WO2014024358A1 - トンネル磁気抵抗素子の製造装置 - Google Patents

トンネル磁気抵抗素子の製造装置 Download PDF

Info

Publication number
WO2014024358A1
WO2014024358A1 PCT/JP2013/003014 JP2013003014W WO2014024358A1 WO 2014024358 A1 WO2014024358 A1 WO 2014024358A1 JP 2013003014 W JP2013003014 W JP 2013003014W WO 2014024358 A1 WO2014024358 A1 WO 2014024358A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
substrate transfer
oxidation
transfer device
sputtering
Prior art date
Application number
PCT/JP2013/003014
Other languages
English (en)
French (fr)
Inventor
拓哉 清野
和正 西村
孝二 恒川
栄作 渡邊
重夫 金子
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2014529250A priority Critical patent/JP5745699B2/ja
Priority to KR20147026799A priority patent/KR20140129279A/ko
Publication of WO2014024358A1 publication Critical patent/WO2014024358A1/ja
Priority to US14/462,860 priority patent/US20140353149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a tunnel magnetoresistive element manufacturing apparatus.
  • MRAM Magnetic random access memory
  • TMR tunnel magnetoresistance effect
  • In-plane in-plane magnetization type
  • Perpendicular perpendicular magnetization type
  • Non-Patent Document 1 sputtering film formation (film formation on an opposing substrate by sputtering a target made of a desired film formation material ( The method (hereinafter also simply referred to as sputtering) is widely used (Patent Document 1).
  • Patent Document 1 shows a configuration in which four sputtering chambers each having three targets are connected to one substrate transfer chamber including a substrate introduction chamber by oxidation, heating and cleaning (etching).
  • the substrate introduction chamber continuously carries the substrate into the transfer chamber, there is a problem that the ultimate vacuum is deteriorated and impurities in the atomic layer order are adsorbed on the substrate in the transfer chamber.
  • impurities are adsorbed to the interface, there is a problem that in the metal laminated film structure, crystal defects are generated and characteristics are deteriorated.
  • the present invention has been made with the above-described problem as an opportunity, and an object thereof is to provide an apparatus for manufacturing a TMR element capable of reducing the mixing of impurities into a magnetic film.
  • one aspect of the present invention is a tunnel magnetoresistive element manufacturing apparatus, which is connected to a load lock device for carrying in / out a substrate to / from the outside, and the load lock device.
  • the present invention contamination of impurities into the magnetic film can be reduced. Therefore, in the formation of a magnetoresistive element structure that requires the formation of a larger number of laminated films, it is possible to reduce the occurrence of crystal defects and deterioration of characteristics in the metal laminated film structure, and to improve throughput and productivity.
  • FIG. 1 shows an example of the configuration of a TMR element manufacturing apparatus 400 according to the present embodiment.
  • the manufacturing apparatus 400 includes a robot arm 427, a transfer apparatus 403 to which at least one substrate processing apparatus is connected, and a transfer apparatus 401 for carrying a substrate into the transfer apparatus 403 or carrying out a process-completed substrate.
  • the manufacturing apparatus 400 may include placement chambers 404A and 404B for carrying the substrate in and out of the transfer apparatus 405 from the transfer apparatus 403.
  • the loading / unloading chambers 402A and 402B are so-called load lock (LL) chambers for loading / unloading the substrate to / from the outside of the manufacturing apparatus 400, and each of the chambers has an exhaust device for evacuating the inside of the device and an atmospheric pressure.
  • the gas introduction mechanism is connected.
  • gate valves 415A and 415B are provided between the carry-in / out chambers 402A and 402B and the transfer device 403, respectively.
  • Exhaust devices 403a and 405a for exhausting the inside of the device to a vacuum are connected to the transfer device 403 and the transfer device 405, respectively.
  • the exhaust devices 403a and 405a various exhaust devices capable of obtaining a degree of vacuum necessary for the present embodiment, such as a turbo molecular pump and a cryopump, can be used.
  • the degree of vacuum in the transfer device 405 is preferably higher than the degree of vacuum in the transfer device 403.
  • a gate valve is provided between the transfer device 403 and the transfer device 405.
  • the placement chambers 404A and 404B are provided between the transfer device 403 and the transfer device 405, between the placement chambers 404A and 404B and the transfer device 405, or between the placement chambers 404A and 404B and the transfer device 403, By providing a gate valve in at least one of them, the space between the transfer device 403 and the transfer device 405 is separated, and the transfer device 405 can maintain a high degree of vacuum.
  • two placement chambers 404A and 404B are provided between the transfer device 403 and the transfer device 405, and a gate is provided between each of the transfer device 403, the placement chambers 404A and 404B, and the transfer device 405.
  • Valves 420A, 420B, 421A, and 421B are provided so that the transfer device 405 can be maintained at a higher vacuum.
  • the gate valves 420A and 420B and the gate valves 421A and 421B located between the transfer device 403 and the transfer device 405 are not simultaneously opened and closed, so that the degree of vacuum generated when the substrate is loaded into the transfer device 405 is further suppressed. Is done. Thereby, the vacuum degree of the conveying apparatus 405 can be kept more stable and favorable.
  • the manufacturing apparatus 400 forms an etching apparatus 406 for removing a natural oxide film and impurities adhering to the substrate surface and various metal films of the TMR element before forming the TMR element.
  • a sputtering apparatus a sputtering apparatus (5PVD) 407 having five sputtering target cathodes is further provided.
  • the manufacturing apparatus 400 further includes a sputtering apparatus (2PVD) 408 having two sputtering target cathodes and an oxidizing apparatus 409 for oxidizing a metal film.
  • the etching apparatus 406 is connected to the transfer apparatus 403, and the sputtering apparatus (5PVD) 407 is connected to the transfer apparatus 403 and the transfer apparatus 405.
  • a sputtering device (2PVD) 408 is connected to the transfer device 405.
  • the connection of the sputtering apparatus (5PVD) 407 or sputtering apparatus (2PVD) 408, which is a sputtering apparatus provided with a plurality of sputtering cathodes, to the transfer apparatus 403 and the transfer apparatus 405 is appropriately changed according to the substrate processing process to be performed. Is possible.
  • the oxidation device 409 is connected to the transport device 405.
  • a gate valve 418 is provided between the etching device 406 and the transfer device 403, and gate valves 416 and 417 are provided between the sputtering device (5PVD) 407 and the transfer device 403.
  • a gate valve 422 is provided between the sputtering device 407 and the transfer device 405, and a gate valve 424 is provided between the sputtering device (2PVD) 408 and the transfer device 405, and the oxidation device 409. And a transfer device 405 are provided with a gate valve 423.
  • the manufacturing apparatus 400 includes a transfer device 405 that is connected to a transfer device 403 that is in contact with an LL chamber that carries in and out a substrate and a transfer device 405 that is connected via a gate valve, in order to suppress impurity adsorption to the interface due to deterioration in vacuum. Provided. For this reason, the conveying device 405 can be kept in an ultrahigh vacuum.
  • the oxidizer 409 is connected to the transfer device 405, so that it is possible to suppress the adsorption of impurities particularly when forming or treating a film that contributes to element characteristics. Generation
  • the oxidizer 409 is connected to the transfer device 405 that is not directly connected to the LL chamber for taking in and out the substrate to the outside but connected to the LL chamber via another transfer device (403). Yes. Therefore, the degree of vacuum of the reaction apparatus 405 itself can be increased, and the oxidation apparatus 409 that is required to have a very high degree of vacuum is connected to the transfer apparatus 405 in which ultra-vacuum is established. As a result, the inside of the oxidation apparatus 409 can be kept in an ultra-vacuum even if continuous film formation is performed on a large number of substrates. Therefore, as described above, in the oxidation treatment in the manufacture of the TMR element, it is possible to reduce the adsorption of impurities to the substrate (film that has been formed).
  • the sputtering apparatus 1 includes a processing container 2 that can be evacuated, an exhaust chamber 8 provided adjacent to the processing container 2 via an exhaust port, and an exhaust device 48 that exhausts the inside of the processing container 2 via the exhaust chamber 8. It is equipped with.
  • a target holder 6 that holds the target 4 via a back plate 5 is provided in the processing container 2.
  • a target shutter 14 is installed so as to shield the target holder 6.
  • the target shutter 14 has a rotating shutter structure.
  • the target shutter 14 is provided with a target shutter drive mechanism 33 for opening and closing the target shutter 14.
  • the processing container 2 has an inert gas introduction system 15 for introducing an inert gas (Ar, etc.) into the processing container 2 and a reactive gas introduction for introducing a reactive gas (oxygen, nitrogen, etc.).
  • a system 17 and a pressure gauge 44 for measuring the pressure in the processing vessel 2 are provided.
  • a gas supply device for supplying gas is connected to each introduction system.
  • a pipe for introducing gas, a mass flow controller (MFC) for controlling the flow rate, and the like are provided and controlled by a control device (for example, the control device shown in FIG. 13).
  • MFC mass flow controller
  • a reactive gas supply device (gas cylinder) 18 for supplying a reactive gas is connected to the reactive gas introduction system 17.
  • the reactive gas introduction system 17 has piping for introducing a reactive gas, an MFC for controlling the flow rate of an inert gas, and valves for shutting off and starting the gas flow. is doing.
  • the reactive gas introduction system 17 may have a pressure reducing valve, a filter or the like as necessary. With such a configuration, the reactive gas introduction system 17 can stably flow a gas flow rate designated by a control device (not shown).
  • the inner surface of the processing container 2 is electrically grounded.
  • a cylindrical shield 40 that is electrically grounded is provided on the inner surface of the processing container 2 between the target holder 6 and the substrate holder 7.
  • the exhaust chamber 8 connects between the processing container 2 and the exhaust device 48.
  • a magnet 13 for realizing magnetron sputtering is disposed behind the target 4. The magnet 13 is held by the magnet holder 3 and can be rotated by a magnet holder rotating mechanism (not shown).
  • the target holder 6 is connected to a power source 12 for applying sputtering discharge power.
  • the sputtering apparatus 1 shown in FIG. 15 includes a DC power supply, but may include an RF power supply.
  • the target holder 6 is insulated from the processing container 2 having the ground potential by an insulator 34.
  • a back plate 5 installed between the target 4 and the target holder 6 holds the target 4.
  • a target shutter 14 is installed so as to cover the target holder 6.
  • the target shutter 14 functions as a shielding member for closing the space between the substrate holder 7 and the target holder 6 or opening the space between the substrate holder 7 and the target holder 6.
  • a shielding member having a ring shape (hereinafter also referred to as “cover ring 21”) is provided on the surface of the substrate holder 7 and on the outer edge side (outer peripheral portion) of the mounting portion of the substrate 10.
  • the cover ring 21 prevents or reduces the adhesion of sputtered particles to a place other than the film formation surface of the substrate 10 placed on the substrate holder 7.
  • the substrate holder 7 is provided with a substrate holder driving mechanism 31 for moving the substrate holder 7 up and down or rotating at a predetermined speed.
  • a substrate shutter 19 is disposed between the substrate holder 7 and the target holder 6 in the vicinity of the substrate 10. The shutter 19 is supported by a substrate shutter support member 20 so as to cover the surface of the substrate 10.
  • the substrate shutter drive mechanism 32 rotates and translates the substrate shutter support member 20 to insert the shutter 19 between the target 4 and the substrate 10 at a position near the surface of the substrate 10 (closed state). By inserting the shutter 19 between the target 4 and the substrate 10, the space between the target 4 and the substrate 10 is shielded. Further, when the shutter 19 is retracted from between the target holder 6 (target 4) and the substrate holder 7 (substrate 10) by the operation of the substrate shutter drive mechanism 32, the target holder 6 (target 4) and the substrate holder 7 (substrate 10). Is opened (open state).
  • the substrate shutter drive mechanism 32 drives the shutter 19 to open and close in order to enter a closed state that shields between the substrate holder 7 and the target holder 6 or an open state that opens between the substrate holder 7 and the target holder 6. .
  • the shutter 19 is stored in the shutter storage unit 23.
  • the shutter housing portion 23, which is the retreating place of the shutter 19 be accommodated in the conduit of the exhaust path to the exhaust device 48 for high vacuum exhaust, because the device area can be reduced.
  • FIG. 2 shows an example of the configuration of a TMR element manufacturing apparatus 500 according to this embodiment.
  • the manufacturing apparatus 500 includes a robot arm 527, a transfer apparatus 403 to which at least one substrate processing apparatus is connected, and a transfer for loading a substrate into the transfer apparatus 503 or for unloading a substrate that has been processed.
  • a transfer apparatus 505 having an apparatus 501, carry-in / out chambers 502 A and 502 B, and a robot arm 528, and a plurality of substrate processing apparatuses connected thereto, and a placement chamber 504 A for carrying a substrate into and out of the transfer apparatus 505 from the transfer apparatus 503. , 504B.
  • Exhaust devices 503a and 505a for exhausting the inside of the apparatus to a vacuum are connected to the transfer device 503 and the transfer device 505, respectively.
  • various exhaust devices capable of obtaining a degree of vacuum necessary for the present embodiment such as a turbo molecular pump and a cryopump, can be used.
  • gate valves 520A, 520B, 521A, and 521B are provided between the placement chambers 504A and 504B and the transfer device 505, and between the placement chambers 504A and 504B and the transfer device 503, respectively.
  • the transfer device 505 is maintained at a high vacuum.
  • gate valves 515A and 515B are provided between the carry-in / out chambers 502A and 502B and the transfer device 503, respectively.
  • the manufacturing apparatus 500 includes an etching apparatus 506 for removing a natural oxide film and impurities adhering to the substrate surface and four metal films for forming various metal films of the TMR element before forming the TMR element. And a sputtering apparatus (4PVD) 507 provided with a sputtering cathode. Furthermore, the manufacturing apparatus 500 includes an oxidation apparatus 508 for oxidizing the metal film.
  • a gate valve 519 is provided between the etching apparatus 506 and the transfer apparatus 503, and gate valves 516, 517, and 518 are provided between the sputtering apparatus (4PVD) 507 and the transfer apparatus 503. .
  • Gate valves 523, 524, 525, and 526 are provided between the sputtering apparatus (4PVD) 507 and the transfer apparatus 505, and the gate valve 522 is provided between the oxidation apparatus 508 and the transfer apparatus 505. Is provided. Since the transfer device 505 is connected to the LL chamber via the transfer device 503, the inside of the transfer device 505 can be maintained at a high vacuum. Therefore, when a metal film is formed by the sputtering apparatus 507 connected to the transfer apparatus 505 and then the oxidation process is performed by the oxidation apparatus 508, the adsorption of impurities on the substrate surface when the substrate is transferred in the transfer apparatus 505 is suppressed. it can.
  • a metal oxide film having good uniformity on the atomic layer order can be formed.
  • the metal laminated film is formed by the sputtering device 507 connected to the transfer device 505 and further formed by another sputtering device 507 connected to the transfer device 505, since the impurity adsorption at the interface is small, A metal laminated film with few lattice defects can be manufactured.
  • the placement chambers 504A and 504B may have a cryopump. By connecting a cryopump to the mounting chambers 504A and 504B, the degree of vacuum of the transfer device 505 can be kept more stable and favorable.
  • the moisture partial pressure in the transfer device 505 can be lowered, and impurities at the interface of the metal laminated film can be reduced. It is possible to suppress the formation of a TMR element having a high resistance change rate.
  • the floor area occupied by the manufacturing apparatus 500 is reduced and the degree of vacuum of the substrate transfer apparatus 505 is improved by disposing the oxidation apparatus 508 at a position adjacent to the substrate placement chambers 504A and 504A with respect to the transfer apparatus 505. It becomes possible to make it.
  • the oxidation apparatus 409 is connected to the transfer apparatus 405 at a position far from the substrate transfer apparatus 404.
  • a sputtering apparatus is further added to the substrate transfer apparatus 405 as necessary.
  • the sputtering apparatus used here is a sputtering apparatus equipped with a plurality of target cathodes in order to form a multilayer laminated film in a consistent vacuum.
  • a multilayer laminated film can be formed by using a cluster type manufacturing apparatus in which a necessary number of sputtering apparatuses each having a plurality of target cathodes are connected.
  • the sputtering apparatus is a sputtering apparatus provided with a large number of sputtering cathodes, and a multilayer laminated film can be suitably produced by using a large number of sputtering targets.
  • the sputtering apparatus in which a large number of sputtering targets are arranged is generally large, when the sputtering apparatus is arranged at a position adjacent to the substrate mounting chamber 404A or 404B, the sputtering apparatus 407 provided on the substrate transfer apparatus 403 side.
  • the sputtering apparatus 407 provided on the substrate transfer apparatus 403 side.
  • the floor area of the apparatus increases, and it is necessary to increase the size of at least one of the transfer device 403, the mounting chambers 404A and 404B, and the transfer device 405, and the degree of vacuum may be easily reduced.
  • each of the sputtering devices 407 connected to the transfer device 403 and the transfer device 405 includes an exhaust chamber and an exhaust device on the side opposite to the gate valve connected to the transfer device in each sputtering device 407. .
  • the sputtering apparatus 507 having a plurality of targets is arranged with a small oxidation apparatus 508 adjacent to the substrate transfer apparatus 505, thereby connecting the sputtering apparatus connected to the transfer apparatus 503.
  • the interval between the transfer device 503 and the transfer device 505 necessary for avoiding contact with 507 can be reduced. For this reason, the enlargement of each conveyance device can be prevented, and the degree of vacuum in each conveyance device can be favorably maintained.
  • robot arms 527 and 528 are provided as transfer means at substantially the center of each transfer apparatus.
  • the robot arms 527 and 528 each have a rotation shaft at substantially the center of the transfer device, and transfer the substrate by extending and contracting the arm provided on the rotation shaft.
  • the robot arms 527 and 528 as transfer means in the present embodiment have two arms, and these arms may rotate as a unit, or may be configured to be independently rotatable.
  • the connection surface of each transfer apparatus and each mounting chamber in the transfer device is perpendicular to the direction of expansion and contraction of the arm, and is configured to make the transfer port of the substrate in the connection surface as small as possible. With such a configuration, the atmosphere in the transfer device 505 can be maintained at a higher vacuum. Further, by using a pivotable arm whose central axis rotates, dust generation is suppressed and high vacuum is easily maintained as compared with a slide-type arm whose central axis slides inside the transfer device.
  • a total of seven loading chambers and processing devices are connected to the transfer device 505 and a total of eight are connected to the transfer device 503 around the rotation axis of the transfer means.
  • a manufacturing apparatus using a transfer device having a polygonal surface with five or more corners connected to each device around the rotation axis as in the present embodiment it is provided next to the mounting chamber of the transfer device 503 in particular. Contact between the processed apparatus and the processing apparatus provided adjacent to the mounting chamber of the transfer apparatus 505 is likely to be a problem.
  • a relatively small oxidizer among the processing apparatuses is provided in the transfer device 505 adjacent to the mounting chamber 504A or 504B, thereby suppressing an increase in size of the manufacturing apparatus, and in each transfer device.
  • the vacuum degree can be maintained well.
  • FIG. 3 shows the configuration of a TMR element manufacturing apparatus 530 according to this embodiment.
  • the manufacturing apparatus 530 has a structure in which one of the sputtering apparatuses 507 provided in the manufacturing apparatus 500 of FIG.
  • the crystallinity of the barrier layer, the free layer and the reference layer can be improved, and the resistance change rate can be improved. This is because the metal film surface formed by sputtering is transferred to the annealing apparatus 510 without using the transfer apparatus 505 maintained at a high degree of vacuum, and the process is performed.
  • the annealing apparatus 510 has a substrate cooling function, and can cool the substrate immediately after heating. When the next sputtering process is performed while the substrate is at a high temperature, the sputtered metal film diffuses, and the flatness at the atomic layer level may be deteriorated, resulting in deterioration of characteristics. Therefore, after the substrate heat treatment, it may be necessary to cool the substrate, and although not shown in the figure, the apparatus of the present invention may be provided with a cooling device independently.
  • the annealing apparatus 510 for example, an apparatus shown in International Publication WO2010 / 150590 is preferably used.
  • FIG. 4 shows a configuration of a TMR element manufacturing apparatus 600 according to the present embodiment.
  • the manufacturing apparatus 600 has a structure in which one of the sputtering apparatuses 507 provided in the manufacturing apparatus 500 of FIG.
  • Non-Patent Document 3 when manufacturing a TMR element having an oxide layer other than a tunnel barrier layer, oxidation treatment is required twice.
  • FIG. 14 shows an oxidation process of the TMR element in a manufacturing apparatus having only one oxidation apparatus.
  • FIG. 8 shows the relationship between the process before and after the oxidation process and the timing of each process between the substrates when manufacturing the TMR element shown in Non-Patent Document 3 in the manufacturing apparatus shown in FIG. .
  • a metal film that is oxidized is formed on the substrate.
  • the metal film is oxidized.
  • a metal film to be oxidized is formed, and the metal film is oxidized.
  • one oxidation apparatus 508 needs to be used twice. As shown in FIG.
  • the time during which the substrate waits for the oxidation process is performed by alternately performing the oxidation process during the time when the metal films are formed. Can be shortened.
  • the third sheet needs to wait until the oxidation process for the second sheet is completed.
  • the flow of processing for the third and subsequent sheets is a repetition of the first and second sheets, and a standby time occurs in the third, fifth, seventh, and odd-numbered substrates.
  • the adhesion of impurities can be sufficiently reduced as compared with the conventional case, and the occurrence of crystal defects and characteristic deterioration can be reduced well. It is preferable that the throughput and the device characteristics can be further improved as compared with the case where the oxidation treatment is performed once.
  • FIG. 9 shows the relationship between the processes before and after the oxidation process and the timing of each process between the substrates when manufacturing the TMR element shown in Non-Patent Document 3 in the apparatus according to this embodiment.
  • the manufacturing apparatus 600 can manufacture a TMR element having further excellent characteristics while further improving the throughput.
  • the transfer device 505 it is desirable that there are a plurality of oxidizers connected to the transfer device 505 from the viewpoint of improving productivity and suppressing generation of crystal defects and deterioration of characteristics in the metal laminated film structure.
  • the oxidation treatment is required twice or more, it is further desirable from the viewpoint of improvement of productivity, generation of crystal defects in the metal laminated film structure, and suppression of characteristic deterioration. It is preferable from the viewpoint of simplification of the control program that the number of oxidation treatments and the number of oxidation apparatuses are set to be the same.
  • one of the sputtering devices 507 may be replaced with the annealing device 510.
  • the placement chambers 504A and 504B are arranged between the transfer apparatus 505 and the transfer apparatus 503. For this reason, the transfer device 505 is maintained at a higher vacuum than the transfer device 503.
  • the degree of vacuum of the transport device 505 is likely to be lowered by oxygen gas or the like introduced into the oxidation device.
  • a method of performing exhaustion until the inside of the oxidation apparatus reaches a specified vacuum degree after performing a predetermined oxidation process on the substrate in the oxidation apparatus can be considered. The next oxidation treatment cannot be performed until exhaust in the oxidizer is completed, resulting in a decrease in throughput.
  • step S71 the control device executes an oxidation process in at least one of the oxidation device 508 and the oxidation device 511.
  • step S ⁇ b> 72 after the substrate oxidation process is completed in at least one of the oxidation apparatus 508 and the oxidation apparatus 511, another control target substrate is transferred from the transfer apparatus 505 to the transfer apparatus 505. It is determined whether or not it is carried into the oxidation apparatus, the sputtering apparatus, or the placement chambers 504A and 504B.
  • step S73 the control device until the control device can confirm that the substrate present in the transfer device 505 has been carried into each processing apparatus or the mounting chamber, It waits in the state which mounted the board
  • FIG. It is not always necessary to carry in the other substrate to be oxidized in the oxidation apparatus, but it is desirable that the substrate is carried into the oxidation apparatus in order to stabilize the element characteristics.
  • step S74 the control device determines whether or not the gate valves provided in the respective substrates are closed after all the substrates are loaded into the sputtering apparatus, another oxidation apparatus, or the substrate placement chamber 504A or 504B. . If there is a gate valve that is not yet closed, in step S75, the control device causes the substrate to stand by in the oxidation device. After all the gate valves are closed, in step S76, the control device opens the gate valve between the oxidation device on which the substrate on which the oxidation process is completed and the substrate transfer device 505 are opened, and the process proceeds to step S77. Then, the transfer device carries the substrate out by the robot arm 528.
  • step S78 the control device closes the gate valve of the oxidation device.
  • the control device is configured so that one of the gate valve provided between the oxidation device and the transfer device 505 and the gate valve provided between the transfer device 505 and the placement chambers 504A and 504B are opened.
  • the gate valve is controlled so as not to open the other. In this way, by not matching the gate valve opening timing of the oxidation apparatus after the substrate processing with the opening timing of the other gate valves, it is possible to suppress the inflow of oxygen gas into the other processing apparatus.
  • the effect demonstrated by this embodiment is the case where there are a plurality of oxidizers as described in the third or fourth embodiment, rather than the case where there is one oxidizer as in the first or second embodiment. Is more effective.
  • a substance having a larger adsorption energy with respect to oxygen gas than MgO constituting the tunnel barrier layer having a great influence on the element characteristics of the TMR element is preferable to use.
  • the adsorption energy of MgO for oxygen gas is about 150 kcal / mol, and materials larger than this include Ti, Ta, Mg, Cr and Zr.
  • Ti structural members are preferable from the viewpoints of ease of processing and effective oxygen adsorption.
  • a substance having an oxygen getter effect is used for a device component even for a magnetic film in which magnetic properties are deteriorated by oxidation, further improvement of element characteristics can be expected. Examples of such a substance include Ti and Ta.
  • a target containing a substance having the oxygen getter effect may be provided in the sputtering apparatus. And before the film-forming process to the board
  • getter film sputtering it is not always necessary to perform getter film sputtering before film formation on a substrate in all sputtering apparatuses, but at least before film formation of MgO or a magnetic film, which has a significant effect on the element characteristics of TMR. Is desirable. Ti or Ta is suitable as the substance having an oxygen getter effect. Further, the getter film may be sputtered after the constituent members of the getter film are provided in the sputtering apparatus.
  • an RF power source may be attached to the sputtering apparatus 507 connected to the transfer apparatus 505, and RF sputtering using direct reactive sputtering or an oxide target may be used together.
  • a plurality of RF sputterings can be mounted in accordance with a desired TMR element. That is, when a plurality of RF cathodes are provided in the sputtering apparatus 507 or two oxide layers are required, one RF cathode can be provided in each of the two sputtering apparatuses 507. Further, the above oxidation treatment and RF sputtering may be combined. By installing a plurality of RF cathodes in one chamber, the film formation rate increases in proportion to the number, so that the throughput can be improved.
  • the insulating film formed by RF sputtering may be annealed using an annealing apparatus 510. Since the surface of the insulating film formed by RF sputtering is quickly transferred to the annealing device 510 using the transfer device 505 maintained at a high degree of vacuum, the adsorption of impurities to the interface is suppressed, and the metal is suppressed. Generation of crystal defects and deterioration of characteristics in the laminated film structure can be suppressed.
  • the oxidation apparatus 800 includes a processing container 801, a vacuum pump 802 as an exhaust unit for exhausting the inside of the processing container, a substrate holder 804 for holding the substrate 803 provided in the processing container 801, and the processing container 801.
  • a cylindrical member 805 provided inside, a gas introduction unit 806 as oxygen gas introduction means for introducing oxygen gas into the processing container 801, and a substrate transfer port 807 are provided.
  • the substrate transfer port 807 is provided with a slit valve (not shown).
  • the substrate holder 804 includes a substrate holding surface 804a for holding the substrate 803, and a mounting portion 804b on which the substrate holding surface 804a is formed.
  • the substrate 803 is mounted on the substrate holding surface 804a. Is done.
  • a heater 808 serving as a heating device is provided inside the substrate holder 804.
  • the substrate holder 804 is connected to a substrate holder driving unit 809 as position changing means for changing the relative position between the substrate holder 804 and the cylindrical member 805.
  • the substrate holder driving unit 809 moves the substrate holder 804 in an arrow direction P (a direction in which the substrate holder 804 is brought closer to the oxidation treatment space 810 and a direction in which the substrate holder 804 is moved away from the oxidation treatment space 810).
  • the substrate holder 804 is moved to the position shown in FIG. At the time of carrying in the substrate, in this state, the substrate 803 is carried into the processing container 801 through the substrate carrying port 807, and the substrate 803 is placed on the substrate holding surface 804a. When the substrate is unloaded, the substrate 803 held on the substrate holding surface 804a is unloaded from the processing container 801 through the substrate transfer port 807. On the other hand, during the oxidation process, the substrate holder 804 is moved to the position shown in FIG. In this state, the oxygen treatment is performed by introducing the oxygen gas limitedly into the oxidation treatment space 810 by the gas introduction unit 806 (by introducing the oxygen gas limitedly into one space in the treatment container 801). .
  • the gas introduction unit 806 is provided apart from the wall 801a of the processing container 801 facing the substrate holder 804, and is provided in the shower plate 811 having a large number of holes and the wall 801a, and oxygen gas is introduced into the processing container 801.
  • An oxygen introduction path 812 having a gas introduction port for introduction, and a space between the shower plate 811 and the wall 801a and a gas diffusion space 813 for diffusing oxygen gas introduced from the oxygen introduction path 812 are provided.
  • an oxygen introduction path 812 is provided so that oxygen gas is introduced into the diffusion space 813, and the oxygen gas introduced from the oxygen introduction path 812 and diffused in the diffusion space 813 passes through the shower plate 811. Through the substrate. Note that a plurality of oxygen introduction paths 812 may be provided.
  • the cylindrical member 805 is attached to the wall 801a so as to surround the region 801b including at least a portion to which the oxygen introduction path 812 is connected and the shower plate 811 of the wall 801a of the processing container 801, and the wall 801a and the wall 801a are connected to the wall 801a. It is a member having an extending portion 805a extending toward the opposite side (here, the substrate holder 804 side).
  • the cylindrical member 805 is a cylindrical member having a circular cross section cut perpendicular to the extending direction, but the cross section may have another shape such as a polygon.
  • the cylinder member 805 is made of, for example, Al. Al is preferable because the cylindrical member 805 can be easily processed.
  • the cylindrical member 805 may be configured to be detachable from the wall 801a.
  • a shower plate 811 is provided in the space surrounded by the extending portion 805a, that is, in the hollow portion of the tubular member 805, and the portion of the tubular member 805 on the wall 801a side with respect to the shower plate 811 and the above-mentioned in the wall 801a
  • a diffusion space 813 is formed by at least a part of the region 801 b and the shower plate 811.
  • oxygen gas can be supplied more uniformly to the surface of the substrate 803, and the unevenness of the oxidation distribution of MgO in the plane of the substrate 803 caused by oxidation can be reduced. it can. Therefore, the RA distribution can be improved.
  • the shower plate 811 Since oxygen gas is introduced from the hole of the shower plate 811 into the oxidation treatment space 810, the shower plate 811 is provided with a portion of the gas introduction unit 806 for introducing oxygen gas into the oxidation treatment space in a limited manner. It can be said that this region is also referred to as an “oxygen gas introduction region”. Note that when the shower plate 811 is not provided as an example, the oxygen gas is limitedly introduced into the oxidation treatment space 810 from the oxygen introduction path 812, so that the region 801b becomes an oxygen gas introduction region. In this embodiment, it can be said that the oxidation treatment space 810 is formed by the oxygen gas introduction region, the cylindrical member 805, and the substrate holder 804 (substrate holding surface 804a).
  • the cylindrical member 805 when the substrate holder 804 is inserted into the opening 805b of the cylindrical member 805, the cylindrical member 805 has at least a part of the extending portion 805a and the substrate holder 804 (the mounting portion 804b). ) So as to form a gap 815. That is, when the oxidation treatment space 810 is formed, the cylindrical member 805 surrounds the substrate holding surface 804a, and a gap 815 is provided between the mounting portion 804b on which the substrate holding surface 804a is formed and the extending portion 805a. It is configured as follows.
  • the oxygen gas introduced into the oxidation treatment space 810 from the gas introduction unit 806 is exhausted from the oxidation treatment space 810 to the external space 814 of the oxidation treatment space 810 through the gap 815.
  • the oxygen gas exhausted from the oxidation processing space 810 to the external space 814 through the gap 815 is exhausted from the processing container 801 by the vacuum pump 802.
  • the substrate holder driving unit 809 moves the substrate holder 804 in the arrow direction P so that the substrate holding surface 804a is accommodated in the cylindrical member 805, and the substrate holding surface 804a (mounting portion 804b) is inserted into the opening 805b.
  • the movement of the substrate holder 804 is stopped at the predetermined position.
  • an oxidation treatment space 810 communicating with the external space 814 only by the gap 815 is formed.
  • the oxidation treatment space 810 is formed by the shower plate 811, the extending portion 805 a, and the substrate holder 804 (substrate holding surface 804 a). Therefore, in this embodiment, the enclosure part of this invention is the shower plate 811 and the extension part 805a.
  • the cylindrical member 805 showers the oxidation treatment space 810 so that the oxygen gas introduced by the gas introduction unit 806 is limitedly introduced into the oxidation treatment space 810 in the treatment container 801 during the oxidation treatment.
  • It is an enclosing member for partitioning together with the plate 811 and the substrate holder 804 (substrate holding surface 804a). Note that when the shower plate 811 is not provided as an example as described above, the oxidation treatment space 810 is formed by the region 801b, the extending portion 805a, and the substrate holder 804.
  • the surrounding portion is a region 801b that is a part of the inner wall of the processing container 801, and an extending portion 805a.
  • the substrate holder 804 and the cylindrical member 805 can be changed by the substrate holder driving unit 809 so that the oxidation treatment space 810 can be formed.
  • 809 is configured such that the substrate holder 804 can be moved in an arrow direction P which is a uniaxial direction.
  • the present invention is not limited to this configuration, and at least during the oxidation treatment, the substrate holding surface 804a can be positioned inside the cylindrical member 805 to form the oxidation treatment space 810, and otherwise (for example, during substrate transfer), the substrate holding can be performed. Any configuration may be adopted as long as the surface 804a can be positioned outside the cylindrical member 805.
  • the substrate holder 804 is fixed, the cylindrical member 805 and the gas introduction unit 806 are unitized, and the unitized cylindrical member 805 and the gas introduction unit 806 are brought close to the substrate holder 804 to form the oxidation treatment space 810. You may comprise so that it may form.
  • the substrate holder 804 is configured to be slidable in the left-right direction of the cylindrical member 805, and is configured to move the substrate holder 804 to a position that does not face the opening 805b except when the oxidation treatment space 810 is formed. You may do it.
  • the shape of the substrate holding surface 804a is circular, and the cross section of the cylindrical member 805 cut perpendicular to the extending direction of the extending portion 805a is the outer shape of the substrate holding surface 804a (mounting portion 804b). And similar shape. That is, the cross section is circular. Further, when the oxidation treatment space 810 is formed, the shower plate 811 and the substrate holding surface 804 a are opposed to each other, and the gap 815 is also opposed to the shower plate 811. At this time, the size of the gap 815 is preferably the same in the circumferential direction of the substrate holding surface 804a.
  • the exhaust conductance can be set to the same value in all the gaps 815 formed in the circumferential direction of the substrate holding surface 804a. That is, exhaust can be performed uniformly over the entire periphery of the gap 815 that functions as an exhaust port from the oxidation treatment space 810. Therefore, when the oxidation treatment space 810 is formed, the oxygen pressure on the surface of the substrate 803 placed on the substrate holder 804 can be made uniform, and the RA distribution can be improved.
  • the substrate holder driving unit 809 is configured to move the substrate holder 804 along the extending direction of the extending portion 805a inside the cylindrical member 805. That is, the substrate holder driving unit 809 can move the substrate holder 804 in the direction of approaching the shower plate 811 as the oxygen gas introduction region and the direction of moving away from the shower plate 811 inside the cylindrical member 805.
  • the mounting portion 804b that has the substrate holding surface 804a and forms the gap 815 in the substrate holder 804 has the same gap 815 along the extending direction of the extending portion 805a. It is comprised so that it may become a size. That is, the diameter of the cylindrical member 805 is constant along the extending direction of the extending portion 805a, and the diameter along the extending direction of the mounting portion 804b is also constant, and the substrate is formed inside the cylindrical member 805. Even if the mounting portion 804b of the holder 804, which is the portion closest to the extending portion 805a, is moved in a direction toward and away from the shower plate 811, the exhaust conductance of gas from the oxidation treatment space 810 in the gap 815 is increased.
  • the substrate holder 804 and the cylindrical member 805 are configured so as not to change. Therefore, even if the substrate holder 804 is moved inside the cylindrical member 805, oxygen gas can be similarly exhausted from the oxidation treatment space 810, and the complexity of process control can be reduced.
  • the inner wall portion of the cylindrical member 805 is smoothed by, for example, electrolytic polishing treatment or chemical polishing treatment. That is, in this embodiment, the inner wall of the cylindrical member 805 is flattened.
  • the surface roughness on the inner wall of the cylindrical member 805 the adsorption of oxygen gas to the inner wall of the cylindrical member 805 and the release of oxygen gas adsorbed on the inner wall can be reduced.
  • the adsorption of oxygen to the inner wall surface can be reduced.
  • the inner wall surface of the cylindrical member 805 can be flattened and an oxide film can be formed.
  • the oxide film can reduce the adsorption of oxygen to the cylindrical member 805.
  • a space (oxidation treatment space 810) smaller than the space defined by the inner wall of the processing container 801 is formed inside the processing container 801, and the oxidation processing space 810 is partitioned.
  • the substrate is a substrate holding surface 804a, and the substrate 803 held by the substrate holding surface 804a is exposed to the oxidation treatment space 810.
  • the oxygen gas is supplied in a limited manner into the oxidation treatment space 810 to oxidize the substrate 803.
  • the oxidation processing space 810 is exhausted by a gap 815 formed between the cylindrical member 805 and the substrate holder 804.
  • the oxygen gas is supplied only to the limited space (oxidation process space 810) of the processing container 801 and the oxidation process is performed.
  • the time until the space filled with oxygen gas reaches a predetermined pressure can be reduced, and the time required for exhausting can also be reduced. Therefore, when the substrate is transferred between the oxidation apparatus 507 and the transfer chamber 505, the outflow of oxygen gas to the transfer chamber 505 having a high degree of vacuum can be suppressed, and a higher quality thin film is formed. It becomes possible.
  • a space (oxidation treatment space 810) smaller than the space defined by the inner wall of the treatment container 801 is formed in the treatment container 801 and oxidation treatment is performed therein, the oxidation treatment is performed as compared with the conventional case.
  • the surface area of the member that divides the space where the process is performed can be greatly reduced. Accordingly, it is possible to reduce the amount of oxygen attached to the cylindrical member 805 that forms the oxidation treatment space 810 in which the oxidation treatment is performed, and greatly increase the amount of oxygen released from the inner wall of the cylindrical member 805 after exhaust. Can be reduced. This is also advantageous in that the high vacuum degree of the transfer chamber 505 is maintained.
  • the oxidation treatment space 810 is partitioned inside the processing vessel 801 using a cylindrical member 805 that is a member separate from the inner wall of the treatment vessel 801, the shape of the oxidation treatment space 810 can be freely set. be able to. Therefore, the cross-sectional shape of the oxidation treatment space 810 cut in parallel with the surface of the substrate 803 (substrate holding surface 804a) can be made similar to the outer shape of the substrate 803 (substrate holding surface 804a).
  • the processing container when the outer shape of the substrate (substrate holding surface) is a square, the section of the space where the oxidation process is performed, cut parallel to the surface of the substrate (substrate holding surface) is It is circular and is different from the outer shape of the substrate (substrate holding surface).
  • the processing container 801 when the processing container 801 is cylindrical and the outer shape of the substrate 803 (substrate holding surface 804a) is a quadrangle, the cylindrical member 805 having a quadrangular cross section is used as the processing container 801.
  • the cross-sectional shape of the oxidation treatment space 810 can be made similar to the outer shape of the substrate 803 (substrate holding surface 804a).
  • the width of the gap 815 is made equal in the circumferential direction of the substrate 803 (substrate holding surface 804a).
  • the exhaust conductance can be the same. Therefore, the oxidation distribution on the surface of the substrate 803 can be reduced.
  • the amount of oxygen introduced for the oxidation treatment of the substrate can be reduced, and oxygen gas can be quickly exhausted after the predetermined oxidation treatment is performed. Is possible. For this reason, the flow rate of the oxygen gas flowing out from the oxidizers 508 and 511 to the transfer device 505 can be reduced, and the transfer device 505 can be maintained at a higher vacuum.
  • an oxidation apparatus 508 is connected to a transfer apparatus 505 having a higher degree of vacuum in order to form a high-quality tunnel barrier layer.
  • the oxygen pressure in the transfer device 505 may be improved by the oxygen gas flowing out from the oxidation device 508. Such a problem may occur particularly when the interior of the oxidizer 508 cannot be exhausted sufficiently after the oxidation treatment in the oxidizer 508 from the viewpoint of improving throughput.
  • oxygen pressure in the transfer device 505 increases, oxygen is adsorbed on the thin film interface or unintentional oxidation occurs when the substrate is transferred to another processing device after the thin film is formed by the sputtering device 507, and the device characteristics are improved. Can deteriorate.
  • thin films that make up the device thin films that require a cleaner atmosphere are processed using a processing apparatus connected to the transfer apparatus 505. It is desirable to reduce as much as possible.
  • the time during which the substrate stays in the transfer device 505 is shorter than that of the transfer device 503, so that the thin film interface is oxygenated.
  • the exposure time exposure to oxygen gas
  • a substrate processing system according to this embodiment is shown in FIG.
  • the number of robot arms 527 provided in the transfer apparatus 503 is two, whereas the number of robot arms 528 provided in the transfer apparatus 505 is one.
  • two or more robot arms are provided in the transfer device, and the number of substrates that can stay in the substrate processing system is increased.
  • the residence time of the substrate in the transfer device 503 and the transfer device 505 tends to be longer than in the case of one robot arm.
  • the transfer apparatus provided with two robot arms will be described as an example.
  • the second substrate is moved from the first processing apparatus by the first arms of the two robot arms. It is carried out.
  • the first substrate held by the second arm of the two robot arms is carried into the first processing apparatus.
  • the second arm is made to stand by in front of the second processing apparatus where the second substrate is to be loaded next.
  • the third substrate is unloaded by the second arm.
  • the second substrate held by the first arm is carried into the second processing apparatus.
  • the substrate that has been processed in each processing apparatus waits in front of the processing apparatus of the transfer apparatus until the processing of the substrate being processed in the next processing apparatus is completed. Become. During this standby, the thin film surface formed on the outermost surface of the substrate is exposed to oxygen gas in the transfer device.
  • the number of robot arms 527 provided in the transfer device 503 is two, whereas the number of robot arms 528 provided in the transfer device 505 is one.
  • a substrate that has been processed by each processing apparatus is immediately carried into the next processing apparatus.
  • the processing of the substrate is completed, and the substrate is transported after the substrate is loaded into the next processing apparatus. Therefore, it is possible to eliminate the time that the substrate waits in the transfer device and to shorten the time that the substrate stays in the transfer device as much as possible.
  • the transfer apparatus 503 is provided with two robot arms, the substrate processing time in the processing apparatus connected to the transfer apparatus 503 and the substrate processing time in the processing apparatus connected to the transfer apparatus 505 are adjusted. Thus, it is possible to reduce the residence time of the substrate in the transfer device 505 while suppressing a decrease in throughput.
  • the transport method when using the two robot arms described in the ninth embodiment is the first mode
  • the transport method when using one robot arm is the second. This mode is called.
  • the present embodiment is characterized in that the first mode and the second mode are switched when a substrate is transported by a robot arm provided in the transport device 505.
  • a substrate is processed in each processing apparatus connected to the transfer apparatus 505, but the outermost surface of the substrate when each process ends and the substrate is carried out to the transfer apparatus 505 is relatively less affected by oxygen. Can also exist. Even if the substrate in such a state where the influence of oxygen is small is caused to stand by by the transfer device 505, the influence on the element is small.
  • the substrate is transferred in the first mode, and then a film having a large influence of oxygen is formed on the outermost surface of the substrate. After that, the mode is shifted to the second mode.
  • Non-Patent Document 2 the multilayer film disclosed in Non-Patent Document 2 will be specifically described using an example in which the multilayer film is manufactured using the substrate processing system 850 according to the present embodiment.
  • impurities and the like attached to the surface of the substrate carried into the substrate processing system 850 are removed by an etching device 506 connected to the transfer device 503.
  • it is conveyed to the conveying apparatus 505 and carried into the sputtering apparatus 507B.
  • a seed layer made of RuCoFe and Ta is formed to flatten the substrate surface.
  • a CoFeB layer that is a magnetization free layer and an Mg layer that becomes a tunnel barrier layer are formed by subsequent oxidation treatment.
  • the transfer from the mounting chamber 504A or 504B to the sputtering apparatus 507B and the transfer from the sputtering apparatus 507B to the sputtering apparatus 507C are less affected by oxidation on the substrate surface and the seed layer surface after etching.
  • the substrate is transferred in the mode. After the Mg layer is formed on the substrate, the substrate is carried into an oxidizer 508 and subjected to an oxidation treatment to form a tunnel barrier layer.
  • the Fe layer and the CoFeB layer which are magnetization fixed layers, are carried into the sputtering apparatus 507D.
  • the Ta layer, the Co layer, and the Pt layer are formed by being transferred to the sputtering apparatus 507E.
  • the substrate is transferred to the transfer device 503 via the placement chamber 504A or 504B, and films after the Pt layer are formed by the sputtering devices 507A, 507F, and 507G.
  • the surface of the Mg layer that is oxidized and becomes a tunnel barrier layer, the MgO layer that is a tunnel barrier layer, or the CoFeB layer that is a magnetization fixed layer is exposed to a large amount of oxygen gas, The quality of the layer is deteriorated, or the magnetic characteristics in the magnetization fixed layer are deteriorated. Therefore, when transported from the sputtering apparatus 507C to the oxidation apparatus 508, when transported from the oxidation apparatus 508 to the sputtering apparatus 507D, and when transported from the sputtering apparatus 507D to the sputtering apparatus 507E, the residence time in the transport apparatus 505 is maintained. It is desirable that the sheet is transported in the second mode to be shortened.
  • the substrate When transporting in the second mode, the substrate should not be in the next processing apparatus when transporting from one processing apparatus to the next processing apparatus. Therefore, in order to make the next processing device available, it is necessary to make another processing device available. Therefore, after switching to the second mode, the substrate is transported in the second mode until it is transported to the placement chamber 504A or 504B.
  • the substrate In the above example, the case where the surfaces of the Mg layer, the MgO layer, and the CoFeB layer are exposed to the atmosphere in the transfer device 505 has been described.
  • the tunnel barrier layer The film quality and the magnetic characteristics of the magnetization free layer and the magnetization fixed layer in contact therewith are very important. Accordingly, the switching timing between the first mode and the second mode is determined so as to shorten the time during which these films are exposed to the atmosphere in the transfer device 505.
  • the control device includes a main control unit 900, and the storage device 901 provided in the main control unit 900 stores control programs for executing various substrate processing processes according to the present invention.
  • the control program is implemented as a mask ROM.
  • a control program can be installed in a storage device 901 configured by a hard disk drive (HDD) or the like via an external recording medium or a network.
  • the main controller 900 controls the opening / closing operation of the gate valve provided between each processing device, each transfer device, the loading chamber, and the LL chamber, and the transfer means provided in the transfer device.
  • an exhaust device, a gas introduction unit, and the like provided in each device can be controlled.

Abstract

 本発明は、磁性膜中への不純物の混入を低減可能なTMR素子の製造装置を提供する。本発明の一実施形態に係るトンネル磁気抵抗素子の製造装置は、外部との基板の搬入出を行うためのロードロック装置と、該ロードロック装置と接続され、少なくとも1つの基板処理装置が接続された第1基板搬送装置と、該第1基板搬送装置に設けられた第1排気部と、上記第1基板搬送装置と接続され、複数の基板処理装置が接続された第2基板搬送装置と、前記第2基板搬送装置に設けられた第2排気部とを備え、第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つは酸化装置である。

Description

トンネル磁気抵抗素子の製造装置
 本発明は、トンネル磁気抵抗素子の製造装置に関する。
 トンネル磁気抵抗効果(TMR:Tunnel Magneto Resistance effect)技術を半導体素子と融合した集積化磁気メモリであるMRAM(Magnetic random access memory)が近年注目を集めている。MRAMに用いられるTMR素子としては、非特許文献1に示されるような、フリー層とリファレンス層の磁化方向が積層膜方向に対して垂直方向に磁化回転する面内磁化型(In-plane)の素子や、非特許文献2に示されるようなフリー層とリファレンス層の磁化方向が積層膜方向と同方向に磁化回転する垂直磁化型(Perpendicular)の素子が用いられる。さらに非特許文献3に示すようなフリー層の上部に酸化物層を形成する構造も報告されている。
 TMR素子の製造においては、非特許文献1及び非特許文献2に示される構造のみならず、所望の成膜材料から成るターゲットをスパッタリングすることにより、対向する基板上に成膜するスパッタリング成膜(以下単にスパッタともいう)方法が広く用いられている(特許文献1)。
国際公開第2012/086183号
Young-suk Choi et al, Journal of Appl. Phys. 48(2009)120214 D.C.Worledge et al, Appl. Phys. Lett. 98 (2011)022501 Kubota et al, Journal of Appl. Phys. 111, 07C723 (2012)
 しかしながら、上述の技術にはそれぞれ以下のような課題が存在する。
 特許文献1に記載の製造方法では、垂直磁化型積層膜として、Ta、Ru、CoFeB、MgOの4種類の材料をスパッタした構造が示されているが、高密度化が進むとSTT(Spin Transfer Torque)-MRAM積層構造が複雑化し、より多くの積層膜を形成する必要がある。具体的には、非特許文献2に示される構造である。多くの積層膜をスパッタする場合、同一チャンバ内に滞在する時間を短縮しないとスループットが遅くなり、生産性が劣化し、半導体デバイスにおけるコストが増加する。そのため、多種材料をスループットや生産性の低下を抑制しつつスパッタし、且つ特性改善のためのアニール処理や酸化膜形成のための酸化処理を短時間で行われなければならないという課題がある。
 また特許文献1には、基板導入室を含む1つの基板搬送チャンバに、酸化、加熱及び洗浄(エッチング)と、3つのターゲットを有したスパッタチャンバを4台接続した構成が示されている。この装置では、基板導入室が搬送チャンバ内へ連続して基板搬入を行うと到達真空度が劣化し、搬送チャンバ内で基板上に原子層オーダーの不純物が吸着してしまうという課題がある。また、このような不純物が界面へ吸着することにより、金属積層膜構造において、結晶欠陥の発生や特性劣化を招くという課題がある。
 本願発明は上述した課題を契機として為されたものであり、磁性膜中への不純物の混入を低減可能なTMR素子の製造装置を提供することを目的とする。
 上記課題を解決するために、本願発明の一態様は、トンネル磁気抵抗素子の製造装置であって、外部との基板の搬入出を行うためのロードロック装置と、前記ロードロック装置と接続され、少なくとも1つの基板処理装置が接続された第1基板搬送装置と、前記第1基板搬送装置に設けられた第1排気手段と、前記第1基板搬送装置と接続され、複数の基板処理装置が接続された第2基板搬送装置と、前記第2基板搬送装置に設けられた第2排気手段とを備え、前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つは酸化装置であることを特徴とする。
 本発明により、磁性膜中への不純物の混入を低減することができる。よって、より多くの積層膜形成が必要な磁気抵抗素子構造の形成において、金属積層膜構造における結晶欠陥の発生や特性劣化を低減することができ、スループットや生産性を改善することができる。
本発明の一実施形態に係るTMR素子の製造装置を説明するための図である。 本発明の一実施形態に係るTMR素子の製造装置を説明するための図である。 本発明の一実施形態に係るTMR素子の製造装置を説明するための図である。 本発明の一実施形態に係るTMR素子の製造装置を説明するための図である。 本発明の一実施形態に係るTMR素子の製造装置を説明するための図である。 本発明の一実施形態に係るTMR素子の製造装置を説明するための図である。 本発明の一実施形態に係るゲートバルブ動作と基板搬送を制御するためのフロー図である。 本発明の一実施形態に係る製造装置を用いた場合の酸化フローの説明図である。 本発明の一実施形態に係る製造装置を用いた場合の酸化フローの説明図である。 本発明の一実施形態に用いられるスパッタリング装置を説明するための図である。 本発明の一実施形態に係る酸化装置を説明するための図である。 本発明の一実施形態に係る酸化装置を説明するための図である。 本発明の一実施形態に係る製造装置に用いられる制御装置を説明するための図である。
 以下、本発明の製造装置等について、本発明の実施形態を図面に基づき説明する。なお、実施形態間で共通する要素については説明を省略する。
(第1の実施形態)
 図1に本実施の形態に係るTMR素子の製造装置400の構成の一例を示す。製造装置400は、ロボットアーム427を有し、少なくとも1つの基板処理装置が接続された搬送装置403と、基板を搬送装置403に搬入するまたはプロセスが完了した基板を搬出するための搬送装置401と、搬出入室402A、402Bと、ロボットアーム428を有し、複数の基板処理装置が接続された搬送装置405とを備える。さらに、製造装置400は、搬送装置403から搬送装置405へ基板を搬出入するための載置室404Aおよび404Bを備えてもよい。搬出入室402Aおよび402Bは、製造装置400の外部に対して基板を搬入出するための所謂ロードロック(LL)室であり、それぞれ装置内を真空に排気するための排気装置と大気圧にするためのガス導入機構が接続されている。また、搬出入室402A、402Bと搬送装置403との間にそれぞれゲートバルブ415A、415Bが設けられている。
 搬送装置403と搬送装置405とには、それぞれ装置内を真空に排気するための排気装置403a、405aが接続されている。この排気装置403a、405aは例えばターボ分子ポンプやクライオポンプ等の本実施形態に必要な真空度が得られる各種の排気装置を用いることができる。
 なお、搬送装置405内の真空度が、搬送装置403内の真空度よりも高いことが好ましい。
 搬送装置403と搬送装置405との間にはゲートバルブが設けられる。搬送装置403と搬送装置405との間に載置室404A、404Bを設けた場合、載置室404A、404Bと搬送装置405の間、又は、載置室404A、404Bと搬送装置403の間の、少なくともどちらか一方にゲートバルブを設けることで、搬送装置403と搬送装置405の空間が分離され、搬送装置405は高い真空度を維持することができる。本実施形態では、搬送装置403と搬送装置405との間には2基の載置室404Aおよび404Bが設けられ、搬送装置403、載置室404A、404Bおよび搬送装置405の各々の間にゲートバルブ420A、420B、421A、421Bを設け、より搬送装置405を高真空に維持可能な構成としている。また、搬送装置403と搬送装置405との間に位置するゲートバルブ420Aおよび420B、ならびにゲートバルブ421Aおよび421Bを同時に開閉させないことで、搬送装置405への基板搬入時に発生する真空度劣化がより抑制される。これにより搬送装置405の真空度をより安定で良好に保つことができる。
 また、本実施形態に係る製造装置400は、TMR素子を形成する前に基板表面に付着している自然酸化膜や不純物を除去するためのエッチング装置406と、TMR素子の各種金属膜を形成するためのスパッタ装置としてスパッタリングターゲットカソードを5つ備えたスパッタ装置(5PVD)407とをさらに備えている。製造装置400は、スパッタリングターゲットカソードを2つ備えたスパッタ装置(2PVD)408と、金属膜を酸化するための酸化装置409とをさらに備えている。エッチング装置406は搬送装置403に接続され、スパッタ装置(5PVD)407は搬送装置403および搬送装置405に接続される。さらにスパッタ装置(2PVD)408が搬送装置405に接続されている。複数のスパッタリングカソードを備えたスパッタ装置である、スパッタ装置(5PVD)407やスパッタ装置(2PVD)408の搬送装置403および搬送装置405への接続については、行われる基板処理のプロセスに応じて適宜変更可能である。酸化装置409は、搬送装置405に接続されている。
 エッチング装置406と搬送装置403との間にはゲートバルブ418が設けられており、スパッタ装置(5PVD)407と搬送装置403との間には、ゲートバルブ416、417が設けられている。また、スパッタ装置407と搬送装置405との間にはゲートバルブ422が設けられており、スパッタ装置(2PVD)408と搬送装置405との間にはゲートバルブ424が設けられており、酸化装置409と搬送装置405との間にはゲートバルブ423が設けられている。
 本実施形態に係る製造装置400は、真空度劣化による界面への不純物吸着を抑制するため、基板の搬入出を行うLL室に接する搬送装置403とゲートバルブを介して接続される搬送装置405を設けている。このため搬送装置405を超高真空を保つことができる。酸化装置409は、搬送装置405に接続されていることで、特に素子特性に寄与する膜を形成又は処理する際に不純物の吸着を抑制することが可能であり、金属積層膜構造における結晶欠陥の発生や特性劣化を抑制してTMR素子を製造することができる。TMR素子の製造においては、酸化処理時において、基板に対して不純物の付着を低減することが求められる。本実施形態では、外部に対して基板を出し入れするLL室に直接接続されず、LL室に対して他の搬送装置(403)を介して接続された搬送装置405に酸化装置409を接続している。従って、反応装置405自体の真空度を高めることができ、非常に高い真空度を求められる酸化装置409を超真空が確立された搬送装置405に接続されることになる。その結果、多数の基板に対して連続成膜を行なっても、酸化装置409内を超真空に保つことができる。よって、上述のように、TMR素子の製造における酸化処理において、基板(成膜済みの膜)に対して不純物の吸着を低減することができる。
 ここで、図10を用いて本実施形態に係るスパッタリング装置について説明する。スパッタリング装置1は真空排気可能な処理容器2と、処理容器2と排気口を介して隣接して設けられた排気チャンバ8と、排気チャンバ8を介して処理容器2内を排気する排気装置48と、を備えている。処理容器2内には、ターゲット4を、バックプレート5を介して保持するターゲットホルダ6が設けられている。ターゲットホルダ6の近傍には、ターゲットシャッター14がターゲットホルダ6を遮蔽するように設置されている。ターゲットシャッター14は、回転シャッターの構造を有している。ターゲットシャッター14には、ターゲットシャッター14の開閉動作を行うためのターゲットシャッター駆動機構33が設けられている。
 さらに、処理容器2は、処理容器2内へ不活性ガス(Arなど)を導入するための不活性ガス導入系15と、反応性ガス(酸素、窒素など)を導入するための反応性ガス導入系17と、処理容器2の圧力を測定するための圧力計44とを備えている。各導入系には、ガスを供給するためのガス供給装置が接続されている。またガスを導入するための配管と、流量を制御するためのマスフローコントローラー(MFC)等を備え、制御装置(例えば、図13に示す制御装置)により制御される。
 反応性ガス導入系17には反応性ガスを供給するための反応性ガス供給装置(ガスボンベ)18が接続されている。反応性ガス導入系17は、反応性ガスを導入するための配管と、不活性ガスの流量を制御するためのMFCと、ガスの流れを遮断したり開始したりするためのバルブ類とを有している。なお、反応性ガス導入系17は、そして必要に応じて減圧弁やフィルターなどを有しても良い。このような構成により、反応性ガス導入系17は、図示しない制御装置により指定されるガス流量を安定に流すことができる。
 処理容器2の内面は電気的に接地されている。ターゲットホルダ6と基板ホルダ7の間の処理容器2の内面には電気的に接地された筒状のシールド40が設けられている。排気チャンバ8は、処理容器2と排気装置48との間を繋いでいる。ターゲット4の背後には、マグネトロンスパッタリングを実現するためのマグネット13が配設されている。マグネット13は、マグネットホルダ3に保持され、図示しないマグネットホルダ回転機構により回転可能となっている。ターゲットホルダ6には、スパッタ放電用電力を印加する電源12が接続されている。本実施形態においては、図15に示すスパッタリング装置1は、DC電源を備えているが、RF電源を備えていてもよい。
 ターゲットホルダ6は、絶縁体34により接地電位の処理容器2から絶縁されている。ターゲット4とターゲットホルダ6との間に設置されているバックプレート5がターゲット4を保持している。ターゲットホルダ6の近傍には、ターゲットシャッター14がターゲットホルダ6を覆うように設置されている。ターゲットシャッター14は、基板ホルダ7とターゲットホルダ6との間を遮蔽する閉状態、または基板ホルダ7とターゲットホルダ6との間を開放する開状態にするための遮蔽部材として機能する。
 基板ホルダ7の面上で、かつ基板10の載置部分の外縁側(外周部)には、リング形状を有する遮蔽部材(以下、「カバーリング21」ともいう)が設けられている。カバーリング21は、基板ホルダ7上に載置された基板10の成膜面以外の場所へスパッタ粒子が付着することを防止、ないしは低減する。基板ホルダ7には、基板ホルダ7を上下動したり、所定の速度で回転したりするための基板ホルダ駆動機構31が設けられている。基板10の近傍で、基板ホルダ7とターゲットホルダ6との間には、基板シャッター19が配置されている。シャッター19は、基板シャッター支持部材20により基板10の表面を覆うように支持されている。基板シャッター駆動機構32は基板シャッター支持部材20を回転及び並進させることにより、基板10の表面付近の位置において、ターゲット4と基板10との間にシャッター19を挿入する(閉状態)。シャッター19がターゲット4と基板10との間に挿入されることによりターゲット4と基板10との間は遮蔽される。また、基板シャッター駆動機構32の動作によりターゲットホルダ6(ターゲット4)と基板ホルダ7(基板10)との間からシャッター19が退避すると、ターゲットホルダ6(ターゲット4)と基板ホルダ7(基板10)との間は開放される(開状態)。基板シャッター駆動機構32は、基板ホルダ7とターゲットホルダ6との間を遮蔽する閉状態、または基板ホルダ7とターゲットホルダ6との間を開放する開状態にするために、シャッター19を開閉駆動する。開状態において、シャッター19は、シャッター収納部23に収納される。図15に示すようにシャッター19の退避場所であるシャッター収納部23が高真空排気用の排気装置48までの排気経路の導管に納まるようにすれば、装置面積を小さく出来て好適である。
(第2の実施形態)
 図2に本実施形態に係るTMR素子の製造装置500の構成の一例を示す。製造装置500は、ロボットアーム527を有し、少なくとも1つの基板処理装置が接続された搬送装置403と、基板を搬送装置503に搬入するための、またはプロセスが完了した基板を搬出するための搬送装置501と搬出入室502A、502Bと、ロボットアーム528を有し、複数の基板処理装置が接続された搬送装置505と、搬送装置503から搬送装置505へ基板を搬出入するための載置室504A、504Bとを備えている。搬送装置503と搬送装置505とには、それぞれ装置内を真空に排気するための排気装置503a、505aが接続されている。この排気装置503a、505aは例えばターボ分子ポンプやクライオポンプ等の本実施形態に必要な真空度が得られる各種の排気装置を用いることができる。
 さらに載置室504A、504Bと搬送装置505との間、および、載置室504A、504Bと搬送装置503との間の両方にゲートバルブ520A、520B、521A、521Bが設けられている。搬送装置505は高真空に維持されている。また、搬送装置505に対する基板搬入時に発生する真空度劣化がより抑制されている。搬送装置505の真空度をより安定で良好に保つことができる。また、搬出入室502A、502Bと搬送装置503との間にそれぞれゲートバルブ515A、515Bが設けられている。
 また、製造装置500は、TMR素子を形成する前に、基板表面に付着している自然酸化膜や不純物を除去するためのエッチング装置506と、TMR素子の各種金属膜を形成するための4つのスパッタリングカソードを備えたスパッタ装置(4PVD)507とを備えている。さらに、製造装置500は、金属膜を酸化するための酸化装置508を備えている。
 エッチング装置506と搬送装置503との間には、ゲートバルブ519が設けられており、スパッタ装置(4PVD)507と搬送装置503との間には、ゲートバルブ516、517、518が設けられている。また、スパッタ装置(4PVD)507と搬送装置505との間には、ゲートバルブ523、524、525、526とが設けられており、酸化装置508と搬送装置505との間には、ゲートバルブ522が設けられている。
 搬送装置505はLL室に対して搬送装置503を介して接続されているため、搬送装置505内を高真空に維持することが可能である。このため、搬送装置505に接続されたスパッタ装置507で金属膜を成膜後に酸化装置508で酸化処理を行う場合、搬送装置505内で基板を搬送する際の基板表面への不純物の吸着を抑制できる。金属膜表面への不純物を抑制しつつ、該金属膜を酸化することで、原子層オーダーで均一性が良好な金属酸化膜を形成できる。また、搬送装置505に接続されたスパッタ装置507で金属積層膜を形成し、さらに搬送装置505に接続された別のスパッタ装置507で金属積層膜を形成する場合、界面の不純物吸着が少ないため、格子欠陥の少ない金属積層膜の製造が可能となる。特に垂直磁化膜においては多数の金属膜を積層させて形成するため、界面の不純物吸着が少ないことが重要であり、本実施形態に係る装置を用いることで垂直磁化膜の磁気特性の劣化を抑制し、高い抵抗変化率を持つTMR素子の作成が可能である。なお、載置室504Aおよび504Bにはクライオポンプがついていてもよい。
 載置室504Aおよび504Bにクライオポンプを接続することにより、搬送装置505の真空度をさらに安定で良好に保つことができる。クライオポンプを載置室504Aおよび504Bに設けることにより、例えば、搬送装置505における水分分圧を下げることができ、金属積層膜の界面における不純物を低減できるため、垂直磁化膜の磁気特性の劣化を抑制し、高い抵抗変化率を持つTMR素子の形成が可能である。
 さらに、搬送装置505に対して、基板載置室504A,504Aに隣接した位置に酸化装置508を配置することで、製造装置500が占める床面積を低減し、基板搬送装置505の真空度を向上させることが可能となる。
 この点について図1および図2を用いて説明する。
 図1の製造装置では、酸化装置409が、基板搬送装置404に対して遠く離れた位置で搬送装置405に接続されている。このような装置構成において、例えば多数の積層膜からなるSTT-TMRを下層から上層まで真空一貫で製造する場合、必要に応じて基板搬送装置405に更にスパッタ装置を増設する。ここで用いられるスパッタ装置は、図4でも説明した通り、多層の積層膜を真空一貫で形成するために複数のターゲットカソードを搭載したスパッタ装置が用いられる。複数のターゲットカソードを搭載したスパッタ装置を必要な数だけ接続したクラスタ型製造装置を使用することで、多層の積層膜を形成することができる。スパッタ装置は、多数のスパッタリングカソードを備えたスパッタ装置で、多数のスパッタリングターゲットを用いることで多層の積層膜を好適に作製できる。
 しかし、多数のスパッタリングターゲットが配されたスパッタ装置は一般に大型であるため、基板載置室404Aまたは404Bに隣接した位置にスパッタ装置を配する場合、基板搬送装置403側に設けられたスパッタ装置407との接触を避けるために、基板搬送装置403と基板搬送装置405の間隔を大きく空ける必要がある。結果、装置の床面積が増加し、また搬送装置403、載置室404A、404B、搬送装置405の少なくとも1つを大型化する必要があり、真空度も低下しやすくなるかもしれない。特にターゲットカソードの数が多いスパッタ装置ほど大型化の問題は大きい。また本実施形態に係る搬送装置403および搬送装置405に接続された各スパッタ装置407は、各スパッタ装置407において搬送装置と接続されたゲートバルブと反対の側に排気室および排気装置を備えている。このようなスパッタ装置407の形態においてはさらに基板搬送装置403と基板搬送装置405の間隔を大きく空ける必要がある。
 これに対し、図5に示すように、複数のターゲットを備えるスパッタ装置507に対して小型の酸化装置508を基板搬送装置505に隣接して配置することで、搬送装置503に接続されたスパッタ装置507との接触を避けるために必要な搬送装置503と搬送装置505の間隔を小さくできる。このため、各搬送装置の大型化を防ぎ、各搬送装置内の真空度を良好に保持できる。
 本実施形態における製造装置では、各搬送装置の略中心に搬送手段としてロボットアーム527、528が設けられている。ロボットアーム527、528は搬送装置の略中心に回転軸を有し、該回転軸に設けられたアームを伸縮させることで基板を搬送する。本実施形態における搬送手段としてのロボットアーム527、528はアームを2本有しており、これらのアームは一体として回転してもよいし、各々が独立して回動可能に構成されてもよい。搬送装置における各処理装置および各載置室との接続面は、アームの伸縮方向に対して垂直であり、該接続面における基板の搬送口を可能な限り小さくするように構成される。このような構成により搬送装置505内の雰囲気をより高真空に維持することが可能となる。また、中心軸が回動する回動式アームを用いることで、中心軸が搬送装置内をスライドするスライド式アームに比べて発塵を抑制し、高真空を維持し易い。
 また、本実施形態では、搬送手段の回転軸を中心として、搬送装置505に載置室や処理装置等を合計7つ、搬送装置503では合計8つ接続している。本実施形態のように、回転軸を中心として各装置との接続面が5角以上の多角形である搬送装置を用いた製造装置である場合、特に搬送装置503の載置室に隣り合わせて設けられた処理装置と、搬送装置505の載置室に隣り合わせて設けられた処理装置との接触が問題となり易い。このような場合においても、処理装置のうち比較的小型である酸化装置を、載置室504Aまたは504Bに隣り合わせて搬送装置505に設けることで、製造装置の大型化を抑制し、各搬送装置内の真空度を良好に保持できる。
(第3の実施形態)
 図3に本実施形態に係るTMR素子の製造装置530の構成を示す。この製造装置530は、図2の製造装置500に設けられたスパッタ装置507の1つをアニール装置510に置き換えた構造となっている。このアニール装置510を用いて金属膜および金属酸化膜をアニールした結果、特にバリア層、フリー層およびリファレンス層の結晶性が改善でき、抵抗変化率を改善できる。これは、スパッタにより成膜された金属膜表面を高い真空度で維持された搬送装置505を用いて真空中に待機させることなくアニール装置510に搬送して処理が行われるため、界面への不純物吸着が抑制され、金属積層膜構造における結晶欠陥の発生や特性劣化を抑制することができたためと考えられる。また、アニール装置510は基板冷却機能を備えており、加熱後すぐに基板を冷却することができる。基板が高温のまま次のスパッタ処理を行った場合、スパッタされた金属膜が拡散し、原子層レベルの平坦性を劣化させ、特性劣化を引き起こすことがある。そのため、基板加熱処理後は、冷却することが必要となる場合もあり、図に示していないが、本発明の装置に、冷却装置を独立に備えても良い。アニール装置510としては、例えば国際公開WO2010/150590号に示される装置が好適に用いられる。
(第4の実施形態)
 図4に本実施形態に係るTMR素子の製造装置600の構成を示す。この製造装置600は、図2の製造装置500に設けられたスパッタ装置507の1つを酸化装置511に置き換えた構造となっている。例えば、非特許文献3に示されるように、トンネルバリア層以外の酸化物層を有するTMR素子を製造する場合、酸化処理が2回必要となる。
 ここで、酸化装置を1つだけ有する製造装置における、TMR素子の酸化プロセスを図14に示す。
 図8は、図2に示す製造装置において非特許文献3に示されているTMR素子を製造する際の、酸化処理前後の処理および、基板間の各処理のタイミングの関係を示したものである。まず基板上に所定の膜が形成された後、酸化処理が行われる金属膜の成膜が行われる。その後該金属膜の酸化処理が行われる。そして再度、酸化処理が行われる金属膜の成膜が行われ、該金属膜の酸化処理が行われる。1つのTMR膜の作製において2回の酸化処理を要する場合、1つの酸化装置508を2回使用する必要がある。図8に示すように、1枚目と2枚目の酸化処理は、互いの金属膜を成膜している時間に交互に酸化処理を行うことで、基板が酸化処理のために待機する時間を短縮できる。ただし、3枚目は2枚目の酸化処理が完了するまでの間待機する必要が生じる。3枚目以降の処理の流れは1枚目と2枚目の反復であり、3枚目、5枚目、7枚目、と奇数の順番の基板において待機時間が生じてしまう。基板の待機時間が生じると、待機している間に基板表面に不純物の吸着等が生じるため、スループットが低下するだけでなく、素子特性の劣化が生じる。従って、図2の製造装置による成膜においては、従来に比べて十分に不純物の付着を低減することができ、結晶欠陥の発生や特性劣化を良好に低減することができるが、同じ装置で2回の酸化処理を行う形態よりも、スループットおよび素子特性改善をさらに実現できることが好ましい。
 本実施の形態に係る製造装置600では、酸化装置が搬送装置505に2台接続されている。本実施形態に係る装置において、非特許文献3に示されているTMR素子を製造する際の、酸化処理前後の処理および、基板間の各処理のタイミングの関係を図9に示す。まず基板上に所定の膜が形成された後、酸化処理が行われる金属膜の成膜が行われる。その後、該金属膜は酸化装置511にて酸化処理が行われる。そして再度、酸化処理が行われる金属膜の成膜が行われ、該金属膜は酸化装置508にて酸化処理が行われる。2枚目以降の基板については、先行する基板の酸化処理が終了した酸化装置に搬入され、酸化処理が行われるため、図2に示す装置のように、先行する基板の酸化処理が終了するまで待機している時間を大幅に短縮することが可能となる。この結果、本実施形態に係る製造装置600は、スループットをさらに改善しつつ、さらに特性の優れたTMR素子を製造することができる。
 このように、搬送装置505に接続される酸化装置は複数あるほうが生産性の向上や金属積層膜構造における結晶欠陥の発生や特性劣化の抑制の観点で望ましい。特に酸化処理が2回以上必要であるような場合には、生産性の向上や金属積層膜構造における結晶欠陥の発生や特性劣化の抑制の観点でさらに望ましい。酸化処理の回数と酸化装置の数が同じに設定されるほうが制御プログラムの簡素化の観点で好ましい。
 なお、本実施形態においても、第3の実施形態で示したように、スパッタ装置507の1つをアニール装置510に置き換えてもよい。
(第5の実施形態)
 上述した実施形態に係る装置では、搬送装置505と搬送装置503との間に載置室504Aおよび504Bが配される。このため、搬送装置503に比して搬送装置505が高真空に維持される。しかし、搬送装置505に酸化装置が設けられている形態では、酸化装置内に導入された酸素ガス等によって搬送装置505の真空度が低下しやすい。このような問題に対し、酸化装置において、基板に所定の酸化処理を行った後、酸化装置内が規定の真空度に達するまで排気を行うという方法が考えられるが、この方法に依れば、酸化装置内の排気が完了するまで次の酸化処理が行えず、スループットの低下を招く。
 本実施形態は、酸化装置内の排気が十分に完了せずとも、他の基板への素子特性の劣化を抑制し、次の基板の酸化処理を可能とする。本実施形態について図5を用いて説明する。
 各基板処理装置、載置室および各搬送装置の間には、各々の空間を隔離する開閉可能なゲートバルブ515A、515B、516、517、518、519、520A、520B、521A、521B、522、523、524、525、526が設けられる。本実施形態では製造装置700に備えられた制御装置(例えば、図13に示す制御装置900)により、上記各ゲートバルブと搬送装置503のロボットアーム527、搬送装置505のロボットアーム528が制御される。
 制御装置(例えば、図13に示す制御装置900)は図7に示されるフローに従って、各ゲートバルブおよびロボットアーム527、528を制御する。
 図7に示すフローについて以下で説明する。
 まず、ステップS71にて、制御装置は、酸化装置508および酸化装置511の少なくとも一方にて酸化処理を実行する。ステップS72にて、制御装置は、酸化装置508および酸化装置511の少なくとも一方において、基板の酸化処理が完了した後に、他の被処理基板が、搬送装置505から搬送装置505に接続された他の酸化装置やスパッタ装置、載置室504Aおよび504Bの装置内に搬入されているか否かを判断する。未だ搬入されていない基板が存在する場合は、ステップS73にて、制御装置は、搬送装置505に存在する基板が各処理装置または載置室に搬入されたのを確認できるまで、酸化装置508、511内に基板を載置した状態で待機する。
 なお、これから酸化処理が行われる他の基板は必ずしも酸化装置内への搬入が完了している必要は無いが、素子特性安定のために、酸化装置内に基板が搬入されていることが望ましい。
 ステップS74にて、制御装置は、全ての基板がスパッタ装置内、他の酸化装置もしくは基板載置室504Aまたは504Bに搬入された後、各々に設けられたゲートバルブが閉じているかどうかを判断する。未だ閉じられていないゲートバルブが在る場合は、ステップS75にて、制御装置は、基板を該酸化装置内で待機させる。全てのゲートバルブが閉じられた後に、ステップS76にて、制御装置は、酸化処理が完了した基板が載置されている酸化装置と基板搬送装置505との間のゲートバルブを開き、ステップS77にて、搬送装置は、基板をロボットアーム528によって搬出する。その後、ステップS78にて、制御装置は、該酸化装置のゲートバルブを閉じる。各酸化装置内の雰囲気を均一に保つため、2つの酸化装置と搬送装置505の間に設けられた各々のゲートバルブは同時に開放させないことが望ましい。すなわち、制御装置は、酸化装置と搬送装置505との間に設けられたゲートバルブおよび搬送装置505と載置室504A、504Bとの間に設けられたゲートバルブの一方が開放されている間は、他方を開放しないように、上記ゲートバルブを制御する。
 このようにして、基板処理後の酸化装置のゲートバルブ開放タイミングと、他のゲートバルブの開放タイミングを一致させないことで、酸素ガスの他の処理装置内への流入を抑制することができる。
 なお、本実施形態で説明した効果は、第1または第2の形態のように酸化装置が1つの場合よりも、第3または第4の実施形態で説明したような酸化装置が複数である場合の方が効果が大きい。
(第6の実施形態)
 上述の通り、特に第4または第5の実施形態では、搬送装置505に酸化装置が複数設けられているため、酸化装置内に導入された酸素ガス等によって搬送装置505の真空度が特に低下しやすい。また、第1または第2の実施形態でも、搬送装置505に酸化装置が接続されているため、酸化装置内に導入された酸素ガス等によって搬送装置505の真空度が低下しやすいという問題は起こり得る。本実施形態ではこの問題に対し、搬送装置505に接続された処理装置内に酸素ゲッタ効果を有する物質を用いたシールド等の構成部材を配することを特徴とする。
 特にTMR素子の素子特性に大きな影響を及ぼすトンネルバリア層を構成するMgOよりも酸素ガスに対する吸着エネルギーが大きい物質を用いることが好ましい。MgOの酸素ガスに対する吸着エネルギーは約150kcal/molであり、これより大きい物質としてはTi、Ta、Mg、CrやZrなどが挙げられる。特に加工の容易性や効果的な酸素吸着などの観点からTi製の構成部材が好適である。
 また、酸化によって磁気特性の劣化が生じる磁性膜に対しても酸素ゲッタ効果を有する物質が装置構成部材に用いられていると、更なる素子特性の改善が望める。そのような物質としてはTiやTaが挙げられる。
 また、ゲッタ効果を有する構成部材をスパッタ装置内に設ける代わりにスパッタ装置内に酸素ゲッタ効果を有する物質を含有するターゲットを設けてもよい。そして、各スパッタ装置における基板への成膜処理前に、酸素ゲッタ効果を有する物質をスパッタにより装置内壁に付着させ、スパッタ装置内の酸素量を低減させる。
 なお、必ずしも全てのスパッタ装置において、基板への成膜前にゲッタ膜のスパッタを行う必要は無いが、少なくとも、特にTMRの素子特性に大きな影響を及ぼすMgOや磁性膜の成膜前に行うことが望ましい。酸素ゲッタ効果を有する物質としてはTiやTaが好適である。またゲッタ膜の構成部材をスパッタ装置内に設けた上で、ゲッタ膜のスパッタを行ってもよい。
(第7の実施形態)
 上述した各実施形態において搬送装置505に接続されたスパッタ装置507にRF電源を取り付け、直接反応性スパッタや酸化物ターゲットなどを使用したRFスパッタを併せて用いて形成しても良い。このRFスパッタは、所望のTMR素子に合わせ、複数の搭載ができる。つまり、スパッタ装置507に複数のRFカソードを設けることや、2層の酸化層が必要な場合は、2台のスパッタ装置507の各々に1台のRFカソードを設けることができる。また、上述の酸化処理とRFスパッタとを組み合わせても良い。
 複数台のRFカソードを1つのチャンバに設置することにより、成膜速度は台数に比例して増加するため、スループットを向上させることができる。
 さらに、図3に示すように、RFスパッタにより形成した絶縁膜をアニール装置510を用いてアニール処理を行っても良い。RFスパッタにより成膜された絶縁膜表面を高い真空度で維持された搬送装置505を用いて、速やかにアニール装置510に搬送して処理が行われるため、界面への不純物吸着が抑制され、金属積層膜構造における結晶欠陥の発生や特性劣化を抑制することができている。
(第8の実施形態)
 本実施形態では、搬送装置505に接続される酸化装置508および511について、より搬送装置505を高真空に維持するのに適した酸化装置を用いている。図11、図12において、本実施形態に係る酸化装置800について説明する。
 酸化装置800は、処理容器801と、処理容器内を排気するための排気部としての真空ポンプ802と、処理容器801内に設けられた基板803を保持するための基板ホルダ804と、処理容器801内に設けられた筒部材805と、処理容器801内に酸素ガスを導入する酸素ガス導入手段としてのガス導入部806と、基板搬送口807とを備えている。該基板搬送口807には図示しないスリットバルブが設けられている。
 基板ホルダ804は、基板803を保持するための基板保持面804aと、該基板保持面804aが形成された載置部804bとを有しており、該基板保持面804a上に基板803が載置される。また、基板ホルダ804の内部には加熱装置としてのヒータ808が設けられている。また、基板ホルダ804には、基板ホルダ804と筒部材805との相対位置を変化させる位置変化手段としての基板ホルダ駆動部809が接続されている。基板ホルダ駆動部809は、基板ホルダ804を、矢印方向P(基板ホルダ804を酸化処理空間810に近づける方向、および基板ホルダ804を酸化処理空間810から遠ざける方向)に移動させる。本実施形態では、基板搬送時においては、基板ホルダ駆動部809の制御により、基板ホルダ804を図11に示す位置に移動させる。基板搬入時には、この状態で、基板搬送口807を介して基板803を処理容器801内に搬入し、基板保持面804a上に基板803を載置する。基板搬出時には、基板保持面804a上に保持された基板803を基板搬送口807を介して処理容器801から搬出する。一方、酸化処理時においては、基板ホルダ駆動部809の制御により、基板ホルダ804を図12に示す位置に移動させる。この状態で、ガス導入部806により酸化処理空間810に限定的に酸素ガスを導入することにより(処理容器801内の一空間に限定的に酸素ガスを導入することにより)、酸化処理が行われる。
 ガス導入部806は、基板ホルダ804と対向する処理容器801の壁801aから離間して設けられ、多数の孔を有するシャワープレート811と、上記壁801aに設けられ、処理容器801内に酸素ガスを導入するガス導入口を有する酸素導入経路812と、シャワープレート811と壁801aとの間の空間であって、酸素導入経路812から導入された酸素ガスを拡散するためのガス拡散空間813とを有する。本実施形態では、拡散空間813に酸素ガスが導入されるように酸素導入経路812が設けられており、酸素導入経路812から導入され拡散空間813にて拡散された酸素ガスは、シャワープレート811を介して、基板面内に均等に供給される。なお、酸素導入経路812を複数設けても良い。
 筒部材805は、処理容器801の壁801aの、酸素導入経路812が接続された部分を少なくとも含む領域801bおよびシャワープレート811をぐるりと囲むように壁801aに取り付けられ、壁801aから該壁801aと対向する側(ここでは基板ホルダ804側)に向かって延在する延在部805aを有する部材である。本実施形態では、筒部材805は、延在方向に垂直に切断した断面が円状である筒状部材であるが、該断面が多角形など他の形状であっても良い。また、筒部材805は、例えばAl製である。Alは筒部材805を容易に加工することができるので好ましい。また、他には例えば、TiやSUSであっても良い。また、筒部材805が壁801aに対して着脱可能に該筒部材805を構成しても良い。延在部805aにより囲まれた空間、すなわち、筒部材805の中空部にはシャワープレート811が設けられており、筒部材805のシャワープレート811よりも壁801a側の部分と、該壁801aにおける上記領域801bの少なくとも一部と、シャワープレート811とにより拡散空間813が形成されている。
 シャワープレート811と筒部材805を設けることにより、基板803の表面に対してより均一に酸素ガスを供給することができ、酸化により生じるMgOの基板803面内における酸化分布の偏りを低減することができる。よって、RA分布を向上させることができる。
 上記シャワープレート811の孔から酸化処理空間810へと酸素ガスが導入されるので、シャワープレート811は、ガス導入部806の、酸化処理空間内に酸素ガスを限定的に導入するための部分が設けられた領域(「酸素ガス導入領域」とも呼ぶ)と言える。
 なお、一例としてシャワープレート811を設けない場合は、酸素ガスは、酸素導入経路812から酸化処理空間810内に限定的に導入されるので、領域801bが酸素ガス導入領域となる。
 本実施形態では、酸素ガス導入領域、筒部材805、および基板ホルダ804(基板保持面804a)により、酸化処理空間810が形成されると言える。
 また、筒部材805は、図12に示すように、該筒部材805の開口部805b内に基板ホルダ804が挿入された場合、延在部805aと基板ホルダ804の少なくとも一部(載置部804b)との間に間隙815が形成されるように設けられている。すなわち、筒部材805は、酸化処理空間810の形成時において、基板保持面804aを囲み、かつ基板保持面804aが形成された載置部804bと延在部805aとの間に間隙815が設けられるように構成されている。よって、ガス導入部806から酸化処理空間810内に導入された酸素ガスは、間隙815を通して酸化処理空間810から該酸化処理空間810の外部空間814に排気される。酸化処理空間810から間隙815を介して外部空間814へと排気された酸素ガスは、真空ポンプ802により処理容器801から排気される。
 基板ホルダ駆動部809は、基板保持面804aが筒部材805の内部に収容されるように基板ホルダ804を矢印方向Pにおいて移動させ、基板保持面804a(載置部804b)が開口部805bに挿入された所定の位置で基板ホルダ804の移動を停止する。このようにして、図12に示すように、間隙815のみにより外部空間814と連通する酸化処理空間810が形成される。このとき、酸化処理空間810は、シャワープレート811と、延在部805aと、基板ホルダ804(基板保持面804a)とにより形成される。よって、本実施形態においては、本発明の囲み部は、シャワープレート811、および延在部805aである。よって、筒部材805は、酸化処理時において、ガス導入部806により導入された酸素ガスが処理容器801内の酸化処理空間810内に限定的に導入されるように、該酸化処理空間810をシャワープレート811と基板ホルダ804(基板保持面804a)と共に区画するための囲み部材である。
 なお、上述のように一例としてシャワープレート811を設けない場合は、酸化処理空間810は、領域801bと、延在部805aと、基板ホルダ804とにより形成されるので、この場合は、本発明の囲み部は、処理容器801の内壁の一部である領域801b、および延在部805aである。
 なお、本実施形態では、基板ホルダ駆動部809により基板ホルダ804と筒部材805との相対位置を変化させて酸化処理空間810を形成可能にすることが重要であり、そのために、基板ホルダ駆動部809を、基板ホルダ804を一軸方向である矢印方向Pにおいて移動可能に構成している。しかしながら、この構成に限定されず、少なくとも酸化処理時には基板保持面804aを筒部材805の内部に位置させて酸化処理空間810を形成でき、かつそれ以外(例えば、基板搬送時)には、基板保持面804aを筒部材805の外部に位置させることができれば、いずれの構成を採用しても良い。例えば、基板ホルダ804を固定し、筒部材805およびガス導入部806をユニット化し、該ユニットを、ユニット化された筒部材805およびガス導入部806を基板ホルダ804に近づけることによって酸化処理空間810を形成するように構成しても良い。あるいは、基板ホルダ804を、筒部材805の左右方向にもスライド移動可能に構成し、酸化処理空間810の形成時以外には、基板ホルダ804が開口部805bに対向しない位置に移動させるように構成しても良い。
 本実施形態では、基板保持面804aの形状は円状であり、筒部材805の、延在部805aの延在方向と垂直に切断した断面は、基板保持面804a(載置部804b)の外形と相似形状である。すなわち、上記断面は円状である。また、酸化処理空間810の形成時において、シャワープレート811と基板保持面804aとは対向し、かつ間隙815もシャワープレート811と対向している。このとき、間隙815の大きさを基板保持面804aの周方向において同一にすることが好ましい。このように構成することで、基板保持面804aの周方向に形成される間隙815の全てにおいて排気コンダクタンスを同一の値にすることができる。すなわち、酸化処理空間810からの排気口として機能する間隙815の全周囲において均一に排気することができる。よって、酸化処理空間810の形成時において基板ホルダ804に載置された基板803の表面における酸素圧力を均一にすることができ、RA分布を向上させることができる。
 また、本実施形態では、基板ホルダ駆動部809は、基板ホルダ804を筒部材805の内部において、延在部805aの延在方向に沿って移動させるように構成されている。すなわち、基板ホルダ駆動部809は、筒部材805の内部において、基板ホルダ804を酸素ガス導入領域としてのシャワープレート811に近づける方向、およびシャワープレート811から遠ざかる方向に移動させることができる。
 また、本実施形態では、基板保持面804aを有し、基板ホルダ804の、間隙815を形成する領域である載置部804bは、間隙815が延在部805aの延在方向に沿って同一の大きさとなるように構成されている。すなわち、延在部805aの延在方向に沿って筒部材805の径は一定であり、かつ載置部804bの上記延在方向に沿った径も一定であり、筒部材805の内部において、基板ホルダ804の、延在部805aと最も近い部分である載置部804bを、シャワープレート811に近づける方向、および遠ざける方向に移動させても、間隙815における酸化処理空間810からのガスの排気コンダクタンスが変化しないように、基板ホルダ804および筒部材805は構成されている。よって、基板ホルダ804を筒部材805の内部において移動させても、酸化処理空間810から酸素ガスを同様に排気することができ、処理制御の複雑化を低減することができる。
 さらに、本実施形態では、筒部材805の内壁部に、例えば電解研磨処理や化学研磨処理を施して滑らかにすることが好ましい。すなわち、本実施形態では、筒部材805の内壁は平坦化されている。このように筒部材805の内壁において、面粗さを低減することにより、筒部材805の内壁に対する酸素ガスの吸着、および該内壁に吸着した酸素ガスの放出を低減することができる。また、筒部材805の内壁表面に、酸素ガスが吸着しないような膜(例えば、酸化被膜など不動態膜)をコーティングすることも好ましい。このように、筒部材805の内壁表面に不動態膜を形成することにより、該内壁表面への酸素の吸着を低減することができる。例えば、筒部材805をAlとし、筒部材805の内側に対して上記化学研磨を行うと、筒部材805の内壁面を平坦化すると共に、酸化被膜を形成することができる。平坦化による効果と共に、該酸化被膜により、筒部材805への酸素の吸着を低減することができる。
 また、本実施形態によれば、処理容器801の内部に、該処理容器801の内壁により区画される空間よりも小さい空間(酸化処理空間810)を形成し、該酸化処理空間810を区画する一部を基板保持面804aとし、該酸化処理空間810に基板保持面804aに保持された基板803を曝している。そして、該酸化処理空間810内に限定的に酸素ガスを供給して基板803の酸化処理を行う。このとき、筒部材805と基板ホルダ804との間に形成された間隙815により酸化処理空間810の排気を行っている。このように、本実施形態では、酸化処理の際に、処理容器801の限られた空間(酸化処理空間810)にのみ酸素ガスを供給し、酸化処理を行っているので、酸化処理のために酸素ガスが充満される空間が所定の圧力になるまでの時間を低減することができ、また排気にかかる時間も低減することができる。このため、酸化装置507と搬送室505の間で基板の搬送を行う際に、真空度の高い搬送室505への酸素ガスの流出を抑制することができ、より高品質の薄膜を成膜することが可能となる。
 また、処理容器801の内部に該処理容器801の内壁により区画される空間よりも小さい空間(酸化処理空間810)を形成し、その中で酸化処理を行っているので、従来に比べて酸化処理が行われる空間を区画する部材の表面積を大幅に小さくすることができる。従って、酸化処理が行われる酸化処理空間810を形成する筒部材805に付着する酸素の付着量を低減することができ、排気後において、筒部材805の内壁から放出されてしまう酸素の量を大幅に低減することができる。この点も搬送室505の高真空度を維持する点で有利である。
 さらに、処理容器801の内部に、該処理容器801の内壁とは別個の部材である筒部材805を用いて酸化処理空間810を区画しているので、酸化処理空間810の形状を自由に設定することができる。よって、酸化処理空間810の、基板803(基板保持面804a)の表面と平行に切断した断面形状を、基板803(基板保持面804a)の外形と相似形状にすることができる。従来では、処理容器が円筒状である場合において、基板(基板保持面)の外形が四角形である場合、酸化処理が行われる空間の、基板(基板保持面)の表面と平行に切断した断面は円形となり、基板(基板保持面)の外形とは異なる。これに対して、本実施形態では、例えば、処理容器801が円筒状であり、基板803(基板保持面804a)の外形が四角形である場合、その断面が四角形となる筒部材805を処理容器801の内部に取り付けることにより、酸化処理空間810の断面形状を基板803(基板保持面804a)の外形と相似形状にすることができる。このように、酸化処理空間810の断面形状と基板803(基板保持面804a)の外形とを相似形状にすれば、基板803(基板保持面804a)の周方向において間隙815の幅を同一にすることができ、排気コンダクタンスを同一にすることができる。よって、基板803表面の酸化分布を低減することができる。
 このように本実施形態に係る酸化装置を用いることにより、基板の酸化処理に必要な酸素導入量を低減することができ、また所定の酸化処理が行われた後に酸素ガスを速やかに排気することが可能となる。このため、酸化装置508および511から搬送装置505に流出する酸素ガスの流量を低減することができ、搬送装置505をより高真空に維持することが可能となる。
(第9の実施形態)
 本発明に係る基板処理システムにおいては、良質なトンネルバリア層を形成するために、より真空度の高い搬送装置505に酸化装置508が接続されている。しかしながら、真空度の高い搬送装置505に酸化装置508を接続した場合、酸化装置508から流出した酸素ガスにより搬送装置505内の酸素圧力が向上する可能性がある。このような問題は、特にスループット向上の観点から酸化装置508内における酸化処理後に酸化装置508内を十分に排気できない場合に生じ得る。
 搬送装置505内の酸素圧力が上がると、スパッタ装置507にて薄膜を形成後に他の処理装置に基板を搬送する際に、薄膜界面に酸素が吸着し、あるいは意図しない酸化が生じ、デバイス特性を劣化させうる。特に、デバイスを構成する薄膜のうち、より清浄な雰囲気が求められる薄膜について、搬送装置505に接続された処理装置を用いて処理を行っているため、このような薄膜界面の酸素への曝露は極力低減されることが望ましい。
 本実施形態では、基板が各処理装置間を搬送装置505を介して搬送される際に、基板が搬送装置505に滞在する時間を搬送装置503に比して短くすることで、薄膜界面が酸素に曝露される時間(酸素ガスへの曝露量)を低減している。本実施形態に係る基板処理システムを図6に示す。本実施形態に係る装置では、搬送装置503に設けられるロボットアーム527は2つであるのに対して、搬送装置505に設けられるロボットアーム528は1つとなっている。従来の装置では、単位時間あたりに処理可能な基板の枚数を増やすために搬送装置に設けられるロボットアームを2つ以上とし、基板処理システム内に滞在可能な基板の数を増やしていた。しかし、このような基板処理システムでは、ロボットアームが1つの場合に比べて搬送装置503および搬送装置505における基板の滞在時間が長くなる傾向にある。ロボットアームが2つ設けられた搬送装置を例として説明すると、第1の処理装置で基板処理が終了した後、2つのロボットアームの第1アームにより該第1の処理装置から第2の基板が搬出される。そして2つのロボットアームの第2アームで保持していた第1の基板を該第1の処理装置に搬入する。次に、第2アームを、第2の基板が次に搬入されるべき第2の処理装置の前で待機させる。第2の処理装置に在る第3の基板の処理が終了した後に、第3の基板を第2アームによって搬出する。そして第1アームに保持している第2の基板を第2の処理装置に搬入する。
 このような搬送方法によれば、各処理装置で処理が終了した基板は、次の処理装置で処理されている基板の処理が終了するまで、搬送装置の該処理装置の前で待機することになる。この待機中に基板最表面に形成された薄膜表面は搬送装置内の酸素ガスに曝露されることになる。
 本実施形態では、搬送装置503に設けられたロボットアーム527は2つであるのに対し、搬送装置505に設けられたロボットアーム528は1つとなっている。ロボットアームが1つである場合、各処理装置で処理が終了した基板は、次の処理装置にすぐに搬入される。もしくは次の処理装置で基板が処理中の場合は、該基板の処理が終了し、該基板をその次の処理装置に搬入した後に、基板の搬送が行われる。従って、基板が搬送装置内で待機する時間を無くし、基板が搬送装置内に滞在する時間を極力短縮することができる。
 また搬送装置503にはロボットアームが2つ設けられているため、搬送装置503に接続された処理装置における基板処理時間と、搬送装置505に接続された処理装置における基板処理時間とを調整することで、スループットの低下を抑制しつつ、搬送装置505における基板の滞在時間を短縮することが可能となる。
(第10の実施形態)
 上述した第9の実施形態では、搬送装置503に設ける搬送手段としてのロボットアームを2つ以上とし、搬送装置505に設ける搬送手段としてのロボットアームを1つとすることで、スループットの低下を抑制しつつ、搬送装置505における基板の滞在時間を低減した。
 これに対して本実施形態では搬送装置505に設けられるロボットアームを2つ以上とした上で、搬送装置505における基板の滞在時間を低減することを目的とする。
 なお、本実施形態の説明では、第9の実施形態において説明した2つのロボットアームを用いた場合の搬送方法については第1のモード、1つのロボットアームを用いた場合の搬送方法については第2のモードと呼称する。本実施形態では、搬送装置505に設けられたロボットアームで基板を搬送する際に、第1のモードと第2のモードとを切り替えることを特徴とする。
 搬送装置505に接続された各処理装置において基板が処理されるが、各々の処理が終了して基板が搬送装置505に搬出される際の基板の最表面が、比較的酸素による影響が小さい処理も存在しうる。このような酸素による影響が小さい状態の基板を搬送装置505にて待機させたとしても素子に及ぼす影響は小さい。本実施形態では、搬送装置505に搬送された基板のうち、酸素による影響が比較的小さい状態においては第1のモードで搬送し、その後に酸素による影響が大きい膜が基板の最表面に形成されてからは第2のモードに移行することを特徴とする。
 以下、非特許文献2に示される多層膜を本実施形態に係る基板処理システム850を用いて製造する例を用いて具体的に説明する。
 まず、基板処理システム850に搬入された基板は搬送装置503に接続されたエッチング装置506にて、表面に付着した不純物等を除去する。次に搬送装置505に搬送され、スパッタ装置507Bに搬入される。スパッタ装置507BではRuCoFeおよびTaからなるシード層が形成され、基板表面を平坦化する。次に、スパッタ装置507Cに搬入され、磁化自由層であるCoFeB層およびその後の酸化処理によりトンネルバリア層となるMg層が形成される。このとき、載置室504Aまたは504Bからスパッタ装置507Bへの搬送、およびスパッタ装置507Bからスパッタ装置507Cへの搬送については、エッチング後の基板表面およびシード層表面が酸化による影響が小さいため、第1のモードで基板の搬送を行う。
 基板にMg層が形成された後、基板は酸化装置508に搬入され、酸化処理が施されることでトンネルバリア層が形成される。その後、スパッタ装置507Dに搬入されて磁化固定層であるFe層およびCoFeB層が形成される。次にスパッタ装置507Eに搬送され、Ta層、Co層およびPt層が形成される。その後、基板は載置室504Aまたは504Bを経由して搬送装置503に搬送され、Pt層以降の膜がスパッタ装置507A、507F、507Gにより形成される。この製造工程において、酸化処理が施されてトンネルバリア層となるMg層や、トンネルバリア層であるMgO層、磁化固定層であるCoFeB層の表面が多量の酸素ガスに曝露されると、トンネルバリア層の品質が劣化し、あるいは磁化固定層における磁気特性が劣化する。従って、スパッタ装置507Cから酸化装置508に搬送される場合、酸化装置508からスパッタ装置507Dに搬送される場合、およびスパッタ装置507Dからスパッタ装置507Eに搬送される場合は、搬送装置505における滞在時間が短くなる第2のモードで搬送されることが望ましい。なお、第2のモードで搬送する場合、ある処理装置から次の処理装置への搬送の際には、該次の処理装置に基板が在ってはならない。従って、次の処理装置を空けるためにさらに次の処理装置を空ける必要がある。従って、第2のモードに切り替わった後は、基板が載置室504Aまたは504Bに搬送されるまで第2のモードで搬送されることになる。
 なお、上述の例ではMg層およびMgO層、CoFeB層の表面が搬送装置505内の雰囲気に晒される場合について説明したが、非特許文献2に示されるようなTMR素子においては、トンネルバリア層の膜質およびそれに接する磁化自由層および磁化固定層の磁気特性が非常に重要となる。従ってこれらの膜が搬送装置505内の雰囲気に曝露される時間を短くするように第1のモードと第2のモードとの切り替えタイミングは決定される。
 図13を用いて本発明の一実施形態に係る製造装置を動作させるための制御装置について説明する。制御装置は主制御部900を備え、主制御部900に具備された記憶装置901には、本発明に係る種々の基板処理プロセスを実行する制御プログラムが格納されている。例えば、制御プログラムは、マスクROMとして実装される。あるいは、ハードディスクドライブ(HDD)などにより構成される記憶装置901に、外部の記録媒体やネットワークを介して制御プログラムをインストールすることも可能である。主制御部900は、各処理装置、各搬送装置、載置室およびLL室の各々の間に設けられるゲートバルブの開閉動作や、搬送装置に設けられた搬送手段を制御する。その他に、各装置に設けられた排気装置やガス導入手段等も制御し得る。

Claims (14)

  1.  外部との基板の搬入出を行うためのロードロック装置と、
     前記ロードロック装置と接続され、少なくとも1つの基板処理装置が接続された第1基板搬送装置と、
     前記第1基板搬送装置に設けられた第1排気手段と、
     前記第1基板搬送装置と接続され、複数の基板処理装置が接続された第2基板搬送装置と、
     前記第2基板搬送装置に設けられた第2排気手段とを備え、
     前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つは酸化装置であることを特徴とするトンネル磁気抵抗素子の製造装置。
  2.  前記第1基板搬送装置と前記第2基板搬送装置の間には基板載置室が設けられていることを特徴とする請求項1に記載の製造装置。
  3.  前記第2基板搬送装置には、酸化装置が複数接続されていることを特徴とする請求項1に記載の製造装置。
  4.  前記基板載置室にはクライオポンプが設けられていることを特徴とする請求項2に記載の製造装置。
  5.  前記複数の酸化装置のうち少なくとも1つは、前記基板載置室に隣り合わせて前記第2基板搬送装置に接続されることを特徴とする請求項3に記載の製造装置。
  6.  前記第1基板搬送装置に接続された少なくとも1つの基板処理装置のうち少なくとも1つはスパッタ装置であり、
     前記スパッタ装置は前記第1基板搬送装置と接続している側と反対の側に排気室を備え、
     前記スパッタ装置は前記基板載置室と隣接して前記第1基板搬送装置に接続されていることを特徴とする請求項5に記載の製造装置。
  7.  前記基板載置室と前記第2基板搬送装置との間に設けられた第1ゲートバルブと、
     前記第2基板搬送装置と前記酸化装置との間に設けられた第2ゲートバルブと、
     制御部と、を備え、
     前記制御部は、前記酸化装置において前記基板の酸化処理が終了した後に、前記第1ゲートバルブが閉じられていることを確認し、前記第1ゲートバルブが閉じられている状態で前記第2ゲートバルブを開放することを特徴とする請求項1に記載の製造装置。
  8.  前記制御部は、前記第1ゲートバルブおよび前記第2ゲートバルブの一方が開放されている間は、前記第1ゲートバルブおよび前記第2ゲートバルブの他方を開放しないことを特徴とする請求項7に記載の製造装置。
  9.  前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つはスパッタリング装置であり、
     前記スパッタリング装置内には酸素ガスに対するゲッタ効果を有する物質を含む構成部材が設けられていることを特徴とする請求項1に記載の製造装置。
  10.  前記第2基板搬送装置に接続された複数の基板処理装置のうち少なくとも1つはスパッタリング装置であり、
     前記スパッタリング装置内にはRFカソードが設けられていることを特徴とする請求項1に記載の製造装置。
  11.  前記酸素ゲッタ効果を有する物質はTiまたはTaであることを特徴とする請求項9に記載の製造装置。
  12.  前記第2基板搬送装置内の真空度が前記第1基板搬送装置内の真空度よりも高いことを特徴とする請求項1に記載の製造装置。
  13.  前記第2基板搬送装置に接続された複数の基板処理装置のうちの少なくとも1つは加熱処理装置であることを特徴とする請求項1に記載の製造装置。
  14.  前記第1基板搬送装置は、基板を搬送するための搬送手段を2つ以上有し、
     前記第2基板搬送装置は、基板を搬送するための搬送手段を少なくとも1つ以上有することを特徴とする請求項1に記載の製造装置。
     
PCT/JP2013/003014 2012-08-10 2013-05-10 トンネル磁気抵抗素子の製造装置 WO2014024358A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014529250A JP5745699B2 (ja) 2012-08-10 2013-05-10 トンネル磁気抵抗素子の製造装置
KR20147026799A KR20140129279A (ko) 2012-08-10 2013-05-10 터널 자기저항소자 제조장치
US14/462,860 US20140353149A1 (en) 2012-08-10 2014-08-19 Tunnel magneto-resistance element manufacturing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012178207 2012-08-10
JP2012-178207 2012-08-10
JP2012287202 2012-12-28
JP2012-287202 2012-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/462,860 Continuation US20140353149A1 (en) 2012-08-10 2014-08-19 Tunnel magneto-resistance element manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2014024358A1 true WO2014024358A1 (ja) 2014-02-13

Family

ID=50067630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003014 WO2014024358A1 (ja) 2012-08-10 2013-05-10 トンネル磁気抵抗素子の製造装置

Country Status (5)

Country Link
US (1) US20140353149A1 (ja)
JP (1) JP5745699B2 (ja)
KR (1) KR20140129279A (ja)
TW (1) TWI514500B (ja)
WO (1) WO2014024358A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097520A1 (ja) 2012-12-20 2014-06-26 キヤノンアネルバ株式会社 酸化処理装置、酸化方法、および電子デバイスの製造方法
SG11201504875UA (en) 2012-12-20 2015-07-30 Canon Anelva Corp Method for manufacturing magnetoresistance effect element
JP6998664B2 (ja) * 2017-03-23 2022-01-18 東京エレクトロン株式会社 ガスクラスター処理装置およびガスクラスター処理方法
KR102451018B1 (ko) 2017-11-13 2022-10-05 삼성전자주식회사 가변 저항 메모리 장치의 제조 방법
US11948810B2 (en) 2017-11-15 2024-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus for processing substrates or wafers
DE102018107547A1 (de) * 2017-11-15 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Vorrichtung zur behandlung von substraten oder waferen
JP6970624B2 (ja) * 2018-02-13 2021-11-24 東京エレクトロン株式会社 成膜システム及び基板上に膜を形成する方法
WO2022177370A1 (ko) * 2021-02-19 2022-08-25 주식회사 플라즈맵 플라즈마 처리 장치 및 이를 이용한 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037352A (ja) * 1973-08-06 1975-04-08
JP2002171011A (ja) * 2000-12-04 2002-06-14 Ken Takahashi 磁気抵抗効果素子及びその製造方法並びに磁気抵抗効果センサ
JP2003253439A (ja) * 2002-03-01 2003-09-10 Ulvac Japan Ltd スパッタ装置
WO2009060541A1 (ja) * 2007-11-09 2009-05-14 Canon Anelva Corporation インライン型ウェハ搬送装置
JP2011138844A (ja) * 2009-12-26 2011-07-14 Canon Anelva Corp 真空処理装置および半導体デバイスの製造方法
WO2012086183A1 (ja) * 2010-12-22 2012-06-28 株式会社アルバック トンネル磁気抵抗素子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286296A (en) * 1991-01-10 1994-02-15 Sony Corporation Multi-chamber wafer process equipment having plural, physically communicating transfer means
JP3486462B2 (ja) * 1994-06-07 2004-01-13 東京エレクトロン株式会社 減圧・常圧処理装置
US5934856A (en) * 1994-05-23 1999-08-10 Tokyo Electron Limited Multi-chamber treatment system
JP2000034563A (ja) * 1998-07-14 2000-02-02 Japan Energy Corp 高純度ルテニウムスパッタリングターゲットの製造方法及び高純度ルテニウムスパッタリングターゲット
US6188512B1 (en) * 1998-11-02 2001-02-13 Southwall Technologies, Inc. Dual titanium nitride layers for solar control
JP2002083783A (ja) * 2000-09-07 2002-03-22 Seiko Epson Corp Rfスパッタ装置及び半導体装置の製造方法
US6574079B2 (en) * 2000-11-09 2003-06-03 Tdk Corporation Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys
JP2005142355A (ja) * 2003-11-06 2005-06-02 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2007056336A (ja) * 2005-08-25 2007-03-08 Tokyo Electron Ltd 基板処理装置,基板処理装置の基板搬送方法,プログラム,プログラムを記録した記録媒体
CN101615653B (zh) * 2006-03-03 2012-07-18 佳能安内华股份有限公司 磁阻效应元件的制造方法以及制造设备
US8133367B1 (en) * 2006-08-11 2012-03-13 Raytheon Company Sputtering system and method using a loose granular sputtering target
US8174800B2 (en) * 2007-05-07 2012-05-08 Canon Anelva Corporation Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus
WO2010044134A1 (ja) * 2008-10-14 2010-04-22 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子製造プログラム
JP2010135744A (ja) * 2008-10-29 2010-06-17 Kyocera Corp 吸着搬送部材およびこれを用いた基板搬送装置
US20100304027A1 (en) * 2009-05-27 2010-12-02 Applied Materials, Inc. Substrate processing system and methods thereof
TW201213581A (en) * 2010-09-23 2012-04-01 Hon Hai Prec Ind Co Ltd Magnets holder and sputtering device having same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037352A (ja) * 1973-08-06 1975-04-08
JP2002171011A (ja) * 2000-12-04 2002-06-14 Ken Takahashi 磁気抵抗効果素子及びその製造方法並びに磁気抵抗効果センサ
JP2003253439A (ja) * 2002-03-01 2003-09-10 Ulvac Japan Ltd スパッタ装置
WO2009060541A1 (ja) * 2007-11-09 2009-05-14 Canon Anelva Corporation インライン型ウェハ搬送装置
JP2011138844A (ja) * 2009-12-26 2011-07-14 Canon Anelva Corp 真空処理装置および半導体デバイスの製造方法
WO2012086183A1 (ja) * 2010-12-22 2012-06-28 株式会社アルバック トンネル磁気抵抗素子の製造方法

Also Published As

Publication number Publication date
JP5745699B2 (ja) 2015-07-08
TW201423890A (zh) 2014-06-16
US20140353149A1 (en) 2014-12-04
JPWO2014024358A1 (ja) 2016-07-25
KR20140129279A (ko) 2014-11-06
TWI514500B (zh) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5745699B2 (ja) トンネル磁気抵抗素子の製造装置
US10468237B2 (en) Substrate processing apparatus
TWI673891B (zh) 氧化處理裝置、氧化方法、及電子裝置的製造方法
US9752226B2 (en) Manufacturing apparatus
KR101726031B1 (ko) 진공 처리 장치, 진공 처리 방법 및 기억 매체
JP4354519B2 (ja) 磁気抵抗効果素子の製造方法
JP2003141719A (ja) スパッタリング装置及び薄膜形成方法
TW201413854A (zh) 層積膜之製造方法及真空處理裝置
KR19990066676A (ko) 스퍼터 화학증착 복합장치
KR102304166B1 (ko) 산화 처리 모듈, 기판 처리 시스템 및 산화 처리 방법
TW201725767A (zh) 磁阻元件之製造方法及磁阻元件之製造系統
JP5624931B2 (ja) スピネルフェライト薄膜の製造方法
US20220341028A1 (en) Vacuum processing apparatus
JP2023032920A (ja) 真空処理装置及び基板処理方法
JP2011168828A (ja) 基板処理装置及び半導体装置の製造方法
JP2011168827A (ja) 基板処理装置及び半導体装置の製造方法
TW201531579A (zh) 磁阻效應元件之製造方法
JP2011058072A (ja) 基板処理装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529250

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147026799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827108

Country of ref document: EP

Kind code of ref document: A1