WO2014021288A1 - 空気電池システム - Google Patents

空気電池システム Download PDF

Info

Publication number
WO2014021288A1
WO2014021288A1 PCT/JP2013/070536 JP2013070536W WO2014021288A1 WO 2014021288 A1 WO2014021288 A1 WO 2014021288A1 JP 2013070536 W JP2013070536 W JP 2013070536W WO 2014021288 A1 WO2014021288 A1 WO 2014021288A1
Authority
WO
WIPO (PCT)
Prior art keywords
air battery
cartridge
air
detection sensor
determination means
Prior art date
Application number
PCT/JP2013/070536
Other languages
English (en)
French (fr)
Inventor
長山 森
宮澤 篤史
佳子 塚田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014528158A priority Critical patent/JP5924509B2/ja
Publication of WO2014021288A1 publication Critical patent/WO2014021288A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air battery system having an air battery cartridge having one or more air batteries, and a main body to which the air battery cartridge can be attached and detached.
  • Patent Document 1 As a prior art of this type of air battery system, there is one disclosed in Patent Document 1 under the name “battery having a modular air cathode and an anode cage” (hereinafter simply referred to as “battery”).
  • the battery disclosed in Patent Document 1 includes a non-conductive cell container that is resistant to a cell electrolyte solution, a porous sheet cathode member, a perforated metal conductor member pressed against the sheet cathode member, and the sheet cathode member and conductor member
  • the anode cage and the combined framed cathode are configured to be removable from the non-conductive cell container and re-inserted into the non-conductive cell container by releasing the compressive force.
  • an object of the present invention is to provide an air battery system that can detect an abnormality in a part of the system in advance and prevent the occurrence of a failure or the like.
  • the present invention for solving the above-described problems is directed to an air battery system having an air battery cartridge having one or more air batteries and a main body to which the air battery cartridge can be detachably attached.
  • System state determination means for determining whether or not there is an abnormality in a part of the system when the liquid is injected, the system is operated, the system is started, or the air battery cartridge is installed.
  • a cartridge use prohibiting means for prohibiting the use of the mounted air battery cartridge is provided.
  • the present invention it is possible to detect an abnormality in a part of the system in advance and prevent occurrence of a failure or the like.
  • FIG. 1 It is a block diagram showing a schematic structure of an air battery system concerning one embodiment of the present invention. It is a perspective view of the main body which makes a part of air battery system same as the above.
  • (A) is a perspective view which shows the connection state of a bus-bar and an air battery cartridge
  • (B) is a perspective view which shows the distribution
  • FIG. 1 is a block diagram showing a schematic configuration of an air battery system according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a main body forming a part of the air battery system
  • 3A is a perspective view showing a connection state between the bus bar and the air battery cartridge
  • FIG. 3B is a perspective view showing a state of air circulation with the air battery cartridge connected to the bus bar.
  • An air battery system A mainly includes an electrolyte solution tank 5 that stores an electrolyte solution W, a cartridge box (main body) C, and a control unit D.
  • electrolyte solution W is an aqueous solution or a non-aqueous solution containing an alkali such as KOH or a chloride such as NaCl as a main component.
  • the cartridge box (main body) C is provided with a bus bar 50 in which the air battery cartridge (hereinafter simply referred to as “cartridge”) B, the details of which will be described later, is detachable.
  • carrier the air battery cartridge
  • the cartridge B has a plurality of air batteries 60 that are assembled batteries.
  • the air battery 60 is configured by laminating a liquid-tight gas permeable membrane, a positive electrode layer, an electrolytic solution layer, and a negative electrode material (all not shown) in a rectangular frame, and are connected in series or in parallel to each other. Yes.
  • the air cells 60 are arranged at a constant interval so as to define an air flow path ⁇ (see FIG. 3B) between them.
  • the bus bar 50 is provided with a cartridge mounting portion 51 for connecting and connecting to the air battery 60.
  • the casing 10 has a rectangular parallelepiped shape in which side plates 12 to 15 are erected on the four edges of a rectangular bottom plate 11 and an upper plate 16 is disposed on the side plates 12 to 15.
  • the upper plate 16 is provided with cartridge attaching / detaching slots (hereinafter simply referred to as “slots”) 16a to 16c (see FIG. 2) for attaching / detaching the cartridge B at a required interval.
  • the casing 10 includes an air battery temperature detection sensor SN9 for detecting the temperature of the air battery 60 constituting the cartridge B mounted thereon, and a liquid leakage for detecting the electrolyte leaked from each air battery 60.
  • the detection sensor SN11 is arranged, and they are connected to the input side of the control unit D. In addition, when multiple leak locations are anticipated, multiple leak detection sensors SN11 may be provided as appropriate.
  • Lock mechanisms L for locking the cartridge B are provided on the back side of the upper plate 16 where the slots 16a to 16c are provided.
  • the lock mechanism L has a lock member 9 for locking the cartridge B inserted into the slots 16a to 16c.
  • the lock member 9 is swingably supported between an unlock position (A) that allows the insertion of the cartridge B and a lock position (A) that locks the inserted cartridge B by locking.
  • the lock mechanism L described above is provided with a lock detection sensor SN1 for detecting each lock member 9 moving to the unlock position (A) or the lock position (A), and each of these lock detection sensors SN1.
  • the lock member 9 is formed so that only the cartridge B having the same outer shape and direction can be inserted.
  • the side plate 12 of the housing 10 is provided with an introduction port 12a for introducing air into the housing 10 near the side plate 15, and the introduction port 12a has a single air flow path.
  • the air supply pipe 20 which forms a part is connected.
  • a discharge port 14a for discharging the air circulated in the housing 10 is disposed on the side plate 14 of the housing 10 near the side plate 13, and an air flow is provided in the discharge port 14a.
  • An air discharge pipe 30 forming a part of the path is connected.
  • the air supply pipe 20 includes a filter 21 for removing dust and the like from the upstream side to the downstream side in the air supply direction, a blower 22 for pumping air, an air flow path temperature detection sensor SN2, and an air flow path pressure detection.
  • the sensor SN3, the opening / closing valve 23, and the air flow path leakage detection sensor SN4 are sequentially arranged.
  • the “air passage temperature detection sensor SN2” is for detecting the temperature of the air flowing through the air supply pipe 20.
  • the “air channel pressure detection sensor SN3” is for detecting the pressure of the air supply pipe 20.
  • the “air channel leakage detection sensor SN4” is for detecting leakage of air flowing through the air supply pipe 20.
  • the blower 22 shown in the present embodiment is a pressure feeding device for changing the internal pressure of the cartridge B.
  • the air flow path pressure detection sensor SN3 is for detecting fluctuations in the internal pressure of the cartridge B.
  • the blower 22 and the opening / closing valve 23 are connected to the output side of the control unit D and are appropriately driven, and the air passage temperature detection sensor SN2, the air passage pressure detection sensor SN3, and the air passage leakage.
  • the air detection sensor SN4 is connected to the input side, and the detected temperature data, pressure data, and presence / absence of air leakage are input to the control unit D.
  • the air flow path leak detection sensor SN5 the air flow path temperature detection sensor SN6, the air flow path pressure detection sensor SN7, the open / close valve 31, hydrogen
  • the gas detection sensor SN10 is sequentially arranged.
  • Air channel leakage detection sensor SN5 is an abnormality detection sensor for detecting leakage of air flowing through the air discharge pipe 30.
  • Air channel temperature detection sensor SN6 is an abnormality detection sensor for detecting the temperature of the air flowing through the air discharge pipe 30.
  • the “air flow path pressure detection sensor SN7” is an abnormality detection sensor for detecting the pressure of the air flowing through the air discharge pipe 30.
  • Hydrogen gas detection sensor SN10 is an abnormality detection sensor for detecting hydrogen gas contained in the air flowing through the air discharge pipe 30.
  • the opening / closing valve 31 is connected to the output side of the control unit D and is appropriately opened / closed, and the air passage leakage sensor SN5, air passage temperature detection sensor SN6, air passage pressure detection sensor SN7. And hydrogen gas detection sensor SN10 is connected to the input side.
  • Both ends of the air supply pipe 20 and the air discharge pipe 30 are connected between a position on the upstream side of the opening / closing valve 23 of the air supply pipe 20 and a position on the downstream side of the opening / closing valve 31 of the air discharge pipe 30.
  • the detour pipe 40 is connected, and an open / close valve 41 is disposed in the detour pipe 40.
  • the open / close valve 41 is connected to the output side of the control unit D and is appropriately opened and closed as described above.
  • the bus bar 50 is for taking out the electric power from the cartridge B attached and connected to the outside.
  • the bus bar 50 has three parts for electrically connecting the three cartridges B to the attachment surface of the substrate 53 in a detachable manner.
  • a cartridge mounting portion 51 is protruded.
  • the bus bar 50 is disposed and fixed on the bottom plate 11 of the housing 10.
  • Reference numeral 52 denotes a partition member for partitioning the three cartridges B.
  • the introduction port 12a and the discharge port 14a are shifted as described above, the air flowing into the housing 10 from the introduction port 12a is placed and connected to the bus bar 50. After contacting each air battery 60 constituting the cartridge B, the cartridge B is discharged from the discharge port 14a.
  • an electrolytic solution for supplying the electrolytic solution W stored in the electrolytic solution tank 5 to each cartridge B is connected, and the electrolyte feed pipe 6 is provided with an opening / closing valve 7, an electrolyte pressure detection sensor SN8, and a feed pump 80.
  • the electrolyte pressure detection sensor SN8 detects the pressure of the electrolyte W flowing through the electrolyte supply pipe 6, is connected to the input side of the control unit D, and the open / close valve 7 is connected to the output side thereof. It is connected and appropriately opened and closed.
  • the air battery 60 is connected to a drain pipe 82 to a drain tank 81 provided outside the battery, together with the electrolyte supply pipe 6 from the electrolyte tank 5 side.
  • the drain pipe 82 can transfer the electrolytic solution in the air battery 60 through the open / close valve 83.
  • the electrolytic solution can be transferred to the outside by either driving the liquid feed pump 80 of the electrolytic solution tank 5 in the reverse direction or opening the opening / closing valve 83 to the drain tank 81.
  • the liquid feed pump 80 and the opening / closing valve 83 are connected to the output side of the control unit D, and are appropriately rotated or opened / closed.
  • the bus bar 50 includes an ammeter 70 for measuring an output current, a voltmeter 71 for measuring an output voltage, a connection unit 72, a DC-DC converter 73 for boosting, a connection unit 74, a lithium An ion battery 75 and a motor 76 are connected.
  • each cartridge B is disposed on the bottom plate 11 of the housing 10, and an IC chip 8 that is a storage element is disposed.
  • the IC chip 8 stores related information related to each cartridge B, discharge related information, and the like.
  • “Related information” includes the manufacturing number, rated capacity, rated output, rated electrolyte amount, ID, and the like of the cartridge B.
  • “Discharge related information” includes the mounting date of the cartridge B, the injection start date and time, the discharge start date and time, the discharge end date and time, the amount of discharge electricity, the presence / absence of the discharge, and the like.
  • control unit D is composed of a CPU (Central Processing Unit), an interface circuit, and the like, and exhibits the following functions by executing a required program.
  • CPU Central Processing Unit
  • interface circuit an interface circuit, and the like, and exhibits the following functions by executing a required program.
  • D1 A function for determining whether or not there is an abnormality in a part of the system when an electrolytic solution or water is injected into the cartridge B or when the system is operated. This function is referred to as “system state determination means D1”.
  • This system state determination means D1 determines the presence / absence of an abnormality in each part of the system based on the change in the detection amount detected by any one of the abnormality detection sensors described above.
  • the “abnormality detection sensor” includes the lock detection sensor SN1, the air flow path temperature detection sensor SN2, the air flow path pressure detection sensor SN3, the supply side air flow path leakage detection sensor SN4, and the discharge side leakage detection sensor SN5. , Air flow path temperature detection sensor SN6, air flow path pressure detection sensor SN7, electrolyte flow path pressure detection sensor SN8, air battery temperature detection sensor SN9, hydrogen gas detection sensor SN10 and liquid leakage detection sensor SN11.
  • the “part of the system” in the present embodiment includes the cartridge B, the air supply pipe (air flow path) 20, the electrolyte supply pipe (electrolyte flow path) 6, and the electrical system.
  • the mounting position of the cartridge B is determined.
  • the mounting position of the cartridge B is determined by detecting the lock member 9 located at the lock position (A) by the lock detection sensor SN1 described above.
  • part of the system is an air flow path
  • the system state determination means D1 described above repeatedly determines whether there is an abnormality in a part of the system at predetermined time intervals.
  • part of system is an electrolyte flow path
  • part of system is an electrical system, determine whether there is an abnormality in the electrical system.
  • the electrical system is, for example, an electrical connection between the bus bar 50 and the cartridge B, and the presence / absence of an abnormality in the electrical system is determined by a change in capacitance.
  • hydrogen gas concentration determination means D3 A function for determining whether or not the hydrogen gas concentration detected by the hydrogen gas detection sensor SN10 has reached or exceeded a predetermined set value. This function is referred to as “hydrogen gas concentration determination means D3”.
  • air feeding means D4 A function of pumping air to the cartridge B by the pumping device (blower 22) until it is determined that the hydrogen gas concentration has reached or exceeded a predetermined set value. This function is referred to as “air feeding means D4”. Further, when the hydrogen gas concentration determination means D3 determines that the hydrogen gas concentration has become less than a predetermined set value, the air supply means D4 stops the air pressure feeding by the pressure feeding device (blower 22).
  • discharge means D5 A function for discharging the air battery 60 forming the cartridge B. This function is referred to as “discharge means D5”.
  • discharge means D5 When it is determined by the hydrogen gas concentration determination means D3 that the hydrogen gas concentration detected by the hydrogen gas detection sensor SN10 has reached or exceeded the set value, the discharge is continued by the discharge means D5. Further, when the following terminal connection determination means D13 determines that the electrical connection of the current detection terminal, the voltage detection terminal, or both is defective, the discharge of the air battery cartridge B is stopped.
  • electrolyte transfer means D6 When it is determined by the hydrogen gas concentration determination means D3 that the hydrogen gas concentration detected by the hydrogen gas detection sensor SN10 is equal to or higher than the set value, the electrolyte solution is supplied to the electrolyte tank 5 or the drain tank by the “electrolyte transfer means D6”. Transfer to 81.
  • leak determination unit D7 A function of determining whether or not a leak has been detected by the leak detection sensor SN11. This function is referred to as “leak determination unit D7”.
  • the cartridge use stopping unit D2 stops the operation of the leaking air battery 60.
  • first temperature determination means D9 When it is determined by the following first temperature determination means D9 that the temperature has become equal to or higher than a predetermined set value, the injection of the electrolytic solution or water is stopped. Injecting or stopping the electrolytic solution or water into the air battery cartridge B is performed by opening and closing the open / close valve 7.
  • first temperature determination means D9 A function of determining whether or not the temperature detected by the air battery temperature detection sensor SN9 is equal to or higher than a predetermined set value. This function is referred to as “first temperature determination means D9”.
  • the liquid injection means D8 resumes the injection of the electrolytic solution or water. That is, the opening / closing valve 7 is driven to open.
  • air channel pressure determination means D12 A function of determining whether or not the pressure detected by the air flow path pressure detection sensors SN3 and SN7 has become a predetermined value or more. This function is referred to as “air channel pressure determination means D12”.
  • the cartridge use stop means D2 discharges the air battery cartridge B and uses it. To cancel.
  • the cartridge mounting portion 51 of the cartridge box (main body) C is provided with a current detection terminal and a voltage detection terminal (both not shown) with respect to the cartridge B.
  • the terminal connection determining means D13 determines the quality of the electrical connection based on the resistance value between the terminals. When the terminal connection determining means D13 determines that the electrical connection of any of the terminals is defective, the discharging means D5 stops discharging the cartridge B.
  • a function of determining whether or not the resistance value of the air battery 60 is equal to or greater than an arbitrary reference value is referred to as “resistance value calculating means D15”.
  • the discharging means D5 decreases the discharge current.
  • elapsed time determination means D16 A function of determining whether or not a predetermined voltage and current value have been restored when it is determined that a predetermined set time has elapsed. This function is referred to as “voltage / current value recovery determination means D17”. When it is determined by the voltage / current value recovery determining means D17 that the voltage / current value is not recovered, the operation of the cartridge B having the air battery 60 is stopped.
  • integrated discharge electricity amount calculation means D19 A function of calculating the integrated discharge electricity quantity. This function is referred to as “integrated discharge electricity amount calculation means D19”. (20) A function of determining whether or not the calculated integrated discharge electricity amount is equal to or greater than a required ratio of the rated capacity of the air battery 60 forming the cartridge B. This function is referred to as “integrated discharge electricity quantity determination means D20”.
  • the “required ratio” shown in the present embodiment is 80%.
  • the integrated discharge electricity quantity determination means D19 determines that the integrated discharge electricity quantity does not exceed the required ratio of the rated capacity of the cartridge B, the operation of the cartridge B is stopped.
  • the integrated discharge electricity quantity determination means D19 determines that the integrated discharge electricity quantity is not equal to or greater than the required ratio of the rated capacity of the cartridge B, the storage means D16 indicates that the discharge to the storage element has been normally completed and the air The discharge related information is stored during the discharge of the battery 60 or at the end of the discharge.
  • FIGS. 4 and 5 are flowcharts showing a check operation when an electrolyte or water is injected into the air battery cartridge or when the present system is operated.
  • Step 1 Indicated in FIG. 4 as “S1”.
  • step 2 It is determined whether or not the hydrogen gas concentration detected by the hydrogen gas detection sensor SN10 is equal to or higher than a set value. If it is determined that the hydrogen gas concentration is equal to or higher than the set value, the process proceeds to step 3, otherwise step is performed. Proceed to 2.
  • Step 2 It is determined whether or not a leak is detected by the leak detection sensor SN11. If a leak is detected, the process proceeds to Step 5; otherwise, the process proceeds to Step 4.
  • Step 3 Since it is determined that the hydrogen gas concentration is equal to or higher than the set value, the hydrogen gas concentration is decreased by continuing the air pumping and discharging.
  • Step 4 It is determined whether or not the temperature of the cartridge (air battery 60) B detected by the air battery temperature detection sensor SN9 is equal to or higher than a predetermined set value, and it is determined that the temperature is not higher than the predetermined set value. Sometimes go to step 7, otherwise go to step 6.
  • Step 5 Since it is determined that leakage has been detected, use of the cartridge B is stopped.
  • Step 6 Since it is determined that the temperature of the cartridge (air battery 60) B has become equal to or higher than a predetermined set value, the use of the cartridge B is temporarily stopped.
  • Step 7 The pressure fluctuation of the air flow paths 20 and 30 is determined. If it is determined that there is the pressure fluctuation, the process proceeds to Step 10, and if there is no pressure fluctuation, the process proceeds to Step 8.
  • Step 8 The pressure fluctuation of the electrolyte supply pipe 6 is measured, and if there is the pressure fluctuation, the process proceeds to Step 10, and if there is no pressure fluctuation, the process proceeds to Step 9.
  • Step 9 Determine whether the connection in the electric system is good or not. If it is determined that the connection is poor, the process proceeds to Step 11; otherwise, the process proceeds to Step 10. Step 10: Since it is determined that there is air leakage in the air flow paths 20 and 30 and liquid leakage in the electrolyte supply pipe 6 or poor connection in the electrical system, the cartridge B is discharged and the process ends.
  • Step 11 It is determined whether the air battery 60 forming each cartridge B is abnormally terminated or discharged, and if it is determined that the air battery 60 is abnormally terminated or discharged, the process proceeds to Step 12; Go to step 1. That is, it is determined whether or not there is an abnormality in a part of this system at predetermined time intervals.
  • the following effects can be obtained.
  • -By detecting abnormal mounting of the cartridge B, leakage of air, electrolyte, or the like, failure or the like can be prevented in advance.
  • -Leakage and leakage can be detected at a low cost due to fluctuations in the pressure of the air supply pipe 20 and the electrolyte supply pipe 30.
  • the mounting position of the cartridge B can be determined via the lock mechanism L.
  • -Abnormality of the electrolyte flow path can be detected by determining the presence or absence of leakage in the electrolyte flow path.
  • -It is determined whether there is an abnormality in the electrical system, and if it is determined that there is an abnormality, the use of the cartridge is stopped, so that the occurrence of a failure can be prevented.
  • the air battery system of the present embodiment has substantially the same configuration as the air battery system A of the above-described embodiment, and includes an electrolyte solution tank 5 that stores the electrolyte solution W, a cartridge box (main body) C, and a control unit D. It is to be configured (see FIGS. 1 to 3).
  • the liquid feed pump 80, the drain tank 81, the drain pipe 82, the open / close valve 83, the air battery temperature detection sensor SN9, the liquid leakage detection sensor SN11, and the like are not essential members and can be omitted.
  • control unit D is composed of a CPU (Central Processing Unit), an interface circuit, and the like, and exhibits the following functions by executing necessary programs.
  • CPU Central Processing Unit
  • system state determination means d1 A function for determining whether or not there is an abnormality in a part of the system when the system is started or when the cartridge B is mounted. This function is referred to as “system state determination means d1”.
  • the “part of the system” in the present embodiment includes the cartridge B, the air supply pipe (air flow path) 20, and the electrolyte flow path 6.
  • part of the system is an air flow path
  • part of system is an electrolyte flow path
  • part of system is an electrical system, determine whether there is an abnormality in the electrical system.
  • the electrical system is, for example, an electrical connection between the bus bar 50 and the cartridge B, and the presence / absence of an abnormality in the electrical system is determined by a change in capacitance.
  • related information reading means d2 A function of reading related information relating to the cartridge stored in the storage element. This function is referred to as “related information reading means d2”.
  • the related information is the manufacturing number of the cartridge B, the rated capacity of the cartridge B, the rated output, and the rated electrolyte amount.
  • liquid amount determination means d4 A function of determining whether the rated electrolyte amount or water amount of the cartridge is equal to or less than a preset capacity. This function is referred to as “liquid amount determination means d4”.
  • liquid supply request notifying unit d5 A function of notifying a liquid supply request when it is determined that the rated electrolyte amount or the water amount is equal to or less than a preset capacity. This function is referred to as “liquid supply request notifying unit d5”. Examples of the notification include those that turn on warning lamps in the vehicle and those that use voice.
  • in-use determination means d12 A function of determining whether or not the cartridge B is in use when it is determined that the cartridge B is already used. This function is referred to as “in-use determination means d12”. Here, when it is determined that the battery is not in use, it means that it is a used battery.
  • a function of injecting electrolytic solution or water into the cartridge B is referred to as “liquid injection means d15”. Specifically, the open / close valve 7 is driven to open, and the electrolytic solution W or water is injected from the electrolytic solution tank 5 into the cartridge B. In the present embodiment, the electrolytic solution W is stored in the electrolytic solution tank 5, but “water” is stored when the electrolyte is arranged in the cartridge B.
  • a function for determining whether or not the cartridge B is used This function is referred to as “first use determination means d16”. Whether the cartridge B is used is determined by reading the discharge state of the cartridge B and making a determination based on the discharge state.
  • the cartridge use prohibiting means d14 prohibits the use of the cartridge B.
  • the liquid injection unit d15 prevents the liquid injection to the cartridge B related to the determination.
  • FIGS. 6 and 7 are flowcharts showing an initial check operation when the system is started or when a cartridge is mounted.
  • Step 15 Indicated as “S15” in FIG.
  • step 20 Indicated as “S15” in FIG.
  • Step 20 Drive the blower 22 to start pressurization (pressurization), open and open the open / close valves 23 and 31 disposed in the air supply pipe 20 and the air discharge pipe 30, and close the bypass valve 41 To do.
  • Step 30 Pressure fluctuations are measured by the pressure sensors SN3 and SN7, and if the pressure fluctuation exceeds the pressure at the time of normal cartridge mounting, the process proceeds to Step 40, the air flow path is closed, and the activation is stopped. If there is no pressure fluctuation, the process proceeds to step 50.
  • Step 50 The blower 22 is driven and pressurized, and the opening / closing valve 31 is driven to close, and then the opening / closing valve 23 is driven to close.
  • Step 60 The pressure fluctuation of the air flow path is measured by the pressure sensor SN3. If there is the pressure fluctuation, the process proceeds to Step 120, and if there is no pressure fluctuation, the process proceeds to Step 70.
  • Step 70 The valve of the air flow path is driven to open, and the process proceeds to Step 80.
  • Step 80 Pressurization is performed with a blower, and the open / close valve 7 of the electrolyte supply pipe (electrolyte flow path) 6 is closed.
  • Step 90 The pressure change is determined by the pressure sensor SN8. If there is no pressure change, the process proceeds to Step 100. Otherwise, the process proceeds to Step 110, and the startup is stopped because there is a leak in the electrolyte supply pipe 6.
  • Step 100 The opening / closing valve 7 of the electrolyte supply pipe 6 is driven to open, and the process proceeds to Step 130.
  • Step 130 Measure the capacitance between the positive and negative electrodes of the air battery 60.
  • Step 140 It is determined whether or not the capacitance is out of the reference value range. If it is determined that the capacitance is out of the reference value range, the process proceeds to Step 150. Otherwise, the process proceeds to Step 160.
  • Step 150 It is determined that the electrical connection is bad, and the use of the cartridge B is prohibited.
  • Step 160 The cartridge B is locked by the lock mechanism L.
  • Step 170 It is determined whether or not the lock state by the lock mechanism L is out of the reference value range. If it is determined that the lock state is out of the reference value range, the process proceeds to Step 180. Otherwise, the process proceeds to Step 190.
  • Step 180 It is determined that the connection of the lock mechanism L is defective, and the use of the cartridge B is prohibited.
  • Step 200 Read the rated capacity of the cartridge B.
  • Step 210 Hold the predicted value of the power generation amount of the air battery 60 forming the cartridge B. As a result, the system operable time is predicted and the cruising distance is predicted. In other words, it is determined whether the rated capacity is within an allowable range of the present system.
  • Step 220 It is determined whether or not the system is within the allowable capacity range. If it is determined that the system is within the allowable capacity range, the process proceeds to Step 230. Otherwise, the process proceeds to Step 260.
  • Step 230 Read the rated output.
  • Step 240 A control value for the discharge current of the air battery 60 is set. This sets the usage of the system. The setting of the use is, for example, used for charging during traveling, charging during parking, or the like.
  • Step 250 It is determined whether or not the control value of the discharge current of the air battery 60 is within the allowable output range of the system. If it is determined that it is not within the allowable output range, the process proceeds to Step 260; Proceed to
  • Step 260 The use of the cartridge B is prohibited because the air battery 60 is defective. In other words, the activation is stopped.
  • Step 290 Notifying that the amount of the electrolytic solution is insufficient, and proceeds to Step 300.
  • the notification mode includes notifying a lamp installed in a part of the vehicle but also notifying by voice.
  • Step 300 Read the ID of the mounted cartridge B.
  • Step 310 It is determined whether the mounted cartridge (air battery) is of a type operable in the system. If it is determined that the cartridge is operable, the process proceeds to Step 320; Proceed to
  • Step 320 Read the discharge state of the mounted cartridge (air battery).
  • Step 330 It is determined whether or not the cartridge is an unused cartridge (air battery) according to the discharge state. If it is determined that the cartridge is not used, the process proceeds to Step 370. Otherwise, the process proceeds to Step 340.
  • Step 340 It is determined whether or not the mounted cartridge (air battery) is in use. If it is determined that the cartridge is in use, the process proceeds to Step 360. Otherwise, the process proceeds to Step 350. Step 350: Assuming that the cartridge is a used cartridge (air battery), its use is prohibited. Step 360: A setting is made so as not to inject liquid into the mounted cartridge (air battery).
  • Step 370 It is determined whether or not reading of the related information of the mounted cartridge (air battery) has failed. If it is determined that reading of the related information has failed, the process proceeds to Step 380. Otherwise, Step 390 is performed. Proceed to
  • Step 380 The use of the used cartridge (air battery) is prohibited because the connection between the cartridge and the connecting portion is defective.
  • Step 390 If a plurality of cartridges are mounted, they are sequentially measured to recognize that the cartridge (air battery) is usable.
  • the following effects can be obtained.
  • -It is possible to prevent a malfunction or the like by detecting in advance an abnormal mounting of an air battery cartridge or a leak of air or electrolyte.
  • Effects of air leakage, ventilation, and liquid leakage can be detected at low cost by fluctuations in the pressure of the air supply pipe and electrolyte supply pipe.
  • the lock member is formed so that only the air battery cartridge having the same outer shape and direction can be inserted, erroneous mounting of another air battery cartridge can be prevented.
  • -Abnormalities in the air flow path can be detected by determining the presence or absence of leakage or ventilation in the air flow path.
  • -Abnormality of the electrolyte flow path can be detected by determining the presence or absence of leakage in the electrolyte flow path. -By determining the presence or absence of an abnormality in the electrical system, the abnormality of the electrical system can be detected. -By reading the related information related to the air battery cartridge, the air battery cartridge can be identified. By determining whether or not all the related information related to the air battery cartridge has been read, it is possible to detect a contact failure or the like of the cartridge mounting portion. -It can prevent that the amount of electrolyte solution runs short after battery injection by determining that the amount of rated electrolyte solution or the amount of water is below the preset capacity
  • blower 22 is exemplified as the pressure feeding device, a compressor, a fan, a pump, or the like may be employed. Moreover, each structure demonstrated in the said embodiment can be combined arbitrarily.
  • Electrolyte tank 6 Electrolyte supply pipe (electrolyte flow path) 8 Memory element 9 Lock member 20 Air supply pipe (air flow path) 22 Pumping device (blower) 30 Air discharge pipe (air flow path) 51 Cartridge mounting portion 60 Air battery 81 Drain tank A Air battery system B Air battery cartridge (part of this system) C Cartridge box (main unit) D1 System state judging means D2 Cartridge use stopping means D3 Hydrogen gas concentration judging means D4 Air feeding means D5 Discharge means D6 Electrolyte transfer means D7 Liquid leakage judging means D8 Injection means D9 First temperature judging means D10 Second temperature Determination means D11 Third temperature determination means D12 Air flow path pressure determination means D13 Terminal connection determination means D14 Output voltage determination means D15 Resistance value determination means D16 Elapsed time determination means D17 Voltage / current value recovery determination means D18 Storage means D19 Accumulated discharge Electric quantity calculation means D20 Accumulated discharge electric quantity determination means d1 System state determination means d2 Related information reading means d3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

 空気電池システムAは、一又は二以上の空気電池を有する空気電池カートリッジBと、この空気電池カートリッジBを着脱自在な本体とを有する。 空気電池カートリッジBに電解液若しくは水を注液したとき、本システムAを作動させているとき、システム起動をしたとき又は空気電池カートリッジBを装着したときに、本システムAの一部に異常があるか否かを判定するシステム状態判定手段D1と、本システムAの一部に異常があると判定したときには、装着されている空気電池カートリッジBの使用を禁止するカートリッジ使用禁止手段D2とを有する。

Description

空気電池システム
 本発明は、一又は二以上の空気電池を有する空気電池カートリッジと、この空気電池カートリッジを着脱自在な本体とを有する空気電池システムに関する。
 この種の空気電池システムの従来技術として、特許文献1に「モジュール式空気カソードおよびアノードケージを有するバッテリ」(以下、単に「バッテリ」という。)とした名称において開示されたものがある。
 特許文献1に開示されたバッテリは、セル電解質液に抵抗性ある非導電性セル容器、多孔質シートカソード部材、前記シートカソード部材に圧迫された有孔金属導体部材、前記シートカソード部材と導体部材の周辺縁部の周囲に位置する導電性金属枠を有する合体された枠付きガス拡散カソード、及び前記カソード枠に少なくとも部分的に圧迫されたケージ枠部材を有するセル容器内のアノードケージからなり、前記のアノードケージ及び合体された枠付きカソードが、圧縮力の解放により前記の非導電性セル容器から独立に取り外し可能かつ該非導電性セル容器に再挿入可能に構成されたものである。
日本国特開昭63-24570号公報
 しかしながら、上記特許文献1に記載されているバッテリでは、正極、負極部分のメカニカルチャージ型チャージに伴うヒューマンエラーやユニットの故障に対処する対策がなされていないものである。
 そこで、本発明はシステムの一部の異常を予め検知して故障等の発生を防止できる空気電池システムの提供を目的としている。
 上記課題を解決するための本発明は、一又は二以上の空気電池を有する空気電池カートリッジと、この空気電池カートリッジを着脱自在な本体とを有する空気電池システムにおいて、空気電池カートリッジに電解液若しくは水を注液したとき、本システムを作動させているとき、システム起動をしたとき又は空気電池カートリッジを装着したときに、本システムの一部に異常があるか否かを判定するシステム状態判定手段と、本システムの一部に異常があると判定したときには、上記装着されている空気電池カートリッジの使用を禁止するカートリッジ使用禁止手段とを設けたことを特徴としている。
 この構成においては、空気電池カートリッジに電解液若しくは水を注液したとき、本システムを作動させているとき、システム起動をしたとき又は空気電池カートリッジを装着したときに、本システムの一部に異常があるか否かを判定し、本システムの一部に異常があると判定したときには、上記装着されている空気電池カートリッジの使用を禁止する。
 本発明によれば、システムの一部の異常を予め検知して、故障等の発生を防止することができる。
本発明の一実施形態に係る空気電池システムの概略構成を示すブロック図である。 同上の空気電池システムの一部をなす本体の斜視図である。 (A)は、バスバーと空気電池カートリッジとの連結状態を示す斜視図、(B)は、バスバーに連結接続された空気電池カートリッジと空気の流通状態を示す斜視図である。 空気電池カートリッジに電解液若しくは水を注液したとき又は本システムを作動させているときのチェック動作を示すフローチャートである。 空気電池カートリッジに電解液若しくは水を注液したとき又は本システムを作動させているときのチェック動作を示すフローチャートである。 システム起動又はカートリッジが装着されたときの初期チェック動作を示すフローチャートである。 システム起動又はカートリッジが装着されたときの初期チェック動作を示すフローチャートである。
 以下に、本発明を実施するための形態について、図面を参照して説明する。
 まず、本発明の空気電池システムにおいて、空気電池カートリッジに電解液若しくは水を注液したとき又は本システムを作動させているときの実施形態について説明する。
<電解液等の注液時又はシステム作動中に係る実施形態>
 図1は、本発明の一実施形態に係る空気電池システムの概略構成を示すブロック図、図2は、その空気電池システムの一部をなす本体の斜視図である。また、図3(A)は、バスバーと空気電池カートリッジとの連結状態を示す斜視図、(B)は、バスバーに連結接続された空気電池カートリッジと空気の流通状態を示す斜視図である。
 本発明の一実施形態に係る空気電池システムAは、電解液Wを貯留する電解液タンク5、カートリッジボックス(本体)C及びコントロールユニットDを主要の構成としたものである。
 図中、「電解液W」はKOHなどのアルカリやNaClなどの塩化物を主成分とした水溶液又は非水溶液である。
 カートリッジボックス(本体)Cは、詳細を後述する空気電池カートリッジ(以下、単に「カートリッジ」という。)Bを着脱自在なバスバー50を筐体10内に配設されたものである。
 カートリッジBは、組電池とした複数の空気電池60を有している。
 空気電池60は、方形の枠体内に、液密通気膜、正極層、電解液層及び負極材(いずれも図示しない)を積層して構成されたものであり、互いに直列又は並列に接続されている。
 それらの空気電池60は、これらの間に空気流路α(図3(B)参照)を区画形成するようにして互いに一定の間隔をおいて配列されている。また、バスバー50にはこれらの空気電池60と連結接続するためのカートリッジ装着部51が配設されている。
 筐体10は、長方形の底板11の四辺縁に側板12~15を立設するとともに、それら側板12~15上に上板16を配設した直方体形のものである。
 上板16には、カートリッジBを着脱するためのカートリッジ用着脱スロット(以下、単に「スロット」という。)16a~16c(図2参照)が所要の間隔で設けられている。
 上記筐体10には、装着されているカートリッジBをなす空気電池60の温度を検知するための空気電池温度検知センサSN9と、それら各空気電池60から漏出した電解液を検知するための漏液検知センサSN11とが配設されており、それらは、コントロールユニットDの入力側に接続されている。
 なお、漏液箇所が複数予想される場合は、漏液検知センサSN11を適宜複数設けてもよい。
 スロット16a~16cが設けられている上板16の裏面側には、それぞれカートリッジBをロックするためのロック機構Lが配設されている。
 ロック機構Lは、スロット16a~16cに挿入されたカートリッジBを係止するためのロック部材9を有している。
 ロック部材9は、図1において、カートリッジBの挿入を許容するアンロック位置(ア)と、挿入されたカートリッジBを係止してロックするロック位置(イ)との間で揺動自在に支持されている。
 上記したロック機構Lには、アンロック位置(ア)又はロック位置(イ)に移動している各ロック部材9を検知するためのロック検知センサSN1が設けられており、それら各ロック検知センサSN1は、コントロールユニットDの入力側に接続されている。
 ロック部材9は、外形状及び方向が一致するカートリッジBのみを挿入可能に形成されている。
 筐体10の側板12には、これの側板15寄りに、空気を筐体10内に導入するための導入口12aが配設されているとともに、その導入口12aには、空気流路の一部をなす空気供給パイプ20が接続されている。
 また、筐体10の側板14であって側板13寄りには、筐体10内を流通した空気を排出するための排出口14aが配設されているとともに、その排出口14aには、空気流路の一部をなす空気排出パイプ30が接続されている。
 空気供給パイプ20には、空気の供給方向上流側から下流側にかけて、塵等を除去するためのフィルタ21、空気を圧送するためのブロワー22、空気流路温度検知センサSN2、空気流路圧力検知センサSN3、開閉バルブ23及び空気流路漏気検知センサSN4が順次配設されている。
 「空気流路温度検知センサSN2」は、空気供給パイプ20を流通する空気の温度を検知するためのものである。
 「空気流路圧力検知センサSN3」は、空気供給パイプ20の圧力を検知するためのものである。
 「空気流路漏気検知センサSN4」は、空気供給パイプ20を流通する空気の漏出を検知するためのものである。
 本実施形態において示すブロワー22は、カートリッジBの内部圧力を変動させるための圧送装置である。
 空気流路圧力検知センサSN3は、カートリッジBの内部圧力の変動を検知するためのものである。
 ブロワー22と開閉バルブ23とは、コントロールユニットDの出力側に接続されて適宜駆動されるようになっているとともに、空気流路温度検知センサSN2、空気流路圧力検知センサSN3及び空気流路漏気検知センサSN4はその入力側に接続され、検知した温度データ、圧力データ、漏気の有無がコントロールユニットDに入力されるようになっている。
 一方、空気排出パイプ30には、空気の排出方向上流側から下流側にかけて、空気流路漏気検知センサSN5、空気流路温度検知センサSN6、空気流路圧力検知センサSN7、開閉バルブ31、水素ガス検知センサSN10が順次配設されている。
 「空気流路漏気検知センサSN5」は、空気排出パイプ30を流通する空気の漏出を検知するための異常検知センサである。
 「空気流路温度検知センサSN6」は、空気排出パイプ30を流通する空気の温度を検知するための異常検知センサである。
 「空気流路圧力検知センサSN7」は、空気排出パイプ30を流通する空気の圧力を検知するための異常検知センサである。
 「水素ガス検知センサSN10」は、空気排出パイプ30を流通する空気に含まれる水素ガスを検知するための異常検知センサである。
 開閉バルブ31はコントロールユニットDの出力側に接続されて適宜開閉駆動されるようになっているとともに、空気流路漏気検知センサSN5、空気流路温度検知センサSN6、空気流路圧力検知センサSN7及び水素ガス検知センサSN10はその入力側に接続されている。
 上記した空気供給パイプ20と空気排出パイプ30には、空気供給パイプ20の開閉バルブ23の上流側の位置と、空気排出パイプ30の開閉バルブ31の下流側の位置との間に両端部を連結した迂回用パイプ40が連結されており、その迂回用パイプ40には開閉バルブ41が配設されている。
 開閉バルブ41は、上記したものと同様にコントロールユニットDの出力側に接続されて適宜開閉駆動されるようになっている。
 バスバー50は、これに装着接続されたカートリッジBからの電力を外部に取り出すためのものであり、基板53の装着面に、三つのカートリッジBをそれぞれ着脱自在に電気的に接続するための三つのカートリッジ装着部51を突設してある。
 このバスバー50は、図1,3に示すように、筐体10の底板11上に配設固定されている。なお、符号52は三基のカートリッジBを仕切るための仕切部材である。
 また、上記した導入口12aと排出口14aを上記したように偏移させて配設していることにより、導入口12aから筐体10内に流入した空気は、バスバー50に載置接続されているカートリッジBをなす各空気電池60に接触した後、排出口14aから排出される。
 ところで、上記した電解液タンク5とバスバー50に接続された各カートリッジBとの間には、その電解液タンク5に貯留されている電解液Wをそれら各カートリッジBに送給するための電解液送給パイプ6が連結されているとともに、その電解液送給パイプ6には、開閉バルブ7と電解液圧力検知センサSN8と送液ポンプ80とが配設されている。
 電解液圧力検知センサSN8は、電解液送給パイプ6を流通する電解液Wの圧力を検知するものであり、コントロールユニットDの入力側に接続され、また、開閉バルブ7は、その出力側に接続されて適宜開閉駆動されるようになっている。
 また、空気電池60には、電解液タンク5側からの電解液送給パイプ6とともに、電池外部に設けられたドレインタンク81へのドレインパイプ82が連結されている。このドレインパイプ82は、開閉バルブ83を介して、空気電池60内の電解液を移送することができる。
 電解液の外部への移送は、電解液タンク5の送液ポンプ80を逆転駆動させるか、ドレインタンク81への開閉バルブ83を開放するかのいずれかによって行うことが可能である。
 なお、送液ポンプ80と開閉バルブ83は、コントロールユニットDの出力側に接続されており、適宜回転駆動又は開閉駆動がされるようになっている。
 上記したバスバー50には、出力電流を測定するための電流計70、出力電圧を測定するための電圧計71、接続部72、昇圧を行なわせるためのDC‐DCコンバータ73、接続部74、リチウムイオン電池75及びモータ76が接続されている。
 図1,3に示すように、各カートリッジBは筐体10の底板11上に配設されているとともに、記憶素子であるICチップ8が配設されている。
 ICチップ8には、各カートリッジBに関わる関連情報、放電関連情報等が記憶されている。
 「関連情報」としては、カートリッジBの製造番号、定格容量、定格出力、定格電解液量、ID等がある。
 「放電関連情報」としては、カートリッジBの装着日、注液開始日時、放電開始日時、放電終了日時、放電電気量、放電時の以上の有無等がある。
 ところで、コントロールユニットDは、CPU(Central Processing Unit)やインターフェース回路等からなるものであり、所要のプログラムの実行により、次の各機能を発揮する。
(1)カートリッジBに電解液若しくは水を注液したとき又は本システムを作動させているときに、本システムの一部に異常があるか否かを判定する機能。この機能を「システム状態判定手段D1という。
 このシステム状態判定手段D1は、上記したいずれかの異常検知センサで検知する検知量の変化に基づいて、本システムの各部における異常の有無を判定する。
 「異常検知センサ」は、上記したロック検知センサSN1、空気流路温度検知センサSN2、空気流路圧力検知センサSN3、供給側の空気流路漏気検知センサSN4、排出側の漏気検知センサSN5、空気流路温度検知センサSN6、空気流路圧力検知センサSN7、電解液流路圧力検知センサSN8、空気電池温度検知センサSN9、水素ガス検知センサSN10及び漏液検知センサSN11である。
 本実施形態における「システムの一部」は、カートリッジB、空気供給パイプ(空気流路)20、電解液供給パイプ(電解液流路)6及び電気系統を含むものである。
・「システムの一部」がカートリッジBの場合には、そのカートリッジBの装着位置を判定する。
 このカートリッジBの装着位置の判定は、上記したロック検知センサSN1によって、ロック位置(イ)に位置しているロック部材9を検知することにより行う。
・「システムの一部」が空気流路の場合には、この空気流路をなす空気送給パイプ20及び空気排出パイプ30における漏気の有無を判定する。この判定は、空気送給パイプ20と空気排出パイプ30に配設した空気流路圧力検知センサSN3,SN7による圧力変動の検知結果に基づいて行なう。
 この場合、ブロワー22を駆動して加圧するとともに、空気送給パイプ20に配設した開閉バルブ23を閉じる。
 また、空気流路圧力検知センサSN3,SN7によって検知した圧送時における圧力変動に基づいて、カートリッジBと空気送給パイプ20及び空気排出パイプ30との接続の良否を判定する。
 上記したシステム状態判定手段D1は、本システムの一部に異常があるか否かの判定を所定の時間間隔で繰り返し行なう。
・「システムの一部」が電解液流路の場合には、この電解液流路における異常の有無を判定する。
 この判定は、電解液送給パイプ6に配設した電解液流路圧力センサSN8による圧力変動の検知結果に基づいて行なう。
・「システムの一部」が電気系統の場合には、電気系統における異常の有無を判定する。
 電気系統は、例えばバスバー50とカートリッジBとの電気的な接続であり、電気系統における異常の有無を静電容量の変化によって判定する。
(2)本システムの一部に異常があると判定したときには、上記装着されているカートリッジBの使用を禁止ないしは中止させる機能。この機能を「カートリッジ使用中止手段D2」という。
 カートリッジBの使用を中止するには、ブロワー22の駆動を停止するとともに、開閉弁23,31を閉駆動する。
(3)水素ガス検知センサSN10によって検知した水素ガス濃度が所定の設定値以上になったか否かを判定するための機能。この機能を「水素ガス濃度判定手段D3」という。
(4)水素ガス濃度が所定の設定値以上になったと判定したときには、その水素ガス濃度が低下するまで圧送装置(ブロワー22)によって空気をカートリッジBに圧送する機能。この機能を「空気送給手段D4」という。
 また、水素ガス濃度判定手段D3によって水素ガス濃度が所定の設定値未満になったと判定したとき、空気送給手段D4は、圧送装置(ブロワー22)による空気の圧送を停止するようにしている。
(5)カートリッジBをなす空気電池60を放電させるための機能。この機能を「放電手段D5」という。
 上記した水素ガス濃度判定手段D3により、水素ガス検知センサSN10によって検知した水素ガス濃度が設定値以上になったと判定したとき、放電手段D5によって放電を継続させる。
 また、下記の端子接続判定手段D13により、電流検知端子、電圧検知端子又はそれら双方の電気的な接続が不良であると判定したときには、その空気電池カートリッジBの放電を中止する。
(6)カートリッジBをなす空気電池60の電解液を外部に移送するための機能。この機能を「電解液移送手段D6」という。
 上記した水素ガス濃度判定手段D3により、水素ガス検知センサSN10によって検知した水素ガス濃度が設定値以上になったと判定したとき、「電解液移送手段D6」によって電解液を電解液タンク5又はドレインタンク81に移送する。
(7)漏液検知センサSN11によって漏液を検知したか否かを判定する機能。この機能を「漏液判定手段D7」という。
 この漏液判定手段D7によって漏液を検知したと判定したとき、カートリッジ使用中止手段D2は、その漏液している空気電池60の動作を停止させる。
(8)カートリッジBに電解液又は水の注液を行なわせる機能。この機能を「注液手段D8」という。
 下記の第一の温度判定手段D9によって、当該温度が所定の設定値以上になったと判定したときには電解液又は水の注液を停止するようにしている。
 空気電池カートリッジBへの電解液若しくは水の注液又はその停止は、開閉バルブ7を開閉駆動することにより行なう。
(9)空気電池温度検知センサSN9によって検知した温度が所定の設定値以上になったか否かを判定する機能。この機能を「第一の温度判定手段D9」という。
(10)空気電池温度検知センサSN9によって検知した温度が所定の設定値未満になったか否かを判定する機能。この機能を「第二の温度判定手段D10」という。
 この第二の温度判定手段D10によって、当該温度が所定の設定値未満になったと判定したとき、注液手段D8は電解液又は水の注液を再開する。すなわち、開閉バルブ7を開駆動する。
(11)空気電池温度検知センサSN9によって、放電中の電池の検知した温度が所定の設定値以上になったか否かを判定する機能。この機能を「第三の温度判定手段D11」という。
 この第三の温度判定手段D11によって、当該温度が所定の設定値以上になったと判定したとき、電解液移送手段D6により電解液を電池外部に移送する。
(12)空気流路圧力検知センサSN3,SN7で検知した圧力が所定値以上になったか否かを判定する機能。この機能を「空気流路圧力判定手段D12」という。
 この空気流路圧力判定手段D12により、空気流路圧力検知センサSN3,SN7で検知した圧力が所定値以上になったと判定したときには、カートリッジ使用中止手段D2は、空気電池カートリッジBを放電させて使用を中止させる。
(13)カートリッジボックス(本体)Cのカートリッジ装着部51に、カートリッジBとの電流検知端子及び電圧検知端子(いずれも図示しない)が配設されており、それら少なくともいずれかの端子の電気的な接続の良否を判定する機能。この機能を「端子接続判定手段D13」という。
 端子接続判定手段D13は、各端子間の抵抗値に基づいて、電気的な接続の良否を判定している。
 この端子接続判定手段D13により、いずれかの端子の電気的な接続が不良であると判定したときには、放電手段D5は、そのカートリッジBの放電を中止する。
(14)空気電池60の出力電圧が、所定の電圧値未満になったか否かを判定する機能。この機能を「出力電圧判定手段D14」という。
 当該出力電圧が所定の電圧値未満になったと判定したときには、放電手段D5は、放電電流を減少させる。
(15)空気電池60の抵抗値が任意の基準値以上であるか否かを判定する機能。この機能を「抵抗値算出手段D15」という。
 空気電池60の抵抗値が任意の基準値以上であると判定したとき、放電手段D5は、放電電流を減少させる。
(16)放電電流を減少させてから所定の設定時間が経過したか否かを判定する機能。この機能を「経過時間判定手段D16」という。
(17)所定の設定時間が経過したと判定したときに、所定の電圧,電流値に回復したか否かを判定する機能。この機能を「電圧,電流値回復判定手段D17」という。
 この電圧,電流値回復判定手段D17によって所定の電圧,電流値に回復しないと判定されたときには、その空気電池60を有するカートリッジBの動作を中止させる。
(18)電圧,電流値回復判定手段D15により、所定の電圧,電流値に回復しないと判定されたときには、当該空気電池60が異常である旨を記憶素子に記憶する機能。この機能を「記憶手段D18」という。
(19)積算放電電気量を算出する機能。この機能を「積算放電電気量算出手段D19」という。
(20)算出した積算放電電気量がカートリッジBをなす空気電池60の定格容量の所要の割合以上になったか否かを判定する機能。この機能を「積算放電電気量判定手段D20」という。
 本実施形態に示す「所要の割合」は、80パーセントである。
 積算放電電気量判定手段D19によって、積算放電電気量がカートリッジBの定格容量の所要割合以上になっていないと判定されたときには、そのカートリッジBの動作を停止させる。
 積算放電電気量判定手段D19によって、積算放電電気量がカートリッジBの定格容量の所要割合以上になっていないと判定されたときには、記憶手段D16は、記憶素子に正常に放電終了した旨とともに、空気電池60の放電中又は放電終了時に放電関連情報を記憶する。
 次に、本空気電池システムの動作について、図4,5を参照して説明する。図4,5は、空気電池カートリッジに電解液若しくは水を注液したとき又は本システムを作動させているときのチェック動作を示すフローチャートである。
 カートリッジBに電解液若しくは水を注液したとき又は本システムを作動させているときにステップ1に進む。
 ステップ1:図4において「S1」と表記する。以下、ステップ2以下においても同様に表記する。水素ガス検知センサSN10によって検知した水素ガス濃度が設定値以上になったか否かを判定し、水素ガス濃度が設定値以上になっていると判定されればステップ3に進み、そうでなければステップ2に進む。
 ステップ2:漏液検知センサSN11により漏液が検知されたか否かを判定し、漏液が検知されればステップ5に進み、そうでなければステップ4に進む。
 ステップ3:水素ガス濃度が設定値以上になっていると判定されたので、空気の圧送と放電を継続して、水素ガス濃度を低下させる。
 ステップ4:空気電池温度検知センサSN9によって検知したカートリッジ(空気電池60)Bの温度が所定の設定値以上になったか否かを判定し、当該温度が所定の設定値以上にならなかったと判定したときにはステップ7に進み、そうでなければステップ6に進む。
 ステップ5:漏液を検知したと判定されたので、カートリッジBの使用を停止する。
 ステップ6:カートリッジ(空気電池60)Bの温度が所定の設定値以上になったと判定されたので、カートリッジBの使用を一時停止する。
 ステップ7:空気流路20,30の圧力変動を判定し、当該圧力変動があると判定されればステップ10に進み、圧力変動がなければステップ8に進む。
 ステップ8:電解液送給パイプ6の圧力変動を測定し、当該圧力変動があればステップ10に進み、圧力変動がなければステップ9に進む。
 ステップ9:電気系統における接続の良否を判定し、接続不良と判定されればステップ11に進み、そうでなければステップ10に進む。
 ステップ10:空気流路20,30に漏気、電解液送給パイプ6に漏液又は電気系統における接続不良があると判定したので、カートリッジBを放電させて終了する。
 ステップ11:各カートリッジBをなす空気電池60が異常終了又は放電終了しているかを判定し、当該空気電池60が異常終了又は放電終了していると判定されればステップ12に進み、そうでなければステップ1に進む。すなわち、本システムの一部に異常があるか否かを判定を所定の時間間隔で繰り返し行なう。
 以上の構成からなる空気電池システムによれば、次の効果を得ることができる。
・カートリッジBの装着異常や空気や電解液等の漏出等を検知して、故障等を未然に防止することができる。
・空気供給パイプ20や電解液供給パイプ30の圧力の変動により、漏気,漏液の検知を安価に行なうことができる。
・ロック機構Lを介して、カートリッジBの装着位置を判定することができる。
・電解液流路における漏液の有無を判定することにより、その電解液流路の異常を検知できる。
・電気系統における異常の有無の判定し、当該異常があると判定されれば、カートリッジの使用を中止しているので、故障の発生を未然に防止できる。
 以上、本発明の空気電池システムにおいて、空気電池カートリッジに電解液等を注液したとき又は本システムを作動させているときの実施形態を示したが、次に、システム起動をしたとき又は空気電池カートリッジを装着したときの実施形態について説明する。
<システム起動時又はカートリッジ装着時に係る実施形態>
 本実施形態の空気電池システムは、上記の実施形態の空気電池システムAとほぼ同じ構成を有し、電解液Wを貯留する電解液タンク5、カートリッジボックス(本体)C及びコントロールユニットDを主要の構成とするものである(図1~3参照)。
 但し、送液ポンプ80、ドレインタンク81、ドレインパイプ82、開閉バルブ83、空気電池温度検知センサSN9及び漏液検知センサSN11などは必須の部材ではなく省略が可能である。
 上記実施形態のように、本実施形態においてもコントロールユニットDは、CPU(Central Processing Unit)やインターフェース回路等からなるものであり、所要のプログラムの実行により、次の各機能を発揮する。
(1)システム起動をしたとき又はカートリッジBを装着したときに、本システムの一部に異常があるか否か判定する機能。この機能を「システム状態判定手段d1」という。
 本実施形態における「システムの一部」は、カートリッジB、空気供給パイプ(空気流路)20、及び電解液流路6を含むものである。
・「システムの一部」がカートリッジBの場合には、そのカートリッジBの装着状態の正否を判定する。
 このカートリッジBの装着状態の正否の判定は、上記したロック検知センサSN1によって、ロック部材9の位置を検知することにより行なう。
・「システムの一部」が空気流路の場合には、この空気流路をなす空気送給パイプ20及び空気排出パイプ30における漏気及び通気の有無を判定する。この判定は、空気送給パイプ20と空気排出パイプ30に配設した圧力センサSN3、SN7による圧力変動の検知結果に基づいて行なう。
 この場合、ブロワー22を駆動して加圧するとともに、空気流路20に配設した弁23を閉じる。
・「システムの一部」が電解液流路の場合には、この電解液流路における異常の有無を判定する。
 この判定は、電解液送給パイプ6に配設した圧力センサSN8による圧力変動の検知結果に基づいて行なう。
・「システムの一部」が電気系統の場合には、電気系統における異常の有無を判定する。
 電気系統は、例えばバスバー50とカートリッジBとの電気的な接続であり、電気系統における異常の有無を静電容量の変化によって判定する。
(2)記憶素子に記憶されているカートリッジに関わる関連情報を読み出す機能。この機能を「関連情報読出し手段d2」という。
 関連情報は、カートリッジBの製造番号、カートリッジBの定格容量、定格出力、定格電解液量である。
(3)関連情報読出し手段によるカートリッジBに関わる関連情報の全ての読み出しが行なわれたか否かを判定する機能。この機能を「関連情報読出し判定手段d3」という。
 当該関連情報の全ての読み出しが行なわれないと判定したとき、下記のカートリッジ使用禁止手段d14は、そのカートリッジBの使用を禁止する。
(4)カートリッジの定格電解液量又は水量が、予め設定された容量以下であるか否かを判定する機能。この機能を「液量判定手段d4」という。
(5)定格電解液量又は水量が、予め設定された容量以下であると判定したときには、給液要求を報知する機能。この機能を「給液要求報知手段d5」という。
 報知の態様としては、車内の警告ランプを点灯させるものや音声によるものを含む。
(6)定格容量が、本システムの許容範囲内のものか否かを判定する機能。この機能を「容量判定手段d6」という。
 定格容量に基づいて、カートリッジBの発電量を算出して、本システムの動作可能な時間を推定する機能。この機能を「動作時間推定手段」という。
(7)定格出力が、本システムの許容範囲内のものか否かを判定する機能。この機能を「定格出力判定手段d7」という。
(8)本システムの保持液量が定格電解液量以上であるか否かを判定する機能。この機能を「電解液量判定手段d8」という。
(9)本システムの保持液量が定格電解液量以上であると判定した場合には、液量が不足している旨を報知する機能。この機能を「液量不足報知手段d9」という。
(10)ID情報に基づいて、本システムにおいて動作可能なものであるか否かを判定する機能。この機能を「ID情報判定手段d10」という。
(11)カートリッジBの使用の有無を判定する機能。この機能を「使用判定手段d11」という。この判定は、カートリッジBの放電状態を読み込むことによって行なう。
 「使用」の判定は、既使用か未使用かを判定する。
(12)カートリッジBが既使用であると判定したときには、使用中のカートリッジBか否かを判定する機能。この機能を「使用中判定手段d12」という。
 ここで、使用中の電池ではないと判定したときには、使用済み電池であることを意味している。
(13)カートリッジBの関連情報の一部の読み込みを失敗したか否かを判定する機能。この機能を「情報読込み判定手段d13」という。
 この判定により、カートリッジBの電気的接続が不良であることを意味している。
(14)上記した本システムの一部に異常があると判定したときには、上記装着されているカートリッジBの使用を禁止する機能。この機能を「カートリッジ使用禁止手段d14」という。
 「カートリッジBの使用を禁止する」とは、そのカートリッジBへの電解液又は水の注液を行なわせないことである。
(15)カートリッジBに電解液又は水の注液を行なう機能。この機能を注液手段d15」という。
 具体的には、開閉バルブ7を開駆動することより、電解液タンク5から電解液W又は水をカートリッジBに注液させる。
 本実施形態においては、電解液タンク5に電解液Wを貯留しているが、カートリッジBに電解質を配しているときには、「水」を貯留しておく。
(16)カートリッジBの使用の有無を判定する機能。この機能を「第一の使用判定手段d16」という。
 カートリッジBの使用の有無の判定は、そのカートリッジBの放電状態を読み込んでおき、その放電状態に基づいて判定を行なっている。
(17)第一の使用判定手段d16によりカートリッジBが使用済みであると判定されたときには、判定に係るカートリッジBが、使用中のものであるか否かを判定する機能。この機能を「第二の使用判定手段d17」という。
 この第二の使用判定手段d17によってカートリッジBが使用中のものではないと判定したとき、カートリッジ使用禁止手段d14は、そのカートリッジBの使用を禁止するようにする。
 また、第二の使用判定手段d17が、判定に係るカートリッジBが使用中のものであると判定したときには、注液手段d15は、判定に係るカートリッジBに対する注液を行なわないようにする。
 次に、本空気電池システムの動作について、図6,7を参照して説明する。図6,7は、システム起動又はカートリッジが装着されたときの初期チェック動作を示すフローチャートである。
 システム起動又はカートリッジBが装着されると、ステップ15に進む。
 ステップ15:図6において「S15」と表記する。以下、ステップ20以下においても同様に表記する。本ステップにおいては、カートリッジBの各種の固定を確認する。
 ステップ20:ブロワー22を駆動して加圧(与圧)を開始するとともに、空気供給パイプ20、空気排出パイプ30に配設した開閉バルブ23,31を開駆動するとともに、バイパスバルブ41を閉駆動する。
 ステップ30:圧力センサSN3,SN7によって圧力変動を測定し、当該圧力変動が正常なカートリッジ装着時の圧力を上回ればステップ40に進んで、空気流路を閉塞して、起動を中止する。また、圧力変動がなければステップ50に進む。
 ステップ50:ブロワー22を駆動して加圧するとともに、開閉バルブ31を閉駆動し、その後、開閉バルブ23を閉駆動する。
 ステップ60:圧力センサSN3によって空気流路の圧力変動を測定し、当該圧力変動があればステップ120に進み、圧力変動がなければステップ70に進む。
 ステップ70:空気流路の弁を開駆動してステップ80に進む。
 ステップ80:ブロワで加圧し、電解液送給パイプ(電解液流路)6の開閉バルブ7を閉塞する。
 ステップ90:圧力センサSN8で圧力変化を判定し、圧力変化がなければステップ100に進み、そうでなければステップ110に進み、電解液送給パイプ6に漏れがあるとして、起動を中止する。
 ステップ100:電解液送給パイプ6の開閉バルブ7を開駆動して、ステップ130に進む。
 ステップ130:空気電池60の正負電極間の静電容量を測定する。
 ステップ140:静電容量が基準値範囲外であるか否かを判定し、基準値範囲外であると判定されればステップ150に進み、そうでなければステップ160に進む。
 ステップ150:電気接続が不良であると判定し、カートリッジBの使用を禁止する。
 ステップ160:カートリッジBをロック機構Lによりロックする。
 ステップ170:ロック機構Lによるロック状態が基準値範囲外であるか否かを判定し、基準値範囲外であると判定されればステップ180に進み、そうでなければステップ190に進む。
 ステップ180:ロック機構Lの接続が不良であると判断し、カートリッジBの使用を禁止する。
 ステップ190:カートリッジBの関連情報を読み込みを開始する。
 ステップ200:カートリッジBの定格容量を読み込む。
 ステップ210:カートリッジBをなす空気電池60の発電量の予想値を保持する。これにより、システム動作可能時間を予想し、航続距離を予想する。
 換言すると、定格容量が、本システムの許容範囲内のものか否かを判定する。
 ステップ220:本システムの許容容量の範囲内が否かを判定し、当該許容容量の範囲内であると判定されればステップ230に進み、そうでなければステップ260に進む。
 ステップ230:定格出力を読み込む。
 ステップ240:空気電池60の放電電流の制御値を設定する。これにより、システムの用途を設定する。当該用途の設定は、例えば走行中の充電に使用する、駐車中に充電する等である。
 ステップ250:空気電池60の放電電流の制御値が、システムの許容出力の範囲内か否かを判定し、許容出力の範囲内でないと判定されればステップ260に進み、そうでなければステップ270に進む。
 ステップ260:空気電池60が不良であるとして、カートリッジBの使用を禁止する。換言すると、起動を中止する。
 ステップ270:空気電池60への電解液の注液量を読み込む。
 ステップ280:システムの保持液量が当該注液量以上か否かを判定し、保持液量が注液量以上であると判定したときにステップ300に進み、そうではないと判定したときにステップ290に進む。
 ステップ290:電解液の液量が不足していることを報知して、ステップ300に進む。
 報知の態様は、車両の一部に設置したランプを点灯するものの他、音声で告知するものを含む。
 ステップ300:装着されたカーリッジBのIDを読み込む。
 ステップ310:装着されたカートリッジ(空気電池)が、システムで動作可能な種類のものか否かを判定し、動作可能なものであると判定されればステップ320に進み、そうでなければステップ260に進む。
 ステップ320:装着されたカートリッジ(空気電池)の放電状態を読み込む。
 ステップ330:放電状態によって、未使用のカートリッジ(空気電池)か否かを判定し、未使用であると判定されればステップ370に進み、そうでなければステップ340に進む。
 ステップ340:装着されたカートリッジ(空気電池)が使用中のものか否かを判定し、使用中のものであると判定されればステップ360に進み、そうでなければステップ350に進む。
 ステップ350:使用済みのカートリッジ(空気電池)であるとして、その使用を禁止する。
 ステップ360:装着されているカートリッジ(空気電池)に注液を行わない設定にする。
 ステップ370:装着されているカートリッジ(空気電池)の関連情報の読み込みに失敗したか否かを判定し、関連情報の読み込みに失敗したと判定したときにはステップ380に進み、そうでない場合にはステップ390に進む。
 ステップ380:カートリッジと接続部の接続が不良であるとして、使用済みのカートリッジ(空気電池)の使用を禁止する。
 ステップ390:複数のカートリッジが装着されていれば、それらを順次測定し、カートリッジ(空気電池)を使用可能として認識する。
 以上の構成からなる空気電池システムによれば、次の効果を得ることができる。
・空気電池カートリッジの装着異常や空気や電解液等の漏出等を予め検知して、故障等を未然に防止することができる。
・空気供給パイプや電解液供給パイプの圧力の変動により、漏気,通気,漏液の検知を安価に行なうことができる。
・ロック部材を、外形状及び方向が一致する空気電池カートリッジのみを挿入可能に形成したときには、別異の空気電池カートリッジの誤装着を防止できる。
・空気流路における漏気,通気の有無を判定することにより、その空気流路の異常を検知できる。
・電解液流路における漏液の有無を判定することにより、その電解液流路の異常を検知できる。
・電気系統における異常の有無を判定することにより、その電気系統の異常を検知できる。
・空気電池カートリッジに関わる関連情報を読み出すことにより、その空気電池カートリッジを識別することができる。
・空気電池カートリッジに関わる関連情報の全ての読み出しが行なわれたか否かを判定することにより、カートリッジ装着部の接触不良等を検知することができる。
・定格電解液量又は水量が、予め設定された容量以下であると判定して、給液要求を報知することにより、電池注液後に電解液量が不足することを防止できる。
 以上詳細に説明したが、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
 ブロワー22を圧送装置として例示したが、コンプレッサ、ファン、ポンプ等を採用することもできる。また、上記実施形態において説明した各構成は、それを任意に組み合わせることができる。
 5      電解液タンク
 6      電解液送給パイプ(電解液流路)
 8      記憶素子
 9      ロック部材
20      空気供給パイプ(空気流路)
22      圧送装置(ブロワー)
30      空気排出パイプ(空気流路)
51      カートリッジ装着部
60      空気電池
81      ドレインタンク
 A      空気電池システム
 B      空気電池カートリッジ(本システムの一部)
 C      カートリッジボックス(本体)
 D1     システム状態判定手段
 D2     カートリッジ使用中止手段
 D3     水素ガス濃度判定手段
 D4     空気送給手段
 D5     放電手段
 D6     電解液移送手段
 D7     漏液判定手段
 D8     注液手段
 D9     第一の温度判定手段
 D10    第二の温度判定手段
 D11    第三の温度判定手段
 D12    空気流路圧力判定手段
 D13    端子接続判定手段
 D14    出力電圧判定手段
 D15    抵抗値判定手段
 D16    経過時間判定手段
 D17    電圧,電流値回復判定手段
 D18    記憶手段
 D19    積算放電電気量算出手段
 D20    積算放電電気量判定手段
 d1     システム状態判定手段
 d2     関連情報読出し手段
 d3     関連情報読出し判定手段
 d5     給液要求報知手段
 d8     液量判定手段
 d14    カートリッジ使用禁止手段
 d15    注液手段
 d16    第一の使用判定手段
 d17    第二の使用判定手段
 L      ロック機構
SN1     ロック検知センサ(異常検知センサ)
SN2     空気流路温度検知センサ(異常検知センサ)
SN3     空気流路圧力検知センサ(異常検知センサ)
SN4     漏気検知センサ(異常検知センサ)
SN5     漏気検知センサ(異常検知センサ)
SN6     温度検知センサ(異常検知センサ)
SN7     空気流路圧力検知センサ(異常検知センサ)
SN8     電解液流路圧力検知センサ(異常検知センサ)
SN9     空気電池温度検知センサ(異常検知センサ)
SN10    水素ガス検知センサ(異常検知センサ)
SN11    漏液検知センサ(異常検知センサ)

Claims (40)

  1.  一又は二以上の空気電池を有する空気電池カートリッジと、この空気電池カートリッジを着脱自在な本体とを有する空気電池システムにおいて、
     空気電池カートリッジに電解液若しくは水を注液したとき、本システムを作動させているとき、システム起動をしたとき又は空気電池カートリッジを装着したときに、本システムの一部に異常があるか否かを判定するシステム状態判定手段と、
     本システムの一部に異常があると判定したときには、上記装着されている空気電池カートリッジの使用を禁止するカートリッジ使用禁止手段とを設けたことを特徴とする空気電池システム。
  2.  本システム各部の異常を検知するための一又は二以上の異常検知センサが配設されており、
     システム状態判定手段は、いずれかの異常検知センサで検知している検知量の変化に基づいて、本システムの各部における異常の有無を判定する請求項1に記載の空気電池システム。
  3.  空気電池カートリッジから排出される空気を流通させるための空気流路に、これを流通する空気に含まれる水素ガスを検知するための水素ガス検知センサを異常検知センサとして配設している請求項2に記載の空気電池システム。
  4.  空気電池カートリッジに空気を圧送するための圧送装置を有しているとともに、
     水素ガス検知センサによって検知した水素ガス濃度が所定の設定値以上になったか否かを判定するための水素ガス濃度判定手段と、水素ガス濃度が所定の設定値以上になったと判定したときには、その水素ガス濃度が低下するまで圧送装置によって空気を空気電池カートリッジに圧送する空気送給手段とを有する請求項3に記載の空気電池システム。
  5.  水素ガス濃度判定手段によって水素ガス濃度が所定の設定値未満になったと判定したとき、空気送給手段は、圧送装置による空気の圧送を停止する請求項4に記載の空気電池システム。
  6.  空気電池カートリッジをなす空気電池を放電させるための放電手段を有しており、
     水素ガス濃度判定手段により、水素ガス検知センサによって検知した水素ガス濃度が設定値以上になったと判定したとき、放電手段による放電を継続する請求項4又は5に記載の空気電池システム。
  7.  空気電池カートリッジ内の電解液を外部に移送する電解液移送手段を有しており、
     水素ガス濃度判定手段により、水素ガス検知センサによって検知した水素ガス濃度が設定値以上になったと判定したとき、電解液移送手段は、カートリッジ内の電解液を外部に移送する請求項4~6のいずれか1項に記載の空気電池システム。
  8.  本体に、空気電池から漏出した電解液を検知するための漏液検知センサを異常検知センサとして配設しているとともに、
     漏液検知センサによって漏液を検知したか否かを判定する漏液判定手段を設けており、
     この漏液判定手段によって漏液を検知したと判定したとき、カートリッジ使用禁止手段は、その漏液している空気電池の動作を停止させる請求項2~7のいずれか1項に記載の空気電池システム。
  9.  空気電池カートリッジをなす空気電池の温度を検知するための空気電池温度検知センサを異常検知センサとして設けている請求項2~8のいずれか1項に記載の空気電池システム。
  10.  空気電池温度検知センサによって検知した温度が所定の設定値以上になったか否かを判定する第一の温度判定手段と、空気電池カートリッジに電解液又は水の注液を行なう注液手段とを有しており、
     第一の温度判定手段によって、当該温度が所定の設定値以上になったと判定したときには注液手段は電解液又は水の注液を停止させる請求項9に記載の空気電池システム。
  11.  空気電池温度検知センサによって検知した温度が所定の設定値未満になったか否かを判定する第二の温度判定手段を有しており、
     第二の温度判定手段によって、当該温度が所定の設定値未満になったと判定したときには注液手段は電解液又は水の注液を再開する請求項9又は10に記載の空気電池システム。
  12.  空気電池カートリッジから排出される空気を流通させるための空気流路に、この空気流路の内圧を検知するための空気流路圧力検知センサを異常検知センサとして配設している請求項2~11のいずれか1項に記載の空気電池システム。
  13.  空気流路圧力検知センサで検知した圧力が所定値以上になったか否かを判定する空気流路圧力判定手段を有しており、その空気流路圧力判定手段により、空気流路圧力検知センサで検知した圧力が所定値以上になったと判定したときには、カートリッジ使用禁止手段は、空気電池カートリッジの使用を中止させる請求項12に記載の空気電池システム。
  14.  複数の空気電池カートリッジを同時に着脱自在にしているとともに、
     空気電池カートリッジの装着を許容するアンロック位置又は装着された空気電池カートリッジをロックするロック位置に移動可能なロック部材と、そのロック部材の位置を検知するためのロック検知センサとを有するロック機構が設けられており、
     システム状態判定手段は、ロック検知センサによるロック部材の位置の検知に基づいて、空気電池カートリッジの装着位置を判定する請求項1~13のいずれか1項に記載の空気電池システム。
  15.  システム状態判定手段は、空気流路圧力検知センサによって検知した圧力変動に基づいて、空気電池カートリッジと本体との装着部における漏気の有無を判定する請求項12~14のいずれか1項に記載の空気電池システム。
  16.  システム状態判定手段は、空気流路圧力検知センサによって検知した圧送時における圧力変動に基づいて、空気電池カートリッジと空気流路との接続の良否を判定する請求項12~15のいずれか1項に記載の空気電池システム。
  17.  本システムの一部をなす電解液流路に、その電解液流路の内圧を検知するための電解液流路圧力検知センサを異常検知センサとして配設しており、
     システム状態判定手段は、電解液流路圧力検知センサによって圧送時における空気電池カートリッジの圧力変動に基づいて、その空気電池カートリッジと電解液流路との接続の良否を判定する請求項4~16のいずれか1項に記載の空気電池システム。
  18.  本システムの一部をなす本体のカートリッジ装着部に、空気電池カートリッジとの電流検知端子及び電圧検知端子が配設されており、
     それら少なくともいずれかの端子の電気的な接続の良否を判定する端子接続判定手段を設けた請求項1~17のいずれか1項に記載の空気電池システム。
  19.  端子接続判定手段は、各端子間の抵抗値に基づいて、電気的な接続の良否を判定する請求項18に記載の空気電池システム。
  20.  端子接続判定手段により、いずれかの端子の電気的な接続が不良であると判定したときには、放電手段は、その空気電池カートリッジの放電を中止する請求項18又は19に記載の空気電池システム。
  21.  空気電池の出力電圧が、所定の電圧値未満になったか否かを判定する出力電圧判定手段を有し、
     当該出力電圧が所定の電圧値未満になったと判定したときには、放電手段は、放電電流を減少させる請求項6に記載の空気電池システム。
  22.  空気電池の抵抗値が任意の基準値以上であるか否かを判定する抵抗値算出手段が設けられており、
     空気電池の抵抗値が任意の基準値以上であると判定したとき、
     放電手段は、放電電流を減少させる請求項6~21のいずれか1項に記載の空気電池システム。
  23.  放電電流を減少させてから所定の設定時間が経過したか否かを経過時間判定手段と、
     所定の設定時間が経過したと判定したときに、所定の電圧,電流値に回復したか否かを判定する電圧,電流値回復判定手段とを有し、
     この電圧,電流値回復判定手段によって所定の電圧,電流値に回復しないと判定されたときには、その空気電池を有する空気電池カートリッジの動作を中止させる請求項6~22のいずれか1項に記載の空気電池システム。
  24.  システムの状態を記憶するための記憶素子が設けられており、
     電圧,電流値回復判定手段により、所定の電圧,電流値に回復しないと判定されたときには、当該空気電池が異常である旨を記憶素子に記憶する記憶手段を有する請求項23に記載の空気電池システム。
  25.  積算放電電気量を算出する積算放電電気量算出手段と、
     算出した積算放電電気量が空気電池カートリッジをなす空気電池の定格容量の所要割合以上になったか否かを判定する積算放電電気量判定手段とを有し、
     積算放電電気量判定手段によって、積算放電電気量が空気電池カートリッジの定格容量の所要割合以上になっていないと判定されたときには、空気電池カートリッジの動作を停止させる請求項6~24のいずれか1項に記載の空気電池システム。
  26.  積算放電電気量判定手段によって、積算放電電気量が空気電池カートリッジの定格容量の所要割合以上になっていないと判定されたときには、記憶手段は、記憶素子に正常に放電終了した旨の記憶をする請求項24又は25に記載の空気電池システム。
  27.  記憶手段は、空気電池の放電中又は放電終了時に放電関連情報を記憶素子に記憶する請求項24~26のいずれか1項に記載の空気電池システム。
  28.  本システムの一部が、装着されている空気電池カートリッジであり、
     システム状態判定手段は、装着されている空気電池カートリッジの装着状態に基づいて、異常の有無を判定する請求項1に記載の空気電池システム。
  29.  空気電池カートリッジの装着を許容するアンロック位置又は装着された空気電池カートリッジをロックするロック位置に移動可能なロック部材と、そのロック部材の位置を検知するためのロック検知センサとを有するロック機構が設けられており、
     システム状態判定手段は、ロック検知センサによるロック部材の位置の検知に基づいて、空気電池カートリッジの装着状態の正否を判定する請求項28に記載の空気電池システム。
  30.  ロック部材は、外形状及び方向が一致する空気電池カートリッジのみを挿入可能に形成されている請求項29に記載の空気電池システム。
  31.  本システムの一部が空気流路であり、
     この空気流路が、空気電池カートリッジに空気を供給するための空気供給パイプと、その空気電池カートリッジから排出された空気を外部に排出するための空気排出パイプとを有しており、
     それら空気供給パイプと空気排出パイプとに、空気電池カートリッジを封止するための開閉バルブをそれぞれ配設している請求項1,28~30のいずれか1項に記載の空気電池システム。
  32.  空気流路に与圧装置を配設しており、
     システム状態判定手段は、圧力検知センサによって与圧時における圧力変動に基づいて、漏気の有無を判定する請求項31に記載の空気電池システム。
  33.  本システムの一部が電解液流路であり、
     電解液流路に圧力検知センサが配設されており、
     システム状態判定手段は、圧力検知センサによって検知した圧力変動に基づいて漏液の有無を判定する請求項1,28~32のいずれか1項に記載の空気電池システム。
  34.  本システムの一部が電気系統であり、
     システム状態判定手段は、電気系統における異常の有無を静電容量の変化によって判定する請求項1,28~33いずれか1項に記載の空気電池システム。
  35.  空気電池カートリッジには、この空気電池カートリッジに関わる関連情報を記憶した記憶素子が配設されており、
     その記憶素子に記憶されている空気電池カートリッジに関わる関連情報を読み出す関連情報読出し手段を有する請求項34に記載の空気電池システム。
  36.  関連情報読出し手段による空気電池カートリッジに関わる関連情報の全ての読み出しが行なわれたか否かを判定する関連情報読出し判定手段が設けられており、
     当該関連情報の全ての読み出しが行なわれないと判定したときには、
     カートリッジ使用禁止手段は、その空気電池カートリッジの使用を禁止する請求項35に記載の空気電池システム。
  37.  関連情報は、空気電池カートリッジの定格電解液量であり、
     空気電池カートリッジの定格電解液量又は水量が、予め設定された容量以下であるか否かを判定する液量判定手段と、
     定格電解液量又は水量が、予め設定された容量以下であると判定したときには、給液要求を報知する給液要求報知手段とを有する請求項35又は36に記載の空気電池システム。
  38.  空気電池カートリッジの使用の有無を判定する第一の使用判定手段と、
     第一の使用判定手段により空気電池カートリッジが使用済みであると判定されたときには、判定に係る空気電池カートリッジが、使用中のものであるか否かを判定する第二の使用判定手段とを有し、
     判定に係る空気電池カートリッジが使用中のものではないと判定したときには、
     カートリッジ使用禁止手段は、その空気電池カートリッジの使用を禁止する請求項1、28~37のいずれか1項に記載の空気電池システム。
  39.  空気電池カートリッジに電解液の注液を行なうための注液手段が設けられており、
     第二の使用判定手段が、判定に係る空気電池カートリッジが使用中のものであると判定したときには、
     注液手段は、判定に係る空気電池カートリッジに対する注液を行なわない請求項38に記載の空気電池システム。
  40.  複数の空気電池カートリッジを装着するための装着部が配設されており、
     システム状態判定手段は、各装着部に装着されている空気電池カートリッジの異常の有無を順次判定する請求項1,28~39のいずれか1項に記載の空気電池システム。
PCT/JP2013/070536 2012-07-31 2013-07-30 空気電池システム WO2014021288A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528158A JP5924509B2 (ja) 2012-07-31 2013-07-30 空気電池システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012170358 2012-07-31
JP2012-170358 2012-07-31
JP2012177172 2012-08-09
JP2012-177172 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014021288A1 true WO2014021288A1 (ja) 2014-02-06

Family

ID=50027962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070536 WO2014021288A1 (ja) 2012-07-31 2013-07-30 空気電池システム

Country Status (2)

Country Link
JP (1) JP5924509B2 (ja)
WO (1) WO2014021288A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213964A (ja) * 2015-05-08 2016-12-15 シャープ株式会社 電池システム、電極カートリッジ、放電槽、電池及び充電槽
RU2618440C2 (ru) * 2015-10-28 2017-05-05 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ эксплуатации алюминий-воздушного гальванического элемента

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248028A (en) * 1975-10-14 1977-04-16 Toyota Motor Co Ltd Device for supplying and controlling air to zinc air battery
JPS5259820A (en) * 1975-11-12 1977-05-17 Toyota Motor Co Ltd Blower device for air supplying to air battery
JP2005538514A (ja) * 2002-09-06 2005-12-15 ザ ジレット カンパニー 電気化学セルおよびシステム
WO2010100749A1 (ja) * 2009-03-06 2010-09-10 トヨタ自動車株式会社 空気電池
WO2011077532A1 (ja) * 2009-12-24 2011-06-30 トヨタ自動車株式会社 空気電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248028A (en) * 1975-10-14 1977-04-16 Toyota Motor Co Ltd Device for supplying and controlling air to zinc air battery
JPS5259820A (en) * 1975-11-12 1977-05-17 Toyota Motor Co Ltd Blower device for air supplying to air battery
JP2005538514A (ja) * 2002-09-06 2005-12-15 ザ ジレット カンパニー 電気化学セルおよびシステム
WO2010100749A1 (ja) * 2009-03-06 2010-09-10 トヨタ自動車株式会社 空気電池
WO2011077532A1 (ja) * 2009-12-24 2011-06-30 トヨタ自動車株式会社 空気電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213964A (ja) * 2015-05-08 2016-12-15 シャープ株式会社 電池システム、電極カートリッジ、放電槽、電池及び充電槽
RU2618440C2 (ru) * 2015-10-28 2017-05-05 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ эксплуатации алюминий-воздушного гальванического элемента

Also Published As

Publication number Publication date
JPWO2014021288A1 (ja) 2016-07-21
JP5924509B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
CN107342430B (zh) 利用燃料电池组的燃料电池堆健康监测
US8142937B2 (en) Fuel cell system
EP2067203B1 (en) Fuel cell system
US20110287327A1 (en) Detection of small anode leaks in fuel cell systems
KR101637720B1 (ko) 연료전지 시스템의 제어 방법
WO2006132393A1 (ja) 異常判定装置
CN102460811A (zh) 氧化还原流通单元电池再平衡
WO2009057534A1 (ja) 燃料電池システム、および、燃料電池システムの起動制御方法
JP3930364B2 (ja) 燃料電池発電システムの水供給装置及びこれを用いた燃料電池発電システム
US11011766B2 (en) Fuel cell system having oxygen sensor, and control method thereof
US11929534B2 (en) Method and system for redox flow battery performance recovery
JP5924509B2 (ja) 空気電池システム
JP2020196906A (ja) 水電解装置異常診断用プログラム及び水電解システム
JP5108345B2 (ja) 燃料電池システム
JP2007242339A (ja) 燃料電池システム、燃料電池の湿潤度合計測方法、燃料電池のパージ制御方法
JP2019008899A (ja) 燃料電池スタックの検査方法
KR100957364B1 (ko) 캐소드 공기 공급계의 이상현상 진단방법
CN110582879B (zh) 燃料电池系统和检测和减轻该系统中燃料不足状况的方法
JP2006210055A (ja) 異常検出装置
JP4844015B2 (ja) 燃料電池システム
KR102506848B1 (ko) 연료전지용 공기공급계의 고장 진단장치 및 그 방법
CN113540533B (zh) 燃料电池系统、和燃料电池组的能否再用的判断方法
JP7302528B2 (ja) 燃料電池システム
JP4143375B2 (ja) 燃料電池の始動方法
KR20180129196A (ko) 연료전지 시스템 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826470

Country of ref document: EP

Kind code of ref document: A1