defective product is a defective product at a relatively high rate. Will be overdetermined.
  • the present invention has been made in view of the above situation, and provides a manufacturing method of a sealed battery that can improve an overjudgment rate in a leak inspection process.
  • a method for manufacturing a sealed battery according to the present invention is a method for manufacturing a sealed battery in which a leak inspection process for detecting leakage of a detection gas introduced into a battery container is performed, and an electrolytic solution is poured into the battery container.
  • a step of depressurizing a step of depressurizing the inside of the battery container into which the electrolytic solution has been injected, to a predetermined pressure, and an inside of the battery container depressurized to the predetermined pressure, corresponding to the predetermined pressure Introducing the detection gas in an amount to be detected.
  • a pressure higher than a saturated water vapor pressure of the electrolytic solution is set as the predetermined pressure.
  • the present invention has an effect that the overdetermining rate in the leak inspection process can be improved.
  • the figure which shows the manufacturing process of a battery (A) The figure which shows a mode that the inside of an exterior is pressure-reduced. (B) The figure which shows a mode that detection gas is introduced. The figure which shows the range used as over determination. The figure which shows the result of having measured the helium density
  • the battery 10 is a sealed lithium ion secondary battery.
  • the target to which the present invention is applied is not limited to the lithium ion secondary battery, but can be applied to other sealed batteries such as a nickel hydrogen secondary battery.
  • a leak inspection process for detecting leakage of the detection gas introduced into the battery container is performed.
  • the battery 10 includes a power generation element 20, an exterior 30, a cap 40, and external terminals 50 and 50.
  • the power generation element 20 is obtained by infiltrating an electrolytic solution into an electrode body B formed by laminating and winding a positive electrode, a negative electrode, and a separator.
  • a chemical reaction occurs in the power generation element 20 (strictly speaking, ions move between the positive electrode and the negative electrode via the electrolytic solution) to generate a current.
  • the exterior 30 that is a battery container is a substantially rectangular parallelepiped can having a storage portion 31 and a lid portion 32.
  • the storage unit 31 is a bottomed rectangular tube-shaped member that is open on one side, and stores the power generation element 20 therein.
  • the lid portion 32 is a flat plate-like member having a shape corresponding to the opening surface of the storage portion 31, and is joined to the storage portion 31 in a state where the opening surface of the storage portion 31 is closed.
  • a liquid injection hole 33 for injecting an electrolytic solution is opened between locations where the external terminals 50 and 50 are inserted.
  • the liquid injection hole 33 is a hole having a substantially circular shape in a plan view in which the inner diameter dimension is different between the outside and the inside of the lid portion 32.
  • the liquid injection hole 33 is formed such that the inner diameter of the upper part (upper part in FIG. 1) is larger than the inner diameter of the lower part (lower part in FIG. 1).
  • the battery is configured as a prismatic battery whose outer casing is formed in a bottomed rectangular tube shape.
  • the present invention is not limited to this, and for example, the outer casing is formed in a bottomed cylindrical shape. It can also be configured as a cylindrical battery.
  • the cap 40 is for sealing the liquid injection hole 33.
  • the cap 40 is formed in substantially the same shape as the upper part of the liquid injection hole 33.
  • the cap 40 is fitted into the upper part of the liquid injection hole 33 so as to block the lower part of the liquid injection hole 33, and is joined to the lid part 32 by laser welding of the outer peripheral edge part.
  • the external terminals 50 and 50 are arranged in a state in which some of them protrude from the outer surface of the lid portion 32 upward (outward) of the battery 10.
  • the external terminals 50 and 50 are electrically connected to the positive electrode and the negative electrode of the power generation element 20 through current collecting terminals 51 and 51, respectively.
  • the external terminals 50 and 50 are fixed in an insulated state to the lid portion 32 via the insulating members 52 and 53 by fitting the fixing member 34 on the outer peripheral surface portion, respectively.
  • the external terminals 50 and 50 and the current collecting terminals 51 and 51 function as an energization path for taking out the electric power stored in the power generation element 20 to the outside or taking in electric power from the outside into the power generation element 20.
  • the current collecting terminals 51 and 51 are connected to the positive electrode and the negative electrode of the power generation element 20, respectively.
  • As the material of the current collecting terminals 51 and 51 for example, aluminum can be used on the positive electrode side and copper on the negative electrode side.
  • the external terminals 50 and 50 are thread-rolled at portions projecting outward from the battery 10 to form bolt portions.
  • members such as a bus bar and a connection terminal of the external device are fastened and fixed to the external terminals 50 and 50 using the bolt portion.
  • a fastening torque is applied to the external terminals 50 and 50, and an external force is applied in the axial direction by screw fastening.
  • a mixture (a positive electrode mixture and a negative electrode mixture) on the surface of a current collector (a positive electrode current collector and a negative electrode current collector) using a coating machine such as a die coder, the Dry the mixture. Then, a mixture layer (a positive electrode mixture layer and a negative electrode mixture layer) is formed on the surface of the current collector by pressing the mixture on the surface of the current collector. In this way, a positive electrode and a negative electrode are produced.
  • the positive electrode and the negative electrode manufactured through such a process and a separator are laminated, and then the electrode body B is manufactured by winding them. Then, the external terminals 50 and 50 and the current collecting terminals 51 and 51 integrated with the lid portion 32 of the exterior 30 are connected to the electrode body B, and the electrode body B is accommodated in the storage portion 31 of the exterior 30. Then, the storage part 31 and the cover part 32 of the exterior 30 are joined by welding and sealed.
  • the electrolytic solution E is injected from the injection hole 33 (see arrow E shown in FIG. 2).
  • the exterior 30 is housed in the chamber 111, and a predetermined liquid injection unit is set in the exterior 30 to evacuate the chamber 111. Thereafter, air is introduced into the chamber 111 to return the chamber 111 to atmospheric pressure.
  • the electrolytic solution E is injected into the exterior 30 using the differential pressure at this time.
  • helium H is introduced into the exterior 30 (see arrow H shown in FIG. 2).
  • helium H is introduced using an introduction device 120 as shown in FIG.
  • FIG. 3 for convenience of explanation, the height of the liquid surface of the electrolytic solution E is shown at a position higher than the electrolytic solution E shown in FIG. 2.
  • the introduction device 120 includes a sealing nozzle 121, a seal member 122, and a valve 123.
  • the sealing nozzle 121 is disposed above the liquid injection hole 33, and an injection port 121a is formed at the lower end.
  • a valve 123 is connected to the middle part of the sealing nozzle 121 in the vertical direction.
  • the sealing nozzle 121 is connected to a predetermined decompression pump via a valve 123, a pipe 124, and the like. That is, in the introduction device 120, a pressure reducing path P1 is formed as a path from the sealing nozzle 121 toward the pressure reducing pump.
  • the sealing nozzle 121 is connected to a predetermined helium supply source via a valve 123 or the like. That is, in the introduction device 120, a supply path P2 is formed as a path from the helium supply source to the sealing nozzle 121.
  • the seal member 122 has a shape in which a through-hole penetrating in the vertical direction is formed on the bottom surface (upper surface) of the substantially bottomed cylindrical member. It is formed. That is, the seal member 122 has an inner diameter at the lower part (lower part in FIGS. 3A and 3B) larger than an inner diameter at the upper part (upper part in FIGS. 3A and 3B). It is formed. In the seal member 122, the sealing nozzle 121 is inserted through the upper part.
  • the seal member 122 seals the liquid injection hole 33 and the sealing nozzle 121.
  • the introduction device 120 is configured to be able to inject helium H into the exterior 30 with the liquid injection hole 33 sealed, and to be able to discharge the air 30 ⁇ / b> A in the exterior 30.
  • Such an introduction device 120 is provided with a pressure gauge capable of measuring the pressure in the exterior 30.
  • the valve 123 closes one of the decompression path P1 and the supply path P2 and opens the other. That is, the introduction device 120 switches the path communicating with the sealing nozzle 121 to either the pressure reducing path P1 or the supply path P2 by controlling the valve 123.
  • the decompression path P1 is opened (the decompression path P1 and the sealing nozzle 121 are communicated), and the decompression pump is operated.
  • the air 30A in the exterior 30 is discharged.
  • the pressure in the exterior 30 is confirmed with the pressure gauge, and the interior of the exterior 30 is reduced to a predetermined pressure.
  • the supply path P2 is opened (the supply path P2 communicates with the sealing nozzle 121), helium H is supplied from the helium supply source to the sealing nozzle 121, and the sealing nozzle 121 is supplied. Helium H is injected more. At this time, the pressure in the exterior 30 is confirmed with the pressure gauge, and the interior of the exterior 30 is returned to atmospheric pressure.
  • helium H is introduced into the exterior 30 by the amount of decompression of the exterior 30, that is, by the amount of discharge of the air 30A in the exterior 30.
  • a pressure higher than the saturated vapor pressure of the electrolytic solution E is set as the predetermined pressure (pressure in the exterior 30 at the time of decompression).
  • the predetermined pressure is set to a pressure higher than the saturated vapor pressure of the electrolytic solution E and close to the saturated vapor pressure of the electrolytic solution E.
  • the liquid injection hole 33 is sealed with a cap 40 (see the black triangle shown in FIG. 2).
  • the cap 40 is fitted into the upper part of the liquid injection hole 33 so as to block the lower part of the liquid injection hole 33.
  • laser injection is performed along the outer edge portion of the cap 40 by a laser welding machine to seal the liquid injection hole 33.
  • the leakage from the exterior 30 (that is, the sealing degree of the exterior 30) is inspected.
  • the exterior 30 is housed in a predetermined chamber 131 and the inside of the chamber 131 is evacuated.
  • a commercially available helium leak tester that is, as shown in FIG. 4, in the manufacturing process S1, the amount of helium H contained in the leak gas leaked from the exterior 30 into the chamber 131 is detected by the helium leak tester, and the output value of the helium leak tester Determines that there is a leak in the exterior 30 when the inspection threshold T is exceeded.
  • a leak inspection process for detecting leakage of helium H as a detection gas introduced into the exterior 30 is performed.
  • the electrolytic solution E injected into the exterior 30 penetrates into the electrode body B. Along with this, the liquid level of the electrolytic solution E in the exterior 30 gradually decreases, and the gas mixed in the electrode body B is discharged to the outside of the electrode body B.
  • the degree of penetration of the electrolytic solution E with respect to the electrode body B that is, the amount of the gas discharged, varies due to variations in the time from the injection of the electrolytic solution E to the leak inspection process. (Refer electrolyte solution E shown to Fig.3 (a)).
  • the inside of the outer package 30 is once depressurized. More specifically, in the manufacturing process S1, the electrolyte solution E injected into the exterior 30 has a certain amount (for example, even if the gas mixed in the electrode body B after the introduction of helium H is further discharged, the leak inspection process is performed. To the extent that there is no influence) After penetrating the electrode body B, the inside of the exterior 30 is once depressurized.
  • air 30A in the exterior 30 is discharged by an amount corresponding to the height of the liquid level of the electrolytic solution E. That is, in the manufacturing process S1, when the liquid level of the electrolytic solution E is low, a large amount of air 30A is discharged from the exterior 30 and when the liquid level of the electrolytic solution E is high, a large amount of air 30A is discharged. do not do.
  • the exterior 30 is returned to atmospheric pressure using helium H, so that the exterior is made in an amount corresponding to the level of the electrolyte E.
  • Helium H is introduced into 30. That is, in the manufacturing process S1, a large amount of helium H is introduced when the liquid level of the electrolytic solution E is low, and a large amount of helium H is not introduced when the liquid level of the electrolytic solution E is high.
  • the helium concentration in the exterior 30 is changed to the pressure change in the exterior 30 when helium H is introduced regardless of the permeability of the electrolyte E to the electrode body B when helium H is introduced. Corresponding concentrations can be achieved.
  • the helium concentration in the exterior 30 is a concentration corresponding to the pressure during decompression.
  • the concentration of helium in the exterior 30 corresponds to the pressure change in the exterior 30 when helium H is introduced. In other words, it can be guaranteed that the concentration is constant.
  • the inside of the exterior 30 can be made to have a constant helium concentration regardless of the degree of penetration of the electrolyte E into the electrode body B when helium H is introduced, the variation in the helium concentration of the leak gas can be reduced.
  • the output value of the helium leak tester when the leak gas leak amount from the exterior 30 is a predetermined amount and the helium concentration of the leak gas is high (see FIG. 4).
  • the difference between the graph G1) and the output value of the helium leak tester when the leak gas has a low helium concentration (see graph G2 shown in FIG. 4) can be reduced. That is, according to the manufacturing process S1, the variation in the output value of the helium leak tester according to the helium concentration of the leak gas can be reduced.
  • the graph G11 and the graph G12 shown with a dashed-dotted line in FIG. 4 are respectively corresponded to the graph G11 and the graph G12 in FIG.
  • the inspection threshold value T can be increased by an amount corresponding to the reduced variation in the output value of the helium leak tester. Accordingly, when the helium concentration of the leak gas is high, the output value of the helium leak tester is not less than the leak gas leak amount L corresponding to the inspection threshold T when the helium concentration of the leak gas is low. It is possible to prevent the inspection threshold T from being exceeded and over-determining that a non-defective product is a defective product (see range R shown in FIG. 4).
  • the overdetermining rate in the leak inspection process can be improved.
  • the robustness of the leak inspection process can be improved.
  • a part of the electrolytic solution E injected into the exterior 30 is volatilized before the leak inspection process is performed. That is, the volatile component (for example, hydrocarbon etc.) of electrolyte solution E exists in exterior 30 after pouring electrolyte solution E.
  • the specific gravity of the volatile component of the electrolyte E is heavier than that of helium H.
  • helium H is injected after discharging the volatile component of the electrolytic solution E to some extent, so that a large amount of helium H can be introduced into the exterior 30 and helium H can be precipitated in the exterior 30. .
  • helium H can be introduced in a high concentration state, and the amount of helium H leaked before the liquid injection hole 33 is sealed can be reduced.
  • the leak inspection process can be performed in a state where the helium concentration in the exterior 30 is high, that is, in a state where the helium concentration of the leak gas is high, the leak inspection process can be performed with high accuracy.
  • the interior of the exterior 30 is depressurized to a predetermined pressure, and an amount of helium H corresponding to the predetermined pressure is introduced into the exterior 30.
  • the introduction process is performed.
  • helium H was introduce
  • helium H may be introduced into the exterior 30 so that the interior of the exterior 30 is pressurized about several kPa, or the interior of the exterior 30 is decompressed about several kPa.
  • the amount corresponding to the predetermined pressure is not necessarily the same amount as the amount of the air 30 ⁇ / b> A in the exterior 30 discharged when the pressure is reduced to the predetermined pressure. That is, the amount corresponding to the predetermined pressure may be larger than the amount of discharged air 30A or smaller than the amount of discharged air 30A.
  • helium H in an amount larger than the amount of exhausted air 30A is introduced into the exterior 30, compared to the case where helium H is introduced into the exterior 30 by the same amount as the amount of exhausted air 30A. Since helium can be introduced in a higher concentration state, the leak inspection process can be performed with high accuracy. In addition, when helium H having a smaller amount than the discharged air 30A is introduced into the exterior 30, it is introduced as compared with the case where helium H is introduced into the exterior 30 by the same amount as the discharged air 30A. Since the amount of helium H to be reduced can be reduced, the cost required for the leak inspection process can be reduced.
  • the interior of the exterior 30 is once depressurized, and then the interior of the exterior 30 is returned to atmospheric pressure by introducing helium H into the exterior 30, and then the liquid injection hole 33 is sealed.
  • a plurality of test pieces were produced by repeating the above operation. That is, a plurality of test pieces were manufactured by performing the manufacturing process S1 a plurality of times (see FIG. 3). Further, in the measurement of the helium concentration, the series of operations of sealing the liquid injection hole 33 after introducing helium H into the exterior 30 without reducing the pressure inside the exterior 30 is repeated, and according to the comparative example. A plurality of test pieces were produced (see FIG. 6).
  • the helium concentration of the test piece manufactured through the manufacturing process S1 was higher than the helium concentration of the test piece of the comparative example. Further, the variation in the helium concentration of the test piece produced through the manufacturing process S1 was smaller than the variation in the helium concentration of the test piece of the comparative example.
  • the helium concentration of the test piece immediately after introducing helium H in the manufacturing process S1 was also measured.
  • the helium concentration at this time was a concentration corresponding to a pressure change in the exterior 30 when helium H was introduced. That is, according to the manufacturing process S1, the helium concentration in the exterior 30 corresponds to the pressure change in the exterior 30 when helium H is introduced, regardless of the degree of penetration of the electrolyte E into the electrode body B when helium H is introduced. It became clear that it became the concentration to be.
  • helium can be used to prevent battery performance from being affected, and leakage from fine holes with a small molecular diameter can be detected. It is because it can obtain. Further, when helium is introduced, a mixed gas in which helium and a gas other than helium are mixed may be introduced.
  • the present invention can be used in a manufacturing method of a sealed battery in which a leak inspection process for detecting leakage of a detection gas introduced into a battery container is performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 リーク検査工程における過判定率を改善できる密閉型電池の製造方法を提供する。外装30内に導入されたヘリウムHの漏れを検知するリーク検査工程が行われる製造工程S1であって、電解液Eを外装30に注液する工程と、外装30内を所定の圧力まで減圧する工程と、外装30内に前記所定の圧力に対応する量のヘリウムHを導入する工程と、を含む。このとき、前記所定の圧力には、電解液Eの飽和水蒸気圧よりも高い圧力が設定される。

Description

密閉型電池の製造方法
 本発明は、電池容器内に導入された検知ガスの漏れを検知するリーク検査工程が行われる密閉型電池の製造方法に関する。
 従来、密閉型電池の製造工程においては、電池容器内に水分が浸入して電池性能が劣化することを防ぐ等の目的で、電池容器の密閉性を確認するリーク検査工程が行われている(例えば、特許文献1参照)。
 特許文献1には、以下のような技術が開示されている。
 まず、電解液注液口を除いて電池缶(電池容器)を密閉し、排気手段によって電解液注液口より電池缶内の空気を排出する(電池缶内を減圧する)。
 次に、電池缶と電解液ポットとを接続し、電池缶と電解液ポットとの圧力差によって、電解液注液口より電池缶に電解液を注液する。このとき、電解液ポット内をヘリウムで加圧することで、電解液注液口から電池缶にヘリウムを導入する。
 最後に、電解液注液口を封口し、ヘリウム漏洩検出器を用いて電池缶から漏れたリークガスに含まれるヘリウムの量を確認することで、リーク検査工程を行う。
 特許文献1に開示される技術のように、電解液を注液するときにヘリウムを導入した場合には、リーク検査工程を行うまでの間に電解液が電極体に浸透し、電極体の内部に混入していたガスが電極体の外部に排出される。これに伴って、電池缶内のヘリウム濃度は下がってしまう。
 このときの電解液の電極体に対する浸透度、つまり、前記ガスが排出される量は、ヘリウムを導入してからリーク検査工程を行うまでの時間がばらつくこと等によってばらついてしまう。
 つまり、特許文献1に開示される技術では、電解液の電極体に対する浸透度のばらつきの影響で、リークガスのヘリウム濃度(リーク検査工程時における電池缶内のヘリウム濃度)がばらついてしまう。
 ここで、図7に示すように、電池缶からリークガスが一定量だけ漏れた場合のヘリウム漏洩検出器の出力値は、リークガスのヘリウム濃度に応じて異なる値となる。具体的には、電池缶からリークガスが一定量だけ漏れた場合のヘリウム漏洩検出器の出力値は、リークガスのヘリウム濃度が高い場合に大きい値となり(図7に示すグラフG11参照)、リークガスのヘリウム濃度が低い場合に小さい値となる(図7に示すグラフG12参照)。
 リーク検査工程では、リークガスのヘリウム濃度が低い場合におけるリークガス漏出量を基準として、検査閾値T1を設定する必要がある。
 従って、リークガスのヘリウム濃度が高い場合には、ヘリウム濃度が低い場合の検査閾値T1に対応するリークガス漏出量Lよりも少ないリークガス漏出量であるにも関わらず、ヘリウム漏洩検出器の出力値が検査閾値T1を超えてしまう可能性がある(図7に示す範囲R1参照)。
 特許文献1に開示される技術のように、リークガスのヘリウム濃度がばらついた場合には、当該ばらつきの分だけ検査閾値T1を小さくする必要があるため、比較的高い割合で良品が不良品であると過判定されてしまう。
 このように、特許文献1に開示される技術では、リーク検査工程における過判定率が悪化してしまう可能性があった。
特開2002-117901号公報
 本発明は、以上の如き状況を鑑みてなされたものであり、リーク検査工程における過判定率を改善できる密閉型電池の製造方法を提供するものである。
 本発明に係る密閉型電池の製造方法は、電池容器内に導入された検知ガスの漏れを検知するリーク検査工程が行われる密閉型電池の製造方法であって、電解液を前記電池容器に注液する工程と、前記電解液が注液された前記電池容器の内部を、所定の圧力まで減圧する工程と、前記所定の圧力まで減圧された前記電池容器の内部に、前記所定の圧力に対応する量の前記検知ガスを導入する工程と、を含む。
 本発明に係る密閉型電池の製造方法において、前記所定の圧力には、前記電解液の飽和水蒸気圧よりも高い圧力が設定されることが好ましい。
 本発明は、リーク検査工程における過判定率を改善できる、という効果を奏する。
電池の全体的な構成を示す図。 電池の製造工程を示す図。 (a)外装内を減圧する様子を示す図。(b)検知ガスを導入する様子を示す図。 過判定となる範囲を示す図。 ヘリウム濃度を測定した結果を示す図。 外装内を減圧せずに検知ガスを導入する様子を示す図。 従来技術において過判定となる範囲を示す図。
 以下では、本発明に係る、密閉型電池の製造方法の一実施形態である製造工程S1について説明する。
 まず、図1を参照して、本発明に係る密閉型電池の一実施形態である電池10について説明する。
 電池10は、密閉型のリチウムイオン二次電池である。なお、本発明が適用される対象はリチウムイオン二次電池に限定されるものではなく、ニッケル水素二次電池等の他の密閉型電池についても適用可能である。
 電池10の製造工程においては、電池容器の密閉性を確認するために、電池容器内に導入された検知ガスの漏れを検知するリーク検査工程が行われる。
 電池10は、発電要素20、外装30、キャップ40、および外部端子50・50を具備する。
 発電要素20は、正極、負極、およびセパレータを積層および巻回してなる電極体Bに電解液を浸透させたものである。電池10の充放電時に発電要素20内で化学反応が起こる(厳密には、正極と負極との間で電解液を介してイオンの移動が起こる)ことによって電流が発生する。
 電池容器である外装30は、収納部31と蓋部32とを有する、略直方体状の缶である。
 収納部31は、一面が開口した有底角筒状の部材であり、内部に発電要素20を収納する。
 蓋部32は、収納部31の開口面に応じた形状を有する平板状の部材であり、収納部31の開口面を塞いだ状態で収納部31と接合される。蓋部32には、外部端子50・50が挿通される箇所の間に、電解液を注液するための注液孔33が開口している。
 注液孔33は、蓋部32の外側と内側とで内径寸法が異なる平面視略円状の孔である。注液孔33は、上部(図1における上側部分)の内径が、下部(図1における下側部分)の内径よりも大きく形成されている。
 なお、本実施形態においては、電池を、外装が有底角筒状に形成された角型電池として構成しているが、これに限るものではなく、例えば、外装が有底円筒状に形成された円筒型電池として構成することも可能である。
 キャップ40は、注液孔33を封止するためのものである。キャップ40は、注液孔33の上部と略同一の形状に形成される。キャップ40は、注液孔33の下部を塞ぐように注液孔33の上部に嵌め込まれ、外周縁部がレーザー溶接されることで、蓋部32と接合される。
 外部端子50・50は、それらの一部が蓋部32の外側面から電池10の上方(外方)に突出した状態で配置される。外部端子50・50は、集電端子51・51を介して、それぞれ発電要素20の正極および負極に電気的に接続される。外部端子50・50は、それぞれ、外周面部に固定部材34が嵌装されることにより、絶縁部材52・53を介して蓋部32に対して絶縁状態で固定される。外部端子50・50および集電端子51・51は、発電要素20に蓄えられる電力を外部に取り出す、または、外部からの電力を発電要素20に取り入れる通電経路として機能する。
 集電端子51・51は、それぞれ発電要素20の正極および負極と接続されている。集電端子51・51の材料としては、例えば、正極側にアルミニウム、負極側に銅を採用することができる。
 外部端子50・50には、電池10の外方に突出する部位にねじ転造が施され、ボルト部が形成される。電池10の実使用時には、このボルト部を用いて外部端子50・50にバスバー、および外部装置の接続端子等の部材が締結固定される。
 それらの部材を締結固定する際、外部端子50・50には締結トルクがかかるとともに、ねじ締結によって軸方向へ外力が付与される。このため、外部端子50・50の材料としては、鉄等の高強度材料を採用することが好ましい。
 次に、製造工程S1について説明する。
 製造工程S1においては、ダイコーダ等の塗工機を用いて集電体(正極集電体および負極集電体)の表面に合剤(正極合剤および負極合剤)を塗工した後、当該合剤を乾燥させる。
 そして、集電体の表面上の合剤に対してプレス加工を施すことで、集電体の表面に合剤層(正極合剤層および負極合剤層)を形成する。
 こうして、正極および負極が作製される。
 製造工程S1においては、このような工程を経て作製される正極および負極と、セパレータとを積層した後、これらを巻回することによって電極体Bを作製する。そして、外装30の蓋部32に一体化された外部端子50・50および集電端子51・51等を電極体Bに接続し、当該電極体Bを外装30の収納部31に収納する。その後、外装30の収納部31と蓋部32とを溶接によって接合して封缶する。
 外装30を封缶した後は、図2に示すように、注液孔33より電解液Eを注液する(図2に示す矢印E参照)。
 このとき、例えば、外装30をチャンバー111内に収納するとともに、所定の注液ユニットを外装30にセットして、チャンバー111内を真空引きする。その後、チャンバー111内に大気を導入してチャンバー111内を大気圧に戻す。製造工程S1においては、このときの差圧を利用して、電解液Eを外装30に注液する。
 電解液Eを外装30に注液した後は、外装30内にヘリウムHを導入する(図2に示す矢印H参照)。
 このとき、例えば、図3に示すような導入装置120を用いて、ヘリウムHの導入を行う。
 なお、図3では、説明の便宜上、電解液Eの液面の高さを、図2に示す電解液Eよりも高い位置に記載している。
 図3(a)および図3(b)に示すように、導入装置120は、封入ノズル121、シール部材122、およびバルブ123を具備する。
 封入ノズル121は、注液孔33の上方に配置され、下端部に噴射口121aが形成される。封入ノズル121の上下中途部には、バルブ123が連結される。
 図3(a)に示すように、封入ノズル121は、バルブ123および配管124等を介して所定の減圧ポンプに接続される。すなわち、導入装置120は、封入ノズル121から前記減圧ポンプに向かう経路として、減圧経路P1が形成される。
 図3(b)に示すように、封入ノズル121は、バルブ123等を介して所定のヘリウム供給源に接続される。すなわち、導入装置120は、前記ヘリウム供給源から封入ノズル121に向かう経路として、供給経路P2が形成される。
 図3(a)および図3(b)に示すように、シール部材122は、略有底筒状部材の底面(上面)に、上下方向に沿って貫通する貫通孔を形成したような形状に形成される。すなわち、シール部材122は、下部(図3(a)および図3(b)における下側部分)の内径が上部(図3(a)および図3(b)における上側部分)の内径よりも大きく形成される。
 シール部材122においては、上部に封入ノズル121が挿通される。更に、シール部材122においては、下部が封入ノズル121の噴射口121aよりも下側に突出し、当該突出端面が蓋部32の注液孔33の周囲に当接する。これにより、シール部材122は、注液孔33および封入ノズル121をシールする。
 すなわち、導入装置120は、注液孔33をシールした状態で、外装30内に向けてヘリウムHを噴射可能に構成されるとともに、外装30内の空気30Aを排出可能に構成される。
 このような導入装置120には、外装30内の圧力を測定可能な圧力計が設けられる。
 バルブ123は、減圧経路P1および供給経路P2のいずれか一方を閉鎖するとともに、いずれか他方を開放する。つまり、導入装置120は、封入ノズル121と連通する経路を、バルブ123の制御によって減圧経路P1か供給経路P2かの何れかに切り替える。
 製造工程S1においては、ヘリウムHを導入するとき、まず、図3(a)に示すように、減圧経路P1を開放し(減圧経路P1と封入ノズル121とを連通し)、前記減圧ポンプを動作させて外装30内の空気30Aを排出する。
 このとき、前記圧力計で外装30内の圧力を確認し、外装30内を所定の圧力まで減圧する。
 そして、図3(b)に示すように、供給経路P2を開放し(供給経路P2と封入ノズル121とを連通し)、前記ヘリウム供給源より封入ノズル121にヘリウムHを供給し、封入ノズル121よりヘリウムHを噴射する。
 このとき、前記圧力計で外装30内の圧力を確認し、外装30内を大気圧に戻す。
 すなわち、製造工程S1においては、外装30を減圧した分だけ、つまり、外装30内の空気30Aを排出した分だけ、外装30内にヘリウムHを導入する。
 ここで、前記所定の圧力(減圧時の外装30内の圧力)には、電解液Eの飽和蒸気圧よりも高い圧力が設定されている。
 これにより、電解液Eが沸騰することなく、外装30内にヘリウムHを導入できる。
 なお、本実施形態において、前記所定の圧力には、電解液Eの飽和蒸気圧よりも高く、かつ、電解液Eの飽和蒸気圧に近い圧力が設定されている。
 これにより、より多くのヘリウムHを外装30内に導入できるため、外装30内のヘリウムHの濃度を高くすることができる。
 外装30内にヘリウムHを導入した後は、図2に示すように、注液孔33をキャップ40によって封止する(図2に示す黒塗りの三角形参照)。
 このとき、キャップ40を、注液孔33の下部を塞ぐように注液孔33の上部に嵌め込む。そして、レーザー溶接機によってキャップ40の外縁部に沿ってレーザーを照射し、注液孔33を封止する。
 注液孔33を封止した後は、外装30からの漏れ(つまり、外装30の密封度合い)を検査する。
 このとき、所定のチャンバー131に外装30を収納し、チャンバー131内を真空引きする。その後、外装30からチャンバー131内にヘリウムHが漏れているかどうかを、市販のヘリウムリーク検査器で検出する。
 すなわち、図4に示すように、製造工程S1においては、外装30からチャンバー131内に漏出したリークガスに含まれるヘリウムHの量を前記ヘリウムリーク検査器で検出し、前記ヘリウムリーク検査器の出力値が所定の検査閾値Tを超えた場合に、外装30に漏れがあると判定する。
 このように、製造工程S1においては、外装30内に導入された検知ガスとしてのヘリウムHの漏れを検知するリーク検査工程が行われる。
 外装30の漏れを検査した後は、図2に示すように、電池10の初期充電および電圧の検査等を行う。
 製造工程S1においては、このようにして密閉型の電池10を製造する。
 ここで、外装30に注液された電解液Eは、電極体Bに浸透する。これに伴い、外装30内の電解液Eの液面は徐々に下がっていき、電極体Bの内部に混入していたガスは電極体Bの外部に排出される。
 このような電解液Eの電極体Bに対する浸透度、つまり、前記ガスが排出される量は、電解液Eを注液してからリーク検査工程を行うまでの時間がばらつくこと等によってばらついてしまう(図3(a)に示す電解液E参照)。
 従って、電解液Eを注液するときにヘリウムHを導入した場合には、電解液Eの電極体Bに対する浸透度のばらつきの影響で、前記ガスの排出量がばらついてしまうため、リークガスのヘリウム濃度(リーク検査工程時における外装30内のヘリウムHの濃度)がばらついてしまう。
 また、図6に示すように、電解液Eを注液した後で、外装30内に一定量のヘリウムHを導入した場合には、ヘリウムH導入時の電解液Eの液面の高さに応じて外装30内の空間の大きさがばらついてしまい、外装30内のヘリウム濃度が変化してしまう。
 つまり、この場合には、電解液Eの電極体Bに対する浸透度のばらつきの影響で、外装30内を一定のヘリウム濃度にできないため、リークガスのヘリウム濃度がばらついてしまう。
 そこで、製造工程S1では、図3(a)に示すように、電解液Eを注液した後で、外装30内を一旦減圧する。
 より詳細には、製造工程S1では、外装30に注液した電解液Eがある程度(例えば、ヘリウムH導入後に電極体Bの内部に混入していたガスがさらに排出されても、リーク検査工程に影響がない程度)電極体Bに浸透した後で、外装30内を一旦減圧する。
 これにより、製造工程S1においては、電解液Eの液面の高さに応じた量だけ、外装30内の空気30Aを排出する。
 すなわち、製造工程S1においては、電解液Eの液面が低い場合に、外装30内の空気30Aを多く排出し、電解液Eの液面が高い場合に、外装30内の空気30Aを多く排出しない。
 そして、製造工程S1においては、図3(b)に示すように、ヘリウムHを用いて外装30内を大気圧に戻すことで、電解液Eの液面の高さに応じた量だけ、外装30内にヘリウムHを導入する。
 すなわち、製造工程S1においては、電解液Eの液面が低い場合に、多くのヘリウムHを導入し、電解液Eの液面が高い場合に、多くのヘリウムHを導入しない。
 このように、製造工程S1によれば、ヘリウムH導入時における電解液Eの電極体Bに対する浸透度に関わらず、外装30内のヘリウム濃度を、ヘリウムH導入時の外装30内の圧力変化に相当する濃度にすることができる。
 本実施形態のように減圧後に大気圧に戻す場合、外装30内のヘリウム濃度は、減圧時の圧力に相当する濃度となる。
 このため、製造工程S1によれば、ヘリウムH導入時の外装30内の圧力変化を確認することで、外装30内のヘリウム濃度が、ヘリウムH導入時の外装30内の圧力変化に相当する濃度、つまり、一定の濃度となったことを保証できる。
 また、製造工程S1によれば、ヘリウムH導入時における電解液Eの電極体Bに対する浸透度に関わらず、外装30内を一定のヘリウム濃度にできるため、リークガスのヘリウム濃度のばらつきを低減できる。
 従って、図4に示すように、製造工程S1によれば、外装30からのリークガス漏出量が所定量である場合における、リークガスのヘリウム濃度が高い場合のヘリウムリーク検査器の出力値(図4に示すグラフG1参照)と、リークガスのヘリウム濃度が低い場合のヘリウムリーク検査器の出力値(図4に示すグラフG2参照)との差を小さくできる。
 つまり、製造工程S1によれば、リークガスのヘリウム濃度に応じたヘリウムリーク検査器の出力値のばらつきを低減させることができる。
 なお、図4において一点鎖線で示すグラフG11およびグラフG12は、それぞれ図7におけるグラフG11およびグラフG12に対応している。
 このため、製造工程S1によれば、ヘリウムリーク検査器の出力値のばらつきを低減させた分だけ検査閾値Tを大きくできる。
 従って、リークガスのヘリウム濃度が高い場合に、リークガスのヘリウム濃度が低い場合の検査閾値Tに対応するリークガス漏出量Lよりも少ないリークガス漏出量であるにも関わらず、ヘリウムリーク検査器の出力値が検査閾値Tを超えてしまい、良品が不良品であると過判定されてしまうことを抑制できる(図4に示す範囲R参照)。
 このように、製造工程S1によれば、リーク検査工程における過判定率を改善できる。また、リーク検査工程のロバスト性を向上できる。
 ここで、外装30に注液される電解液Eの一部は、リーク検査工程を行うまでの間に揮発する。すなわち、電解液Eを注液した後の外装30内には、電解液Eの揮発成分(例えば、炭化水素等)が存在している。このような電解液Eの揮発成分の比重は、ヘリウムHの比重よりも重い。
 このため、図6に示すように、電解液Eを注液した後で、単に封入ノズルでヘリウムHを噴射した場合、このような比重の重い電解液Eの揮発成分によって外装30内へのヘリウムHの導入が抑制されてしまう。
 また、単に封入ノズルでヘリウムHを噴射した場合、比重の軽いヘリウムHは、外装30内に沈殿しにくいため、注液孔33の近傍に多く位置することとなる。従って、この場合には、注液孔33を封止するまでの間に、ヘリウムHが多く漏出してしまう。
 つまり、単に封入ノズルでヘリウムHを噴射した場合には、電解液Eの揮発成分の影響で、無駄なくヘリウムHを外装30内に導入できない。
 一方、製造工程S1では、図3に示すように、外装30内を一旦減圧してからヘリウムHを導入する。
 つまり、製造工程S1では、電解液Eの揮発成分をある程度排出してからヘリウムHを噴射するため、外装30内にヘリウムHを多く導入できるとともに、ヘリウムHを外装30内に沈殿させることができる。
 従って、製造工程S1によれば、ヘリウムHを高濃度な状態で導入できるとともに、注液孔33を封止するまでの間にヘリウムHが漏出する量を低減できる。
 これにより、外装30内のヘリウム濃度が高い状態で、つまり、リークガスのヘリウム濃度が高い状態で、リーク検査工程を行うことができるため、精度よくリーク検査工程を行うことができる。
 製造工程S1においては、シール部材122によって注液孔33をシールした状態で封入ノズル121よりヘリウムHを噴射するため、噴射したほぼ全てのヘリウムHを外装30内に導入できる。つまり、図3に示すような導入装置120を用いてヘリウムHを導入することで、ヘリウムHを無駄なく導入できる。
 このため、製造工程S1によれば、リーク検査工程に要するコストを低減できる。
 このように、製造工程S1においては、電解液Eを外装30に注液した後、外装30内を所定の圧力まで減圧し、当該所定の圧力に対応する量のヘリウムHを外装30内に導入する導入工程を行う。
 なお、製造工程S1においては、外装30内にヘリウムHを導入して、外装30内を大気圧に戻したが、これに限定されるものでない。
 例えば、外装30内にヘリウムHを導入して、外装30内を数kPa程度加圧した状態、または外装30内を数kPa程度減圧した状態にしても構わない。
 つまり、前記所定の圧力に対応する量は、必ずしも前記所定の圧力まで減圧するときに排出した外装30内の空気30Aの量と同じ量である必要はない。
 すなわち、前記所定の圧力に対応する量は、排出した空気30Aの量よりも多い量、あるいは排出した空気30Aの量よりも少ない量であっても構わない。
 仮に、排出した空気30Aの量よりも多い量のヘリウムHを外装30内に導入した場合には、排出した空気30Aの量と同じ量だけヘリウムHを外装30内に導入した場合と比較して、ヘリウムをより高濃度の状態で導入できるため、精度よくリーク検査工程を行うことができる。
 また、排出した空気30Aよりも少ない量のヘリウムHを外装30内に導入した場合には、排出した空気30Aの量と同じ量だけヘリウムHを外装30内に導入した場合と比較して、導入するヘリウムHの量を低減できるため、リーク検査工程に要するコストを低減できる。
 次に、製造工程S1においてヘリウムHを導入した場合のヘリウム濃度の測定結果について説明する。
 ヘリウム濃度の測定では、外装30内を一旦減圧してから、ヘリウムHを外装30内に導入することによって外装30内を大気圧に戻した後、注液孔33を封止する、これらの一連の作業を繰り返して、複数のテストピースを作製した。つまり、製造工程S1を複数回行うことによって、複数のテストピースを作製した(図3参照)。
 また、ヘリウム濃度の測定では、外装30内を減圧せずに、ヘリウムHを外装30内に導入した後、注液孔33を封止する、これらの一連の作業を繰り返して、比較例に係る複数のテストピースを作製した(図6参照)。
 ヘリウム濃度の測定では、全てのテストピースに対して、ヘリウムH導入後に外装30に孔を空けるとともに、当該孔にヘリウム濃度測定器のヘッドを速やかに押し付け、ヘリウム濃度を測定した。
 図5に示すように、製造工程S1を経て作製されたテストピースのヘリウム濃度は、比較例のテストピースのヘリウム濃度と比較して高くなった。
 更に、製造工程S1を経て作製されたテストピースのヘリウム濃度のばらつきは、比較例のテストピースのヘリウム濃度のばらつきと比較して小さくなった。
 以上の測定結果より、製造工程S1によれば、ヘリウムHを外装30内に高濃度の状態で導入できるとともに、リークガスのヘリウム濃度のばらつきを低減できることが明らかとなった。
 このため、製造工程S1によれば、精度よくリーク検査工程を行うことができるとともに、リーク検査工程における過判定率を改善できることが明らかとなった。
 ヘリウム濃度の測定では、製造工程S1においてヘリウムHを導入した直後のテストピースのヘリウム濃度も測定した。このときのヘリウム濃度は、ヘリウムH導入時の外装30内の圧力変化に相当する濃度であった。
 つまり、製造工程S1によれば、ヘリウムH導入時における電解液Eの電極体Bへの浸透度に関わらず、外装30内のヘリウム濃度が、ヘリウムH導入時の外装30内の圧力変化に相当する濃度となることが明らかとなった。
 なお、検知ガスとして、種々のガスを用いることが可能であるが、ヘリウムを採用することが好ましい。これは、ヘリウムを採用することで、電池性能に影響を与えることを防止できること、および分子直径が小さく微細な孔からの漏れを検出可能となること等、他のガスと比較して種々の効果を得ることができるからである。
 また、ヘリウムを導入するときに、ヘリウムとヘリウム以外のガスとを混合した混合ガスを導入しても構わない。
 本発明は、電池容器内に導入された検知ガスの漏れを検知するリーク検査工程が行われる密閉型電池の製造方法に利用できる。
 10  電池(密閉型電池)
 30  外装(電池容器)
 H   ヘリウム(検知ガス)

Claims (2)

  1.  電池容器内に導入された検知ガスの漏れを検知するリーク検査工程が行われる密閉型電池の製造方法であって、
     電解液を前記電池容器に注液する工程と、
     前記電解液が注液された前記電池容器の内部を、所定の圧力まで減圧する工程と、
     前記所定の圧力まで減圧された前記電池容器の内部に、前記所定の圧力に対応する量の前記検知ガスを導入する工程と、を含む、
     密閉型電池の製造方法。
  2.  前記所定の圧力には、
     前記電解液の飽和水蒸気圧よりも高い圧力が設定される、
     請求項1に記載の密閉型電池の製造方法。
PCT/JP2013/071165 2012-08-07 2013-08-05 密閉型電池の製造方法 WO2014024848A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380041958.9A CN104604008B (zh) 2012-08-07 2013-08-05 密闭型电池的制造方法
US14/418,537 US9680186B2 (en) 2012-08-07 2013-08-05 Method for manufacturing sealed battery
KR1020157004993A KR101672146B1 (ko) 2012-08-07 2013-08-05 밀폐형 전지의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012175185A JP5790604B2 (ja) 2012-08-07 2012-08-07 密閉型電池の製造方法
JP2012-175185 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024848A1 true WO2014024848A1 (ja) 2014-02-13

Family

ID=50068072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071165 WO2014024848A1 (ja) 2012-08-07 2013-08-05 密閉型電池の製造方法

Country Status (5)

Country Link
US (1) US9680186B2 (ja)
JP (1) JP5790604B2 (ja)
KR (1) KR101672146B1 (ja)
CN (1) CN104604008B (ja)
WO (1) WO2014024848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171169A1 (ja) * 2013-04-19 2014-10-23 トヨタ自動車株式会社 密閉型電池の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831531B2 (en) * 2012-07-09 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery
JP5751246B2 (ja) * 2012-12-26 2015-07-22 トヨタ自動車株式会社 密閉型電池の製造方法
JP2015164105A (ja) * 2014-02-28 2015-09-10 株式会社Gsユアサ 蓄電素子
DE102015104274A1 (de) * 2015-03-23 2016-09-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Untersuchung der Dichtigkeit eines geschlossenen Gehäuses eines elektrischen Bauelements
CN107632049B (zh) * 2016-07-19 2021-07-13 松下知识产权经营株式会社 检测系统
DE102016225130B4 (de) * 2016-12-15 2018-07-19 Audi Ag Batterieanordnung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben einer Batterieanordnung
CN109904539B (zh) * 2019-03-05 2022-02-11 深圳市飞鹏新能源科技有限公司 一种锂电池正极浆料防漏结构及其防漏方法
KR20230018562A (ko) * 2021-07-30 2023-02-07 주식회사 엘지에너지솔루션 전지 케이스 분석 장치
KR102632232B1 (ko) * 2021-10-29 2024-02-01 (주)엠벡 전기차 배터리의 리크 테스트 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196050A (ja) * 1999-10-29 2001-07-19 Nec Mobile Energy Kk 容器内への液体の注液装置および注液方法
JP2001236986A (ja) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd 電池の気密検査方法
JP2002117901A (ja) * 2000-10-05 2002-04-19 Nec Mobile Energy Kk 密閉型電池およびその製造方法
JP2006202560A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 密閉型電池の製造方法、及び、気密検査装置
JP2010244898A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp 密閉型電池の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW494085B (en) 1999-10-29 2002-07-11 Nec Mobile Energy Kk Device and method for pouring liquid into case
JP3615699B2 (ja) * 2000-09-26 2005-02-02 Necトーキン栃木株式会社 密閉型電池およびその製造方法
CA2324196C (en) 2000-10-25 2008-09-30 Nec Mobile Energy Corporation Sealed battery and method for manufacturing sealed battery
JP2005108629A (ja) 2003-09-30 2005-04-21 Nec Tokin Tochigi Ltd 密閉型電池およびその製造方法
CN1938894A (zh) * 2004-02-02 2007-03-28 宇部兴产株式会社 非水电解质溶液和锂二次电池
US9831531B2 (en) 2012-07-09 2017-11-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196050A (ja) * 1999-10-29 2001-07-19 Nec Mobile Energy Kk 容器内への液体の注液装置および注液方法
JP2001236986A (ja) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd 電池の気密検査方法
JP2002117901A (ja) * 2000-10-05 2002-04-19 Nec Mobile Energy Kk 密閉型電池およびその製造方法
JP2006202560A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 密閉型電池の製造方法、及び、気密検査装置
JP2010244898A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp 密閉型電池の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171169A1 (ja) * 2013-04-19 2014-10-23 トヨタ自動車株式会社 密閉型電池の製造方法
JP2014212060A (ja) * 2013-04-19 2014-11-13 トヨタ自動車株式会社 密閉型電池の製造方法
US10177402B2 (en) 2013-04-19 2019-01-08 Toyota Jidosha Kabushiki Kaisha Method of manufacturing sealed battery

Also Published As

Publication number Publication date
CN104604008A (zh) 2015-05-06
KR101672146B1 (ko) 2016-11-02
US9680186B2 (en) 2017-06-13
CN104604008B (zh) 2017-07-11
US20150155603A1 (en) 2015-06-04
KR20150038387A (ko) 2015-04-08
JP2014035830A (ja) 2014-02-24
JP5790604B2 (ja) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2014024848A1 (ja) 密閉型電池の製造方法
KR101691754B1 (ko) 전지 제조 방법
WO2014103603A1 (ja) 密閉型電池の製造方法
JP4843947B2 (ja) 密閉型電池の製造方法、及び、気密検査装置
JP2009026569A (ja) 密閉型電池の気密検査方法及び密閉型電池
KR101671129B1 (ko) 밀폐형 전지의 제조 방법
WO2015111665A1 (ja) 蓄電装置の製造方法、製造装置、注液装置、及び注液方法
JP5747937B2 (ja) 密閉型電池の製造方法
KR100537603B1 (ko) 이차전지의 리크 검사장치 및 그를 이용한 이차전지의 제조방법
JP5742863B2 (ja) 密閉型電池の製造方法
JP2014241214A (ja) 密閉型電池の製造方法
KR101990668B1 (ko) 전기 부품의 폐쇄 하우징의 밀봉도 검사 방법
JP6766777B2 (ja) 密閉型電池の製造方法
JP6057132B2 (ja) 密閉型電池の製造方法
JP2014183026A (ja) 密閉型電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004993

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13827928

Country of ref document: EP

Kind code of ref document: A1