WO2014023079A1 - 一种烷基苯的烷基化方法 - Google Patents

一种烷基苯的烷基化方法 Download PDF

Info

Publication number
WO2014023079A1
WO2014023079A1 PCT/CN2013/000817 CN2013000817W WO2014023079A1 WO 2014023079 A1 WO2014023079 A1 WO 2014023079A1 CN 2013000817 W CN2013000817 W CN 2013000817W WO 2014023079 A1 WO2014023079 A1 WO 2014023079A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
catalyst
stream
reaction
reaction zone
Prior art date
Application number
PCT/CN2013/000817
Other languages
English (en)
French (fr)
Inventor
蒋见
缪长喜
姜冬宇
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210240056.5A external-priority patent/CN103539601B/zh
Priority claimed from CN201210325048.0A external-priority patent/CN103664485B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US14/397,706 priority Critical patent/US9802876B2/en
Priority to CA2871301A priority patent/CA2871301C/en
Priority to BR112014031324-5A priority patent/BR112014031324B1/pt
Priority to RU2014143113A priority patent/RU2627695C2/ru
Publication of WO2014023079A1 publication Critical patent/WO2014023079A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/143X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/865Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an ether
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/867Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an aldehyde or a ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • This invention relates to an alkylation process, and more particularly to an alkylation process for alkylbenzenes. Background technique
  • Alkyl styrene is an important organic chemical raw material, mainly used in the production of polystyrene, ABS resin, styrene butadiene rubber, unsaturated resin and other products.
  • styrene series resins ranks third in the world among synthetic resins, second only to PE and PVC.
  • the traditional styrene production technology ethylbenzene dehydrogenation process is a strong endothermic reaction, which requires a large amount of heat input, and the reaction temperature needs to exceed 600 °C.
  • the prior art has developed a technique for the direct synthesis of (alkyl) styrene by alkylation of an alkylbenzene such as toluene over a basic catalyst via an alkylating agent such as methanol, which is a cost
  • the synthetic route with low energy consumption, low energy consumption, low pollution, simple process, wide source of raw materials and promising applications has attracted more and more attention.
  • Chinese patent application CN200910201632.3 discloses a method for preparing ethylbenzene and styrene by side alkylation of toluene methanol, wherein the catalyst used is in weight percentage, including 60-99% mesoporous carbon material carrier and supported on 0.1 to 30% thereof is selected from at least one of an alkali metal or an alkaline earth metal and 0.1 to 10% of a boron oxide.
  • Chinese Patent Application CN201010261714.X discloses a process for the preparation of ethylbenzene and styrene by side chain alkylation of toluene with methanol, wherein the catalyst used is ion exchanged using a potassium salt prior to use.
  • the inventors have diligently studied on the basis of the prior art and found an alkylation process comprising a specific reaction step, which shows that the utilization ratio of the alkylating agent is improved compared to the prior art, and The present invention has thus been completed.
  • the present invention relates to the following aspects.
  • a method for alkylating an alkylbenzene comprising the steps of:
  • the substituent R is a d- 4 linear or branched alkyl group, preferably a methyl group, and n represents the number of the substituents R, which is an integer of 0, 1 or 2, preferably 0;
  • stream II passing stream II to at least one third reaction zone, contacted with catalyst C to form stream III containing the alkylation product.
  • reaction temperature of the first reaction zone is 320 to 400 ° C, preferably 380 to 400 ° C, the weight hourly space velocity is 2 to 4 hours, and the reaction pressure is 0 ⁇ 0.5MPa (gauge pressure);
  • reaction temperature of the second reaction zone is 380 ⁇ 42 (TC, preferably 395-415 weight hourly space velocity is 2 ⁇ 4 hours, reaction pressure is 0 ⁇ 0.5MPa (gauge pressure);
  • the reaction temperature in the third reaction zone is 400-450 ° C, preferably 400-42 (TC, heavy hourly space velocity is 2 ⁇ 4 hours, reaction pressure is 0 ⁇ 0.5 MPa (gauge pressure); alkylbenzene and first strand
  • the molar ratio of the binder is >1 to 6, preferably 3.5 to 5.5, and the molar ratio of the alkylbenzene to the second alkylating agent in the stream I is from 1 to 5, preferably from 3 to 5.
  • the alkali metal is selected from K / Rb (preferably K and Rb in the catalyst content of 0.4 ⁇ 0.8mmol / g and 2.5 ⁇ 3.1mmol / g, respectively,
  • K 0.5 to 0.7 mmol/g
  • Rb 2.8 to 3.0 mmol/g
  • K/Cs preferably, the contents of K and Cs in the catalyst are 0.7 to 1.3 mmol/g and 1.8 to 2.5 mmol/g, respectively.
  • Rb/Cs preferably, the contents of Rb and Cs in the catalyst are 0.8 ⁇ 1.5mmol/g and 1.0 ⁇ 1.7mmol/g, respectively, more preferably Rb :
  • the alkylation method according to any one of the preceding aspects, wherein at least one of the catalyst A, the catalyst B, and the catalyst C is an alkali metal ion exchange molecular sieve manufactured by the following production method, wherein the production method
  • the invention comprises the steps of contacting a molecular sieve with an alkali metal ion source for ion exchange, wherein the molecule is selected from one or more of X molecular sieve and Y molecular sieve, preferably selected from the group consisting of SiO 2 /Al 2 0 3 being 1-7.
  • X molecular sieve and Si0 2 /Al 2 0 3 are one or more of 1 to 7 Y molecular sieves, more preferably Si 2 2 /Al 2 0 3 is 2 to 3 X molecular sieves, the alkali metal is selected from K/ Rb (preferably, the contents of K and Rb in the catalyst are 0.4 to 0.8 mmol/g and 2.5 to 3.1 mmol/g, respectively, more preferably K: 0.5 to 0.7 mmol/g, Rb: 2.8 to 3.0 mmol/g), K/ Cs (preferably, the contents of K and Cs in the catalyst are 0.7-1.3 mmol/g and 1.8-2.5 mmol/g, respectively, more preferably K: 0.8-1.2 mmol/g, Cs: 2.0-2.3 mmol/g), Rb/ Cs (preferably, the contents of Rb and Cs in the catalyst are 0.8 to 1.5 mmol/g and 1.0 to 1.7 mmol/g, respectively, more
  • K The contents of Rb and Cs in the catalyst are 0.4 to 0.9 mmol/g, 0.5 to 1.0 mmol/g, and 1.8 to 2.5 mmol/g, respectively, more preferably K: 0.5 to 0.7 mmol/g, and Rb: 0.6 to 0.8 mmol/g. , Cs: 2.0 ⁇ 2.4mmol/g), more preferably K/Rb/Cs (preferably K, Rb and Cs in the catalyst are 0.5 ⁇ 0.7mmol/g, 0.6-0.8mmol/g and 2.0 ⁇ respectively).
  • the alkali metal is K/Rb/Cs (preferably, the contents of K:, Rb and Cs in the catalyst are respectively 0.5 to 0.7 mmol/g, 0.6 to 0.8 mmol/ a combination of g and 2.0 to 2.4 mmol/g, more preferably K: 0.6 to 0.7 mmol/g, Rb: 0.7 to 0.8 mmol/g, Cs: 2.1 to 2.3 mmol/g
  • the contacting step comprises subjecting the molecular sieve Contact with the K source, the Rb source, and the Cs source in sequence.
  • the decomposition of the alkylating agent (especially methanol) can be effectively suppressed, thereby significantly increasing the utilization of the alkylating agent.
  • the utilization of the alkylating agent can be further improved by using a specific alkylation catalyst in combination.
  • FIG. 1 schematically illustrates the alkylation process of the present invention.
  • FIG. 2 schematically illustrates the separation and purification steps of the alkylation process of the present invention. detailed description
  • a process for the alkylation of an alkylbenzene comprising the steps of: a) bringing an alkylbenzene and a first alkylating agent into the first reaction zone as a starting material for the reaction, in contact with the catalyst A, Generate logistics I,
  • stream II passing stream II to at least one third reaction zone, contacted with catalyst C to form stream III containing the alkylation product.
  • the alkylbenzene has the following structural formula (I).
  • the n substituents R are the same or different and are each independently selected from a C 1-4 straight or branched alkyl group, of which a fluorenyl group is preferred.
  • n represents the number of the substituents R, and is an integer selected from 0, 1, or 2, and preferably 0.
  • the position of the substituent R (if present) on the benzene ring is not particularly limited.
  • the substituent R may be in the ortho, meta or para position of the methyl group, preferably in the para position.
  • the substituent R may be at the 2, 3, 2, 4, 2, 5, 2, 6, 3, 4 or 3, 5 positions of the methyl group.
  • toluene is more preferred.
  • the alkylbenzenes may be used singly or in combination of plural kinds.
  • the first alkylating agent and the second alkylating agent may be the same or different (preferably the same), each independently selected from the group consisting of methanol, formaldehyde (such as formaldehyde, aqueous formaldehyde solution, At least one of paraformaldehyde or polyacetal or the like and dimethoxymethane is more preferably methanol.
  • formaldehyde such as formaldehyde, aqueous formaldehyde solution, At least one of paraformaldehyde or polyacetal or the like and dimethoxymethane is more preferably methanol.
  • alkylating agents may be used singly or in combination of two or more.
  • the reaction temperature of the first reaction zone is generally 320 ⁇ 400 ° C, preferably 380 ⁇ 400 o C.
  • the weight hourly space velocity of the first reaction zone is generally 2 to 4 hours, preferably 2 to 3.5 hours.
  • the reaction pressure of the first reaction zone is generally 0 to 0.5 MPa (gauge pressure), preferably 0 to 0.3 MPa (gauge pressure).
  • the reaction temperature of the second reaction zone is generally from 380 to 420 ° C, preferably from 395 to 415. C.
  • the weight hourly space velocity of the second reaction zone is generally 2 to 4 hours, and the average time is 2.3 - 3.6 hours.
  • the reaction pressure of the second reaction zone is generally from 0 to 0.5 MPa (gauge pressure), preferably from 0 to 0.3 MPa (gauge pressure).
  • the reaction temperature of the third reaction zone is generally from 400 to 450 ° C, preferably from 400 to 420 ° C.
  • the weight hourly space velocity of the third reaction zone is generally 2 to 4 hours, preferably 2.3 to 3.6 hours.
  • the reaction pressure of the third reaction zone is generally 0 to 0.5 MPa (gauge pressure), preferably 0 to 0.3 MPa (gauge pressure).
  • the molar ratio of the alkylbenzene to the first alkylating agent is generally from >1 to 6, preferably from 3.5 to 5.5.
  • the molar ratio is greater than 1 (preferably 3.5 or more), that is, higher than the stoichiometric ratio of the alkylation chemical reaction, but generally not higher than 6 (preferably Below 5.5), thereby effectively reducing the thermal decomposition of the alkylating agent in this step a).
  • the molar ratio of the alkylbenzene (the alkylbenzene remaining after passing through the first reaction zone) to the second alkylating agent contained in the stream I is generally 5, preferably 3 to 5.
  • the molar ratio of the alkylbenzene to the first alkylating agent is greater than the alkylbenzene in the stream I and the second alkylating agent.
  • the molar ratio i.e., the amount of alkylating agent used in step b).
  • the reaction temperature of the first reaction zone is lower than the reaction temperature of the third reaction zone.
  • the lower temperature of the first reaction zone is advantageous for suppressing thermal decomposition of an alkylating agent such as methanol, and the higher temperature of the third reaction zone is advantageous for increasing the conversion of an alkylbenzene such as toluene.
  • the first reaction zone, the at least one second reaction zone, and the at least one third reaction zone may be reactors independent of each other, or may be reaction sections independent of each other in one reactor. Or a combination thereof, and is not particularly limited.
  • the second reaction zone for example, a fixed bed reactor, a moving bed reactor, and a fluidized bed reactor may be mentioned, but a fixed bed reactor is preferred. When there are multiple, these fixed bed reactions
  • the devices can be connected in series.
  • the fixed bed reactor for example, a device which is conventionally used in the art for performing an alkylation method of an alkylbenzene can be directly used, and is not particularly limited.
  • the third reaction zone for example, a fixed bed reactor, a moving bed reactor and a fluidized bed reactor can be mentioned, but a fixed bed reactor is preferred. When there are multiple, these fixed bed reactors can be connected in series.
  • a fixed bed reactor for example, a device which is conventionally used in the field of alkylation of an alkylbenzene in the art can be used as it is, and is not particularly limited.
  • the feeding mode of the reaction materials in each reaction zone (such as alkylbenzene, alkylating agent, streams I and II, etc.) or the filling method (such as catalysts A, B and C, etc.) are not particularly limited, and Reference is made directly to the related art in the art, and details are not described herein again.
  • reference numeral 1 is a first reaction zone
  • 2 is a second reaction zone
  • 3 is a third reaction zone
  • 4 is an alkylbenzene
  • 5 is a first alkylating agent
  • 6 is a second strand.
  • the base agent stream I is the effluent of the first reaction zone
  • stream II is the effluent of the second reaction zone
  • stream III is the effluent of the third reaction zone.
  • the alkylbenzene 4 stream and the first alkylating agent 5 are introduced into the first reaction zone 1, and contacted with a catalyst A (not shown) to form a stream I.
  • stream I and second alkylating agent 6 are introduced into second reaction zone 2 and contacted with catalyst B (not shown) to form stream II.
  • Stream II is then passed to third reaction zone 3 where it is contacted with catalyst C (not shown) to form stream III containing the alkylation product.
  • a basic alkylation catalyst conventionally used in the alkylation reaction of an alkylbenzene in the art may be mentioned, for example, Those disclosed in Chinese Patent Application Publication No. CN101623649A or CN101992082A, etc., are not particularly limited. These basic alkylation catalysts may be used singly or in combination of two or more.
  • At least one of the catalyst A, the catalyst B and the catalyst C is an alkali metal ion exchange molecular sieve, thereby further improving the utilization ratio of the alkylating agent.
  • the molecule is screened from one or more of X molecular sieves and Y molecular sieves, preferably X is sieved.
  • Y is divided into sieves, and Yiyi Si0 2 /Al 2 0 3 is 1 to 7 Y.
  • Molecular sieves As the X molecular sieve, an X molecular sieve having a SiO 2 /Al 2 0 3 of 1 to 7 is preferable, and an X molecular sieve having a Si 2 2 /Al 2 0 3 of 2 to 3 is more preferable.
  • the alkali metal is selected from the group consisting of K/Rb (preferably the content of K and Rb in the catalyst (relative to the catalyst per g) is 0.4-0.8 mmol/g and 2.5-3. lmmol/g, more preferably K.
  • K/Cs preferably the content of K and Cs in the catalyst (relative to each catalyst) is 0.7 ⁇ 1.3mmol/g and 1.8 ⁇ 2.5 Mold/g, more preferably K: 0.8 ⁇ 1.2mmol/g, Cs: 2.0 ⁇ 2.3mmol/g
  • Rb/Cs preferably the content of Rb and Cs in the catalyst (relative to each catalyst) is 0.8 ⁇ 1.5 Mold/g and 1.0 to 1.7 mmol/g, more preferably Rb: l.
  • the content (relative to each catalyst of g) is 0.4 to 0.9 mmol/g, 0.5 to 1.0 mmol/g, and 1.8 to 2.5 mmol/g, more preferably K: 0.5 to 0.7 mmol/g, and Rb: 0.6 to 0.8 mmol/g.
  • K/Rb/Cs preferably, the contents of K, Rb and Cs in the catalyst (relative to each catalyst) are 0.5 to 0.7 mmol/g, 0.6 ⁇ 0.8 mmol/g and 2.0 to 2 ⁇ 4 mmol/g, more preferably K: 0.6 to 0.7 mmol/g, Rb: 0.7 to 0.8 A combination of mmol/g, Cs: 2. Bu 2.3 mmol/g).
  • the alkali metal ion exchange molecular sieve may further contain, if necessary, an alkaline earth metal (such as Ca, Mg, and Ba), La, Ce, Zr, B, P, Cu, Mn, Ag, Fe, One or more dopants such as Zn.
  • an alkaline earth metal such as Ca, Mg, and Ba
  • La, Ce, Zr, B, P, Cu, Mn, Ag, Fe One or more dopants such as Zn.
  • the total content of these dopants in the alkali metal ion exchange molecular sieve is generally up to 3 wt%, but is sometimes not limited thereto.
  • These dopants can be introduced into the alkali metal ion exchange molecular sieve by techniques conventionally known in the art (for example, see Chinese Patent Application Publication No. CN101623649A and U.S. Patent No. 4,483,936, etc.).
  • alkali metal ion exchange molecular sieves may be used singly or in combination of two or more.
  • the alkali metal ion exchange molecular sieve can be produced by the following production method.
  • the method of manufacture comprises the step of contacting the molecular sieve with an alkali metal ion source for ion exchange.
  • the molecule is screened from one or more of X molecular sieves and Y molecular sieves, preferably X molecular sieves.
  • Y molecular sieve for example, Y having a Si0 2 /Al 2 0 3 of 1 to 7 is used as a sieve.
  • X-pointing sieve for example, Si0 2 /Al 2 0 3 is 1 ⁇
  • the X molecular sieve of 7 is preferably an X molecular sieve having a Si 2 2 /Al 2 0 3 of 2 to 3.
  • a Na type is generally used.
  • the alkali metal ion source for example, a combination of a K ion source and an Rb ion source, a combination of a K ion source and a Cs ion source, a combination of an Rb ion source and a Cs ion source, and a K ion source may be mentioned.
  • Examples of the ion source include hydroxides of such alkali metals, inorganic acid salts (e.g., halide salts, nitrates, etc.), and organic acid salts (e.g., acetates), and the like, and are not particularly limited.
  • examples of the ion exchange method include a solid ion exchange method, a liquid ion exchange method, and the like.
  • the molecular sieve and the alkali metal ion source may be mixed and ground at normal temperature or under heating, and optionally further calcined. Methods.
  • the liquid ion exchange method for example, a method in which the molecular sieve and the alkali metal ion source are brought into contact with each other in the presence of a solvent to cause ion exchange can be mentioned.
  • the solvent for example, water can be mentioned.
  • the liquid ion exchange method a method in which the molecular sieve and the aqueous solution of the alkali metal ion source are brought into contact with each other to cause ion exchange is preferred.
  • the concentration of the alkali metal ion (K:, Rb or Cs ion) of the aqueous solution of the alkali metal ion source may be, for example, 0.5 to 2.5 mol/liter.
  • the contact reaction may be carried out one or more times, preferably 2 to 6 times, more preferably 2 to 4 times, but sometimes it is not limited thereto, but is such that the alkali metal ion exchange molecular sieve finally obtained
  • the metal content is in accordance with the previous regulations of the present invention.
  • the order of contact of the alkali metal ion source with the molecular sieve is not particularly limited, but it is preferred to sequentially contact the molecular sieve in the order of the K ion source, the Rb ion source, and the Cs ion source.
  • the molecular sieve is first subjected to one or more contact reactions with the K ion source as described above, and then with the Rb ion source as before. One or more contact reactions are carried out.
  • water or other solvent is removed from the reaction product by a conventional drying method to obtain the alkali metal ion exchange molecule.
  • the finally obtained alkylated product can be isolated and purified by means conventionally known in the art, such as the following separation and purification steps:
  • the alkylated product is a compound having the following structural formula (II) (hereinafter referred to as product A) and/or a compound having the following structural formula (III) (hereinafter referred to as product B).
  • the alkylbenzene is toluene
  • the product A is styrene
  • the product B is ethylbenzene.
  • the organic phase stream VI can be sequentially introduced into a toluene column, an ethylbenzene column and a styrene column, whereby toluene recovered and purified ethylbenzene and styrene are separately obtained.
  • the operating conditions of the toluene column are: the number of trays is 30 to 40, the temperature at the top of the column is 110 to 120 ° C, the pressure at the top of the column is 165 to 175 KPa (gauge pressure), and the temperature at the bottom of the column is 160 to 170 ° C.
  • the bottom pressure is 195 ⁇ 205KPa (gauge pressure), and the reflux ratio is 8 ⁇ 13;
  • the operating conditions of the ethylbenzene tower are: The number of trays is 90 ⁇ 100, the temperature at the top of the tower is 100 ⁇ 110°C, the pressure at the top of the tower is 35 ⁇ 45KPa (gauge pressure), the temperature at the bottom of the tower is 115 ⁇ 125°C, the pressure at the bottom of the tower is 50 ⁇ 60KPa (gauge pressure), and the reflux ratio is 8 ⁇ 13;
  • the operating conditions of the styrene tower are: the number of trays is 20 ⁇ 30, the temperature of the top of the tower is 75 ⁇ 85°C, the pressure at the top of the tower is 5 ⁇ 15KPa (gauge pressure), the temperature at the bottom of the tower is 95 ⁇ 105°C, the pressure at the bottom of the tower 15 ⁇ 25KPa (gauge pressure), and the response ratio is 1 ⁇ 6.
  • reference numeral 7 is a condensing device
  • 8 is a phase separator
  • 9 is a toluene column
  • 10 is an ethylbenzene column
  • 11 is a styrene column
  • 12 is an aqueous phase
  • 13 is toluene
  • 14 is ethylbenzene
  • styrene 16 is a styrene tartrate stream
  • stream III is the effluent of the third reaction zone
  • stream IV is a liquid phase stream obtained by condensation through a condensing unit
  • stream V is a gas phase stream obtained by condensation by a condensing unit.
  • Stream IV enters phase separator 8, resulting in an aqueous phase stream 12 and an organic phase stream VI.
  • the organic phase stream VI is sequentially introduced into the toluene column 9, the ethylbenzene column 10 and the styrene column 11, toluene 13, ethylbenzene 14 and styrene 15, respectively.
  • the top of the toluene tower is mainly toluene and a very small amount of unreacted methanol, and the bottom of the column is ethylbenzene, styrene and other heavy aromatic by-products.
  • the top of the ethylbenzene column is mainly ethylbenzene, and the bottom of the column is styrene and heavy aromatic by-product.
  • the top of the styrene column is mainly styrene, and the bottom of the column is heavy aromatics.
  • the alkylbenzene recovered in step f) can be recycled to said step a) and/or said step b) as a supplement to the alkylbenzene starting materials consumed in these steps.
  • the gas phase stream V can recover combustion to provide heat required for the reaction; or, by a suitable synthesis device (such as a synthesis gas to produce a methanol device), it can be converted into an alkylating agent such as methanol, and then Use for recycling.
  • a suitable synthesis device such as a synthesis gas to produce a methanol device
  • the alkylating agent utilization rate and the total selectivity of the alkylation product are calculated according to the following formula.
  • methanol is used as an alkylating agent in the formula
  • toluene is used as an example of an alkylbenzene
  • ethylbenzene and styrene are used as an alkylation product, but the invention is obviously not limited thereto.
  • Mole of moles of methanol reacted with toluene in the field ⁇ ⁇ / methanol utilization —— m ⁇ , ⁇ *, l Efe A ⁇ x 1 00%
  • the total selectivity of ethylene in this book total moles of ethylbenzene and styrene produced ⁇ l 1 n 0 n 0 o % /
  • alkylation is carried out by alkylating agent in a multistage reaction
  • the product effectively inhibits the decomposition of the alkylating agent and greatly improves the utilization of the alkylating agent.
  • the present invention can increase the methanol utilization rate by more than 5% compared with the methanol one-step reaction in a reaction zone, and obtains a good technical effect.
  • Toluene and the first methanol enter the first reaction zone and are contacted with the catalyst to form a first reaction effluent.
  • the first reaction effluent and the second methanol enter the second reaction zone and are contacted with a catalyst to form a second reaction effluent.
  • the second reaction effluent enters the third reaction zone and is contacted with a catalyst to form a third reaction effluent containing ethylbenzene and styrene. Ethylbenzene and styrene are separated from the third reaction effluent.
  • the first reaction zone, the second reaction zone and the third reaction zone are all primary fixed bed reactors, respectively loaded with the same catalyst, namely one of the catalysts C-1 to C-8.
  • the first reaction zone temperature was 385 ° C, the reaction weight hourly space velocity was 2.7 hours, and the reaction pressure was 0.1 MPa (gauge pressure). lMPa ⁇
  • the second reaction zone temperature is 400 ° C, the reaction weight hourly space velocity is 3 hours, the reaction pressure is O. lMPa (gauge pressure).
  • the first reaction zone temperature is 415 ° C, the reaction weight hourly space velocity is 3 hours - 1 , and the reaction pressure is O. lMPa (gauge pressure).
  • the molar ratio of toluene to first methanol in the first reaction zone is 5:1, and the molar ratio of toluene to hydrazine diethanol in the first reaction effluent is 4: 1.
  • the operating conditions of the toluene column are: column top temperature: 117 ° C, column top pressure: 172 KPa (gauge pressure), number of plates: 35, bottom temperature: 163 ° C, bottom pressure: 200 KPa (gauge pressure), back Debbie: 12.
  • the operating conditions of the ethylbenzene column are: tower top temperature: 108 ° C, column top pressure: 45 KPa (gauge pressure), number of plates: 95, bottom temperature: 116 ° (, bottom pressure: 58 KPa (gauge pressure), Reflux ratio: 12.
  • the operating conditions for the styrene column are: Column top temperature: 85. C, top pressure: 15KPa (gauge), number of plates: 25, bottom temperature: 105 °C, bottom pressure: 25KPa (gauge pressure), return ratio: 5.
  • the temperature of the first reaction zone is 38 (TC, the reaction time and space velocity is 2.5 hours, the reaction pressure is 0.15 MPa (gauge pressure).
  • the temperature of the second reaction zone is 400 ° C, the reaction time and space velocity is 2.9 hours, and the reaction pressure is O. lMPa (gauge pressure)
  • the third reaction zone temperature is 410'C, the reaction weight hourly space velocity is 2.9 hours, and the reaction pressure is 0.09 MPa (gauge pressure).
  • the molar ratio of toluene to first methanol in the first reaction zone is 5:1, the molar ratio of toluene to second methanol in the first reaction effluent is 4:1.
  • the operating conditions of the toluene column are: Column top temperature: U5. C, tower top pressure: 170KPa (table Pressure), number of plates: 35, bottom temperature: 165'C, bottom pressure: 200KPa (gauge), reflux ratio: 10.
  • top temperature 105 ° C
  • top pressure 40 KPa (gauge pressure)
  • number of plates 95
  • bottom temperature 120 ° C
  • bottom pressure 55 KPa (gauge pressure)
  • Reflux ratio 10.
  • the operating conditions of the styrene column are: tower top temperature: 80 ° C, column top pressure: lOKPa (gauge pressure), number of plates: 25, bottom temperature: 100 ° C, bottom pressure: 20 KPa (gauge pressure), Reflux ratio: 4.
  • a methanol-stepping reaction section is used, the catalyst is the aforementioned catalyst Cl, the reaction zone temperature is 415 ° C, the reaction weight hourly space velocity is 2.85 hours, the feed toluene is: the methanol molar ratio is 4.5:1, and the reaction pressure is 0.1 MPa (Table) Pressure).
  • the reaction was carried out for 20 hours, and as a result, the alkylating agent utilization rate was 35.4%, and the total selectivity of the alkylation product was 97.4%.
  • a reaction zone of decyl alcohol-stepping material is used, the catalyst is the aforementioned catalyst C-1, the reaction zone temperature is 400 ⁇ , the reaction weight hourly space velocity is 2.65 hr -1 , the feed toluene: methanol molar ratio is 4.5:1, and the reaction pressure is O. . lMPa (gauge pressure).
  • the reaction was carried out for 20 hours, and as a result, the alkylating agent utilization rate was 32.5%, and the total selectivity of the alkylation product was 97.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

提供一种烷基苯的烷基化方法,包括步骤a)使烷基苯和第一股烷基化剂进入第一反应区,与催化剂A接触,生成物流I;b)使物流I和第二股烷基化剂进入至少一个第二反应区,与催化剂B接触,生成物流II;和c)使物流II进入至少一个第三反应区,与催化剂C接触,生成含有烷基化产物的物流III。该烷基化剂方法其有烷基化剂利用率高的特点。

Description

一种烷基苯的烷基化方法 技术领域.
本发明涉及一种烷基化方法, 尤其是涉及一种烷基苯的烷基化方 法。 背景技术
烷基苯乙烯, 尤其是苯乙烯, 是一种重要的有机化工原料, 主要 用于聚苯乙烯、 ABS 树脂、 丁苯橡胶、 不饱和树脂等产品的生产。 到 目前为止,苯乙烯系列树脂的产量在全世界合成树脂中仅次于 PE、 PVC 而名列第三。
传统的苯乙烯生产技术乙苯脱氢法是强吸热反应, 需输入大量的 热能, 反应温度需超过 600°C。 为此, 现有技术开发了烷基苯(比如甲 苯)在碱性催化剂上通过烷基化剂 (比如甲醇) 的側链烷基化直接合 成 (烷基) 苯乙烯的技术, 这是一条成本低、 能耗低、 污染小、 工艺 简单、 原料来源广、 很有应用前景的合成路线, 越来越引起人们的重 视。 中国专利申请 CN200910201632.3公开了一种甲苯甲醇侧链烷基化 反应制备乙苯及苯乙烯的方法, 其中所用的催化剂为以重量百分数计, 包括 60 ~ 99 %介孔碳材料载体和负载于其上的 0.1 ~ 30 %选自碱金属 或碱土金属中的至少一种氧化物以及 0.1 ~ 10 %硼氧化物。 中国专利申 请 CN201010261714.X公开了一种用于甲苯甲醇側链烷基化反应制备乙 苯及苯乙烯的方法, 其中所用的催化剂在使用前采用钾盐进行离子交 换。
在该烷基化方法中, 甲苯和甲醇在碱性催化剂的催化作用下主要 发生如下反应:
Figure imgf000003_0001
甲苯在碱性催化剂的催化下, 主要发生 ( 1 )和 ( 2 ) 两个反应, 同时还有极少量的二甲苯、 甲乙苯等生成。 但在此催化反应条件下, 甲醇也会自身分解成一氧化碳和氢气, 如方程式(3 ) 所示:
CH3OH CO + 2H2 (3) 从经济价值考虑, 当然希望甲醇尽可能多的与甲苯反生成乙苯和 苯乙烯, 而不是被自身的分解反应所无谓消耗。 在使用其他烷基苯或 者烷基化剂 (比如二甲氧基甲烷等)进行这种烷基化反应时, 也存在 类似的问题。
因此, 现有技术仍旧需要一种烷基苯的烷基化方法, 其能够有效 抑制烷基化剂 (特别是甲醇)的分解, 由此提高该烷基化剂的利用率。 发明内容
本发明人在现有技术的基础上经过刻苦的研究, 发现了一种包括 特定反应步骤的烷基化方法, 其显示出烷基化剂的利用率相比于现有 技术提高的特点, 并由此完成了本发明。
具体而言, 本发明涉及以下方面的内容。
1. 一种烷基苯的烷基化方法, 包括以下步骤:
a )使如下结构式( I )的烷基苯和第一股烷基化剂进入第一反应区, 与催化剂 A接触, 生成物流 I, 其中所述烷基化剂选自甲醇、 甲醛和二 甲氧基甲烷中的至少一种,
Figure imgf000004_0001
其中, 取代基 R为 d-4直链或支链烷基, 优选甲基, n代表所述取代基 R的个数, 为 0、 1或 2的整数, 优选 0;
b )使物流 I和笫二股烷基化剂进入至少一个笫二反应区, 与催化 剂 B接触, 生成物流 II; 和
c )使物流 II进入至少一个第三反应区, 与催化剂 C接触, 生成含 有烷基化产物的物流 III。
2. 前述任一方面的烷基化方法, 其中所述第一反应区的反应温度 为 320~400°C, 优选 380~400°C, 重时空速为 2 ~ 4小时 , 反应压力为 0 ~ 0.5MPa (表压) ; 所述第二反应区的反应温度为 380~42(TC, 优选 395-415 重时空速为 2 ~ 4小时 , 反应压力为 0 ~ 0.5MPa (表压); 所述第三反应区的反应温度为 400~450°C, 优选 400〜42(TC, 重时空速 为 2 ~ 4 小时 , 反应压力为 0 ~ 0.5MPa (表压) ; 烷基苯与第一股烷 基化剂的摩尔比为 >1〜6, 优选 3.5~5.5, 物流 I中烷基苯与第二股烷基 化剂的摩尔比为 1〜5, 优选 3~5。
3. 前述任一方面的烷基化方法, 其中所述第一反应区的反应温度 低于所述第三反应区的反应温度。
4. 前述任一方面的烷基化方法, 其中烷基苯与第一股烷基化剂的 所述摩尔比大于物流 I中烷基苯与第二股烷基化剂的所述摩尔比。
5. 前述任一方面的烷基化方法, 其中所述至少一个第二反应区包 括 1 ~ 5 个串联的固定床反应器, 所述至少一个第三反应区包括 1 ~ 5 个串联的固定床反应器。
6. 前述任一方面的烷基化方法, 其中所述催化剂 A、 所述催化剂 B和所述催化剂 C中的至少一方是碱金属离子交换分子筛, 其中所述 分子筛选自 X分子筛和 Y分子筛中的一种或多种,优选选自 Si02/Al203 为 1 ~ 7的 X分子筛和 Si02/Al203为 1 ~ 7的 Y分子筛中的一种或多种, 更优选 Si02/Al203为 2 ~ 3的 X分子筛, 所述碱金属选自 K/Rb (优选 K和 Rb在催化剂中的含量分别为 0.4〜0.8mmol/g和 2.5~3.1mmol/g,更 优选 K: 0.5~0.7mmol/g, Rb: 2.8〜3.0mmol/g ) 、 K/Cs (优选 K和 Cs 在催化剂中的含量分别为 0.7〜1.3mmol/g和 1.8~2.5mmol/g, 更优选 K:
0.8~1.2mmol/g, Cs: 2.0~2.3mmol/g ) 、 Rb/Cs (优选 Rb和 Cs的在催 化剂中的含量分别为 0.8~1.5mmol/g和 1.0~1.7mmol/g, 更优选 Rb:
1.卜 1.4mmol/g, Cs: 1.3~1.5mmol/g )或 K/Rb/Cs (优选 K、 Rb和 Cs 在催化剂中的含量分别为 0.4~0.9mmol/g、 0.5-1.0mmol/g 和 1.8~2.5 mmol/g , 更优选 K : 0.5〜0.7mmol/g , Rb: 0.6-0.8mmol/g , Cs: 2.0〜2.4mmol/g )的组合, 更优选 K/Rb/Cs (优逸 K、 Rb和 Cs在催化剂 中的含量分别为 0.5〜0.7mmol/g、 0.6-0.8mmol/g和 2.0 2.4 mmol/g, 更 优选 K: 0.6~0.7mmol/g, Rb: 0.7~0.8mmol/g, Cs: 2.卜 2.3mmol/g )的 组合。
7. 前述任一方面的烷基化方法, 其中所述催化剂 A、 所述催化剂 B和所述催化剂 C中的至少一方是通过如下的制造方法制造的碱金属 离子交换分子筛, 其中所述制造方法包括使分子筛与碱金属离子源接 触而进行离子交换的步骤, 其中所述分子筛选自 X分子筛和 Y分子筛 中的一种或多种,优选选自 Si02/Al203为 1 ~ 7的 X分子筛和 Si02/Al203 为 1 ~ 7的 Y分子筛中的一种或多种, 更优选 Si02/Al203为 2 ~ 3的 X 分子筛 , 所述碱金属选自 K/Rb (优选 K和 Rb在催化剂中的含量分别 为 0.4〜0.8mmol/g和 2.5~3.1mmol/g, 更优选 K: 0.5~0.7mmol/g, Rb: 2.8~3.0mmol/g ) 、 K/Cs (优选 K 和 Cs 在催化剂中的含量分别为 0.7-1.3mmol/g 和 1.8〜2.5mmol/g, 更优选 K: 0.8〜1.2mmol/g , Cs: 2.0〜2.3mmol/g ) 、 Rb/Cs (优选 Rb 和 Cs 在催化剂中的含量分别为 0.8~1.5mmol/g 和 1.0~1.7mmol/g , 更优选 Rb: 1. l〜1.4mmol/g, Cs: 1.3〜1.5mmol/g )或 K/Rb/Cs (优选 K:、 Rb和 Cs在催化剂中的含量分别 为 0.4~0.9mmol/g、 0.5~1.0mmol/g 和 1.8~2.5 mmol/g, 更优选 K: 0.5〜0.7mmol/g, Rb: 0.6〜0.8mmol/g, Cs: 2.0~2.4mmol/g )的组合, 更 优选 K/Rb/Cs (优选 K、 Rb 和 Cs 在催化剂中的含量分别为 0.5〜0.7mmol/g、 0.6-0.8mmol/g 和 2.0~2.4 mmol/g , 更优选 K: 0.6~0.7mmol/g, Rb: 0.7~0.8mmol/g, Cs: 2.1~2.3mmol/g ) 的组合。
8. 前述任一方面的烷基化方法, 其中所述碱金属为 K/Rb/Cs (优 选 K:、 Rb和 Cs在催化剂中的含量分别为 0.5〜0.7mmol/g、0.6〜0.8mmol/g 和 2.0〜2.4 mmol/g, 更优选 K: 0.6~0.7mmol/g, Rb: 0.7〜0.8mmol/g, Cs: 2.1~2.3mmol/g )的组合, 所述接触步骤包括使所述分子筛与 K源、 Rb源和 Cs源依次接触。
9. 前述任一方面的烷基化方法, 还包括以下步骤:
d )冷凝所述物流 III, 得到物流 IV和含有 CO和 H2的气相物流 V; e )分离所述物流 IV, 得到水相物流和有机相物流 VI; 和
f)分离所述有机相物流 VI , 获得烷基苯和烷基化产物。
10. 前述任一方面的烷基化方法, 其中将步骤 f)获得的烷基苯循 环至所迷步驟 a )和 /或所迷步骤 b ) 。 技术效果
根据本发明的烷基化方法, 可以有效地抑制烷基化剂 (特别是甲 醇) 的分解, 由此显著提高烷基化剂的利用率。
根据本发明的烷基化方法, 通过并用特定的烷基化催化剂, 烷基 化剂的利用率可以得到进一步的提高。 附图说明
图 1示意性地图示了本发明的烷基化方法。
图 2示意性地图示了本发明烷基化方法的分离和精制步骤。 具体实施方式
下面对本发明的具体实施方式进行详细说明, 但是需要指出的是, 本发明的保护范围并不受这些具体实施方式的限制, 而是由附录的权 利要求书来确定。
当本说明书以 "本领域技术人员已知的"或者 "本领域常规使用的 " 或类似用语来描述材料、 方法、 部件、 装置或设备时, 该术语表示本 说明书包括提出本申请时本领域常规使用的那些, 但也包括目前还不 常用, 但将变成本领域公认为适用于类似目的的那些。
在没有明确指明的情况下, 本说明书内所提到的所有百分数、 份 数、 比率等都是以重量为基准的, 除非以重量为基准时不符合本领域 技术人员的常规认识。
根据本发明, 涉及一种烷基苯的烷基化方法, 其包括以下步骤: a )使烷基苯和第一股烷基化剂作为反应初始原料进入笫一反应 区, 与催化剂 A接触, 生成物流 I,
b )使物流 I和第二股烷基化剂进入至少一个第二反应区, 与催化 剂 B接触, 生成物流 II; 和
c )使物流 II进入至少一个第三反应区, 与催化剂 C接触, 生成含 有烷基化产物的物流 III。
根据本发明, 所述烷基苯具有如下的结构式(I ) 。
Figure imgf000008_0001
其中, n个取代基 R相同或不同,各自独立地选自 C1-4直链或支链烷基, 其中优选曱基。 n代表所述取代基 R的个数, 为选自 0、 1或 2的整数, 其中优选 0。
根据本发明,对所述取代基 R(如果存在的话)在苯环上的位置(与 结构式(I ) 中图示甲基的相对位置)没有特别的限定。 比如在存在一 个时, 所述取代基 R可以位于所述甲基的邻位、 间位或者对位, 优选 对位。 在存在两个时, 所述取代基 R可以处于所述甲基的 2,3位、 2,4 位、 2,5位、 2,6位、 3,4位或者 3,5位等。
根据本发明, 作为所述烷基苯, 更优选甲苯。
根据本发明, 所述烷基苯可以单独使用一种, 也可以多种组合使 用。
根据本发明, 所述第一股烷基化剂和所述第二股烷基化剂可以相 同也可以不同 (优选相同) , 各自独立地选自选自甲醇、 甲醛(比如 甲醛、 甲醛水溶液、 低聚甲醛或者聚曱醛等) 和二甲氧基甲烷中的至 少一种, 更优选甲醇。
这些烷基化剂可以单独使用一种, 也可以多种组合使用。
根据本发明, 所述第一反应区的反应温度一般为 320〜400°C, 优选 380〜400oC。
根据本发明, 所述第一反应区的重时空速一般为 2 ~ 4 小时 优 选 2 ~ 3.5小时
根据本发明, 所述第一反应区的反应压力一般为 0 ~ 0.5MPa (表 压 ) , 优选 0 ~ 0.3MPa (表压 ) 。
根据本发明, 所述第二反应区的反应温度一般为 380〜420°C , 优选 395~415。C。
根据本发明, 所述第二反应区的重时空速一般为 2 ~ 4 小时 优 逸 2.3 - 3.6小时 根据本发明,所述第二反应区的反应压力一般为 0 ~ 0.5MPa (表压) 优选 0 ~ 0.3MPa (表压) 。
根据本发明, 所述第三反应区的反应温度一般为 400〜450°C, 优选 400~420°C。
根据本发明, 所述第三反应区的重时空速一般为 2 ~ 4 小时 优 选 2.3 ~ 3.6小时
根据本发明, 所述第三反应区的反应压力一般为 0 ~ 0.5MPa (表 压 ) , 优选 0 ~ 0.3MPa (表压) 。
根据本发明, 所述烷基苯与所述第一股烷基化剂的摩尔比一般为 >1~6, 优选 3.5〜5.5。 根据本发明, 为了确保烷基苯的转化率不显著降 低, 使该摩尔比大于 1 (优选 3.5以上) , 即高于所述烷基化化学反应 的计量比, 但一般不高于 6 (优选在 5.5以下) , 由此有效减少烷基化 剂在该步骤 a ) 的热分解。
根据本发明, 所述物流 I中含有的烷基苯(经过第一反应区后残留 的烷基苯)与所述第二股烷基化剂的摩尔比一般为卜 5 , 优选 3〜5。
根据本发明, 优选的是, 所述烷基苯与所述第一股烷基化剂的所 述摩尔比大于所述物流 I 中的烷基苯与所述第二股烷基化剂的所述摩 尔比, 即, 降低步骤 b ) 中烷基化剂的用量。
根据本发明, 优选的是, 所述笫一反应区的反应温度低于所述第 三反应区的反应温度。 根据本发明, 第一反应区的温度偏低有利于抑 制烷基化剂比如甲醇的热分解, 第三反应区的温度偏高则有利于提高 烷基苯比如甲苯的转化率。
根据本发明, 所述第一反应区、 所述至少一个第二反应区和所述 至少一个第三反应区可以是彼此独立的反应器, 也可以是一个反应器 中彼此独立的反应区段, 或者其组合, 并没有特别的限定。
根据本发明, 作为所述第一反应区, 比如可以举出固定床反应器、 移动床反应器和流化床反应器, 但优选固定床反应器。 作为所述固定 床反应器, 比如可以直接使用本领域在进行烷基苯的烷基化方法时常 规使用的那类装置, 并没有特别的限定。
根据本发明, 存在至少一个(比如 1至 5个) 所述第二反应区。 作为所述第二反应区, 比如可以举出固定床反应器、 移动床反应器和 流化床反应器, 但优选固定床反应器。 存在多个时, 这些固定床反应 器可以以串联方式连接。 作为所迷固定床反应器, 比如可以直接使用 本领域在进行烷基苯的烷基化方法时常规使用的那类装置, 并没有特 别的限定。
根据本发明, 存在至少一个(比如 1至 5个) 所述第三反应区。 作为所述第三反应区, 比如可以举出固定床反应器、 移动床反应器和 流化床反应器, 但优选固定床反应器。 存在多个时, 这些固定床反应 器可以以串联方式连接。 作为所述固定床反应器, 比如可以直接使用 本领域在进行烷基苯的烷基化方法时常规使用的那类装置, 并没有特 别的限定。
根据本发明, 对各反应区反应物料的进料方式(比如烷基苯、 烷 基化剂、 物流 I和 II等)或者装填方式(比如催化剂 A、 B和 C等) 没有特别的限定, 可以直接参考本领域的已知相关技术进行, 在此不 再赘述。
以下参考附图对本发明的烷基化方法进行更为具体的说明。
图 1中, 附图标记 1为第一反应区, 2为第二反应区, 3为第三反 应区, 4为烷基苯, 5为第一股烷基化剂, 6为第二股烷基化剂, 物流 I为第一反应区的流出物, 物流 II为第二反应区的流出物, 物流 III为 第三反应区的流出物。 具体而言, 根据该图 1 , 使烷基苯 4的物流和第 一股烷基化剂 5进入第一反应区 1, 与催化剂 A (未图示)接触, 生成 物流 I。 接着, 使物流 I和第二股烷基化剂 6进入第二反应区 2, 与催 化剂 B (未图示)接触, 生成物流 II。 然后, 使物流 II进入第三反应区 3 , 与催化剂 C (未图示)接触, 生成含有烷基化产物的物流 III。
根据本发明, 作为所述催化剂 A、 所述催化剂 B和所述催化剂 C, 比如可以举出本领域进行烷基苯的烷基化反应时常规使用的碱性烷基 化催化剂, 比如可以具体举出中国专利申请公开 CN101623649A 或 CN101992082A等中公开的那些, 并没有特别的限定。这些碱性烷基化 催化剂可以单独使用一种, 也可以多种组合使用。
根据本发明一个优选的实施方式, 所述催化剂 A、 所述催化剂 B 和所述催化剂 C中的至少一方是碱金属离子交换分子筛, 由此进一步 提高烷基化剂的利用率。
根据本发明, 所述分子筛选自 X分子筛和 Y分子筛中的一种或多 种, 优选 X分于筛。 作为所迷 Y分于筛, 优逸 Si02/Al203为 1 ~ 7的 Y 分子筛。作为所述 X分子筛, 优选 Si02/Al203为 1 ~ 7的 X分子筛, 更 优选 Si02/Al203为 2 ~ 3的 X分子筛。
根据本发明, 所述碱金属选自 K/Rb (优选 K和 Rb在催化剂中的 含量(相对于每 g催化剂 )分别为 0.4-0.8mmol/g和 2.5-3. lmmol/g, 更优选 K: 0.5~0.7mmol/g, Rb: 2.8~3.0mmol/g ) 、 K/Cs (优选 K和 Cs在催化剂中的含量(相对于每 g催化剂)分别为 0.7~1.3mmol/g和 1.8~2.5mmol/g, 更优选 K: 0.8~1.2mmol/g, Cs: 2.0〜2.3mmol/g )、 Rb/Cs (优选 Rb 和 Cs 在催化剂中的含量 (相对于每 g催化剂) 分别为 0.8~1.5mmol/g 和 1.0〜1.7mmol/g, 更优选 Rb: l. l~1.4mmol/g, Cs: 1.3〜1.5mmol/g )或 K/Rb/Cs (优选 K、 Rb和 Cs在催化剂中的含量(相 对于每 g催化剂)分别为 0.4~0.9mmol/g、 0.5〜1.0mmol/g和 1.8-2.5 mmol/g , 更优选 K : 0.5〜0.7mmol/g , Rb: 0.6〜0.8mmol/g , Cs: 2.0〜2.4mmol/g )的组合, 更优选 K/Rb/Cs (优选 K、 Rb和 Cs在催化剂 中的含量(相对于每 g催化剂)分别为 0.5〜0.7mmol/g、 0.6~0.8mmol/g 和 2.0〜2·4 mmol/g, 更优选 K: 0.6〜0.7mmol/g, Rb: 0.7〜0.8mmol/g, Cs: 2.卜 2.3mmol/g ) 的组合。
根据本发明, 根据需要, 所述碱金属离子交换分子筛中还可以进 一步含有选自碱土金属 (比如 Ca、 Mg和 Ba ) 、 La、 Ce、 Zr、 B、 P、 Cu、 Mn、 Ag、 Fe、 Zn 等的一种或多种掺杂剂。 这些掺杂剂在该碱金 属离子交换分子筛中的总含量 (相对于该碱金属离子交换分子筛的总 质量)一般最高为 3wt%, 但有时并不限于此。 这些掺杂剂可以通过本 领域常规已知的技术(比如参见中国专利申请公开 CN101623649A和 美国专利 US4483936等) 引入到该碱金属离子交换分子筛中。
这些碱金属离子交换分子筛可以单独使用一种, 也可以多种组合 使用。
根据本发明, 所述碱金属离子交换分子筛可以通过如下的制造方 法进行制造。
根据本发明, 所述制造方法包括使分子筛与碱金属离子源接触而 进行离子交换的步骤。
根据本发明, 所述分子筛选自 X分子筛和 Y分子筛中的一种或多 种, 优选 X分子筛。 作为所迷 Y分子筛, 比如可以举出 Si02/Al203为 1 ~ 7的 Y分于筛。作为所迷 X分于筛,比如可以举出 Si02/Al203为 1 ~ 7的 X分子筛,优选 Si02/Al203为 2 ~ 3的 X分子筛。作为所述分子筛, 一般使用其 Na型。
根据本发明, 作为所述碱金属离子源, 比如可以举出 K离子源与 Rb离子源的组合、 K离子源与 Cs离子源的组合、 Rb离子源与 Cs离子 源的组合以及 K离子源、 Rb离子源与 Cs离子源的组合, 其中优选 K 离子源、 Rb 离子源与 Cs 离子源的组合。 作为所述离子源, 比如可以 举出这些碱金属的氢氧化物、 无机酸盐 (比如卤化物盐、 硝酸盐等) 和有机酸盐 (比如醋酸盐等) 等, 并没有特别的限定。
根据本发明, 对所述分子筛与所述碱金属离子源接触而进行离子 交换的方式没有特别的限定, 可以按照本领域常规的方式进行。
具体而言, 作为所述离子交换的方式, 比如可以举出固体离子交 换法和液体离子交换法等。
根据本发明, 作为所述固体离子交换法, 比如可以举出使所述分 子筛和所述碱金属离子源 (比如碱金属的 化物盐) 在常温或加热下 混合和研磨, 并任选经过进一步焙烧的方法。
根据本发明, 作为所述液体离子交换法, 比如可以举出使所述分 子筛和所述碱金属离子源在溶剂的存在下接触而发生离子交换的方 法。 作为所述溶剂, 比如可以举出水。 为此, 作为所述液体离子交换 法, 优选使所述分子筛和所述碱金属离子源的水溶液接触而发生离子 交换的方法。 此时, 所述碱金属离子源的水溶液的碱金属离子(K:、 Rb 或 Cs 离子) 浓度比如可以是 0.5 ~ 2.5 摩尔 /升。 根据本发明, 所述接 触反应的反应温度比如可以是 50 ~ 90°C , 反应时间比如可以是 1- 3小 时, 每次接触时所述分子筛与所述水溶液的重量比比如为 1 : (5 ~ 10)。
根据本发明, 所述接触反应可以进行一次或多次, 优选 2-6次, 更 优选 2-4次,但有时并不限于此, 而是以使得最终获得的碱金属离子交 换分子筛中各碱金属的含量符合本发明之前规定为准。
根据本发明, 对所述碱金属离子源与所述分子筛的接触次序没有 特别的限定, 但优选按照 K离子源、 Rb离子源和 Cs离子源的次序来 依次与所述分子筛接触。比如,在使用 K离子源和 Rb离子源的组合时, 优选使所述分子筛先与所述 K离子源如前所述进行一次或多次接触反 应, 然后再与所述 Rb离子源如前所述进行一次或多次接触反应。 在使 用 K离子源、 Rb离子源和 Cs离子源的组合时, 优逸使所迷分于筛先 与所述 K 离子源如前所述进行一次或多次接触反应, 接着与所述 Rb 离子源如前所述进行一次或多次接触反应, 然后再与所述 Cs离子源如 前所述进行一次或多次接触反应。
根据本发明, 在离子交换全部结束后, 通过常规的干燥方法将水 或其他溶剂从反应产物中除去, 即可获得所述的碱金属离子交换分子 师。
根据本发明, 可以通过本领域常规已知的方式来分离和精制最终 获得的烷基化产物, 比如可以举出以下的分离和精制步骤:
d )冷凝所述物流 III, 比如通过冷凝装置, 得到物流 IV和含有 CO 和 H2的气相物流 V;
e )分离所述物流 IV , 比如通过相分离器, 得到水相物流和有机相 物流 VI; 和
f)分离所述有机相物流 VI, 获得烷基苯(未反应而残留的反应原 料)和所述烷基化产物。
根据本发明,所述烷基化产物是具有如下结构式(II )的化合物(以 下称为产物 A )和 /或具有如下结构式(III ) 的化合物 (以下称为产物 B ) 。
Figure imgf000013_0001
在各结构式中, 取代基 R和 n如前所述定义。
根据本发明一个特别的实施方式,所述烷基苯是甲苯,所述产物 A 是苯乙烯, 所述产物 B是乙苯。 为此, 为了进行所述步骤 f ), 比如可 以使所述有机相物流 VI依次进入甲苯塔、 乙苯塔和苯乙烯塔, 由此分 别得到回收的甲苯和精制的乙苯和苯乙烯。
根据该特别的实施方式, 甲苯塔的操作条件为: 塔板数 30~40, 塔 顶温度 110~120°C,塔顶压力 165〜175KPa(表压),塔底温度 160〜170°C , 塔底压力 195〜205KPa (表压) , 回流比 8~13; 乙苯塔的操作条件为: 塔板数 90〜100, 塔顶温度 100~110°C, 塔顶压力 35〜45KPa (表压) , 塔底温度 115~125°C, 塔底压力 50〜60KPa (表压) , 回流比 8~13; 苯 乙烯塔的操作条件为: 塔板数 20〜30, 塔顶温度 75〜85°C, 塔顶压力 5~15KPa (表压 ) , 塔底温度 95〜105°C, 塔底压力 15〜25KPa (表压), 回 ϋ比 1〜6。
以下参考附图对该分离和精制步骤进行更为具体的说明。
图 2中, 附图标记 7为冷凝装置, 8为相分离器, 9为甲苯塔, 10 为乙苯塔, 11为苯乙烯塔, 12为水相, 13为甲苯, 14为乙苯, 15为 苯乙烯, 16 为苯乙烯塔塔釜物流, 物流 III为第三反应区的流出物, 物 流 IV为经冷凝装置冷凝后得到的液相物流, 物流 V为经冷凝装置冷凝 后得到的气相物流。 物流 IV进入相分离器 8, 得到水相物流 12和有机 相物流 VI。有机相物流 VI依次进入甲苯塔 9、 乙苯塔 10和苯乙烯塔 11, 分别得到甲苯 13、 乙苯 14和苯乙烯 15。 其中, 甲苯塔塔顶主要为甲 苯和极少量的未反应的甲醇, 塔底为乙苯、 苯乙烯和其它重芳烃副产 物。 乙苯塔塔顶主要为乙苯, 塔底为苯乙烯和重芳烃副产物。 苯乙烯 塔塔顶主要为苯乙烯, 塔底为重芳烃。
根据本发明, 可以将所述步骤 f)回收的烷基苯循环至所述步骤 a ) 和 /或所述步骤 b ) , 作为这些步骤中所消耗的烷基苯原料的补充。
根据本发明, 所述气相物流 V可以回收燃烧, 提供反应所需的热 量; 或者, 经过适当的合成装置 (比如合成气制备甲醇装置)使之转 变成烷基化剂比如甲醇, 然后再使其循坏利用。
根据本发明, 烷基化剂利用率和烷基化产物总选择性按照以下公 式进行计算。 为了方便表述起见, 该公式中以甲醇作为烷基化剂的例 子, 以甲苯作为烷基苯的例子, 以乙苯和苯乙烯作为烷基化产物的例 子, 但本发明显然并不限于此。 田舷翻 与甲苯反应的甲醇摩尔数 ι ηηο/ 甲醇利用率 =—— m ^、卄 *、l Efe A^ x 1 00%
甲醇进料摩尔数 舰
乙本本乙烯总选择性 = 生成的乙苯和苯乙烯总摩尔数 χ l1n0n0o%/
甲醇与甲苯反应生成芳烃的总摩尔数 根据本发明, 采用烷基化剂分步进料多段式反应催化合成烷基化 产物, 有效抑制了烷基化剂的分解, 大大提高了烷基化剂的利用率。 以甲醇为例, 与甲醇一步进料一段反应区反应相比, 本发明可以使甲 醇利用率提高 5%以上, 取得了较好的技术效果。 实施例
以下采用实施例进一步详细地说明本发明, 但本发明并不限于这 些实施例。 催化剂制备实施例 1
取硅铝比 Si02/Al203=2.19的 NaX分子筛 10克, 80°C下, 在 100 毫升 1摩尔 /升的 KOH溶液中进行离子交换 2小时, 交换 3次。 然后 在 50毫升 1摩尔 /升的 CsOH溶液中进行离子交换, 交换 3次, 过滤后 100°C干燥 10小时, 获得催化剂 C-l。 催化剂制备实施例 2
取硅铝比 Si02/Al203=2.57的 NaX分子筛按照催化剂制备实施例 1 的方法制备催化剂, 获得催化剂 C-2。 催化剂制备实施例 3
取硅铝比 Si02/Al203=5.58的 NaY分子筛按照催化剂制备实施例 1 的方法制备催化剂, 获得催化剂 C-3。 催化剂制备实施例 4
取硅铝比 Si02/Al203=2.19的 NaX分子筛 10克, 80。C下, 在 100 毫升 1摩尔 /升的 KN03溶液中进行离子交换 2小时, 交换 3次; 然后 在 50毫升 1摩尔 /升的 CsN03溶液中进行离子交换, 交换 3次; 过滤 后 100°C干燥 10小时, 获得催化剂 C-4。 催化剂制备实施例 5
取硅铝比 Si02/Al203=2.19的 NaX分子筛 10克, 80°C下, 在 100 毫升 1摩尔 /升的 KN03溶液中进行离子交换 2小时, 交换 3次; 然后 在 50毫升 1 摩尔 /升的 CsOH溶液中进行离于交換, 交換 3次; 过滤 后 100°C干燥 10小时, 获得催化剂 C-5。 催化剂制备实施例 6
取硅铝比 Si02/Al203=2.19的 NaX分子筛 10克, 80 °C下, 在 100 毫升 1摩尔 /升的 KOH溶液中进行离子交换 2小时, 交换 2次; 然后 在 50毫升 1摩尔 /升的 RbOH溶液中进行离子交换, 交换 2次; 最后在 50毫升 1 摩尔 /升的 CsOH溶液中进行离子交换, 交换 2次; 过滤后 100°C干燥 10小时, 获得催化剂 C-6。 催化剂制备实施例 7
取硅铝比 Si02/Al203=2.19的 NaX分子筛 10克, 80°C下, 在 100 毫升 1摩尔 /升的 KOH溶液中进行离子交换 2小时, 交换 3次, 过滤 后 100°C干燥 10小时, 获得催化剂 C-7。 催化剂制备实施例 8
取硅铝比 Si02/Al203=2.19NaX的分子筛 10克, 80°C下, 在 100毫 升 1摩尔 /升的 CsOH溶液中进行离子交换 2小时, 交换 3次, 过滤后 100°C干燥 10小时, 获得催化剂 C-8。 应用实施例 1
甲苯和第一股甲醇进入第一反应区, 与催化剂接触, 生成第一反 应流出物。 所述第一反应流出物和第二股甲醇进入第二反应区, 与催 化剂接触, 生成第二反应流出物。 所述第二反应流出物进入第三反应 区, 与催化剂接触, 生成含有乙苯和苯乙烯的第三反应流出物。 从所 述第三反应流出物中分离出乙苯和苯乙烯。
其中, 第一反应区、 第二反应区和第三反应区都是一级固定床反 应器, 分别装填了相同的催化剂, 即催化剂 C-1 至 C-8之一。 第一反 应区温度 385°C , 反应重时空速为 2.7小时 , 反应压力为 O.lMPa (表 压) 。 第二反应区温度为 400°C, 反应重时空速为 3小时 反应压力 为 O. lMPa (表压) 。 第三反应区温度为 415°C , 反应重时空速为 3小 时―1 , 反应压力为 O. lMPa (表压) 。 第一反应区中甲苯与第一股甲醇 的摩尔比为 5:1 , 笫一反应流出物中的甲苯与笫二股甲醇的摩尔比为 4: 1。
甲苯塔的操作条件为: 塔顶温度: 117°C , 塔顶压力: 172KPa (表 压) , 塔板数: 35, 塔底温度: 163°C, 塔底压力: 200KPa (表压) , 回巟比: 12。
乙苯塔的操作条件为: 塔顶温度: 108°C , 塔顶压力: 45KPa (表 压) , 塔板数: 95, 塔底温度: 116° ( , 塔底压力: 58KPa (表压) , 回流比: 12。
苯乙烯塔的操作条件为: 塔顶温度: 85。C , 塔顶压力: 15KPa (表 压) , 塔板数: 25 , 塔底温度: 105°C , 塔底压力: 25KPa (表压) , 回 比: 5。
反应 20小时, 结果如下表 1所示。 表 1
Figure imgf000017_0001
应用实施例 2
同应用实施例 1 , 只是各个反应区的操作条件改变, 并且装填的催 化剂都是前述的催化剂 C-l。 第一反应区温度为 38(TC, 反应重时空速 为 2.5小时 ,反应压力为 0.15MPa (表压)。第二反应区温度为 400°C , 反应重时空速为 2.9小时 , 反应压力为 O. lMPa (表压)。 第三反应区 温度为 410'C, 反应重时空速为 2.9小时 , 反应压力为 0.09MPa (表 压)。 第一反应区中甲苯与第一股甲醇的摩尔比为 5: 1 , 第一反应流出 物中的甲苯与第二股甲醇的摩尔比为 4:1。
甲苯塔的操作条件为: 塔顶温度: U5。C, 塔顶压力: 170KPa (表 压) , 塔板数: 35, 塔底温度: 165'C, 塔底压力: 200KPa (表压) , 回流比: 10。
乙苯塔的操作条件为: 塔顶温度: 105°C, 塔顶压力: 40KPa (表 压) , 塔板数: 95, 塔底温度: 120°C, 塔底压力: 55KPa (表压) , 回流比: 10。
苯乙烯塔的操作条件为: 塔顶温度: 80°C , 塔顶压力: lOKPa (表 压) , 塔板数: 25, 塔底温度: 100°C , 塔底压力: 20KPa (表压) , 回流比: 4。
反应 20小时, 结果为: 烷基化剂利用率为 37.8%, 烷基化产物总 选择性为 97.2%。 应用比较例 1
采用甲醇一步进料一段反应区, 催化剂为前述的催化剂 C-l, 反应 区温度 415°C, 反应重时空速为 2.85小时 进料甲苯: 甲醇摩尔比为 4.5: 1 , 反应压力为 O.lMPa (表压) 。 反应 20小时, 结果为: 烷基化 剂利用率为 35.4%, 烷基化产物总选择性为 97.4%。 应用比较例 2
采用曱醇一步进料一段反应区, 催化剂为前述的催化剂 C-1 , 反应 区温度 400Γ , 反应重时空速为 2.65小时―1, 进料甲苯: 甲醇摩尔比为 4.5: 1 , 反应压力为 O. lMPa (表压) 。 反应 20 小时, 结果为: 烷基化 剂利用率为 32.5%, 烷基化产物总选择性为 97.8%。

Claims

权 利 要 求
1. 一种烷基笨的烷基化方法, 包括以下步驟:
a )使如下结构式( I )的烷基苯和第一股烷基化剂进入笫一反应区, 与催化剂 A接触, 生成物流 I, 其中所述烷基化剂选自甲醇、 甲酪和二 曱氧基甲烷中的至少一种,
Figure imgf000019_0001
其中, 取代基 R为 CM直链或支链烷基, 优选甲基, n代表所述取代基 R的个数, 为 0、 1或 2的整数, 优选 0;
b)使物流 I和第二股烷基化剂进入至少一个第二反应区, 与催化 剂 B接触, 生成物流 Π; 和
c)使物流 II进入至少一个第三反应区, 与催化剂 C接触, 生成含 有烷基化产物的物流 III。
2. 权利要求 1的烷基化方法, 其中所述第一反应区的反应温度为 320〜400°C,优选 380〜400°C,重时空速为 2~4小时 反应压力为 0~ 0.5MPa (表压) ; 所述第二反应区的反应温度为 380〜420°C, 优选 395〜415°C, 重时空速为 2~4小时 , 反应压力为 0 ~ 0.5MPa (表压); 所述第三反应区的反应温度为 400~450°C, 优选 400~420°C, 重时空速 为 2~4小时 , 反应压力为 0~0.5MPa (表压) ; 垸基苯与第一股烷 基化剂的摩尔比为〉 1~6, 优选 3.5〜5.5, 物流 I中烷基苯与第二股烷基 化剂的摩尔比为 1〜5, 优选 3~5。
3. 权利要求 2的烷基化方法, 其中所述第一反应区的反应温度低 于所述第三反应区的反应温度。
4. 权利要求 2的烷基化方法, 其中烷基苯与第一股烷基化剂的所 述摩尔比大于物流 I中烷基苯与第二股烷基化剂的所述摩尔比。
5. 权利要求 1的烷基化方法, 其中所述至少一个第二反应区包括 1 ~ 5个串联的固定床反应器,所述至少一个第三反应区包括 1 ~ 5个串 联的固定床反应器。
6. 权利要求 1的烷基化方法, 其中所述催化剂 A、 所述催化剂 B 和所述催化剂 C中的至少一方是碱金属离子交换分子筛, 其中所述分 子筛选自 X分子筛和 Y分子筛中的一种或多种, 优选选自 Si02/Al203 为 1 ~ 7的 X分子筛和 Si02/Al203为 1 ~ 7的 Y分子筛中的一种或多种, 更优选 Si02/Al203为 2 ~ 3的 X分子筛, 所述碱金属选自 K/Rb (优选 K和 Rb在催化剂中的含量分别为 0.4〜0.8mmol/g和 2.5~3.1mmol/g,更 优选 K: 0.5~0.7mmol/g, Rb: 2.8~3.0mmol/g ) 、 K/Cs (优选 K和 Cs 在催化剂中的含量分别为 0.7~1.3mmol/g和 1.8〜2.5mmol/g, 更优选 K: 0.8〜1.2mmol/g, Cs: 2.0〜2.3mmol/g ) 、 Rb/Cs (优选 Rb和 Cs的在催 化剂中的含量分别为 0.8~1.5mmol/g和 1.0~1.7mmol/g, 更优选 Rb: l. l~1.4mmol/g, Cs: 1.3~1.5mmol/g )或 K/Rb/Cs (优选 K:、 Rb和 Cs 在催化剂中的含量分别为 0.4〜0.9mmol/g、 0.5~1.0mmol/g 和 1.8~2.5 mmol/g , 更优选 K : 0.5~0.7mmol/g , Rb: 0.6-0.8mmol/g , Cs: 2.0~2.4mmol/g )的组合, 更优选 K/Rb/Cs (优选 K:、 Rb和 Cs在催化剂 中的含量分别为 0.5〜0.7mmol/g、 0.6-0.8mmol/g和 2.0〜2.4 mmol/g, 更 优选 K: 0.6~0.7mmol/g, Rb: 0.7-0.8mmol/g, Cs: 2.1~2.3mmol/g )的 组合。
7. 权利要求 1的烷基化方法, 其中所述催化剂 A、 所述催化剂 B 和所述催化剂 C 中的至少一方是通过如下的制造方法制造的碱金属离 子交换分子筛, 其中所述制造方法包括使分子筛与碱金属离子源接触 而进行离子交换的步骤, 其中所述分子筛选自 X分子筛和 Y分子筛中 的一种或多种, 优选选自 Si02/Al203为 1 ~ 7的 X分子筛和 Si02/Al203 为 1 ~ 7的 Y分子筛中的一种或多种, 更优选 Si02/Al203为 2 ~ 3的 X 分子筛, 所述碱金属选自 K/Rb (优选 K和 Rb在催化剂中的含量分别 为 0.4〜0.8mmol/g和 2.5〜3.1mmol/g, 更优选 K: 0.5~0.7mmol/g, Rb: 2.8〜3.0mmol/g ) 、 K/Cs (优选 K 和 Cs 在催化剂中的含量分别为 0.7〜1.3mmol/g 和 1.8~2.5mmol/g, 更优选 K: 0.8~1.2mmol/g , Cs: 2.0~2.3mmol/g ) 、 Rb/Cs (优选 Rb 和 Cs 在催化剂中的含量分别为 0.8~1.5mmol/g 和 1.0~1.7mmol/g, 更优选 Rb: l. l~1.4mmol/g, Cs: 1.3~1.5mmol/g )或 K/Rb/Cs (优选 K、 R 和 Cs在催化剂中的含量分别 为 0.4〜0.9mmol/g、 0.5~1.0mmol/g 和 1.8 2.5 mmol/g, 更优选 K: 0.5〜0.7mmol/g, Rb: 0.6~0.8mmol/g, Cs: 2.0~2.4mmol/g )的组合, 更 优选 K/Rb/Cs (优选 K、 Rb 和 Cs 在催化剂中的含量分别为 0.5~0.7mmol/g、 0.6-0.8mmol/g 和 2.0 2.4 mmol/g , 更优选 Κ : 0.6~0.7mmol/g, Rb: 0.7〜0.8mmol/g, Cs: 2.卜 2.3mmol/g ) 的组合。
8. 权利要求 7的烷基化方法,其中所述碱金属为 K Rb/Cs(优选 K、 Rb和 Cs在催化剂中的含量分别为 0.5~0.7mmol/g、 0.6〜0.8mmol/g和 2.0-2.4 mmol/g, 更优选 K: 0.6~0.7mmol/g, Rb: 0.7-0.8mmol/g, Cs: 2.1〜2.3mmol/g )的组合, 所述接触步骤包括使所述分子筛与 K源、 Rb 源和 Cs源依次接触。
9. 权利要求 1的烷基化方法, 还包括以下步骤:
d )冷凝所述物流 III, 得到物流 IV和含有 CO和 H2的气相物流 V; e )分离所述物流 IV, 得到水相物流和有机相物流 VI; 和
f)分离所述有机相物流 VI, 获得烷基苯和烷基化产物。
10. 权利要求 9的烷基化方法, 其中将步骤 f )获得的烷基苯循环 至所述步骤 a )和 /或所述步骤 b ) 。
PCT/CN2013/000817 2012-07-12 2013-07-04 一种烷基苯的烷基化方法 WO2014023079A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/397,706 US9802876B2 (en) 2012-07-12 2013-07-04 Alkylating process for alkyl benzenes
CA2871301A CA2871301C (en) 2012-07-12 2013-07-04 An alkylating process for alkyl benzenes
BR112014031324-5A BR112014031324B1 (pt) 2012-07-12 2013-07-04 processo de alquilação para alquil benzenos
RU2014143113A RU2627695C2 (ru) 2012-07-12 2013-07-04 Способ алкилирования алкилбензолов

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210240056.5 2012-07-12
CN201210240056.5A CN103539601B (zh) 2012-07-12 2012-07-12 用于甲苯与甲醇侧链烷基化制乙苯和苯乙烯的方法
CN201210325048.0 2012-09-05
CN201210325048.0A CN103664485B (zh) 2012-09-05 2012-09-05 甲苯、甲醇侧链烷基化生产乙苯、苯乙烯的方法

Publications (1)

Publication Number Publication Date
WO2014023079A1 true WO2014023079A1 (zh) 2014-02-13

Family

ID=50067416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000817 WO2014023079A1 (zh) 2012-07-12 2013-07-04 一种烷基苯的烷基化方法

Country Status (5)

Country Link
US (1) US9802876B2 (zh)
BR (1) BR112014031324B1 (zh)
CA (1) CA2871301C (zh)
RU (1) RU2627695C2 (zh)
WO (1) WO2014023079A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054427A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于甲苯甲醇侧链烷基化合成乙苯和苯乙烯的催化剂及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077240A1 (en) * 2009-12-23 2011-06-30 Polimeri Europa S.P.A. Process for preparing ethylbenzene
WO2011097096A1 (en) * 2010-02-05 2011-08-11 Fina Technology, Inc. Styrene production processes and catalysts for use therein

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463204A (en) 1983-04-22 1984-07-31 Exxon Research & Engineering Co. Process for alkylating toluene with methanol to form styrene using a low sodium content potassium/cesium modified zeolite catalyst composition
US4483936A (en) 1983-04-22 1984-11-20 Exxon Research & Engineering Co. Modified zeolite catalyst composition for alkylating toluene with methanol to form styrene
US6642426B1 (en) 1998-10-05 2003-11-04 David L. Johnson Fluid-bed aromatics alkylation with staged injection of alkylating agents
US8115041B2 (en) * 2008-04-02 2012-02-14 Saudi Basic Industries Corporation Pretreatment of a phosphorus-modified zeolite catalyst for an aromatic alkylation process
CN101623649B (zh) 2008-07-08 2011-08-17 中国石油化工股份有限公司 用于制备苯乙烯的碱性分子筛催化剂
US8686205B2 (en) 2008-12-29 2014-04-01 Fina Technology, Inc. Method for production of styrene from toluene and methanol
CN101992082B (zh) 2009-08-31 2012-10-10 中国石油化工股份有限公司 用于甲苯甲醇侧链烷基化反应的催化剂及其制备方法
CN102040457B (zh) 2009-10-13 2014-04-23 中国石油化工股份有限公司 用于甲苯甲醇侧链烷基化反应制备乙苯及苯乙烯的方法
CN102372549B (zh) * 2010-08-23 2014-07-23 中国石油化工股份有限公司 用于甲苯甲醇侧链烷基化反应制备乙苯及苯乙烯的方法
US8653314B2 (en) * 2011-05-22 2014-02-18 Fina Technology, Inc. Method for providing a co-feed in the coupling of toluene with a carbon source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077240A1 (en) * 2009-12-23 2011-06-30 Polimeri Europa S.P.A. Process for preparing ethylbenzene
WO2011097096A1 (en) * 2010-02-05 2011-08-11 Fina Technology, Inc. Styrene production processes and catalysts for use therein

Also Published As

Publication number Publication date
RU2627695C2 (ru) 2017-08-10
BR112014031324B1 (pt) 2020-12-01
CA2871301C (en) 2020-04-14
RU2014143113A (ru) 2016-06-27
US20150119618A1 (en) 2015-04-30
CA2871301A1 (en) 2014-02-13
US9802876B2 (en) 2017-10-31
BR112014031324A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
US9957206B2 (en) Hydrocarbon conversion
US8969642B2 (en) Method for providing a co-feed in the coupling of toluene with a carbon source
TW201127785A (en) Process for the oxidative coupling of hydrocarbons
TW201206868A (en) Alkylation of toluene to form styrene and ethylbenzene
JP2013518883A (ja) スチレン製造方法およびそこでの使用のための触媒
TW201035011A (en) Method for production of styrene from toluene and methanol
CN103588610A (zh) 芳烃烷基化制备对二甲苯的方法
CN102040458B (zh) 纯乙烯或干气与苯反应生产乙苯的方法
CN101219931A (zh) 在酚的催化烷基化反应中抑制高度烷基化酚的生成
JP2006517957A5 (zh)
CN103664485B (zh) 甲苯、甲醇侧链烷基化生产乙苯、苯乙烯的方法
US20040242945A1 (en) Dehydrogenation of alkyl aromatic compound over a gallium-zinc catalyst
WO2014023079A1 (zh) 一种烷基苯的烷基化方法
CN101484408A (zh) 由烷基芳烃脱氢制备乙烯基芳香单体的改进方法
CN102875319A (zh) 芳烃甲基化的移动床催化方法
CN111514928B (zh) 一种合成气与苯一步法制备乙苯的催化剂及方法
CN103012048A (zh) 一种高选择性的甲苯和甲醛或三聚甲醛缩合反应制苯乙烯的方法
CN1258509C (zh) 含有2-6个碳原子的烯烃的醛化方法
CN101624338A (zh) 一种由烷烃制备羧酸的联合方法
CN103030504A (zh) 丙烯的生产方法
US8686208B2 (en) Nitrogen containing catalyst for coupling reactions
US20120296131A1 (en) Method for alkylation of toluene in a pre-existing dehydrogenation plant
KR100588948B1 (ko) 디메틸에테르 제조용 촉매, 이의 제조방법 및 이를 이용한디메틸에테르 제조방법
TW200934748A (en) Method for producing alkylated aromatic compound and method for producing phenol
EP2976315A1 (en) Method of forming c5 di-olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2871301

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14397706

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014143113

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014031324

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13827259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014031324

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141215