WO2014021412A1 - 無人搬送車の充電管理システム - Google Patents

無人搬送車の充電管理システム Download PDF

Info

Publication number
WO2014021412A1
WO2014021412A1 PCT/JP2013/070840 JP2013070840W WO2014021412A1 WO 2014021412 A1 WO2014021412 A1 WO 2014021412A1 JP 2013070840 W JP2013070840 W JP 2013070840W WO 2014021412 A1 WO2014021412 A1 WO 2014021412A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
guided vehicle
battery
automatic guided
Prior art date
Application number
PCT/JP2013/070840
Other languages
English (en)
French (fr)
Inventor
敏人 福井
満 平山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201380041109.3A priority Critical patent/CN104521096B/zh
Priority to RU2015106939/07A priority patent/RU2576668C1/ru
Priority to KR1020157003408A priority patent/KR101607444B1/ko
Priority to BR112015002187-5A priority patent/BR112015002187B1/pt
Priority to MX2015001442A priority patent/MX338059B/es
Priority to US14/418,576 priority patent/US9242571B2/en
Priority to EP13825166.5A priority patent/EP2882068B8/en
Priority to JP2014528214A priority patent/JP6020569B2/ja
Publication of WO2014021412A1 publication Critical patent/WO2014021412A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/022Transferring or handling sub-units or components, e.g. in work stations or between workstations and transportation systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0021
    • H02J7/0027
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31004Move vehicle to battery charge or maintenance area
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • H02J7/0026
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charge management system for an automated guided vehicle that runs unattended using the power of a mounted battery as a drive source and charges a battery mounted at a charging station.
  • the JP2007-74800A automatic guided vehicle is equipped with a nickel metal hydride battery or a lithium ion battery that can be used for partial charge and discharge as a battery.
  • the automatic guided vehicle starts charging when the remaining capacity of the battery reaches the charging start capacity, and stops charging when the remaining capacity reaches the charging stop capacity.
  • multiple automated guided vehicles are used to load the assembly parts at the picking station, transport them to the assembly station, unload the assembly parts, and travel on the route of the circular track returning to the picking station again. It is common to be done.
  • the plurality of automatic guided vehicles are continuously operated so as to travel between the picking station and the assembly station so as to sequentially supply the assembly parts required at the assembly station.
  • the remaining capacity of the mounted battery varies uniformly according to the load such as the weight of the assembly parts mounted on the automatic guided vehicle. do not do.
  • the battery capacity of some automated guided vehicles may decrease faster than other automated guided vehicles.
  • the automatic guided vehicle whose battery capacity decreases quickly has a higher charging frequency at the charging station and a longer charging time than other automatic guided vehicles. For this reason, when a plurality of automatic guided vehicles travel around the same travel route, there is a problem that it is not possible to secure a charging time for the automatic guided vehicle whose battery capacity decreases quickly.
  • An object of the present invention is to provide a charging management system for an automatic guided vehicle that is suitable for securing charging time within a circular cycle for a plurality of automatic guided vehicles traveling around the same traveling route.
  • a system for managing the charging of a plurality of automated guided vehicles in which the battery is charged at a charging station installed at a predetermined position on the circuit route, unattended traveling around the circuit route using the mounted battery according to the present invention as a drive source A post-charging voltage recording unit that records the voltage after charging at the charging station for each automatic guided vehicle, and a charging priority for each automatic guided vehicle based on the voltage value of the post-charging voltage recorded in the post-charging voltage recording unit.
  • a charging priority setting unit to be set; and a charging target value setting unit that sets a charging target value of each automatic guided vehicle based on the charging priority set by the charging priority setting unit.
  • FIG. 1 is a conceptual diagram illustrating an example of a travel route of an automated guided vehicle according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of the automatic charger of the automatic guided vehicle and the charging station.
  • FIG. 3 is an explanatory diagram showing the relationship between the battery device of the automatic guided vehicle and the charger of the charging station during charging.
  • FIG. 4 is a charging characteristic diagram showing changes in battery voltage and charging current supplied during charging.
  • FIG. 5 is an explanatory diagram illustrating an example of a recording data table of the facility-side control device.
  • FIG. 6 is a charge voltage management table for setting the charge priority / charge target value for the battery of the automated guided vehicle.
  • FIG. 7 is a control flowchart for setting the charging voltage management table.
  • FIG. 8 is a time chart for explaining a change in charging time based on data set in the charging voltage management table of FIG.
  • the travel route of the transport process in which the automatic guided vehicle 1 is used is a travel route R of a set orbit that passes through the picking station PS and the assembly station BS of the production line.
  • a plurality of automatic guided vehicles 1 can travel on the travel route R, and the travel of each automatic guided vehicle 1 is controlled by the equipment-side control device 2.
  • the automatic guided vehicle 1 loads the parts required at the assembly station BS at the picking station PS, travels on the travel route R, transports them to the assembly station BS, loads and unloads the parts loaded at the picking station PS, and travels again.
  • the vehicle travels on R and returns to the picking station PS.
  • a charging station CS including an automatic charger 3 controlled by the facility-side control device 2 is arranged on the travel route R.
  • ground stations that perform signal exchange between the automatic guided vehicle 1 and the equipment-side control device 2 are installed at the entrance and exit to the assembly station BS.
  • the automatic guided vehicle 1 includes a battery box 5 that houses a battery B made of a secondary battery (for example, a lithium ion secondary battery), a charge / discharge monitor 11 that monitors the state of the battery B, and the like. For example, it is equipped in the center of the vehicle.
  • the automatic guided vehicle 1 runs using the battery B as a driving power source.
  • Battery B includes battery modules BM connected in series by bus bar BB. In FIG. 3, three battery modules BM are connected in series. A plurality of lithium ion cells (cells) are connected in parallel or in series to form a battery module BM.
  • the voltage of the battery module BM is about 8V in the charged state.
  • the output voltage of the battery B is about 25V. Therefore, the overcharge voltage of the battery B is set to 25 V, for example, and the overdischarge voltage is set to 18 V, for example.
  • the voltage for determining whether charging is necessary is set to, for example, 24.9 V between the overcharge voltage and the overdischarge voltage, and charging is required when the voltage is lower than this voltage, and charging is performed when the voltage is higher than this voltage. It is unnecessary. In this way, the battery is protected so that the voltage difference between the overdischarge voltage and the voltage for determining the start of charging or the completion of charging is sufficiently large so as not to reach the overdischarge voltage in which the deterioration of the battery B progresses. .
  • the power receiving contactor 13 is disposed at the end of the power supply line 12 to the battery B so as to be exposed on the outer surface of the battery box 5.
  • the power receiving contactor 13 is connected to a power supply contactor 23 that is expanded and contracted from the automatic charger 3 of the charging station CS, so that the battery B can be charged.
  • the state of charge of the battery B by the lithium ion battery is monitored and calculated by the charge / discharge monitor 11 as shown in FIG.
  • the charge / discharge monitor 11 displays the charge / discharge capacity (battery voltage) and cell voltage of the battery B and each battery pack, the current amount of input / output of the battery B (ampere hour, AH), the abnormality history of the battery B, etc. for a predetermined time (10 msec). ) Operate to monitor and memorize every time.
  • the charge / discharge monitor 11 can transmit these pieces of information to the equipment-side control device 2 via the ground station 4 and the automatic charger 3 via the communication unit 14 (for example, optical communication).
  • the charge / discharge monitor 11 displays that the battery B is in an abnormal state when each cell voltage constituting the battery B is in an overdischarge state that is equal to or lower than a shutdown threshold (for example, 2.8 to 3 V). Then, the automatic guided vehicle 1 is operated to shut down (abnormally stop).
  • the setting value of the shutdown threshold can be changed, and is normally set to 3.0 V, for example. However, the shutdown threshold value is set to a lower setting value (for example, 2.8 V) while the traveling route R passes through the assembly station BS, so that the shutdown operation in the assembly station BS area is suppressed.
  • the setting value is changed from 3.0V to 2.8V when a shutdown prohibition command is received from the ground station 4 installed at the entrance to the assembly station BS of the travel route R via the communication unit. Like to do. Also, when a shutdown prohibition release command is received from the ground station 4 installed at the exit to the assembly station BS on the travel route R via the communication unit, the setting value is changed from 2.8V to 3.0V. I have to.
  • the automatic charger 3 includes a DC power source 21 capable of boosting up to an upper limit voltage (for example, 25 V) of the battery B, a charge control device 20 that controls a charging current value and a voltage value supplied from the DC power source 21 to the battery B, and an unmanned A communication unit 24 capable of communicating with the communication unit 14 of the transport vehicle 1.
  • a DC power source 21 capable of boosting up to an upper limit voltage (for example, 25 V) of the battery B
  • a charge control device 20 that controls a charging current value and a voltage value supplied from the DC power source 21 to the battery B
  • an unmanned A communication unit 24 capable of communicating with the communication unit 14 of the transport vehicle 1.
  • the communication unit 24 is connected to the communication unit 14 of the automatic guided vehicle 1.
  • the command signal can be communicated.
  • the automatic guided vehicle 1 travels using the battery B as a driving power source, and the charge / discharge capacity (voltage) of the battery B decreases as the travel proceeds. For this reason, the automatic guided vehicle 1 is temporarily stopped when passing the charging station CS, and the automatic guided vehicle 1 is connected between the automatic guided vehicle 1 and the automatic charger 3 of the charging station CS via the communication units 14 and 24. The charge / discharge capacity of the battery B of 1 is confirmed. Then, on the charging station CS side, it is determined whether or not the charging / discharging capacity (voltage) of the battery B at that time requires charging (whether or not it is lower than the charging unnecessary threshold voltage). When it is determined that charging is required, the automatic charger 3 charges the battery B of the automatic guided vehicle 1.
  • the threshold voltage that does not require charging is set to 24.9 V, for example, as described above. That is, it is determined that charging is necessary when the battery voltage falls below the threshold voltage that does not require charging, and charging is determined to be unnecessary when the battery voltage is higher than the threshold voltage that does not require charging. In this way, the battery B is protected so that the battery B does not reach the overdischarge voltage by sufficiently increasing the voltage difference between the overdischarge voltage and the charging unnecessary threshold voltage required for charging.
  • Charging is performed by extending the power feeding contactor 23 toward the power receiving contactor 13 of the automatic guided vehicle 1 and confirming the connection when the power feeding contactor 23 and the power receiving contactor 13 are connected to make the charging state possible. Thereafter, charging power is supplied from the DC power supply 21 to the automatic charger 3.
  • the charging control device 20 can perform regular charging using a constant current / constant voltage method. However, the charging control device 20 supplies a charging current larger than the charging current during normal charging to the battery B. Voltage-based rapid charging is performed. Rapid charging is desirable for transport processes that require short-term charging.
  • constant current charging is performed to supply a constant charging current at the beginning of charging, and the battery voltage rises to the upper charging limit voltage (for example, 25 V) due to charging.
  • CV charging constant voltage charging
  • FIG. 4 shows changes in battery voltage and charging current supplied during charging.
  • the battery voltage is gradually boosted by CC charging, and when the battery voltage rises to a charging upper limit voltage (for example, 25 V), constant voltage charging (CV charging) for which the voltage is constant while decreasing the charging current from that point is performed for a predetermined time. It is executed until it elapses.
  • the charging control device 20 stops the DC power supply 21 to stop charging.
  • CC charging when CC charging is executed and the battery voltage of the automated guided vehicle 1 is raised to a threshold voltage that does not require charging, charging can be stopped as charging is completed.
  • CC charge can be performed only for the predetermined time set beforehand, the battery voltage of the automatic guided vehicle 1 can be raised by the charge time, and charge can also be stopped as charge completion.
  • the charging time can be shortened. For this reason, it is suitable for charging the battery B of the automated guided vehicle 1 that circulates along the travel route R, and in this embodiment, a charging stop method is employed in which charging is stopped for a predetermined time.
  • the automatic charger 3 determines that the charging is completed, and retracts the power supply contactor 23 to disconnect the connection with the power receiving contactor 13 of the automatic guided vehicle 1.
  • the automatic guided vehicle 1 is separated from the charging station CS and travels to the travel route R.
  • the plurality of automatic guided vehicles 1 described above are continuously operated so as to run around between the picking station PS and the assembly station BS so as to sequentially supply the assembly parts required by the assembly station BS.
  • the charging station CS is stopped for each round trip and consumed in the round trip for a very short time (for example, 1 min) included in the round cycle.
  • the automatic battery charger 3 charges the installed battery B with the amount of electric power.
  • the remaining capacity of the battery B mounted does not change uniformly according to the load such as the weight of the assembled parts mounted on the automatic guided vehicle 1.
  • the battery capacity of some automatic guided vehicles 1 may be lower than that of other automatic guided vehicles 1.
  • the automatic guided vehicle 1 whose battery capacity has decreased as compared with other automatic guided vehicles 1 needs to have a longer charging time at the charging station CS and be restored to the same battery capacity as the other automatic guided vehicles 1. . For this reason, it is necessary to ensure the charging time for the automatic guided vehicle 1 whose battery capacity is lower than the others in the circulation cycle in which the plurality of automatic guided vehicles 1 travel around the same traveling route R.
  • the charging management system for the automatic guided vehicle solves such a problem and ensures automatic charging for a plurality of automatic guided vehicles 1 traveling around the same traveling route R in a circular traveling cycle.
  • a charge management system for the car 1 is provided.
  • an individual ID number is set for each automatic guided vehicle 1, the ID number of the automatic guided vehicle 1 is read at the charging station CS, and the charging state of each automatic guided vehicle 1 at the charging station CS Are recorded in the order of passage time, and the equipment-side control device 2 is provided with a record data table. And the equipment side control apparatus 2 performs the control flowchart which calculates a charge priority and a charge target based on the data of a recording data table, and charges the charge priority and charge target of each automatic guided vehicle 1 It is set on the voltage management table.
  • the recorded data table includes the ID number of the automatic guided vehicle 1, the date and time of passage, the charging time of the battery B, the voltage before charging the battery B, the voltage after charging the battery B, as shown in FIG. Etc. are acquired every time the automatic guided vehicle 1 stops, and these data are recorded in order of passage time.
  • the recording data table further records a battery abnormality code, a charger abnormality code, and the like as necessary. For example, the past 1000 records are stored as these data, and each time new data is written, the oldest data is erased and updated to the latest data.
  • the charging voltage management table sets the charging target of the automatic guided vehicle 1 of each ID. Based on the voltage after the previous charging of the automatic guided vehicle 1 of each ID, each ID number It is possible to set the future charging priority and the charging target value of the automatic guided vehicle 1 including the above. And the future charge priority of the automatic guided vehicle 1 provided with each ID number and the charge target value are set by executing the control flowchart shown in FIG.
  • the automatic guided vehicle 1 When the automatic guided vehicle 1 travels on the travel route R and arrives at the charging station CS, the automatic guided vehicle 1 stops at a predetermined position with respect to the automatic charger 3.
  • the automatic charger 3 starts communication with the communication device 14 of the automatic guided vehicle 1 via the communication device 24 (step S1). Then, the individual ID of the automatic guided vehicle 1 is acquired (step S2), and whether there are automatic guided vehicles 1 having the same ID in, for example, 40 automatic guided vehicles 1 that have passed through the charging station CS in the past. It is determined whether or not (step S3).
  • step S4 when there is an automatic guided vehicle 1 having the same ID while passing, the post-charge voltage value of each automatic guided vehicle 1 from the automatic guided vehicle 1 having the same ID to the present is determined for each.
  • the previous voltage value corresponding to the ID is set (step S4).
  • ID6-0001 is 24.2V
  • ID6-0002 is 24.8V
  • ID6-0003 is 22.9V
  • ID6-0004 is 24.2V.
  • the previous voltage value is sequentially searched (step S5), and it is determined whether or not there is a voltage value whose previous voltage value is lower than the priority charging voltage value A (step S6).
  • the preferential charging voltage value A may be set to a voltage value that can circulate the travel route R with a margin or an average value of the post-charging voltage value. Here, for example, 24V is set.
  • the charging priority is set to high for that ID (step S7).
  • the charge priority of ID6-0003 is set to High, assuming that it is 22.9V in ID6-0003 and is a voltage value lower than the priority charge voltage value A.
  • step S8 whether or not the previous voltage value of the automated guided vehicle 1 traveling immediately before the automated guided vehicle 1 having an ID with High charging priority (one before) is higher than the priority charging voltage value A. Is determined (step S8). In this determination, if the previous voltage value is higher than the priority charging voltage value A, the charging priority is set to low for that ID (step S9).
  • the immediately preceding ID 6-0002 is 24.8V, which is a voltage value higher than the priority charging voltage value A, the charging priority of ID 6-0002 is set to Low.
  • step S10 it is determined whether or not the previous voltage value of the automatic guided vehicle 1 that travels in front of the two IDs whose charging priority is High is higher than the priority charging voltage value A (step S10). .
  • the charging priority is set to low for that ID (step S11).
  • the ID6-0001 of the previous two is 24.2V and is a voltage value higher than the priority charging voltage value A
  • the charging priority of ID6-0001 is set to Low.
  • IDs whose priority is set to Low are sequentially searched, and the voltage value B having the lowest previous voltage value is picked up (step S12). Then, the charging target value for the ID set to the priority Low is set to the voltage value B. Further, the charging target value for the ID set to the priority level High is also set to the voltage value B (step S13).
  • the ID (ID6-ID) whose priority is set to Low is set to 24.2V. 0001, ID6-0002) is set to a target voltage value of 24.2V as a voltage value B.
  • the voltage target B for the ID (ID 6-0003) set to the priority High also sets the voltage value B to 24.2V.
  • the charging priority of the automated guided vehicle 1 having a voltage value lower than the priority charging voltage value A is set to High, and the unattended ID having a voltage value higher than the priority charging voltage value A is set.
  • the charging priority of the transport vehicle 1 is set to Low.
  • each charging target voltage is set to the lowest voltage value B of the previous voltage value of the automatic guided vehicle 1 with the ID set to the low priority.
  • the charging start voltage for the automatic guided vehicle 1 having the voltage value higher than the priority charging voltage value A and having the charging priority of Low is the charging start voltage. Since it is originally high, it is shorter than the default time.
  • the charging time for the automatic guided vehicle 1 having a voltage value lower than the priority charging voltage value A and having the charging priority of High is longer than the Default time because the charging start voltage is originally low.
  • the charging time for the automatic guided vehicle 1 with the preceding charging priority of Low is shortened, the charging time for the automatic guided vehicle 1 with the charging priority of High that follows the shortened charging time is charged. Can be devoted to For this reason, the cycle time of the round traveling of the automatic guided vehicle 1 is not disturbed.
  • the previous charging voltage value of the automatic guided vehicle 1 preceding the automatic guided vehicle 1 set as the charging priority High is searched and specified. I was doing.
  • the previous charging voltage values of the automatic guided vehicle 1 before and after the automatic guided vehicle 1 with the charging priority High may be searched and specified.
  • the present invention is not limited to this, for example, the travel route R May be set to a voltage value that can be circulated with a margin or an average value of voltage values after charging.
  • the charging target value the charging time is shortened for the unmanned transport vehicle 1 having a low charging priority with respect to the charging time set from the circulation cycle time of the unmanned transport vehicle 1, and the unmanned transport having a high charging priority is performed.
  • the charging time may be extended.
  • a charging priority setting unit (charging voltage management table) that sets a charging priority for each automatic guided vehicle based on the voltage value of the post-charging voltage recorded in the post-charging voltage recording unit, and a charging priority setting unit
  • a charging target value setting unit (charging voltage management table) that sets a charging target value of each automatic guided vehicle 1 based on the set charging priority.
  • the charging priority is set for each automatic guided vehicle 1 based on the voltage value of the post-charging voltage, and the charging target value of each automatic guided vehicle 1 is set based on the charging priority. For this reason, even when a plurality of automatic guided vehicles 1 travel on the circuit route R, the battery capacity of the automatic guided vehicle 1 whose battery capacity is reduced is recovered without disturbing the rotational travel cycle of each automatic guided vehicle 1. be able to.
  • the charge priority setting unit preferentially charges the charging priority for the automatic guided vehicle in which the voltage value of the post-charging voltage recorded in the post-charging voltage recording unit is higher than a preset priority charging voltage value.
  • the charging priority for the automatic guided vehicle lower than the voltage value is set high. That is, the charging priority of the automatic guided vehicle 1 with a low voltage after charging the battery B is high, and the charging priority of the automatic guided vehicle 1 with a high voltage after charging of the battery B is low. For this reason, the charge with respect to the automatic guided vehicle 1 with the low voltage after the charge of the battery B can be accelerated
  • the charging target value setting unit sets the charging target value so that the charging time becomes longer as the charging priority set by the charging priority setting unit is higher. That is, the charging time is increased for the automatic guided vehicle 1 having a high charging priority, and the charging time is shortened for the automatic guided vehicle 1 having a low charging priority. For this reason, the battery capacity of the automatic guided vehicle 1 whose battery capacity is reduced can be recovered without disturbing the rotational traveling cycle of the plurality of automatic guided vehicles 1 on the circular route R.
  • the automatic guided vehicle 1 includes a charge / discharge monitor 11 that monitors the charge / discharge amount of the battery B.
  • the charge / discharge monitor 11 monitors the cell voltages of a plurality of battery packs constituting the battery B. If the cell voltage of any battery pack becomes lower than a preset voltage value, the automatic guided vehicle 1 It is configured to display that the battery B is in an abnormal state and stop the automatic guided vehicle 1.
  • the voltage value for determining that the battery B is abnormal is lowered as compared with traveling in another area. For this reason, the abnormal stop of the automatic guided vehicle 1 can be suppressed while passing through the area of the assembly station BS.

Abstract

 搭載したバッテリーを駆動源として周回ルートを無人で走行し、周回ルート上の所定の位置に設置した充電ステーションで前記バッテリーが充電される複数の無人搬送車の充電を管理するシステムにおいて、前記充電ステーションでの充電後電圧を、無人搬送車毎に記録する充電後電圧記録部と、前記充電後電圧記録部に記録された充電後電圧の電圧値に基づいて無人搬送車毎に充電優先度を設定する充電優先度設定部と、前記充電優先度設定部で設定した充電優先度に基づいて各無人搬送車の充電目標値を設定する充電目標値設定部と、を備える。

Description

無人搬送車の充電管理システム
 この発明は、搭載したバッテリーの電力を駆動源として無人で走行し、充電ステーションで搭載したバッテリーに充電を行う無人搬送車の充電管理システムに関する。
 JP2007-74800Aの無人搬送車は、部分充放電でも使用可能なニッケル水素電池やリチウムイオン電池をバッテリーとして搭載する。この無人搬送車は、バッテリーの残容量が充電開始容量になったときに充電が開始され、残容量が充電停止容量に達したときに充電が停止される。
 ところで、組立生産ラインでは、ピッキングステーションで組み付け部品を積み込み、組立ステーションに搬送して組み付け部品を積み下ろして、再びピッキングステーションに戻る周回軌道の走行ルート上を走行させるよう、複数の無人搬送車が使用されるのが一般的である。そして、複数の無人搬送車は、組立ステーションで要求する組み付け部品を順次供給するように、ピッキングステーションと組立ステーションとの間を周回走行するように連続的に運用される。
 このように連続的に運用される複数の無人搬送車においては、搭載しているバッテリーの残容量が、無人搬送車に搭載される組み付け部品の重量等の負荷に応じて、一様には変化しない。一部の無人搬送車のバッテリー容量が他の無人搬送車よりも早く低下することがある。バッテリー容量が早く低下する無人搬送車は、他の無人搬送車に比較して、充電ステーションでの充電頻度が高くなると共に充電時間も長くなる。このため、複数の無人搬送車が同じ走行ルートを周回走行する場合に、バッテリー容量が早く低下する無人搬送車に対する充電時間を確保することができないという課題があった。
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、同じ走行ルートを周回走行する複数の無人搬送車に対する周回サイクル内での充電時間を確保するに好適な無人搬送車の充電管理システムを提供することである。
 本発明による搭載したバッテリーを駆動源として周回ルートを無人で走行し、周回ルート上の所定の位置に設置した充電ステーションで前記バッテリーが充電される複数の無人搬送車の充電を管理するシステムは、充電ステーションでの充電後電圧を、無人搬送車毎に記録する充電後電圧記録部と、充電後電圧記録部に記録された充電後電圧の電圧値に基づいて無人搬送車毎に充電優先度を設定する充電優先度設定部と、充電優先度設定部で設定した充電優先度に基づいて各無人搬送車の充電目標値を設定する充電目標値設定部と、を備える。
図1は、本発明の実施形態における無人搬送車の走行経路の例を示す概念図である。 図2は、無人搬送車及び充電ステーションの自動充電器の概略を示す説明図である。 図3は、充電時における無人搬送車のバッテリー装置と充電ステーションの充電器との関係を示す説明図である。 図4は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示す充電特性図である。 図5は、設備側制御装置の記録データテーブルの例を示す説明図である。 図6は、無人搬送車のバッテリーへの充電優先度・充電目標値を設定するための充電電圧管理テーブルである。 図7は、充電電圧管理テーブルを設定するための制御フローチャートである。 図8は、図6の充電電圧管理テーブルで設定したデータに基づく、充電時間の変化を説明するタイムチャートである。
 以下、添付の図面を参照しながら本発明の実施形態について説明する。
 無人搬送車1が使用される搬送工程の走行経路は、例えば、図1に示すように、ピッキングステーションPSと生産ラインの組立ステーションBSとを経由する設定された周回軌道の走行ルートRである。搬送工程では、この走行ルートR上を複数の無人搬送車1が走行できるように構成され、各無人搬送車1の走行は設備側制御装置2によって制御される。
 無人搬送車1は、ピッキングステーションPSでは組立ステーションBSで必要とする部品を積み込み、走行ルートR上を走行して組立ステーションBSに搬送し、ピッキングステーションPSで積載した部品を積み降ろし、再び走行ルートR上を走行してピッキングステーションPSに戻る循環走行を繰り返す。走行ルートR上の、例えば、ピッキングステーションPSの手前には、設備側制御装置2により制御される自動充電器3を備える充電ステーションCSが配置されている。また、例えば、組立ステーションBSへの入口及び出口には、無人搬送車1と設備側制御装置2との信号授受を実行する地上局が設置されている。
 無人搬送車1は、図2に示すように、二次電池(例えば、リチウムイオン二次電池)からなるバッテリーB、バッテリーBの状態を監視する充放電モニター11等を収容するバッテリーボックス5を、例えば、車両中央に装備している。そして、無人搬送車1は、バッテリーBを駆動電源として走行する。バッテリーBは、バスバーBBで直列接続された電池モジュールBMを含む。図3では、3個の電池モジュールBMが直列接続される。複数のリチウムイオン単電池(セル)が並列又は直列に接続されて電池モジュールBMが構成される。この電池モジュールBMの電圧は、充電状態で約8V強である。バッテリーBには、3個の電池モジュールBMが直列接続されているので、バッテリーBの出力電圧は、25V程度となる。従って、バッテリーBの過充電電圧は、例えば、25V、過放電電圧は、例えば、18Vに設定される。充電の要否を判定する電圧は、過充電電圧と過放電電圧との間の、例えば、24.9Vに設定し、この電圧より低い場合に充電が必要とし、この電圧より高い場合に充電が不要としている。このように、過放電電圧と充電開始若しくは充電完了と判定する電圧との間の電圧差を充分に大きくして、バッテリーBの劣化が進む過放電電圧に至らないよう、電池を保護している。
 バッテリーBへの給電線12の端部には、バッテリーボックス5の外面に露出させて受電コンタクター13が配置される。この受電コンタクター13に充電ステーションCSの自動充電器3から伸縮される給電コンタクター23が接続されて、バッテリーBに充電可能となっている。
 また、リチウムイオン電池によるバッテリーBの充電状態は、図3に示すように、充放電モニター11により監視・演算する。充放電モニター11は、バッテリーB及び各電池パックの充放電容量(バッテリー電圧)及びセル電圧、バッテリーBの入出力の電流量(アンペアアワー、AH)、バッテリーBの異状履歴等を所定時間(10msec)毎に監視し、記憶するよう作動する。そして、充放電モニター11は、通信部14(例えば、光通信)を介して、地上局4及び自動充電器3を介してこれらの情報を設備側制御装置2に送信可能としている。
 また、充放電モニター11は、バッテリーBを構成する各セル電圧がシャットダウン閾値(例えば、2.8~3V)以下の過放電状態となっている場合に、バッテリーBが異常状態であることを表示し、無人搬送車1をシャットダウン(異常停止)させるよう作動する。シャットダウン閾値は、設定値を変更可能となっており、通常は例えば、3.0Vに設定されている。しかし、シャットダウン閾値は、走行ルートRの組立ステーションBS通過中は、より低い設定値(例えば、2.8V)に設定し、組立ステーションBS領域内でのシャットダウン動作を抑制するようにしている。具体的には、走行ルートRの組立ステーションBSへの入口に設置された地上局4から通信部を介してシャットダウン禁止コマンドを受取ったときに、設定値を、3.0Vから2.8Vに変更するようにしている。また、走行ルートRの組立ステーションBSへの出口に設置された地上局4から通信部を介してシャットダウン禁止解除コマンドを受取ったときに、設定値を、2.8Vから3.0Vに変更するようにしている。
 自動充電器3は、バッテリーBの上限電圧(例えば、25V)まで昇圧可能な直流電源21と、直流電源21よりバッテリーBへ供給する充電電流値及び電圧値を制御する充電制御装置20と、無人搬送車1の通信部14と通信可能な通信部24と、を備える。
 通信部24は、無人搬送車1の通信部14との間で、バッテリーBの充放電容量(電圧)、バッテリーBの入出力の電流量(アンペアアワー、AH)、バッテリーBの異状履歴、その他の指令信号等を通信可能としている。
 無人搬送車1は、バッテリーBを駆動電源として走行し、走行に連れてバッテリーBの充放電容量(電圧)が低下する。このため、無人搬送車1が充電ステーションCSを通過する際に一時停止させ、無人搬送車1と充電ステーションCSの自動充電器3との間で、通信部14,24を介して、無人搬送車1のバッテリーBの充放電容量を確認する。そして、充電ステーションCS側において、そのときのバッテリーBの充放電容量(電圧)が充電を必要とするか否か(充電不要しきい電圧より低下しているか否か)を判定する。そして充電を必要とすると判定したときに、無人搬送車1のバッテリーBに対して自動充電器3より充電がなされる。
 充電不要しきい電圧は、前述した、例えば、24.9Vに設定している。即ち、充電不要しきい電圧よりバッテリー電圧が低下したときに充電が必要と判定し、充電不要しきい電圧よりバッテリー電圧が高いときに充電が不要と判定する。このように、過放電電圧と充電が必要とする充電不要しきい電圧との間の電圧差を充分に大きくして、バッテリーBが過放電電圧に至らないよう、バッテリーBを保護している。
 充電は、給電コンタクター23を無人搬送車1の受電コンタクター13に向かって伸長させ、給電コンタクター23と受電コンタクター13とが接続されると、この接続を確認して充電可能な状態とする。その後に、自動充電器3には、直流電源21から充電電力が供給される。充電制御装置20は、バッテリーBへ充電するために、定電流・定電圧方式の普通充電も可能であるが、普通充電時の充電電流よりも大きな充電電流をバッテリーBに供給する定電流・定電圧方式の急速充電が実施される。急速充電は、短時間の充電を必要とする搬送工程には望ましい。定電流・定電圧方式の充電では、充電初期には定電流の充電電流を供給する定電流充電(CC充電)を行い、充電によってバッテリー電圧が充電上限電圧(例えば、25V)まで上昇した時点からは、電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで行う。
 図4は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示すものである。CC充電によりバッテリー電圧は徐々に昇圧され、バッテリー電圧が充電上限電圧(例えば、25V)まで上昇すると、その時点から充電電流を低下させつつ電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで実行される。所定時間が経過すると、充電制御装置20は、直流電源21を停止させて充電を停止させる。
 また、CC充電を実行して、無人搬送車1のバッテリー電圧が充電不要しきい電圧まで上昇された時点で、充電完了として、充電を停止させることもできる。また、CC充電を予め設定した所定時間だけ実行して、無人搬送車1のバッテリー電圧を充電時間分だけ上昇させて、充電完了として、充電を停止させることもできる。このように、充電不要しきい電圧まで、若しくは、所定時間だけ、バッテリー電圧を上昇させた時点で、充電を終了させる場合には、充電時間を短縮させることができる。このため、走行ルートRを周回する無人搬送車1のバッテリーBへの充電には適しており、本実施形態では、充電を所定時間だけ実行して充電停止させる充電停止方法を採用している。
 充電ステーションCSにおいて、バッテリーBへの充電が終了すると、自動充電器3は充電終了と判断して、給電コンタクター23を待避させて無人搬送車1の受電コンタクター13との接続を切り離す。コンタクター13,23同士の接続が切り離されると、無人搬送車1は、充電ステーションCSから離脱させて走行ルートRへ走行させる。
 ところで、上記した複数の無人搬送車1は、組立ステーションBSで要求する組み付け部品を順次供給するように、ピッキングステーションPSと組立ステーションBSとの間を周回走行するように連続的に運用される。このように連続的に運用される複数の無人搬送車1においては、周回走行毎に充電ステーションCSに停止させて、周回サイクルに含まれるごく短時間(例えば、1min)に、周回走行で消費された電力量を、搭載しているバッテリーBに対して自動充電器3により充電する運用がなされる。
 ところで、搭載しているバッテリーBの残容量は、無人搬送車1に搭載される組み付け部品の重量等の負荷に応じて、一様には変化しない。一部の無人搬送車1のバッテリー容量が他の無人搬送車1よりも低下することがある。他の無人搬送車1に比較してバッテリー容量が低下した無人搬送車1は、充電ステーションCSでの充電時間を長くして、他の無人搬送車1と同等のバッテリー容量に回復させる必要がある。このため、バッテリー容量が他より低下する無人搬送車1に対する充電時間を、同じ走行ルートRを複数の無人搬送車1が周回走行する周回サイクル内で、確保する必要がある。
 本実施形態の無人搬送車の充電管理システムは、このような課題を解決して、同じ走行ルートRを周回走行する複数の無人搬送車1に対する周回走行サイクル内での充電時間を確保する無人搬送車1の充電管理システムを提供するものである。
 このため、本実施形態では、各無人搬送車1に個別のIDナンバーを設定し、充電ステーションCSで無人搬送車1のIDナンバーを読取り、充電ステーションCSでの各無人搬送車1への充電状態を記録し、通過時刻順に記憶させた記録データテーブルを設備側制御装置2に備えている。そして、設備側制御装置2は、記録データテーブルのデータに基づいて、充電優先順位及び充電目標を演算する制御フローチャートを実行して、個々の無人搬送車1の充電優先順位及び充電目標を、充電電圧管理テーブル上に設定するようにしている。
 記録データテーブルは、図5に示すように、充電ステーションCSから、無人搬送車1のIDナンバー、通過日時・時刻、バッテリーBへの充電時間、バッテリーBの充電前電圧、バッテリーBの充電後電圧等を、無人搬送車1が停車する毎に取得して、これらデータを通過時刻順に記録する。この記録データテーブルは、必要に応じて更に、バッテリー異常コード、充電器異常コード等も記録する。これらのデータは、例えば、過去の1000件分が記憶され、新たなデータが書き込まれる毎に最も古いデータが消去されることで、最新のデータに更新される。
 充電電圧管理テーブルは、図6に示すように、各IDの無人搬送車1の充電目標を設定するものであり、各IDの無人搬送車1の前回の充電後電圧に基づいて、各IDナンバーを備える無人搬送車1の今後の充電優先度、及び、充電目標値を、設定可能としている。そして、各IDナンバーを備える無人搬送車1の今後の充電優先度、及び、充電目標値は、図7に示す制御フローチャートを実行することにより、設定するようにしている。
 以下では、図7に示す制御フローチャートに基づいて、本実施形態の無人搬送車1の充電管理システムを詳細に説明する。
 無人搬送車1は、走行ルートR上を走行して充電ステーションCSに到着すると、自動充電器3に対して所定位置で停止する。自動充電器3は、通信装置24を介して無人搬送車1の通信装置14と通信を開始する(ステップS1)。そして、無人搬送車1の個別IDを取得し(ステップS2)、充電ステーションCSを過去に通過した、例えば、40台の無人搬送車1の中に同じIDを備えた無人搬送車1があるか否かを判定する(ステップS3)。
 この判定において、通過した中に同じIDを備えた無人搬送車1がある場合には、同じIDを備えた無人搬送車1から現在に至る各無人搬送車1の充電後電圧値を、夫々のIDに対応した前回電圧値に設定する(ステップS4)。ここでは、ID6-0001が24.2V、ID6-0002が24.8V、ID6-0003が22.9V、ID6-0004が24.2Vとなっている。このように、前回通過した同じIDの無人搬送車1を検索することにより、周回走行している複数の無人搬送車1の台数を特定することができ、次回の充電に際しての充電優先度、充電目標を設定する参照データが揃うこととなる。
 次いで、前回電圧値を順次検索して(ステップS5)、前回電圧値が優先充電電圧値Aよりも低い電圧値があるか否かを判定する(ステップS6)。優先充電電圧値Aは、走行ルートRを余裕を持って周回可能な電圧値や充電後電圧値の平均値に設定してもよい。ここでは、例えば、24Vと設定する。そして、この判定において、前回電圧値が優先充電電圧値Aよりも低い電圧値である場合には、そのIDに対して充電優先度を高(High)に設定する(ステップS7)。ここでは、ID6-0003において22.9Vであり、優先充電電圧値Aよりも低い電圧値であるとして、ID6-0003の充電優先度を、Highに設定している。
 次いで、充電優先度を、HighとしたIDの無人搬送車1の直前(1台前)を走行する無人搬送車1の前回電圧値が、優先充電電圧値Aよりも高い電圧値であるか否かを判定する(ステップS8)。この判定において、前回電圧値が優先充電電圧値Aよりも高い電圧値である場合には、そのIDに対して充電優先度を低(Low)に設定する(ステップS9)。ここでは、直前のID6-0002が24.8Vであり、優先充電電圧値Aよりも高い電圧値であるとして、ID6-0002の充電優先度を、Lowに設定している。
 次いで、充電優先度を、HighとしたIDの2台前を走行する無人搬送車1の前回電圧値が、優先充電電圧値Aよりも高い電圧値であるか否かを判定する(ステップS10)。この判定において、前回電圧値が優先充電電圧値Aよりも高い電圧値である場合には、そのIDに対して充電優先度を低(Low)に設定する(ステップS11)。ここでは、2台前のID6-0001が24.2Vであり、優先充電電圧値Aよりも高い電圧値であるとして、ID6-0001の充電優先度を、Lowに設定している。
 次いで、優先度をLowに設定したIDを順次検索して、前回電圧値の最も低い電圧値Bをピックアップする(ステップS12)。そして、優先度Lowに設定したIDに対する充電目標値を電圧値Bに設定する。また、優先度Highに設定したIDに対する充電目標値も電圧値Bに設定する(ステップS13)。ここでは、優先度をLowに設定したID(ID6-0001、ID6-0002)の前回電圧値の最も低い電圧値Bは、24.2Vであるため、優先度をLowに設定したID(ID6-0001、ID6-0002)の充電目標値を電圧値Bを、24.2Vに設定する。また、優先度Highに設定したID(ID6-0003)に対する充電目標値も電圧値Bを、24.2Vに設定する。
 以上のように、優先充電電圧値Aよりも低い電圧値を備えたIDの無人搬送車1の充電優先度をHighに設定し、優先充電電圧値Aよりも高い電圧値を備えたIDの無人搬送車1の充電優先度をLowに設定する。また、夫々の充電目標電圧を優先度をLowに設定したIDの無人搬送車1の前回電圧値の最も低い電圧値Bに設定する。このように、設定することにより、図8に示すように、優先充電電圧値Aよりも高い電圧値を備えて充電優先度がLowのIDの無人搬送車1に対する充電時間は、充電開始電圧が元々高いため、Default時間より短縮される。また、優先充電電圧値Aよりも低い電圧値を備えて充電優先度がHighのIDの無人搬送車1に対する充電時間は、充電開始電圧が元々低いため、Default時間より長くなる。しかしながら、先行する充電優先度がLowのIDの無人搬送車1に対する充電時間が短縮されるため、その短縮された充電時間分を後続する充電優先度がHighのIDの無人搬送車1に対する充電時間に充てることができる。このため、無人搬送車1の周回走行のサイクルタイムを乱すことがない。
 なお、上記実施形態において、充電優先度Lowに選定する無人搬送車1として、充電優先度Highと設定した無人搬送車1に先行する無人搬送車1の前回充電電圧値を検索して特定するようにしていた。しかしながら、優先度Lowに選定する無人搬送車1として、充電優先度Highの無人搬送車1の前後の無人搬送車1の前回充電電圧値を検索して特定するようにしてもよい。また、走行ルートR上に投入されている、充電優先度Highの無人搬送車1を除く、全ての無人搬送車1を検索して特定するようにしてもよい。
 また、充電目標値として、充電優先度をLowに設定した無人搬送車1の中のより低い充電後電圧まで充電するものについて説明したが、これに限定されるものでなく、例えば、走行ルートRを余裕を持って周回可能な電圧値や充電後電圧値の平均値に設定してもよい。また、充電目標値として、無人搬送車1の周回サイクルタイムから設定した充電時間に対して、充電優先度が低い無人搬送車1に対しては充電時間を短縮し、充電優先度が高い無人搬送車1に対しては充電時間を延長させるものであってもよい。
 本実施形態においては、以下に記載する効果を奏することができる。
 (1)搭載したバッテリーBを駆動源として周回ルートRを無人で走行し、周回ルートR上の所定の位置に設置した充電ステーションCSでバッテリーBが充電される複数の無人搬送車1の充電を管理するシステムである。そして、充電ステーションCSでの充電後電圧を、無人搬送車1毎に記録する充電後電圧記録部(記録データテーブル)を備える。そして、充電後電圧記録部に記録された充電後電圧の電圧値に基づいて無人搬送車毎に充電優先度を設定する充電優先度設定部(充電電圧管理テーブル)と、充電優先度設定部で設定した充電優先度に基づいて各無人搬送車1の充電目標値を設定する充電目標値設定部(充電電圧管理テーブル)と、を備える。
 即ち、充電後電圧の電圧値に基づいて無人搬送車1毎に充電優先度を設定し、充電優先度に基づいて各無人搬送車1の充電目標値を設定するようにしている。このため、周回ルートR上に複数の無人搬送車1を走行させる場合においても、各無人搬送車1の周回走行サイクルを乱すことなく、バッテリー容量の低下した無人搬送車1のバッテリー容量を回復させることができる。
 (2)充電優先度設定部は、充電後電圧記録部に記録された充電後電圧の電圧値が、予め設定された優先充電電圧値よりも高い無人搬送車に対する充電優先度よりも、優先充電電圧値よりも低い無人搬送車に対する充電優先度を高く設定する。即ち、バッテリーBの充電後電圧の低い無人搬送車1の充電優先度が高く、バッテリーBの充電後電圧の高い無人搬送車1の充電優先度が低くなる。このため、バッテリーBの充電後電圧の低い無人搬送車1に対する充電を促進することができる。
 (3)充電目標値設定部は、充電優先度設定部で設定された充電優先度が高い程、充電時間が長くなるよう充電目標値を設定する。即ち、充電優先度が高い無人搬送車1に対しては充電時間が長くなり、充電優先度が低い無人搬送車1に対しては充電時間が短くなる。このため、周回ルートR上に複数の無人搬送車1の周回走行サイクルを乱すことなく、バッテリー容量の低下した無人搬送車1のバッテリー容量を回復させることができる。
 (4)無人搬送車1は、バッテリーBの充放電量を監視する充放電モニター11を備える。この充放電モニター11は、バッテリーBを構成する複数の電池パックのセル電圧を監視し、いずれかの電池パックのセル電圧が予め設定した電圧値よりも低くなった場合には、無人搬送車1のバッテリーBが異常状態であることを表示して無人搬送車1を停止させるよう構成される。そして、無人搬送車1が生産ラインの組立ステーションBSに臨む領域を走行する場合は、他の領域を走行する場合に比較して、バッテリーBが異常であると判定する電圧値を下げる。このため、組立ステーションBSの領域を通過中は、無人搬送車1の異常停止を抑制することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 たとえば、上記実施形態は、適宜組み合わせ可能である。
 本願は、2012年8月2日に日本国特許庁に出願された特願2012-171717に基づく優先権を主張し、これらの出願の全ての内容は参照によって本明細書に組み込まれる。

Claims (4)

  1.  搭載したバッテリーを駆動源として周回ルートを無人で走行し、周回ルート上の所定の位置に設置した充電ステーションで前記バッテリーが充電される複数の無人搬送車の充電を管理するシステムにおいて、
     前記充電ステーションでの充電後電圧を、無人搬送車毎に記録する充電後電圧記録部と、
     前記充電後電圧記録部に記録された充電後電圧の電圧値に基づいて無人搬送車毎に充電優先度を設定する充電優先度設定部と、
     前記充電優先度設定部で設定した充電優先度に基づいて各無人搬送車の充電目標値を設定する充電目標値設定部と、
    を備える無人搬送車の充電管理システム。
  2.  請求項1に記載の無人搬送車の充電管理システムにおいて、
     前記充電優先度設定部は、前記充電後電圧記録部に記録された充電後電圧の電圧値が、予め設定された優先充電電圧値よりも高い無人搬送車に対する充電優先度よりも、前記優先充電電圧値よりも低い無人搬送車に対する充電優先度を高く設定する、
    無人搬送車の充電管理システム。
  3.  請求項1又は請求項2に記載の無人搬送車の充電管理システムにおいて、
     前記充電目標値設定部は、前記充電優先度設定部で設定された充電優先度が高い程、充電時間が長くなるよう充電目標値を設定する、
    無人搬送車の充電管理システム。
  4.  請求項1から請求項3までのいずれか1項に記載の無人搬送車の充電管理システムにおいて、
     前記無人搬送車は、バッテリーの充放電量を監視する充放電モニターを備え、
     前記充放電モニターは、バッテリーを構成する複数のセル電圧を監視し、いずれかのセル電圧が予め設定した電圧値よりも低下した場合には、無人搬送車のバッテリーが異常状態であることを表示して無人搬送車を停止させるよう構成され、
     無人搬送車が生産ラインの組立ステーションに臨む領域を走行する場合は、他の領域を走行する場合に比較して、前記バッテリーが異常であると判定する電圧値を低下させる、
    無人搬送車の充電管理システム。
PCT/JP2013/070840 2012-08-02 2013-08-01 無人搬送車の充電管理システム WO2014021412A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201380041109.3A CN104521096B (zh) 2012-08-02 2013-08-01 无人搬运车的充电管理系统
RU2015106939/07A RU2576668C1 (ru) 2012-08-02 2013-08-01 Система управления зарядом для автоматически управляемого транспортного средства
KR1020157003408A KR101607444B1 (ko) 2012-08-02 2013-08-01 무인 반송차의 충전 관리 시스템
BR112015002187-5A BR112015002187B1 (pt) 2012-08-02 2013-08-01 sistema de gerenciamento de carga para veículo autoguiado
MX2015001442A MX338059B (es) 2012-08-02 2013-08-01 Sistema de administracion de carga para vehiculo guiado automaticamente.
US14/418,576 US9242571B2 (en) 2012-08-02 2013-08-01 Charge managing system for automated guided vehicle
EP13825166.5A EP2882068B8 (en) 2012-08-02 2013-08-01 Charging management system for unpiloted conveyance vehicles
JP2014528214A JP6020569B2 (ja) 2012-08-02 2013-08-01 無人搬送車の充電管理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012171717 2012-08-02
JP2012-171717 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021412A1 true WO2014021412A1 (ja) 2014-02-06

Family

ID=50028079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070840 WO2014021412A1 (ja) 2012-08-02 2013-08-01 無人搬送車の充電管理システム

Country Status (10)

Country Link
US (1) US9242571B2 (ja)
EP (1) EP2882068B8 (ja)
JP (1) JP6020569B2 (ja)
KR (1) KR101607444B1 (ja)
CN (1) CN104521096B (ja)
BR (1) BR112015002187B1 (ja)
MX (1) MX338059B (ja)
MY (1) MY154240A (ja)
RU (1) RU2576668C1 (ja)
WO (1) WO2014021412A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009911A (ja) * 2017-06-26 2019-01-17 トヨタ自動車株式会社 自律移動車両の自動充電システム
CN110549897A (zh) * 2018-06-01 2019-12-10 杭州海康机器人技术有限公司 自行走设备的充电调度方法和装置
WO2020110247A1 (ja) * 2018-11-29 2020-06-04 本田技研工業株式会社 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
JP2021047510A (ja) * 2019-09-17 2021-03-25 株式会社デンソー 無人搬送システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3319196B1 (en) 2015-06-30 2022-04-27 SZ DJI Technology Co., Ltd. Charging control circuit, charging device, charging system and charging control method
WO2017038753A1 (ja) * 2015-08-31 2017-03-09 ニチコン株式会社 給電装置
FR3046305B1 (fr) * 2015-12-24 2018-02-16 Partnering 3.0 Procede de rechargement de la batterie d'un robot mobile, systeme, station d'accueil et robot mobile pour la mise en œuvre du procede
US11163311B2 (en) 2015-12-24 2021-11-02 Partnering 3.0 Robotic equipment including a mobile robot, method for recharging a battery of such mobile robot, and mobile robot docking station
CN105720643B (zh) * 2016-03-30 2018-03-06 四川中科智慧智能系统有限公司 用于agv的轨道充电系统及其控制方法
CN105720641B (zh) * 2016-03-30 2018-03-06 四川中科智慧智能系统有限公司 分段轨道充电系统及其控制方法
US10216190B2 (en) 2016-09-20 2019-02-26 International Business Machines Corporation Managing autonomous vehicles needing energy replenishment
CN110015102A (zh) * 2017-11-20 2019-07-16 北京京东尚科信息技术有限公司 Agv充电异常处理方法及系统、存储介质及电子设备
CN111386505B (zh) * 2017-12-22 2024-01-30 株式会社富士 无人输送车及无人输送车控制系统
CN109358592B (zh) * 2018-08-30 2020-09-08 百度在线网络技术(北京)有限公司 车辆故障处理方法、装置、设备及存储介质
CN112208415A (zh) * 2019-07-09 2021-01-12 深圳市安泽智能机器人有限公司 一种基于机器人和agv小车的搬运方法、机器人
DE102019212054B3 (de) * 2019-08-12 2020-11-05 Audi Ag Modulares Montagesystem
KR102163786B1 (ko) * 2020-05-12 2020-10-08 에스아이에스 주식회사 인조흑연 생산 자동화 시스템
US11565605B2 (en) 2020-10-29 2023-01-31 Wing Aviation Llc Systems and methods for battery capacity management in a fleet of UAVs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279883A (ja) * 1990-03-29 1991-12-11 Shinko Electric Co Ltd 無人搬送車のバッテリーの過放電検知装置
JP2007074800A (ja) 2005-09-06 2007-03-22 Tsubakimoto Chain Co 無人搬送車の電池充放電管理システム
JP2009136109A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 充電制御装置および充電制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) * 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
US6421600B1 (en) * 1994-05-05 2002-07-16 H. R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
RU2206166C2 (ru) * 2000-08-17 2003-06-10 Уральский государственный университет путей сообщения Устройство для заряда аккумулятора
JP4340020B2 (ja) 2001-04-10 2009-10-07 パナソニック株式会社 無人搬送車用二次電池の充電制御方法
US6404163B1 (en) * 2001-06-25 2002-06-11 General Motors Corporation Method and system for regulating a charge voltage delivered to a battery
US20040044452A1 (en) * 2002-08-29 2004-03-04 Lester Electrical Of Nebraska, Inc. Vehicle monitoring system
JP2009268205A (ja) * 2008-04-23 2009-11-12 Power System:Kk 自走搬送車システム
JP5062229B2 (ja) * 2009-08-05 2012-10-31 株式会社デンソー 給電コントローラおよび給電システム
US9552920B2 (en) * 2010-07-28 2017-01-24 General Electric Company Contactless power transfer system
DE102010040395A1 (de) * 2010-09-08 2012-03-08 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum effizienten Aufladen eines Fahrzeugakkumulators
US9381878B2 (en) * 2011-06-03 2016-07-05 Toyota Jidosha Kabushiki Kaisha Vehicle and power transmission/reception system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279883A (ja) * 1990-03-29 1991-12-11 Shinko Electric Co Ltd 無人搬送車のバッテリーの過放電検知装置
JP2007074800A (ja) 2005-09-06 2007-03-22 Tsubakimoto Chain Co 無人搬送車の電池充放電管理システム
JP2009136109A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 充電制御装置および充電制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882068A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009911A (ja) * 2017-06-26 2019-01-17 トヨタ自動車株式会社 自律移動車両の自動充電システム
CN110549897A (zh) * 2018-06-01 2019-12-10 杭州海康机器人技术有限公司 自行走设备的充电调度方法和装置
WO2020110247A1 (ja) * 2018-11-29 2020-06-04 本田技研工業株式会社 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
JPWO2020110247A1 (ja) * 2018-11-29 2021-10-14 本田技研工業株式会社 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
JP7203120B2 (ja) 2018-11-29 2023-01-12 本田技研工業株式会社 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
JP2021047510A (ja) * 2019-09-17 2021-03-25 株式会社デンソー 無人搬送システム
JP7375401B2 (ja) 2019-09-17 2023-11-08 株式会社デンソー 無人搬送システム

Also Published As

Publication number Publication date
CN104521096B (zh) 2017-03-08
EP2882068A4 (en) 2015-08-12
JPWO2014021412A1 (ja) 2016-07-21
EP2882068B1 (en) 2016-03-30
CN104521096A (zh) 2015-04-15
US9242571B2 (en) 2016-01-26
BR112015002187B1 (pt) 2021-01-19
KR101607444B1 (ko) 2016-04-11
MY154240A (en) 2015-05-18
KR20150027835A (ko) 2015-03-12
EP2882068A1 (en) 2015-06-10
JP6020569B2 (ja) 2016-11-02
BR112015002187A2 (pt) 2017-07-04
MX2015001442A (es) 2015-05-15
EP2882068B8 (en) 2016-05-18
US20150258910A1 (en) 2015-09-17
RU2576668C1 (ru) 2016-03-10
MX338059B (es) 2016-04-01

Similar Documents

Publication Publication Date Title
JP6020569B2 (ja) 無人搬送車の充電管理システム
JP5800093B2 (ja) 無人搬送車の充電管理システムおよび無人搬送車の充電管理方法
JP5796683B2 (ja) 無人搬送車の充電管理システム及び充電管理方法
JP5871071B2 (ja) 無人搬送車の異常検出システム
JP2007074800A (ja) 無人搬送車の電池充放電管理システム
JP5773083B2 (ja) 無人搬送車の充電管理システム
CN113178926A (zh) 用于通信基站均衡充放电控制方法及系统
JP5846309B2 (ja) 無人搬送車のバッテリー管理システム
EP4360934A1 (en) An intelligent battery system
US20240140257A1 (en) An intelligent battery system
US20240142534A1 (en) Intelligent battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528214

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418576

Country of ref document: US

Ref document number: MX/A/2015/001442

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157003408

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201500906

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015106939

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013825166

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015002187

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015002187

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150130