WO2014021133A1 - 分離膜および分離膜エレメント - Google Patents

分離膜および分離膜エレメント Download PDF

Info

Publication number
WO2014021133A1
WO2014021133A1 PCT/JP2013/069852 JP2013069852W WO2014021133A1 WO 2014021133 A1 WO2014021133 A1 WO 2014021133A1 JP 2013069852 W JP2013069852 W JP 2013069852W WO 2014021133 A1 WO2014021133 A1 WO 2014021133A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
layer
flow path
separation
water
Prior art date
Application number
PCT/JP2013/069852
Other languages
English (en)
French (fr)
Inventor
高木健太朗
木村将弘
小岩雅和
山田博之
広沢洋帆
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013537987A priority Critical patent/JP6206185B2/ja
Priority to CN201380037569.9A priority patent/CN104470624A/zh
Priority to KR20147036925A priority patent/KR20150035802A/ko
Priority to US14/409,565 priority patent/US20150298064A1/en
Publication of WO2014021133A1 publication Critical patent/WO2014021133A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a separation membrane element used for separating components contained in a fluid such as liquid or gas.
  • Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, forward osmosis membranes and the like based on their pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brine, or water containing harmful substances, in the production of industrial ultrapure water, in wastewater treatment, or in the recovery of valuable materials. Depending on the separation performance.
  • the separation membrane element is common in that the raw fluid is supplied to one surface of the separation membrane and the permeated fluid is obtained from the other surface.
  • the separation membrane element has a large membrane area by including a large number of bundled separation membranes, and is configured to obtain a large amount of permeating fluid per unit element.
  • various elements such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type are used in accordance with applications and purposes.
  • spiral separation membrane elements are often used for reverse osmosis filtration.
  • the spiral type separation membrane element has a perforated water collecting pipe, a supply side channel material that supplies the raw fluid to the separation membrane, a separation membrane that separates components contained in the raw fluid, and a permeated fluid that has permeated the separation membrane.
  • a permeate-side channel material for guiding to the water pipe is provided.
  • the supply-side channel material, the separation membrane, and the permeation-side channel material are wound around the perforated water collecting pipe.
  • Spiral separation membrane elements are widely used because they can apply pressure to the raw fluid and take out much permeated fluid.
  • the separation membrane of the present invention has the following configuration. That is, A separation membrane comprising: a separation membrane body having a supply side surface and a permeation side surface; and a flow path material fixed to the permeation side surface of the separation membrane body, wherein the flow path material comprises two or more flow path materials A separation membrane comprising a layer.
  • the separation membrane element of the present invention has the following configuration. That is, A separation membrane element including the separation membrane.
  • the layers are joined in the channel material.
  • the separation membrane of the present invention is preferably fixed to the separation membrane body with an adhesive force of 1 N / m or more.
  • the separation membrane of the present invention has an adhesive layer that adheres to the separation membrane main body and a high elastic layer laminated on the adhesive layer, and the compression elastic modulus of the high elastic layer is 0.1 GPa or more and 5.0 GPa.
  • the channel material is formed of a thermoplastic resin.
  • the separation membrane preferably includes a base material, a porous support layer formed on the base material, and a separation functional layer formed on the porous support layer.
  • the base material is preferably a long fiber nonwoven fabric.
  • the separation membrane is preferably applied to a spiral type separation membrane element.
  • a highly efficient and stable permeation-side flow path can be formed, and a separation membrane element exhibiting stable performance can be obtained even in repeated operation and operation under high pressure conditions.
  • FIG. 7 is a cross-sectional view taken along the line AA of the separation membrane of FIG. 6.
  • FIG. 9 is a cross-sectional view of the separation membrane of FIG.
  • FIG. 10 is a cross-sectional view of the separation membrane of FIG. It is sectional drawing which shows the other form of the permeation
  • the separation membrane element 1 includes a water collection pipe 6 and a separation membrane 3 wound around the water collection pipe 6.
  • the separation membrane element further includes members such as the supply-side flow path member 2 and an end plate.
  • the separation membrane 3 includes a separation membrane main body 30 and a permeation side flow path member 4 disposed on the permeation side surface of the separation membrane main body 30.
  • the separation membrane 3 forms a rectangular envelope membrane 5 with the permeate side surface facing inward.
  • the envelope-like membrane 5 is opened only on one side so that the permeate flows into the water collecting pipe 6 and is sealed on the other three sides. The permeate is isolated from the supply water by this envelope membrane.
  • the supply channel material 2 is disposed between the envelope membranes 5, that is, between the supply side surfaces of the separation membrane.
  • the supply-side channel material 2 and the plurality of envelope-like membranes 5 are wound around the water collecting pipe 6 in an overlapped state.
  • the raw water supplied from one end in the longitudinal direction of the separation membrane element 1 passes through the flow path formed by the supply side flow path material 2 to the separation membrane main body 30. Supplied.
  • Water that has permeated through the separation membrane main body 30 flows into the water collecting pipe 6 through the flow path formed by the permeate-side flow path material 4. Thus, the permeated water 8 is recovered from one end of the water collecting pipe 6.
  • a separation membrane element 1 shown in FIG. 1 is an example of a configuration of a spiral separation membrane element including a water collection pipe and a separation membrane wound around the water collection pipe, and the present invention is limited to this embodiment. is not.
  • As the separation membrane 3 used in the above-described separation membrane element various types of separation membranes described below can be applied. Each embodiment will be described with reference to the drawings. In the following, elements described with reference to other drawings may be denoted by the same reference numerals and description thereof may be omitted.
  • a separation membrane is a membrane that can separate components in a fluid supplied to the surface of the separation membrane and obtain a permeated fluid that has permeated through the separation membrane.
  • the separation membrane includes a separation membrane main body and a flow path material disposed on the separation membrane main body.
  • the separation membrane 31 includes a separation membrane main body 301 and a permeation side flow path member 40.
  • the separation membrane main body 301 includes a supply-side surface 17 and a permeation-side surface 18.
  • the “supply-side surface” of the separation membrane body means a surface on the side to which the raw fluid is supplied, of the two surfaces of the separation membrane body.
  • the “transmission side surface” means the opposite side surface.
  • the separation membrane main body includes the base material (11, 15) and the separation functional layer (13, 16)
  • the surface on the separation functional layer side is on the supply side.
  • the surface on the substrate side is the surface on the transmission side.
  • a separation membrane main body 301 shown in FIG. 4 includes a base material 11, a porous support layer 12, and a separation functional layer 13.
  • the separation membrane main body 302 shown in FIG. 5 includes two layers of the base material 15 and the separation functional layer 16. Below, each layer is demonstrated.
  • the thickness of the separation functional layer is not limited to a specific value, but is preferably 5 to 3,000 nm from the viewpoint of separation performance and permeation performance. Particularly for reverse osmosis membranes, forward osmosis membranes and nanofiltration membranes, the thickness is preferably 5 to 300 nm.
  • the thickness of the separation functional layer can be based on the conventional method for measuring the thickness of the separation membrane.
  • the separation membrane is embedded with resin, and an ultrathin section is prepared by cutting the separation membrane, and the obtained section is subjected to processing such as staining. Thereafter, the thickness can be measured by observing with a transmission electron microscope.
  • measurement can be made at intervals of 50 nm in the cross-sectional length direction of the pleat structure located above the porous support layer, the number of pleats can be measured, and the average can be obtained. it can.
  • the separation function layer may be a layer having both a separation function and a support function, or may have only a separation function.
  • the “separation function layer” refers to a layer having at least a separation function.
  • the separation functional layer has both a separation function and a support function (for example, the embodiment shown in FIG. 5), a layer containing cellulose, polyvinylidene fluoride, polyethersulfone, or polysulfone as a main component is preferably applied as the separation functional layer. Is done.
  • X contains Y as a main component means that the Y content in X is 50% by mass, 70% by mass, 80% by mass, 90% by mass, or 95% by mass. It means that it is more than%.
  • the total amount of these components only needs to satisfy the above range.
  • the separation functional layer is provided as a layer separate from the porous support layer (for example, the embodiment of FIG. 4), the porous support layer is configured in that the pore diameter control is easy and the durability is excellent.
  • a crosslinked polymer is preferably used.
  • a polyamide separation functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide, an organic / inorganic hybrid functional layer, and the like are preferably used in that the separation performance of components in the raw fluid is excellent.
  • These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
  • the separation functional layer can contain polyamide as a main component.
  • a film is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, by applying a polyfunctional amine aqueous solution to the porous support layer, removing the excess amine aqueous solution with an air knife or the like, and then applying an organic solvent solution containing a polyfunctional acid halide, the polyamide separation functional layer Is obtained.
  • the separation functional layer may have an organic-inorganic hybrid structure containing Si element or the like.
  • the separation functional layer having an organic-inorganic hybrid structure can contain, for example, the following compounds (A) and (B).
  • the separation functional layer comprises a condensate of the hydrolyzable group of the compound (A) and the compound (A) and The polymer of the ethylenically unsaturated group of (B) may be contained.
  • the separation functional layer is A polymer formed by condensation and / or polymerization of only the compound (A), -The polymer formed by superposing
  • the polymer includes a condensate.
  • the compound (A) may be condensed through a hydrolyzable group.
  • the hybrid structure can be formed by a known method.
  • An example of a method for forming a hybrid structure is as follows.
  • a reaction solution containing the compound (A) and the compound (B) is applied to the porous support layer.
  • heat treatment may be performed.
  • a polymerization initiator, a polymerization accelerator and the like can be added during the formation of the separation functional layer.
  • the surface of the membrane may be hydrophilized with an alcohol-containing aqueous solution or an alkaline aqueous solution, for example, before use.
  • ⁇ Porous support layer> In the following configuration, the separation function layer (FIG. 5) when the separation function and the support function are realized by one layer, and the porous support layer when the separation function and the support function are realized by separate layers. (FIG. 4).
  • the material used for the porous support layer and the shape thereof are not particularly limited, but may be formed on the substrate with a porous resin, for example.
  • a porous resin for example.
  • the porous support layer polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin or a mixture and laminate of them is used, and polysulfone with high chemical, mechanical and thermal stability and easy to control pore size. Is preferably used.
  • the porous support layer gives mechanical strength to the separation membrane and does not have separation performance like a separation membrane for components having a small molecular size such as ions.
  • the pore size and pore distribution of the porous support layer are not particularly limited.
  • the porous support layer may have uniform and fine pores, or the side on which the separation functional layer is formed. It may have a pore size distribution such that the diameter gradually increases from the surface to the other surface.
  • the projected area equivalent circle diameter of the pores measured using an atomic force microscope or an electron microscope on the surface on the side where the separation functional layer is formed is 1 nm or more and 100 nm or less. preferable.
  • the pores on the surface on the side where the separation functional layer is formed in the porous support layer preferably have a projected area circle equivalent diameter of 3 to 50 nm.
  • the thickness of the porous support layer is not particularly limited, but is preferably in the range of 20 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 300 ⁇ m or less for the purpose of giving strength to the separation membrane.
  • the morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope.
  • a scanning electron microscope after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation.
  • the sample is thinly coated with platinum, platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV.
  • UHR-FE-SEM high-resolution field emission scanning electron microscope
  • Hitachi S-900 electron microscope can be used. Based on the obtained electron micrograph, the film thickness of the porous support layer and the projected area equivalent circle diameter of the surface can be measured.
  • the thickness and pore diameter of the porous support layer are average values, and the thickness of the porous support layer is an average value of 20 points measured at intervals of 20 ⁇ m in a direction perpendicular to the thickness direction by cross-sectional observation. Moreover, a hole diameter is an average value of each projected area circle equivalent diameter measured about 200 holes.
  • the porous support layer is prepared by pouring an N, N-dimethylformamide (hereinafter referred to as DMF) solution of the above polysulfone on a base material described later, for example, a densely woven polyester cloth or non-woven fabric to a certain thickness. It can be produced by molding and wet coagulating it in water.
  • DMF N, N-dimethylformamide
  • the porous support layer is “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the polymer concentration, the temperature of the solvent, and the poor solvent can be adjusted.
  • a predetermined amount of polysulfone is dissolved in DMF to prepare a polysulfone resin solution having a predetermined concentration.
  • this polysulfone resin solution is applied to a substrate made of polyester cloth or nonwoven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid.
  • the base material it is preferable to use a fibrous base material in terms of strength, unevenness forming ability and fluid permeability.
  • the fibrous base material either a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used.
  • the long fiber nonwoven fabric has excellent film-forming properties, when the polymer solution is cast, the solution penetrates through the permeation, the porous support layer peels off, and Can suppress the film from becoming non-uniform due to fluffing of the substrate and the like, and the occurrence of defects such as pinholes.
  • the base material is made of a long-fiber non-woven fabric composed of thermoplastic continuous filaments, compared to short-fiber non-woven fabrics, it suppresses the occurrence of non-uniformity and film defects caused by fiber fluffing during casting of a polymer solution. be able to.
  • the separation membrane is tensioned in the film-forming direction when continuously formed, it is preferable to use a long-fiber nonwoven fabric excellent in dimensional stability as a base material.
  • the fibers in the surface layer on the side opposite to the porous support layer are preferably longitudinally oriented compared to the fibers in the surface layer on the porous support layer side in terms of moldability and strength. According to such a structure, not only a high effect of preventing membrane breakage by maintaining strength is realized, but also a laminate comprising a porous support layer and a substrate when imparting irregularities to the separation membrane The moldability is improved, and the uneven shape on the surface of the separation membrane is stabilized, which is preferable.
  • the fiber orientation degree in the surface layer on the side opposite to the porous support layer of the long-fiber nonwoven fabric is preferably 0 ° to 25 °, and the fiber orientation degree in the surface layer on the porous support layer side And the orientation degree difference is preferably 10 ° to 90 °.
  • a heating process is included, but a phenomenon occurs in which the porous support layer or the separation functional layer contracts due to heating.
  • the shrinkage is remarkable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small rate of thermal dimensional change is desired.
  • the difference between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the porous support layer side surface layer is 10 ° to 90 °, the change in the width direction due to heat is suppressed. Can also be preferred.
  • the fiber orientation degree is an index indicating the direction of the fibers of the nonwoven fabric base material constituting the porous support layer.
  • the fiber orientation degree is an average value of angles between the film forming direction when continuous film formation is performed, that is, the longitudinal direction of the nonwoven fabric base material, and the fibers constituting the nonwoven fabric base material. That is, if the longitudinal direction of the fiber is parallel to the film forming direction, the fiber orientation degree is 0 °. If the longitudinal direction of the fiber is perpendicular to the film forming direction, that is, if it is parallel to the width direction of the nonwoven fabric substrate, the degree of orientation of the fiber is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
  • the fiber orientation degree is measured as follows. First, 10 small piece samples are randomly collected from the nonwoven fabric. Next, the surface of the sample is photographed with a scanning electron microscope at 100 to 1,000 times. In the photographed image, 10 samples are selected for each sample, and the angle when the longitudinal direction (longitudinal direction, film forming direction) of the nonwoven fabric is 0 ° is measured. That is, the angle is measured for a total of 100 fibers per nonwoven fabric. An average value is calculated from the angles of 100 fibers thus measured. The value obtained by rounding off the first decimal place of the obtained average value is the fiber orientation degree.
  • the thickness of the substrate is preferably set such that the total thickness of the substrate and the porous support layer is within the range of 30 to 300 ⁇ m, or within the range of 50 to 250 ⁇ m.
  • (2-3) Permeation-side channel material The permeation-side channel material (hereinafter sometimes simply referred to as “channel material”) forms a permeation-side channel on the permeation-side surface of the separation membrane body.
  • channel material provides a permeation-side channel on the permeate side. “Provided to form a flow path on the permeate side” means that the permeated fluid that has permeated through the main body of the separation membrane can reach the water collecting pipe when the separation membrane is incorporated in a separation membrane element described later. It means that the road material is formed.
  • the permeate side channel material includes two or more layers. “The permeation-side channel material includes two or more layers” means that in the channel material, materials having at least two different compositions are overlapped. Further, “having different compositions” means that the chemical compositions are different, for example, that at least some of the contained components are different, and the content is different even if the contained components are the same. Including that.
  • a clear boundary may exist between layers, and it does not need to exist. Even when there is no clear boundary, when the composition of each layer is different, the condition that “the permeation-side flow path material includes two or more layers” is satisfied.
  • the layer 21 closest to the surface on the supply side of the separation membrane body functions as an adhesive layer that adheres the layer 22 thereon to the separation membrane body.
  • the channel material is fixed to the separation membrane body.
  • the adhesive layer impregnates the unevenness of the base material that is the adherend and cures to act like an anchor (throwing effect), or the convex part of the adhesive layer bites into the concave part of the adherent (base material) Can exert an elastic fastening force (fastener effect).
  • the adhesive force between the flow path material and the base material is preferably 1 N / m or more, and more preferably 10 N / m or more.
  • the adhesive force is within this range, when the separation membrane element is manufactured such as when the separation membrane is handled, or when the flow path material is subjected to repeated operation under a high pressure condition over a long period of time, the basic force is reduced. Separation between the material and the channel material can be suppressed.
  • the adhesive force between the base material and the channel material can be measured by a method set based on JIS Z 0237 (adhesive tape / adhesive sheet test method) and JIS K 6854-3 (T-type peeling). Specific procedures of the measuring method will be described in the examples.
  • the flow path material when the flow path material is peeled off from the base material when measuring the adhesive force, a part of the base material may be peeled off along with the flow path material. Even if the substrate is peeled in this way, the value measured at that time is regarded as the adhesive force.
  • the composition of the adhesive layer 21 is not particularly limited, but in terms of adhesiveness and chemical resistance, ethylene vinyl acetate copolymer resin; polyolefin such as polyethylene and polypolypropylene or copolymer polyolefin; polyester; urethane; polymer such as epoxy Etc. are preferable.
  • a thermoplastic resin is preferably employed in that the flow path material can be easily formed, but a polymer having curability by heat or light is also applicable. Further, by adding a tackifier (tackifier), natural wax and synthetic wax (viscosity modifier), and various additives to the above resin, the surface free energy of the molten resin that becomes the flow path material is increased, thereby increasing the flow path. Bondability of the material to the base material can be further enhanced.
  • the resin and additive can be used alone or as a mixture of two or more.
  • the melt viscosity of the material constituting the adhesive layer 21 is preferably in the range of 200 to 3,000 mPa ⁇ s, more preferably 400 to 1,500 mPa ⁇ s under the condition of 180 ° C. s.
  • the melt viscosity can be measured, for example, according to a method described in JIS K 6862.
  • the material constituting the adhesive layer is 20 to 95% by weight of resin, 2 to 60% by weight of tackifier, 2 to 30% by weight of wax, and added. It is preferable to contain 5% or less of the agent.
  • the composition ratio of the material which comprises an contact bonding layer is not limited to this.
  • the component of the adhesive layer 21 may be impregnated in the separation membrane body, more specifically in the base material.
  • the flow path material is disposed on the base material side of the separation membrane, that is, the permeation side, and heated from the base material side by a hot melt method or the like, impregnation of the flow path material proceeds from the back side of the separation membrane toward the front side. As the impregnation progresses, the adhesion between the flow path material and the base material becomes stronger, and the flow path material becomes difficult to peel off from the base material even under pressure filtration.
  • a portion of the base material that is impregnated with the components of the flow path material is denoted by reference numeral 201 as an impregnation portion in FIG.
  • the “impregnation” in the present invention refers to a state in which the flow path material is soaked in the base material. Specifically, “impregnation” refers to a state in which the flow path material penetrates into the fiber gap of the base material when the base material is formed of a fiber material.
  • the ratio of the impregnation thickness T2 to the thickness of the base material is preferably in the range of 5% to 95%, preferably 10%. More preferably, it is in the range of 80% or less, more preferably in the range of 20% or more and 60% or less.
  • the impregnation thickness T2 indicates the maximum impregnation thickness T2 of the flow path material, and the maximum impregnation thickness T2 of the flow path material means the maximum value of the thickness of the impregnation portion 201 corresponding to the flow path material in one cross section. .
  • the impregnation thickness T2 of the flow path material can be adjusted, for example, by changing the type of material (more specifically, the type of resin) and / or the amount of the material constituting the flow path material. Further, when the flow path material is provided by the hot melt method, the impregnation thickness T2 can also be adjusted by changing the processing temperature or the like.
  • a peak due to the component of the channel material is obtained separately from the substrate by subjecting the substrate including the impregnation part 201 to thermal analysis such as differential scanning calorimetry, the component of the channel material is applied to the substrate. It can be confirmed that it is impregnated.
  • the rate of impregnation of the channel material into the base material is determined by observing the cross section of the separation membrane where the channel material is present with a scanning electron microscope, a transmission electron microscope, or an atomic microscope, and the channel material impregnation thickness T2 and the base material.
  • the thickness T1 can be calculated. For example, when observing with a scanning electron microscope, the separation membrane is cut in the depth direction together with the channel material, and the cross section is observed with a scanning electron microscope to measure the channel material impregnation thickness T2 and the substrate thickness T1. . And it can calculate from the ratio of the channel material maximum impregnation thickness T2 and the substrate thickness T1 which the channel material in the substrate is most impregnated.
  • the “base material thickness T1” when calculating the impregnation thickness T2 is the thickness of the base material at the same location as the portion where the maximum impregnation thickness T2 was measured.
  • the arrow indicating the substrate thickness T1 and the arrow indicating the maximum impregnation thickness T2 are drawn so as to deviate from each other.
  • the adhesive layer 21 and the layer 22 provided thereon are joined. That is, the two layers are integrated by bonding between the layer 21 and the layer 22.
  • the channel material it is preferable that all layers are integrated. By integrating all the layers, it is possible to suppress performance degradation due to deviation of the flow path material when the separation membrane is surrounded or when the separation membrane element is operated.
  • the layer 22 preferably has a higher compression elastic modulus than the adhesive layer 21.
  • the compressive elastic modulus of the layer 22 is preferably 0.1 GPa or more, and preferably 5.0 GPa or less.
  • Seawater desalination is operated at high pressure. Under high pressure, the flow path material is consolidated and the permeate-side flow path is narrowed, so that the flow resistance increases and the amount of water produced tends to decrease.
  • the compression elastic modulus of the flow path material is 0.1 GPa or more, such a decrease in the amount of water can be suppressed.
  • the compression elastic modulus of the flow path material is extremely high, the flow path material is easily broken when the separation membrane is surrounded.
  • the compression elastic modulus is 5.0 GPa or less, breakage of the flow path material can be suppressed and the flow path can be stably formed.
  • the compression modulus of the flow path material can be obtained from the slope of the straight line portion of the stress strain curve within the stress range in which the flow path material is elastically deformed.
  • the composition of the layer 22 is not particularly limited, but is not particularly limited as a component constituting the flow path material, but a resin is preferably used.
  • a resin is preferably used.
  • an ethylene vinyl acetate copolymer resin; a polyolefin such as polyethylene and polypropylene, or a copolymerized polyolefin is preferable.
  • polymers such as urethane resin and epoxy resin are also applicable.
  • these resin is used individually or as a mixture which consists of 2 or more types.
  • the thermoplastic resin has an advantage that the shape of the flow path material can be formed uniformly because it is easy to mold.
  • a composite material containing the above-described resin as a base material and further containing a filler is also applicable.
  • the compression elastic modulus of the channel material can be increased by adding a filler such as a porous inorganic material to the base material.
  • a filler such as a porous inorganic material
  • alkaline earth metal silicates such as sodium silicate, calcium silicate and magnesium silicate, metal oxides such as silica, alumina and titanium oxide, and alkaline earth metals such as calcium carbonate and magnesium carbonate. Carbonate or the like can be used as a filler.
  • additives such as a tackifier (tackifier), natural and / or synthetic wax (viscosity modifier), antioxidant, with the said resin similarly to the flow-path material which comprises an contact bonding layer.
  • the amount of filler, tackifier, wax, antioxidant, etc. added is not particularly limited as long as the effects of the present invention are not impaired.
  • the resin, filler and various additives can be used alone or as a mixture of two or more.
  • the high elastic layer satisfying the compression elastic modulus in the above range is specifically 40 to 100% by weight of resin, It is preferably composed of a material containing 0 to 50% by weight of tackifier, 0 to 30% by weight of wax, 0 to 50% by weight of filler, and 5% or less of additives.
  • the two-layer structure shown in FIG. 2 is an example of the configuration of the flow path material including an adhesive layer that adheres to the separation membrane body and a high elastic layer that is laminated on the adhesive layer and has a high compressive elastic modulus. “Lamination” includes not only the form in which the two layers are in contact but also the state in which the two layers overlap with each other.
  • FIG. 3 shows a separation membrane 32 including a three-layer channel material 41.
  • the flow path member 41 includes an adhesive layer 21, and the layer 22 and the layer 23 are sequentially stacked on the adhesive layer 21.
  • the adhesive layer 21 is in contact with the permeation side surface 18 of the separation membrane main body, but one or more other layers may be in contact with the base material.
  • the layer 22 may be in contact with the surface 18 on the transmission side.
  • the layer 23 may be in contact with the surface 18 on the transmission side.
  • both the layer 22 and the layer 23 may be in contact with the surface 18 on the transmission side.
  • the total thickness of each layer can be changed so that the thickness T3 of the flow path material satisfies a preferable range described later.
  • the thickness of the highly elastic layer is preferably larger than the thickness of the adhesive layer. With this configuration, the effect of the high elastic layer is more exhibited.
  • the shape, size, material, and the like of the permeate-side channel material are not limited to a specific configuration, and may be configured so that the permeated fluid can reach the perforated water collecting pipe.
  • the permeate channel material has a composition different from that of the separation membrane body.
  • “Having a composition different from that of the separation membrane” means that when the separation membrane has a three-layer structure of a separation functional layer, a porous support layer, and a base material, the composition of the channel material is the same as the composition of any layer. Means different.
  • “having different compositions” means that the chemical composition is different, and at least a part of the contained components are different, and even if the contained components are the same, the content rate is Includes different things.
  • the compound that is the main component of the flow path material may be different from the compound that is the main component of each layer of the separation membrane. Further, the case where the flow path material contains at least a part of the components constituting the support layer and at least a part of the components constituting the substrate is also included in the “different composition” form.
  • the permeation-side channel material has a composition different from that of the separation membrane, and therefore can exhibit higher resistance to pressure than the separation membrane.
  • the channel material is preferably formed of a material having a higher shape retention force than the separation membrane with respect to pressure in a direction perpendicular to the surface direction of the separation membrane, as will be described later.
  • the flow path material can ensure the permeation side flow path even through repeated water flow or water flow under high pressure.
  • the flow path material may be provided so that the separation of the fluid by the separation membrane proceeds. That is, it is only necessary that the flow path material be provided so that a part of the separation membrane is exposed so as to be in contact with the fluid and the fluid can move while being in contact with the separation membrane. That is, the channel material has a shape different from that of the separation membrane in the surface direction of the separation membrane.
  • woven fabric for example, as a permeate-side channel material, woven fabric, knitted fabric (net, etc.), non-woven fabric, porous sheet (porous film, etc.), granular material, linear material, hemispherical material, columnar material (columnar shape, prismatic shape, etc.) Or a combination thereof such as a wall-like object.
  • the permeate side channel material may be a continuous shape or a discontinuous shape.
  • the “continuous” flow path material is a flow path material that is separated as a member having an integral shape without being divided into a plurality of portions when the flow path material is separated from one separation membrane body.
  • members such as nets, tricots, and films are continuous flow path materials.
  • discontinuous means a state in which the flow path material is divided into a plurality of portions when the flow path material is peeled from the separation membrane body.
  • flow path material each of the individual portions separated on one separation membrane main body and the entire flow path material provided on one separation membrane main body may be referred to as “flow path material”.
  • the height of the channel is smaller than the thickness of the knitted fabric.
  • the discontinuous channel material reduces the flow resistance and reduces the amount of water produced than the continuous shape. Can be increased.
  • FIGS. 1-10 Examples of discontinuous channel material are shown in FIGS.
  • the flow path member 42 is a cylindrical member having an approximately hemispherical upper portion, and is arranged in a lattice shape.
  • the shape of each flow path member 43 shown in FIG. 7 is the same as that of the flow path member 42, but in FIG. 7, the flow path members 43 are arranged in a staggered manner.
  • the channel material 44 is an elliptic cylinder and is arranged in a staggered manner. As shown in FIG. 12, the upper surface of the flow path member 44 is flat and the cross-sectional shape is rectangular.
  • the channel material 45 is a linear wall-shaped member in plan view.
  • the wall-like members are arranged in stripes parallel to each other.
  • the cross section of the flow path material 46 in a plane perpendicular to the film surface is a trapezoid whose upper width is narrower than the lower width.
  • FIG. 10 shows an example of a continuous channel material. As shown in FIG. 10, the flow path member 46 is a net-like member continuous in the film surface direction.
  • the embodiment of the present invention includes a form obtained by arbitrarily combining any of the planar shapes of FIGS. 6 to 10 with any of the cross-sectional shapes of FIGS. It is.
  • the pitch (interval) of adjacent flow path materials is 0.05 mm or more and 5 mm or less, more preferably 0.1 mm or more and 2 mm or less. It is good to design appropriately between the two.
  • the pitch is a horizontal distance from the highest point of the high part in the channel material having the height difference to the highest part of the adjacent high part.
  • the height difference on the permeation side of the separation membrane that is, the thickness T3 of the channel material is preferably 30 ⁇ m or more and 800 ⁇ m or less, more preferably 50 ⁇ m or more and 500 ⁇ m or less, and further preferably 100 ⁇ m or more and 400 ⁇ m or less.
  • the thickness of the channel material is 800 ⁇ m or less, the number of membrane leaves that can be filled in one vessel can be increased.
  • flow resistance can be made comparatively small because thickness is 30 micrometers or more, a favorable separation characteristic and permeation
  • the height difference on the permeation side of the separation membrane can be measured from a cross-sectional sample using a digital microscope VHX-1000 manufactured by Keyence Corporation.
  • the measurement can be performed on a portion where there is an arbitrary height difference, and the value obtained by summing the values of the thicknesses can be divided by the number of the total measurement locations.
  • the projected area ratio of the flow path material to the surface on the separation membrane permeation side is preferably 0.03 or more and 0.85 or less, more preferably 0.2 or more and 0.75 or less, and particularly preferably 0.3 or more and 0. .6 or less.
  • the projected area ratio is a value obtained by dividing the projected area of the flow path material obtained when the separation membrane is cut out at 5 cm ⁇ 5 cm and projected onto a plane parallel to the surface direction of the separation membrane by the cut-out area (25 cm 2 ). It is.
  • the projected area ratio is 0.03 or more, the flow resistance of the permeation-side flow path is suppressed to be low, and when the projected area ratio is 0.85 or less, the flow path is stably formed.
  • the form of the separation membrane may be a form in which the flow path material is provided up to the edge of the separation membrane body, or a form in which there is a region in which no flow path material is provided in the vicinity of the edge. . That is, as long as the flow path material is arranged so as to form a flow path on the permeation side, there may be a portion where the flow path material is not provided in the separation membrane body. For example, it is not necessary to provide a flow path material at the adhesion portion with the other separation membrane on the permeate side surface. In addition, for other use or manufacturing reasons, a region where the flow path material is not disposed may be provided in a part of the separation membrane or the like. [3. Separation membrane production method] (3-1) Separation membrane body The manufacturing method of the separation membrane body has been described above, but a brief summary is as follows.
  • Resin is dissolved in a good solvent, and the resulting resin solution is cast on a substrate and immersed in pure water to combine the porous support layer and the substrate. Thereafter, as described above, a separation functional layer is formed on the porous support layer. Furthermore, chemical treatment such as chlorine, acid, alkali, nitrous acid, etc. is performed to enhance separation performance and permeation performance as necessary, and the monomer is washed to produce a continuous sheet of the separation membrane body.
  • chemical treatment such as chlorine, acid, alkali, nitrous acid, etc. is performed to enhance separation performance and permeation performance as necessary, and the monomer is washed to produce a continuous sheet of the separation membrane body.
  • the step of providing the permeation-side channel material may be performed at any time during the production of the separation membrane.
  • the flow path material may be provided before the porous support layer is formed on the base material, or after the porous support layer is provided and before the separation functional layer is formed. It may be performed after the separation functional layer is formed and before or after the above-described chemical treatment is performed.
  • Application, printing, spraying, etc. are adopted in the process of forming each layer included in the flow path material.
  • the equipment used include a nozzle type hot melt applicator, a spray type hot melt applicator, a flat nozzle type hot melt applicator, a roll type coater, an extrusion type coater, a gravure printing machine, and a sprayer.
  • either the method of repeatedly performing the layer formation by the above-described process twice or more, or the method of forming two or more layers at once using a co-casting applicator is applied.
  • Which method is adopted is selected depending on the size and shape of the channel material to be formed and the channel material composition.
  • a method in which two or more kinds of flow path materials are simultaneously bonded using a co-casting type applicator is particularly preferable because processing accuracy is high, thickness control of each layer is easy, and apparatus space can be reduced.
  • the preferred composition as the material constituting the adhesive layer and the highly elastic layer of the permeate side channel material is as described above.
  • the processing temperature is not particularly limited as long as it is a temperature at which the resin can be melted and processed. It is preferable that [4. Method for manufacturing separation membrane element] (4-1) Outline A conventional element manufacturing apparatus can be used for manufacturing a separation membrane element. Further, as a method for producing the element, a method described in a reference document (Japanese Patent Publication No. 44-14216, Japanese Patent Publication No. 4-11928, Japanese Patent Laid-Open No. 11-226366) can be used. Details are as follows. (4-2) Formation of supply side flow path When the supply side flow path material is a continuously formed member such as a net, the supply side flow path material is overlapped with the separation membrane and the supply side flow path material. A flow path can be formed.
  • a supply-side channel material having a discontinuous or continuous shape can be formed. Even when the supply side flow path member is fixed to the separation membrane main body, the arrangement of the supply side flow path material may be regarded as a part of the method of manufacturing the separation membrane.
  • the concavo-convex processing method include methods such as embossing, hydraulic forming, and calendering.
  • the embossing conditions, the embossed shape, and the like can be changed according to the required performance of the separation membrane element.
  • This concavo-convex processing may be regarded as a part of the method for manufacturing the separation membrane.
  • (4-3) Separation and winding of separation membranes Folding and attaching one separation membrane so that the permeation side faces inward, or stacking two separation membranes so that the permeation side faces inward
  • membrane 5 is formed by bonding. As described above, the envelope film is sealed on three sides. Sealing can be performed by bonding with an adhesive or hot melt, or by fusion with heat or laser.
  • the adhesive used for forming the envelope-shaped film preferably has a viscosity in the range of 40 PS to 150 PS, and more preferably 50 PS to 120 PS.
  • a viscosity in the range of 40 PS to 150 PS, and more preferably 50 PS to 120 PS.
  • the performance of the separation membrane element may deteriorate, but when the adhesive viscosity is 150 PS or less, wrinkles are less likely to occur when the separation membrane is wrapped around the water collection pipe. .
  • the adhesive viscosity is 40 PS or more, the outflow of the adhesive from between the separation membranes is suppressed, and the risk that the adhesive adheres to unnecessary portions is reduced.
  • the amount of the adhesive applied is preferably such that the width of the portion to which the adhesive is applied after the separation membrane is wrapped around the water collecting pipe is 10 mm or more and 100 mm or less. As a result, the separation membrane is securely bonded, and the inflow of the raw fluid to the permeate side is suppressed. Also, a relatively large effective membrane area can be secured.
  • the adhesive is preferably a urethane-based adhesive.
  • the viscosity of the adhesive is measured with a B-type viscometer (JIS K 6833) based on the viscosity of a mixture in which the main agent, the curing agent alone, and the blending ratio are defined in advance.
  • the separation membrane thus coated with the adhesive is arranged so that the closed portion of the envelope-like membrane is located on the inner side in the winding direction, and the separation membrane is wound around the water collecting pipe.
  • the separation membrane is wound in a spiral shape.
  • Other steps The method for producing a separation membrane element may include further winding a film, a filament, and the like around the wound body of the separation membrane formed as described above. Further steps such as edge cutting for aligning the end of the separation membrane in the longitudinal direction of the water collecting pipe, attachment of an end plate, and the like may be included. [5. (Use of separation membrane element)
  • the separation membrane element may be further used as a separation membrane module by being connected in series or in parallel and housed in a pressure vessel.
  • the separation membrane element and module described above can be combined with a pump for supplying fluid to them, a device for pretreating the fluid, and the like to constitute a fluid separation device.
  • the supplied water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the operating pressure when passing through is preferably 0.2 MPa or more and 8 MPa or less.
  • the raw fluid temperature increases, the salt removal rate decreases. However, as the raw fluid temperature decreases, the membrane permeation flux also decreases. Therefore, the raw fluid temperature is preferably 5 ° C. or higher and 45 ° C. or lower.
  • the raw fluid pH becomes high in the case of high salt concentration supply water such as seawater, scales such as magnesium may occur, and there is a concern about membrane deterioration due to high pH operation. Is preferred.
  • the fluid to be treated by the separation membrane element is not particularly limited, but when used for water treatment, the feed water is 500 mg / L to 100 g / L TDS (Total Dissolved Solids: Total Dissolved Solids) For example).
  • TDS refers to the total dissolved solid content, and is expressed by “mass ⁇ volume” or “mass ratio”.
  • the solution filtered through a 0.45 ⁇ m filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 to 40.5 ° C., but can be more simply converted from the practical salinity (S). .
  • the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
  • the separation membrane to which the channel material was bonded was cut out at 5 cm ⁇ 5 cm, and the total projected area of the channel material was measured by moving the stage using a laser microscope (selected from a magnification of about 10 to 500 times). .
  • the projected area ratio obtained by dividing the projected area obtained when the channel material was projected from the separation membrane permeation side or the supply side was taken as the projected area ratio.
  • impregnation rate (%) (maximum impregnation thickness T2 / flow passage material in the base material / base material thickness T1) ⁇ 100
  • impregnation rate (%) (maximum impregnation thickness T2 / flow passage material in the base material / base material thickness T1) ⁇ 100
  • the measurement of the adhesive force is performed at a portion other than a portion where the permeation side surface is bonded to another separation membrane (that is, a portion where no adhesive is applied).
  • An aluminum foil tape of the same size as the separation membrane sample (trade name: “Scotch” (registered trademark) aluminum foil tape 425, Sumitomo 3M Limited) on the permeate-side channel material of the separation membrane sample cut to a width of 25 mm and a length of 200 mm
  • the product was affixed with a manual roller crimping device to prepare a test piece.
  • 50 mm of the aluminum foil tape bonding surface was peeled from the width direction of the test piece (a state in which the permeate-side channel material was adhered to the aluminum foil tape adhesive surface peeled from the base material), and a tensile test was performed so that the measurement length was 150 mm.
  • the machine was set to the T state.
  • a tensile test was performed at a speed of 50 mm / min at 25 ° C. and 65% relative humidity, and the average value of the tensile force between the measured lengths was taken as the peel strength. The number of test pieces was ten.
  • the adhesive strength is 1 N / m or more. It was judged.
  • the material forming the channel material was melt-molded into a cylindrical shape having a diameter of 10 mm and a thickness of 25 mm, and a compression speed of 10 mm / mm was used using a Tensilon universal material tester (RTF-2430) (manufactured by A & D Co., Ltd.). The relationship between the compressive stress and the strain was examined at 25 ° C., and the initial slope of the obtained curve was defined as the compressive elastic modulus. (Desalination rate (TDS removal rate)) Seawater (TDS concentration 3.5%) adjusted to a temperature of 25 ° C. and a pH of 6.5 was supplied to the spiral separation membrane element at an operating pressure of 5.5 MPa.
  • TDS removal rate (%) 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in feed water) ⁇ (Water production)
  • the amount of permeated water when the separation membrane element was operated under the same conditions as the measurement of the desalting rate was expressed as the amount of water produced per cubic membrane element (cubic meter) per day as the amount of water produced (m 3 / day).
  • the spiral separation membrane element was operated with seawater (TDS concentration 3.5%) adjusted to a temperature of 25 ° C. and a pH of 6.5 at a pressure of 5.5 MPa for 1 minute, and then the operation was terminated. This cycle (start / stop) was repeated 2,000 times, and the subsequent desalting rate and the amount of fresh water were measured.
  • Nonwoven fabric made of polyester long fiber (yarn diameter: 1 dtex, thickness: about 90 ⁇ m, air permeability: 1 cc / cm 2 / sec, fiber orientation: porous support layer side surface layer of 40 °, opposite to the porous support layer
  • a 15.0 wt% polysulfone solution and a dimethylformamide (DMF) solution having a thickness of 180 ⁇ m were cast on the surface layer (20 °) at room temperature (25 ° C.), and immediately immersed in pure water and left for 5 minutes.
  • a porous support membrane (thickness 130 ⁇ m) roll made of a fiber-reinforced polysulfone support membrane was produced.
  • First layer Material: Ethylene vinyl acetate copolymer hot melt resin (trade name: 701A, manufactured by TEX YEAR INDUSTRIES INC., Compression modulus: 0.04 GPa) Resin temperature: 130 ° C Thickness: 30 ⁇ m
  • Second layer Material: Polyolefin hot melt resin (trade name: PHC9275, manufactured by Sekisui Fuller Co., Ltd., compression elastic modulus: 0.18 GPa) Resin temperature: 150 ° C Thickness: 250 ⁇ m
  • the first layer is a layer applied so as to be in contact with the separation membrane main body
  • the second layer is a layer applied so as to overlap the first layer.
  • first”, “second”, and “third” represent the order of layers arranged on the separation membrane body.
  • the separation membrane sheet is cut, and a net (thickness: 800 ⁇ m, pitch 5 mm ⁇ 5 mm) is continuously laminated as a supply-side channel material between the separation membrane sheets folded so that one side is open, and separated.
  • six envelope-shaped films having a width of 930 mm were produced.
  • Example 2 When the separation membrane element was put into a fiber reinforced plastic cylindrical pressure vessel and the desalination rate and the amount of fresh water were measured by the above-mentioned method, as shown in Table 1, in Example 1, the initial performance was desalted. The rate was 99.4% and the amount of water produced was 5.9 m 3 / day. Moreover, the performance after the durability test in which water was repeatedly passed for 1 minute ⁇ 2,000 times under the same conditions was a desalination rate of 99.6% and a water production amount of 5.2 m 3 / day, and the durability was good. (Example 2) A separation membrane element was produced and evaluated in the same manner as in Example 1 except that the resin temperature of the first layer was 110 ° C. and the impregnation rate of the permeation side channel material was changed to 20%.
  • Example 3 A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that the resin temperature of the first layer was set to 100 ° C. and the impregnation rate of the permeation side channel material was changed to 7%.
  • Example 4 A separation membrane element was produced and evaluated in the same manner as in Example 1 except that the resin temperature of the first layer was 90 ° C. and the impregnation rate of the permeation side channel material was changed to 3%.
  • the initial performance was a desalination rate of 99.5% and a water production of 6.1 m 3 / day.
  • the performance after the durability test in which water was repeatedly passed for 1 minute ⁇ 2,000 times at a pressure of 5.5 MPa was a desalination rate of 99.5% and a water production amount of 4.8 m 3 / day, and a part of the flow path The rate of decrease in the amount of water produced increased due to the displacement of the material.
  • Example 5 The separation membrane element was formed in the same manner as in Example 1 except that the comb-shaped shim had a slit width of 0.6 mm and a pitch of 1.0 mm, and the projected area ratio of the permeate-side channel material was changed to 0.80. Were prepared and evaluated.
  • Example 6 A separation membrane element was produced in the same manner as in Example 1 except that the shape of the comb-shaped shim was changed to a slit width of 0.2 mm and a pitch of 1.0 mm, and the projected area ratio of the permeate-side channel material was changed to 0.25.
  • Example 7 A separation membrane element was produced and evaluated in the same manner as in Example 1 except that the stripe thickness of the first layer was changed to 150 ⁇ m and the stripe thickness of the second layer was changed to 100 ⁇ m.
  • the initial performance was a desalination rate of 99.3% and a water production amount of 5.7 m 3 / day.
  • the performance after the durability test in which water was repeatedly passed through at a pressure of 5.5 MPa for 1 minute ⁇ 2,000 times was a desalination rate of 99.4%, a water production amount of 3.8 m 3 / day, and the resin of the first layer
  • the rate of decrease in the amount of water produced increased because some of the flow paths were blocked due to compression deformation.
  • Example 8 As the second layer, a separation membrane element was prepared in the same manner as in Example 1 except that the polypropylene resin (trade name: F219DA, manufactured by Prime Polymer Co., Ltd., compression elastic modulus: 1.3 GPa) was changed to a resin temperature of 170 ° C. Were prepared and evaluated. As a result, the initial performance was a desalination rate of 99.3% and a water production amount of 5.6 m 3 / day. Moreover, the performance after the durability test in which water was repeatedly passed for 2,000 times for 1 minute at a pressure of 5.5 MPa was a desalination rate of 99.4%, a water production amount of 5.1 m 3 / day, and the durability was good. there were.
  • the polypropylene resin trade name: F219DA, manufactured by Prime Polymer Co., Ltd., compression elastic modulus: 1.3 GPa
  • Example 9 Using a nozzle type hot melt applicator, the first layer is formed under the following conditions and at a traveling speed of 3 m / min, and then the second layer is formed in sequence, so that the projected area ratio is 0.50 and the cross-sectional shape is A substantially semi-elliptical dot was formed.
  • First layer Material: Ethylene vinyl acetate copolymer hot melt resin (trade name: 701A, manufactured by TEX YEAR INDUSTRIES INC., Compression modulus: 0.04 GPa) Resin temperature: 130 ° C Thickness: 30 ⁇ m
  • Second layer Material: Polyolefin hot melt resin (trade name: PHC9275, manufactured by Sekisui Fuller Co., Ltd., compression elastic modulus: 0.18 GPa) Resin temperature: 150 ° C Thickness: 250 ⁇ m Thereafter, separation membrane elements were produced and evaluated in the same manner as in Example 1.
  • Example 10 a separation membrane element was produced and evaluated in the same manner as in Example 1 except that the base material of the separation membrane was changed from a long-fiber nonwoven fabric to a nonwoven fabric obtained by a papermaking method.
  • Example 11 In Example 11, a three-layer co-injection hot melt applicator was used to apply three layers simultaneously under the following conditions and at a traveling speed of 6 m / min. A channel material having a substantially trapezoidal shape and a striped planar shape was formed.
  • First layer Material: Ethylene vinyl acetate copolymer hot melt resin (trade name: 701A, manufactured by TEX YEAR INDUSTRIES INC., Compression modulus: 0.04 GPa) Resin temperature: 130 ° C Stripe thickness: 30 ⁇ m Second layer: Material: Polyolefin hot melt resin (trade name: PHC9275, manufactured by Sekisui Fuller Co., Ltd., compression elastic modulus: 0.18 GPa) Resin temperature: 150 ° C Thickness: 100 ⁇ m Third layer: Material: Polypropylene resin (trade name: F219DA, manufactured by Prime Polymer Co., Ltd., compression elastic modulus: 1.3 GPa) Resin temperature: 170 ° C Thickness: 150 ⁇ m Thereafter, separation membrane elements were produced and evaluated in the same manner as in Example 1.
  • Comparative Example 1 a separation membrane element was produced and evaluated in the same manner as in Example 1 except that a tricot conventionally used as a permeate-side channel material was used without being adhered to the separation membrane. .
  • the initial performance was a desalination rate of 99.4% and a water production amount of 5.3 m 3 / day.
  • the performance after a durability test in which water was repeatedly passed for 2,000 times for 1 minute at a pressure of 5.5 MPa was a desalination rate of 99.5% and a water production amount of 4.8 m 3 / day, compared with Example 1.
  • the flow resistance on the permeate side was high and the initial amount of fresh water was low.
  • the initial performance was a desalting rate of 98.9% and a water production amount of 3.2 m 3 / day.
  • the performance after the durability test in which water was repeatedly passed for 2,000 times at a pressure of 5.5 MPa for 1 minute was a desalination rate of 98.8%, a water production amount of 2.9 m 3 / day, and the resin of the first layer
  • the rate of decrease in the amount of water produced increased because some of the flow paths were blocked due to compression deformation.
  • the initial performance was a desalination rate of 99.2% and a water production amount of 5.2 m 3 / day.
  • the performance after the durability test in which water was repeatedly passed through at a pressure of 5.5 MPa for 1 minute ⁇ 2,000 times was a desalination rate of 98.4%, a water production amount of 3.6 m 3 / day, and the resin of the first layer was partially peeled from the base material, and a shift occurred, so that the flow path was closed and the rate of decrease in the amount of water produced was increased.
  • the performance after the durability test in which water was repeatedly passed for 2,000 times for 1 minute at a pressure of 5.5 MPa was a desalination rate of 97.6%, a water production amount of 3.0 m 3 / day, and there was a first layer Since the resin was peeled off from the base material and a shift occurred, the flow path was blocked and the rate of decrease in the amount of water produced was increased.
  • the separation membrane and separation membrane element of the present invention can be suitably used particularly for brine or seawater desalination.
  • Separation membrane element 2 Supply side flow path material 3, 31, 32: Separation membrane 30, 301, 302: Separation membrane body 4, 40 to 49: Permeation side flow path material 11, 15: Base material 12: Porous Support layers 13 and 16: Separation function layer 5: Envelope-shaped membrane 6: Perforated water collecting pipe 7: Supply water (raw fluid) 8: Permeated water 9: Concentrated water 17: Supply side surface 18: Permeate side surface 21: Adhesive layer (first layer) 22: Other layer (second layer) 23: Other layer (third layer)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

分離膜31は、供給側の面17と透過側の面18とを備えた少なくとも基材11および分離機能層13を有する分離膜本体と、前記分離膜本体とは異なる組成を有し、前記基材11の厚さ方向において前記分離機能層13とは逆側に接合された流路材40とを備える分離膜において、前記流路材は2以上の層を含む。 長期間にわたり高圧条件下で繰り返し運転を実施した際の安定性能に有効な分離膜および分離膜エレメントを提供する。

Description

分離膜および分離膜エレメント
 本発明は、液体、気体等の流体に含まれる成分を分離するために使用される分離膜エレメントに関する。
 液体、気体等の流体に含まれる成分を分離するために、様々な方法が提案されている。例えば、海水またはかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギーおよび省資源のためのプロセスとして分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜は、その孔径および分離機能などに基づいて、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜などに分類される。これらの膜は、例えば海水、かん水若しくは有害物を含んだ水からの飲料水の製造、工業用超純水の製造、廃水処理または有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。
 分離膜エレメントは、分離膜の一方の面に原流体を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで大きな膜面積を確保しており、単位エレメントあたりで多くの透過流体を得ることができるように構成されている。分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種エレメントが用いられている。
 例えば、逆浸透ろ過には、スパイラル型分離膜エレメントがよく用いられる。スパイラル型分離膜エレメントは、有孔集水管、分離膜へ原流体を供給する供給側流路材、原流体に含まれる成分を分離する分離膜、及び分離膜を透過した透過流体を有孔集水管へと導くための透過側流路材を備える。供給側流路材、分離膜および透過側流路材は、有孔集水管の周りに巻き付ける。スパイラル型分離膜エレメントは、原流体に圧力を付与し、透過流体を多く取り出すことができるので、広く用いられている。
近年、分離膜エレメントに造水コストの低減への高まりから、分離膜エレメントの低コスト化のニーズが高まっており、分離膜、各流路部材、分離膜エレメント部材の改良による低コスト化が提案されており、例えば、特許文献1および2では、スパイラル型分離膜エレメントにおいて、平膜の表面または裏面に、ドットまたはストライプ形状からなる流路材が設けられている。
WO2011-152484号パンフレット 特開2012-40487号公報
 特許文献1および2に開示された技術において、長期間にわたる繰り返し運転がなされるときの安定性能は必ずしも十分ではなかった。
したがって、高効率かつ安定した透過側流路を形成するとともに、長期間にわたる繰り返し運転および高圧条件下での運転においても、安定した性能を発揮する分離膜エレメントの提供を本発明の課題とする。
 上記課題を解決するため、本発明の分離膜は、次の構成を有する。すなわち、
供給側の面と透過側の面とを有する分離膜本体と、分離膜本体の透過側の面に固着する流路材と、を備える分離膜であって、前記流路材は2つ以上の層を含む分離膜、である。
 また、本発明の分離膜エレメントは、次の構成を有する。すなわち、
上記分離膜を含む分離膜エレメント、である。
本発明の分離膜は、前記流路材において、層間が接合していることが好ましい。
本発明の分離膜は、前記分離膜本体に1N/m以上の接着力で固着することが好ましい。
本発明の分離膜は、前記分離膜本体に接着する接着層と、前記接着層に積層された高弾性層とを有し、前記高弾性層の圧縮弾性率は、0.1GPa以上5.0GPa以下であることが好ましい。
本発明の分離膜は、前記流路材が熱可塑性樹脂で形成されていることが好ましい。
本発明の分離膜は、前記分離膜は、基材、前記基材上に形成された多孔性支持層、および前記多孔性支持層上に形成された分離機能層を備えることが好ましい。
本発明の分離膜は、前記基材が長繊維不織布であることが好ましい。
 上記分離膜は、スパイラル型分離膜エレメントに好ましく適用される。
 本発明によれば、高効率かつ安定した透過側流路を形成するとともに、繰り返し運転および高圧条件下での運転においても、安定した性能を示す分離膜エレメントを得ることができる。
分離膜エレメントの概要を示す一部展開斜視図である。 透過側流路材を備える分離膜の一例を示す断面図である。 透過側流路材を備える分離膜の他の例を示す断面図である。 分離膜本体の一例を示す断面図である。 分離膜本体の他の例を示す断面図である。 透過側流路材を備える分離膜の一例を示す平面図である。 透過側流路材を備える分離膜の他の例を示す平面図である。 透過側流路材を備える分離膜のさらに他の例を示す平面図である。 透過側流路材を備える分離膜のさらに他の例を示す平面図である。 透過側流路材を備える分離膜のさらに他の例を示す平面図である。 図6の分離膜のA-A矢視断面図である。 図8の分離膜のA-A矢視断面図である。 図9の分離膜のA-A矢視断面図である。 透過側流路材の他の形態を示す断面図である。 透過側流路材のさらに他の形態を示す断面図である。
 以下、本発明の実施の形態について説明する。
〔1.分離膜エレメント〕
 図1に示すように、分離膜エレメント1は、集水管6と、集水管6の周囲に巻回された分離膜3とを備える。また、分離膜エレメントは、供給側流路材2および端板等の部材をさらに備える。
 分離膜3は、分離膜本体30と、分離膜本体30の透過側の面に配置された透過側流路材4とを備える。
 分離膜3は、透過側の面を内側に向けた矩形状の封筒状膜5を形成する。封筒状膜5は、透過水が集水管6に流れるように、その一辺のみにおいて開口し、他の三辺においては封止される。透過水はこの封筒状膜によって供給水から隔離される。
 供給側流路材2は、封筒状膜5の間、つまり分離膜の供給側の面の間に配置される。供給側流路材2および複数の封筒状膜5は、重なった状態で、集水管6の周囲に巻き付けられる。
 分離膜エレメント1の長手方向における一端から供給された原水(図中に「供給水7」として示す。)は、供給側流路材2によって形成された流路を通って、分離膜本体30に供給される。
 分離膜本体30を透過した水(図中に「透過水8」として示す。)は、透過側流路材4によって形成された流路を通って集水管6に流れこむ。こうして、透過水8は、集水管6の一端から回収される。
 一方、分離膜本体30を透過しなかった水(図中に「濃縮水9」として示す)は、分離膜エレメント1の他端から回収される。
 図1に示す分離膜エレメント1は、集水管と、集水管の周囲に巻回された分離膜とを備えるスパイラル型分離膜エレメントの構成の一例であり、本発明はこの形態に限定されるものではない。
〔2.分離膜〕
 上述の分離膜エレメントに用いられる分離膜3としては、以下に述べる各種形態の分離膜を適用することができる。図面を参照しながら各形態について説明するが、以下において、他の図面を参照して説明した要素については、同符号を付してその説明を省略することがある。
(2-1)概要
 分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得ることができる膜である。分離膜は、分離膜本体と、分離膜本体上に配置された流路材とを備える。
 このような分離膜の一例を図2に示す。図2に示すように、分離膜31は、分離膜本体301と透過側流路材40とを備える。分離膜本体301は供給側の面17と透過側の面18とを備えている。
 本書において、分離膜本体の「供給側の面」とは、分離膜本体の2つの面のうち、原流体が供給される側の表面を意味する。「透過側の面」とは、その逆側の面を意味する。分離膜本体が、図4および図5に示すように、基材(11,15)及び分離機能層(13,16)を備える場合は、一般的に、分離機能層側の面が供給側の面であり基材側の面が透過側の面である。
(2-2)分離膜本体
<概要>
 分離膜本体30としては、使用方法、目的等に応じた分離性能を有する膜が用いられる。分離膜本体30は、単層であっても、基材および分離機能層を備える複合膜であってもよい。
 図4および図5に複合膜の例を示す。図4に示す分離膜本体301は、基材11、多孔性支持層12および分離機能層13を備える。一方、図5に示す分離膜本体302は、基材15および分離機能層16の2つの層からなる。以下に、各層について説明する。
<分離機能層>
 分離機能層の厚みは具体的な数値に限定されないが、分離性能と透過性能の点で5~3,000nmであることが好ましい。特に逆浸透膜、正浸透膜、ナノろ過膜では5~300nmであることが好ましい。
 分離機能層の厚みは、これまでの分離膜の膜厚測定法に準ずることができる。例えば、分離膜を樹脂により包埋し、それを切断することで超薄切片を作製し、得られた切片に染色などの処理を行う。その後、透過型電子顕微鏡により観察することで、厚みの測定が可能である。また、分離機能層がひだ構造を有する場合、多孔性支持層より上に位置するひだ構造の断面長さ方向に50nm間隔で測定し、ひだの数を20個測定し、その平均から求めることができる。
 分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
 分離機能層が分離機能および支持機能の両方を有する場合(例えば図5の態様)、分離機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホン、またはポリスルホンを主成分として含有する層が好ましく適用される。
 なお、本書において、「XがYを主成分として含有する」とは、XにおけるYの含有率が、50質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上であることを意味する。また、Yに該当する複数の成分が存在する場合は、それら複数の成分の合計量が、上述の範囲を満たせばよい。
 一方、分離機能層が、多孔性支持層とは別の層として設けられる場合(例えば図4の態様)、孔径制御が容易であり、かつ耐久性に優れるという点で、多孔性支持層を構成する材料として、架橋高分子が好ましく使用される。特に、原流体中の成分の分離性能に優れるという点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなるポリアミド分離機能層、有機無機ハイブリッド機能層などが好適に用いられる。これらの分離機能層は、多孔性支持層上でモノマーを重縮合することによって形成可能である。
 例えば、分離機能層は、ポリアミドを主成分として含有することができる。このような膜は、公知の方法により、多官能アミンと多官能酸ハロゲン化物とを界面重縮合することで形成される。例えば、多孔性支持層に多官能アミン水溶液を塗布し、余分なアミン水溶液をエアーナイフなどで除去し、その後、多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布することで、ポリアミド分離機能層が得られる。
 また、分離機能層は、Si元素などを有する有機-無機ハイブリッド構造を有してもよい。有機無機ハイブリッド構造を有する分離機能層は、例えば、以下の化合物(A)、(B)を含有することができる。
 (A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物、
 (B)前記化合物(A)以外の化合物であってエチレン性不飽和基を有する化合物
具体的には、分離機能層は、化合物(A)の加水分解性基の縮合物ならびに化合物(A)および/または(B)のエチレン性不飽和基の重合物を含有してもよい。すなわち、分離機能層は、
  ・化合物(A)のみが縮合および/または重合することで形成された重合物、
  ・化合物(B)のみが重合して形成された重合物、並びに
  ・化合物(A)と化合物(B)との共重合物
のうちの少なくとも1種の重合物を含有することができる。なお、重合物には縮合物が含まれる。また、化合物(A)と化合物(B)との共重合体中で、化合物(A)は加水分解性基を介して縮合していてもよい。
 ハイブリッド構造は、公知の方法で形成可能である。ハイブリッド構造の形成方法の一例は次のとおりである。化合物(A)および化合物(B)を含有する反応液を多孔性支持層に塗布する。余分な反応液を除去した後、加水分解性基を縮合させるためには、加熱処理すればよい。化合物(A)および化合物(B)のエチレン性不飽和基の重合方法としては、熱処理、電磁波照射、電子線照射、プラズマ照射を行えばよい。重合速度を速める目的で分離機能層形成の際に重合開始剤、重合促進剤等を添加することができる。
 なお、いずれの分離機能層についても、使用前に、例えばアルコール含有水溶液、アルカリ水溶液によって膜の表面を親水化させてもよい。
<多孔性支持層>
 以下の構成は、分離機能と支持機能とが1つの層で実現される場合における分離機能層(図5)、および分離機能と支持機能とが別々の層で実現される場合における多孔性支持層(図4)に適用可能である。
 多孔性支持層に使用される材料やその形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合、積層したものが使用され、化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
 多孔性支持層は、分離膜に機械的強度を与え、かつイオン等の分子サイズの小さな成分に対して分離膜のような分離性能を有さない。多孔性支持層の有する孔のサイズおよび孔の分布は特に限定されないが、例えば、多孔性支持層は、均一で微細な孔を有してもよいし、あるいは分離機能層が形成される側の表面からもう一方の面にかけて径が徐々に大きくなるような孔径の分布を有してもよい。また、いずれの場合でも、分離機能層が形成される側の表面で原子間力顕微鏡または電子顕微鏡などを用いて測定された細孔の投影面積円相当径は、1nm以上100nm以下であることが好ましい。特に界面重合反応性および分離機能層の保持性の点で、多孔性支持層において分離機能層が形成される側の表面における孔は、3~50nmの投影面積円相当径を有することが好ましい。
 多孔性支持層の厚みは特に限定されないが、分離膜に強度を与えるため等の理由から、20μm以上500μm以下の範囲にあることが好ましく、より好ましくは30μm以上300μm以下である。
 多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3~6kVの加速電圧で、高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S-900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真に基づいて、多孔性支持層の膜厚、表面の投影面積円相当径を測定することができる。
 多孔性支持層の厚み、孔径は、平均値であり、多孔性支持層の厚みは、断面観察で厚み方向に直交する方向に20μm間隔で測定し、20点測定の平均値である。また、孔径は、200個の孔について測定された、各投影面積円相当径の平均値である。
 次に、多孔性支持層の形成方法について説明する。多孔性支持層は、例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(以降、DMFと記載)溶液を、後述する基材、例えば密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、製造することができる。
 多孔性支持層は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って形成される。なお、所望の形態を得るために、ポリマー濃度、溶媒の温度、貧溶媒は調整可能である。
 例えば、所定量のポリスルホンをDMFに溶解し、所定濃度のポリスルホン樹脂溶液を調製する。次いで、このポリスルホン樹脂溶液をポリエステル布あるいは不織布からなる基材上に略一定の厚さに塗布した後、一定時間空気中で表面の溶媒を除去した後、凝固液中でポリスルホンを凝固させることによって得ることができる。
<基材>
 基材としては、強度、凹凸形成能および流体透過性の点で繊維状基材を用いることが好ましい。繊維状基材としては、長繊維不織布及び短繊維不織布のいずれも好ましく用いることができる。特に、長繊維不織布は、優れた製膜性を有するので、高分子重合体の溶液を流延した際に、その溶液が過浸透により裏抜けすること、多孔性支持層が剥離すること、さらには基材の毛羽立ち等により膜が不均一化すること、及びピンホール等の欠点が生じることを抑制できる。また、基材が熱可塑性連続フィラメントより構成される長繊維不織布からなることにより、短繊維不織布と比べて、高分子溶液流延時に繊維の毛羽立ちによって起きる不均一化および膜欠点の発生を抑制することができる。さらに、分離膜は、連続製膜されるときに、製膜方向に対し張力がかけられるので、寸法安定性に優れる長繊維不織布を基材として用いることが好ましい。
 長繊維不織布は、成形性、強度の点で、多孔性支持層とは反対側の表層における繊維が、多孔性支持層側の表層の繊維よりも縦配向であることが好ましい。そのような構造によれば、強度を保つことで膜破れ等を防ぐ高い効果が実現されるだけでなく、分離膜に凹凸を付与する際の、多孔性支持層と基材とを含む積層体としての成形性も向上し、分離膜表面の凹凸形状が安定するので好ましい。
 より具体的には、長繊維不織布の、多孔性支持層とは反対側の表層における繊維配向度は、0°~25°であることが好ましく、また、多孔性支持層側表層における繊維配向度との配向度差が10°~90°であることが好ましい。
 分離膜の製造工程やエレメントの製造工程においては加熱する工程が含まれるが、加熱により多孔性支持層または分離機能層が収縮する現象が起きる。特に連続製膜において張力が付与されていない幅方向において、収縮は顕著である。収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。不織布において多孔性支持層とは反対側の表層における繊維配向度と多孔性支持層側表層における繊維配向度との差が10°~90°であると、熱による幅方向の変化を抑制することもでき、好ましい。
 ここで、繊維配向度とは、多孔性支持層を構成する不織布基材の繊維の向きを示す指標である。具体的には、繊維配向度とは、連続製膜を行う際の製膜方向、つまり不織布基材の長手方向と、不織布基材を構成する繊維との間の角度の平均値である。つまり、繊維の長手方向が製膜方向と平行であれば、繊維配向度は0°である。また、繊維の長手方向が製膜方向に直角であれば、すなわち不織布基材の幅方向に平行であれば、その繊維の配向度は90°である。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
 繊維配向度は以下のように測定される。まず、不織布からランダムに小片サンプル10個を採取する。次に、そのサンプルの表面を走査型電子顕微鏡で100~1,000倍で撮影する。撮影像の中で、各サンプルあたり10本を選び、不織布の長手方向(縦方向、製膜方向)を0°としたときの角度を測定する。つまり1つの不織布あたり計100本の繊維について、角度の測定が行われる。こうして測定された100本の繊維についての角度から平均値を算出する。得られた平均値の小数点以下第一位を四捨五入して得られる値が、繊維配向度である。
 基材の厚みは、基材と多孔性支持層との厚みの合計が、30~300μmの範囲内、または50~250μmの範囲内となる程度に設定されることが好ましい。
(2-3)透過側流路材
 透過側流路材(以下、単に「流路材」と称することがある)は、分離膜本体の透過側の面に、透過側流路を形成するように設けられる。「透過側の流路を形成するように設けられる」とは、分離膜が後述の分離膜エレメントに組み込まれたときに、分離膜本体を透過した透過流体が集水管に到達できるように、流路材が形成されていることを意味する。
 透過側流路材は、2つ以上の層を含む。「透過側流路材が2つ以上の層を含む」とは、流路材において、少なくとも2種類の異なる組成を有する材料が重ね合わさっていることを指す。また、「異なる組成を有する」とは、化学的な組成が異なることを意味し、例えば、含有する成分の少なくとも一部が異なること、および含有する成分が同じであってもその含有率が異なることを包含する。
 なお、層間には、明確な境界が存在してもよいし、存在しなくてもよい。明確な境界が存在しない場合でも、各層の組成が異なる場合は、「透過側流路材が2つ以上の層を含む」という条件を満たす。
 図2に示すように、流路材40に含まれる層のうち、分離膜本体の供給側の面に最も近い層21は、その上の層22を分離膜本体に接着させる接着層として機能する。この接着層21によって、流路材は分離膜本体に固着される。
 接着層は、被着材である基材の凹凸に含浸し、硬化してアンカーのように作用したり(投錨効果)、接着層の凸部が被着剤(基材)の凹部に食い込むことで弾性的な締め付け力を発揮したりする(ファスナー効果)ことができる。
 流路材と基材との接着力は、1N/m以上であることが好ましく、10N/m以上であることがさらに好ましい。接着力がこの範囲にあることで、分離膜エレメントの製造時等の分離膜の取り扱い時、および長期間にわたる高圧条件下で繰り返し運転時など、流路材に応力が負荷されるときに、基材と流路材との間での剥離を抑制することができる。
 基材と流路材との間の接着力は、JIS Z 0237(粘着テープ・粘着シート試験方法)およびJIS K 6854-3(T型剥離)に基づいて設定した方法で測定することができる。測定方法の具体的な手順については、実施例にて説明する。
 なお、接着力を測定するときに流路材を基材から剥がすと、基材の一部も流路材に付随して剥がれることがある。このように基材が剥がれたとしても、そのときに測定された値は接着力とみなされる。
 接着層21の組成としては特に限定されないが、接着性および耐薬品性の点で、エチレン酢酸ビニル共重合体樹脂;ポリエチレン、ポリポリプロピレンなどのポリオレフィンまたは共重合ポリオレフィン;ポリエステル;ウレタン;エポキシなどのポリマーなどが好ましい。流路材の形成が容易である点で熱可塑性樹脂が好ましく採用されるが、熱または光による硬化性を有するポリマーも適用可能である。また、上記樹脂にタッキファイヤー(粘着付与剤)、天然ワックスおよび合成ワックス(粘度調整剤)、並びに各種添加剤の添加により流路材となる溶融樹脂の表面自由エネルギーを大きくすることで、流路材の基材への接合性をさらに高めることができる。樹脂および添加剤は、1種類で、または2種類以上からなる混合物として用いることができる。
 接着性を実現するために、接着層21を構成する材料の溶融粘度は、180℃の条件下で200~3,000mPa・sの範囲であることが好ましく、より好ましくは400~1,500mPa・sである。溶融粘度は、例えばJIS K 6862に記載されている方法に従って測定できる。また、溶融粘度を上記範囲とするための具体的な組成の一例として、接着層を構成する材料は、樹脂20~95重量%、タッキファイヤー2~60重量%、ワックス2~30重量%、添加剤5%以下を含むことが好ましい。なお、接着層を構成する材料の組成比は、これに限定されるものではない。
 図2に示すように、接着層21の成分は、分離膜本体中に、より具体的には基材中に含浸していてもよい。分離膜の基材側、すなわち透過側に流路材を配置し、ホットメルト法などで基材側から加熱すると、分離膜の裏側から表側に向かって流路材の含浸が進行する。含浸が進行するにつれて流路材と基材との接着が強固になり、加圧ろ過しても流路材が基材から剥離しにくくなる。基材中で、流路材の成分が含浸している部分を、図2中に含浸部として符号201を付して示している。
 なお、本発明における「含浸」とは、流路材が基材内に染み込んでいる状態を指す。具体的には、「含浸」とは、基材が繊維材料で形成されている場合は、流路材が基材の繊維間隙に染み込んでいる状態を指す。
 ただし、分離膜が、流路材の成分が分離機能層の近傍まで含浸していると、加圧ろ過した際に含浸した流路材が分離機能層を破壊してしまう。そのため、流路材の成分が基材に含浸している場合、基材の厚みに対する含浸厚みT2の割合(すなわち含浸率)は、5%以上95%以下の範囲であることが好ましく、10%以上80%以下の範囲であることがより好ましく、20%以上60%以下の範囲であることがさらに好ましい。なお、含浸厚みT2とは流路材最大含浸厚みT2を指し、流路材最大含浸厚みT2とは、1つの断面において、その流路材に対応する含浸部201の厚みの最大値を意味する。
 流路材の含浸厚みT2は、例えば、流路材を構成する材料の種類(より具体的には樹脂の種類)及び/又は材料の量を変更することで、調整可能である。また、流路材をホットメルト法によって設ける場合には、処理温度等を変更することによっても、含浸厚みT2を調整することができる。
 なお、含浸部201を含む基材を示差走査熱量測定といった熱分析に供することにより、基材とは別に流路材の成分に起因するピークが得られれば、流路材の成分が基材に含浸していることを確認することができる。
 流路材の基材への含浸率は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により、流路材が存在する分離膜の断面を観察して流路材含浸厚みT2と基材厚みT1を算出することができる。例えば走査型電子顕微鏡で観察するのであれば分離膜を流路材と共に深さ方向に切断し、断面を走査型電子顕微鏡で観察して、流路材含浸厚みT2と基材厚みT1を測定する。そして、基材中の流路材が最も含浸している流路材最大含浸厚みT2と基材厚みT1の比から算出できる。なお、含浸厚みT2を算出する場合の「基材厚みT1」とは、最大含浸厚みT2を測定した部分と同一箇所における基材の厚みである。図2では、説明の便宜上、基材厚みT1を示す矢印と最大含浸厚みT2を示す矢印とは、ずれるように描かれている。
 接着層21と、その上に設けられた層22とは接合している。つまり、層21と層22との間が接着することで、2つの層は一体化している。このように、流路材において、全ての層が一体化していることが好ましい。全層が一体化することで、分離膜の巻囲時や分離膜エレメントの運転時の流路材のずれによる性能低下を抑制することができる。
 層22は、接着層21よりも高い圧縮弾性率を有することが好ましい。特に層22の圧縮弾性率は、0.1GPa以上であることが好ましく、5.0GPa以下であることが好ましい。海水淡水化では高圧での運転が行われる。高圧下では流路材が圧密化されて透過側流路が狭まるので、流動抵抗が増加して造水量が低下しやすい。流路材の圧縮弾性率が0.1GPa以上であることで、このような造水量の低下を抑制することができる。また、流路材の圧縮弾性率が極端に高いと、分離膜を巻囲するときに流路材が破壊されやすい。これに対して、圧縮弾性率が5.0GPa以下であることで、流路材の破壊を抑制し、流路を安定的に形成することができる。
 なお、流路材の圧縮弾性率は、流路材が弾性変形する応力範囲内における、応力ひずみ曲線の直線部の傾きから求めることができる。
 層22の組成としては特に限定されないが、流路材を構成する成分としては特に限定されないが、樹脂が好ましく用いられる。具体的には、耐薬品性の点で、エチレン酢酸ビニル共重合体樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィンまたは共重合ポリオレフィン等が好ましい。また、ウレタン樹脂、エポキシ樹脂などのポリマーも適用可能である。また、これらの樹脂は、単独で、または2種類以上からなる混合物として用いられる。特に、熱可塑性樹脂は、成形が容易であるため、流路材の形状を均一に形成できるという利点を有する。
 層22を形成する材料として、母材として上述の樹脂を含有し、さらに充てん材を含有する複合材も、適用可能である。流路材の圧縮弾性率は、母材に多孔質無機物などの充てん材を添加することで高められる。具体的にはケイ酸ナトリウム、ケイ酸カルシウム、ケイ酸マグネシウム等のアルカリ土類金属のケイ酸塩、シリカ、アルミナ、酸化チタン等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属の炭酸塩等を充てん材として用いることができる。
 また、接着層を構成する流路材と同様に上記樹脂にタッキファイヤー(粘着付与剤)や天然およびまたは合成ワックス(粘度調整剤)、酸化防止剤等の添加剤を混合してもよい。なお、充てん材やタッキファイヤー、ワックス、酸化防止剤等の添加量は、本発明の効果を損なわない範囲であれば特に限定されない。上記樹脂および充てん剤、各種添加剤は単独で、または2種類以上からなる混合物として用いることができる
 上記範囲の圧縮弾性率を満たす高弾性層は、具体的には、樹脂40~100重量%、タッキファイヤー0~50重量%、ワックス0~30重量%、充てん剤0~50重量%、添加剤5%以下を含有する材料で構成されることが好ましい。
 なお、図2に示す二層構造は、分離膜本体に接着する接着層と、接着層に積層され、高い圧縮弾性率を有する高弾性層とを含む流路材の構成の一例であるが、「積層」とは、2つの層が接する形態だけでなく、2つの層が、他の層を介して重なっている状態を含む。
 例として、図3に三層構造の流路材41を備える分離膜32を示す。流路材41は接着層21を備え、接着層21の上には、層22および層23が順に重ねられている。図3の例では、層22または層23の少なくとも一方の圧縮弾性率が、上述の範囲を満たしていればよい。
 なお、図2および図3では、接着層21のみが分離膜本体の透過側の面18に接しているが、他にも1つ以上の層が基材に接していてもよい。例えば、図14に示すように層22が透過側の面18に接していてもよい。また、図15に示すように、層23が透過側の面18に接していてもよい。また、図示しないが、層22および層23の両方が透過側の面18に接していてもよい。
 なお、各層の厚みは、その合計値は、流路材の厚みT3が後述の好ましい範囲を満たすように、変更可能である。いずれの形態においても、高弾性層の厚みは接着層の厚みよりも大きいことが好ましい。この構成によって、高弾性層による効果がより発揮される。
 その他、透過側流路材の形状、大きさ、素材等は具体的な構成に限定されるものではなく、透過流体が有孔集水管に到達することができるように構成されていればよい。
 透過側流路材は、分離膜本体とは異なる組成を有する。「分離膜とは異なる組成を有する」とは、分離膜が、分離機能層、多孔性支持層及び基材の三層構造を備える場合に、流路材の組成が、いずれの層の組成とも異なることを意味する。また、「異なる組成を有する」とは、化学的な組成が異なることを意味するのであって、含有する成分の少なくとも一部が異なること、及び含有する成分が同じであってもその含有率が異なることを包含する。特に、流路材の主成分である化合物と、分離膜の各層の主成分である化合物とが異なっていてもよい。また、流路材が、支持層を構成する成分の少なくとも一部と、基材を構成する成分の少なくとも一部とを含有する場合等も、「組成が異なる」形態に含まれる。
 透過側流路材は、分離膜と異なる組成を有することで、圧力に対して分離膜よりも高い耐性を示すことができる。具体的には、流路材は、後述するように特に分離膜の面方向に垂直な方向における圧力に対して、分離膜よりも高い形状保持力を有する材料で形成されることが好ましい。これによって、流路材は、繰り返しの通水又は高圧下での通水を経ても、透過側流路を確保することができる。
 また、流路材は、分離膜による流体の分離が進行するように設けられていればよい。つまりすなわち、分離膜の一部が流体に接触するように露出し、流体が分離膜に接触しながら移動できるように、流路材が設けられていればよい。つまり、流路材は、分離膜の面方向において、分離膜とは異なる形状を有する。
 例えば、透過側流路材として、織物、編み物(ネット等)、不織布、多孔性のシート(多孔性フィルム等)、粒状物、線状物、半球状物、柱状物(円柱状、角柱状等を含む)、又は壁状物等、それらの組み合わせなどが使用することができる。
 透過側流路材は、連続形状であってもよいし、不連続形状であってもよい。
 「連続」な流路材とは、流路材を1枚の分離膜本体から分離したときに、複数の部分に分かれずに一体の形状を有する部材として分離される流路材である。例えば、ネット、トリコットおよびフィルム等の部材は、連続な流路材である。
 これに対して、「不連続」とは、流路材を分離膜本体から剥離すると、流路材が複数の部分に分かれる状態である。便宜上、1枚の分離膜本体上で分かれた個々の部分、および1つの分離膜本体上に設けられた流路材全体のいずれも、「流路材」と呼ぶことがある。
 例えば編み物が流路材として用いられた場合、流路の高さは編み物の厚みよりも小さくなる。これに対して、不連続な流路材の厚みは全て、流路の高さとして活用されるので、不連続な流路材は、連続な形状よりも、流動抵抗を低減し、造水量を増加させることができる。
 図6~図9等に、不連続形状の流路材の例を示す。
 図6および図11に示すように、流路材42は、上部が略半球形状である円柱形の部材であって、格子状に配置されている。図7に示す個々の流路材43の形状は流路材42と同じであるが、図7では、流路材43は千鳥状に配置されている。
 図8に示すように、流路材44は、楕円柱であって、千鳥状に配置されている。図12に断面を示すとおり、流路材44の上面は平らであり、その断面形状は矩形である。
 図9に示すように、流路材45は、平面形状は直線状の壁状部材である。壁状部材は、互いに平行なストライプ状に配置されている。図13に示すように、膜面に垂直な平面における流路材46の断面は、上部の幅が下部の幅よりも狭い台形である。
 図10に、連続形状の流路材の例を示す。図10に示すように、流路材46は、膜面方向に連続するネット状の部材である。
 図6~図10のいずれに示す流路材のA-A矢視断面図も、図11~図13の形状に変更可能である。つまり、異なる形態として説明した流路材の平面形状および断面形状、ならびに配置は、互いに組み合わせることができる。このように、流路材は、図6~図10の平面形状のいずれかを、図11~図13の断面形状のいずれかと任意に組み合わせることで得られる形態も、本発明の実施形態に含まれる。
 また、加圧ろ過時における複数の流路材間の膜落ち込みを抑制する観点から、隣接する流路材のピッチ(間隔)は、0.05mm以上5mm以下、より好ましくは0.1mm以上2mm以下の間で適宜設計すると良い。ピッチとは、高低差が存在する流路材における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離のことである。
 分離膜の透過側の高低差、すなわち流路材の厚みT3は30μm以上800μm以下であることが好ましく、より好ましくは50μm以上500μm以下、さらに好ましくは100μm以上400μm以下である。流路材の厚みが800μm以下であることで、1つのベッセルに充填できる膜リーフ数を多くすることができる。また、厚みが30μm以上であることで流動抵抗を比較的小さくすることができるので、良好な分離特性および透過性能を得ることができる。
 分離膜の透過側の高低差は、(株)キーエンス製デジタルマイクロスコープVHX-1000などを用いて断面サンプルから計測することができる。測定は任意の高低差が存在する箇所について実施し、各厚みの値を総和した値を測定総箇所の数で割って求めることができる。
 流路材の分離膜透過側の面に対する投影面積比は0.03以上0.85以下であることが好ましく、さらに好ましくは0.2以上0.75以下、特に好ましくは、0.3以上0.6以下である。なお、投影面積比とは、分離膜を5cm×5cmで切り出し、分離膜の面方向に平行な平面に投影した時に得られる流路材の投影面積を、切り出し面積(25cm)で割った値である。投影面積比が0.03以上であることで、透過側流路の流動抵抗が低く抑えられ、投影面積比が0.85以下であることで、流路が安定に形成される。
 また、分離膜の形態は、流路材が分離膜本体の縁まで設けられている形態であってもよいし、縁近傍において流路材が設けられていない領域がある形態であってもよい。つまり、流路材が透過側の流路を形成できるように配置されていれば、分離膜本体において流路材が設けられない部分があってもよい。例えば、透過側の面における他の分離膜との接着部分には、流路材が設けられる必要はない。また、その他の使用上または製造上の理由により、分離膜の端部などの一部の箇所に、流路材が配置されない領域が設けられていてもよい。
〔3.分離膜の製造方法〕
(3-1)分離膜本体
 分離膜本体の製造方法については上述したが、簡単にまとめると以下のとおりである。
 良溶媒に樹脂を溶解し、得られた樹脂溶液を基材にキャストして純水中に浸漬して多孔性支持層と基材を複合させる。その後、上述したように、多孔性支持層上に分離機能層を形成する。さらに、必要に応じて分離性能、透過性能を高めるべく、塩素、酸、アルカリ、亜硝酸などの化学処理を施し、さらにモノマー等を洗浄し分離膜本体の連続シートを作製する。
 なお、化学処理の前または後で、エンボス等によって分離膜本体に凹凸を形成してもよい。
(3-2)透過側流路材
 透過側流路材を設ける工程は、分離膜製造のどの時点で行われてもよい。例えば、流路材は、基材上に多孔性支持層が形成される前に設けられてもよいし、多孔性支持層が設けられた後であって分離機能層が形成される前に設けられてもよいし、分離機能層が形成された後、上述の化学処理が施される前または後に行われてもよい。
 流路材に含まれる各層を形成する工程には、塗布、印刷、噴霧等が採用される。また、使用される機材としては、ノズル型のホットメルトアプリケーター、スプレー型のホットメルトアプリケーター、フラットノズル型のホットメルトアプリケーター、ロール型コーター、押出型コーター、グラビア印刷機、噴霧器などが挙げられる。
 2つ以上の層を積層するには、上記工程による層形成を2回以上繰り返し実施する方法、または、共注型のアプリケーターを用いて2つ以上の層を一度に形成する方法のいずれも適用可能である。いずれの方法を採用するかは、形成する流路材の大きさ、形状、流路材組成により、選択される。特に、共注型アプリケーターを用いて2種類以上の流路材を同時に接合する方法は、加工精度が高く、各層の厚みコントロールが容易で、装置スペースも小さくできることから特に好ましい。
 透過側流路材の接着層および高弾性層を構成する材料として好ましい組成は、上述したとおりである。
 加熱によって樹脂を加工して透過側流路材を形成する場合、加工温度は、樹脂を溶融、加工できる温度であれば特に限定されないが、熱収縮による膜性能低下を抑制する点で250℃以下であることが好ましい。
〔4.分離膜エレメントの製造方法〕
(4-1)概要
 分離膜エレメントの製造には、従来のエレメント製作装置を用いることができる。また、エレメント作製方法としては、参考文献(特公昭44-14216、特公平4-11928、特開平11-226366)に記載される方法を用いることができる。詳細には以下の通りである。
(4-2)供給側流路の形成
 供給側流路材が、ネット等の連続的に形成された部材である場合は、分離膜と供給側流路材とを重ね合わせることで、供給側流路を形成することができる。
 また、分離膜に樹脂を直接塗布することで、不連続な、または連続な形状を有する供給側流路材を形成することができる。分離膜本体に固着された供給側流路材によって形成される場合も、供給側流路材の配置が分離膜の製造方法の一部と見なされてもよい。
 また、分離膜本体を凹凸加工することで、流路を形成してもよい。凹凸加工法としては、エンボス成形、水圧成形、カレンダ加工といった方法が挙げられる。エンボス加工の条件、エンボス加工形状等は、求められる分離膜エレメントの性能等に応じて変更可能である。この凹凸加工は、分離膜の製造方法の一部と見なされてもよい。
(4-3)分離膜の積層および巻回
 1枚の分離膜を透過側面が内側を向くように折り畳んで貼り合わせることで、または2枚の分離膜を透過側面が内側を向くように重ねて貼り合わせることで、封筒状膜5が形成される。上述したように、封筒状膜は三辺が封止される。封止は、接着剤またはホットメルト等による接着、熱またはレーザによる融着等により実行できる。
 封筒状膜の形成に用いられる接着剤は、粘度が40PS以上150PS以下の範囲内であることが好ましく、さらに50PS以上120PS以下がより好ましい。分離膜にしわが発生すると、分離膜エレメントの性能が低下することがあるが、接着剤粘度が、150PS以下であることで、分離膜を集水管に巻囲するときに、しわが発生しにくくなる。また、接着剤粘度が40PS以上である場合、分離膜間からの接着剤の流出が抑制され、不要な部分に接着剤が付着する危険性が低下する。
 接着剤の塗布量は、分離膜が集水管に巻囲された後に、接着剤が塗布される部分の幅が10mm以上100mm以下であるような量であることが好ましい。これによって、分離膜が確実に接着されるので、原流体の透過側への流入が抑制される。また、有効膜面積も比較的大きく確保することができる。
 接着剤としてはウレタン系接着剤が好ましく、粘度を40PS以上150PS以下の範囲とするには、主剤のイソシアネートと硬化剤のポリオールとが、イソシアネート:ポリオール=1:1~1:5の割合で混合されたものが好ましい。接着剤の粘度は、予め主剤、硬化剤単体、及び配合割合を規定した混合物の粘度をB型粘度計(JIS K 6833)で測定される。
 こうして接着剤が塗布された分離膜は、封筒状膜の閉口部分が巻回方向内側に位置するように配置され、集水管の周囲に分離膜を巻きつけられる。こうして、分離膜がスパイラル状に巻回される。
(4-4)その他の工程
 分離膜エレメントの製造方法は、上述のように形成された分離膜の巻回体の外側に、フィルムおよびフィラメント等をさらに巻きつけることを含んでいてもよいし、集水管の長手方向における分離膜の端を切りそろえるエッジカット、端板の取り付け等のさらなる工程を含んでいてもよい。
〔5.分離膜エレメントの利用〕
 分離膜エレメントは、さらに、直列または並列に接続して圧力容器に収納されることで、分離膜モジュールとして使用されてもよい。
 また、上記の分離膜エレメント、モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、例えば供給水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
 流体分離装置の操作圧力は高い方が除去率は向上するが、運転に必要なエネルギーも増加すること、分離膜エレメントの供給流路、透過流路の保持性も考慮すると、膜モジュールに原流体を透過する際の操作圧力は、0.2MPa以上、8MPa以下が好ましい。原流体温度は、高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5℃以上、45℃以下が好ましい。また、原流体pHは、高くなると海水などの高塩濃度の供給水の場合、マグネシウムなどのスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。
 分離膜エレメントによって処理される流体は特に限定されないが、水処理に使用する場合、供給水としては、海水、かん水、排水等の500mg/L~100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」あるいは「質量比」で表される。定義によれば、0.45μmのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算できる。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
(透過側流路材の投影面積比)
 流路材が接合された分離膜を5cm×5cmで切り出し、レーザ顕微鏡(倍率10~500倍程度の中から選択)を用い、ステージを移動させて、該流路材の全投影面積を測定した。該流路材を分離膜透過側または供給側から投影した時に得られる投影面積を切り出し面積で割った値を投影面積比とした。
(透過側流路材の厚み)
 (株)キーエンス製デジタルマイクロスコープVHX-1000を用い、流路材を接合した分離膜断面サンプルから平均の厚みを解析した。30μm以上の透過側流路材が存在する箇所を測定し、各厚みの値の総和を測定総箇所の数(30箇所)で割って、平均値を求めた。
(透過側流路材の含浸率)
 分離膜を透過側流路材と共に深さ方向に切断し、断面を走査型電子顕微鏡(S-900)((株)日立製作所製)を用いて30個の任意の含浸部を500倍で写真撮影した。撮影された写真において最大含浸厚みT2及び基材厚みT1を測定し、含浸率を、含浸率(%)=(基材中の流路材の最大含浸厚みT2/基材厚みT1)×100の式に基づいて算出した上で、1個の含浸部当たりの平均値を求めた。以下、得られた平均値を「含浸率」と表記する。
(透過側流路材のピッチ)
 (株)キーエンス製高精度形状測定システムKS-1100を用い、分離膜裏面の測定結果から透過側流路材のピッチを解析した。30μm以上の透過側流路材が存在する箇所を測定し、流路材における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離の総和を測定総箇所の数(30箇所)で割って、平均値を求めた。
(接着力)
 接着力の測定は透過側の面における他の分離膜との接着部分以外(つまり接着剤が塗布されていない箇所)で行う。幅25mm長さ200mmに裁断した分離膜サンプルの透過側流路材上に、分離膜サンプルと同サイズのアルミ箔テープ(商品名:“Scotch”(登録商標)アルミ箔テープ425 住友スリーエム(株)製)を手動式ローラ圧着装置で貼り付けて試験片を作製した。次いで試験片の幅方向からアルミ箔テープ接合面を50mm剥離し(基材から剥離したアルミ箔テープ粘着面に透過側流路材が接着した状態)、測定長さが150mmになるように引張試験機にT状態となるようにセットした。25℃、65%相対湿度において、毎分50mmの速度で引張試験を行い、測定長さ間の引張り力の平均値を剥離強度とした。試験片の数は10個とした。なお、アルミ箔テープ接合面を剥離させる際に、基材側に透過側流路材が残存した場合、および流路材の一部が破壊した場合は、接着力が1N/m以上であると判断した。
(圧縮弾性率)
 流路材を形成する材料を直径10mm、厚さ25mmの円柱状に溶融成形し、テンシロン万能材料試験器(RTF-2430)((株)エー・アンド・デイ製)を用いて圧縮速度10mm/分、25℃下で圧縮応力とひずみの関係を調べ、得られた曲線の初期勾配を圧縮弾性率とした。
(脱塩率(TDS除去率))
 スパイラル型分離膜エレメントに、温度25℃、pH6.5に調整した海水(TDS濃度3.5%)を操作圧力5.5MPaで供給した。得られた透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計により測定することで、実用塩分(S)を測定した。こうして得られた実用塩分を塩濃度とみなして、次の式を用いることで、TDS除去率を求めた。
TDS除去率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
(造水量)
 脱塩率の測定と同条件で分離膜エレメントを運転したときの透過水量を、分離膜エレメントあたり、1日あたりの透水量(立方メートル)を造水量(m/日)として表した。
(耐久性)
 スパイラル型分離膜エレメントに、温度25℃、pH6.5に調整した海水(TDS濃度3.5%)を圧力5.5MPaで1分間運転した後、運転を終了した。このサイクル(発停)を2,000回繰り返し、その後の脱塩率、造水量を測定した。
(実施例1)
 ポリエステル長繊維からなる不織布(糸径:1デシテックス、厚み:約90μm、通気度:1cc/cm/sec、繊維配向度:多孔性支持層側表層40°、多孔性支持層とは反対側の表層20°)上にポリスルホンの15.0重量%、ジメチルホルムアミド(DMF)溶液を180μmの厚みで室温(25℃)でキャストし、ただちに純水中に浸漬して5分間放置した。こうして、繊維補強ポリスルホン支持膜からなる多孔性支持膜(厚さ130μm)ロールを作製した。
 その後に、多孔性支持膜のポリスルホンがキャストされた面に、多官能アミン全体で6.5重量%、メタフェニレンジアミン/1,3,5-トリアミノベンゼン=60/40モル比となるように調製した多官能アミン水溶液を塗布した。エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、多官能酸クロリド全体で0.17重量%、トリメシン酸クロリド/テレフタル酸クロリド=90/10モル比となるように調製した多官能酸クロリドのn-デカン溶液(25℃)を、膜の表面が完全に濡れるように塗布した。その後、膜から余分な溶液をエアーブローで除去し、70℃の熱水で洗浄することで、分離膜本体である分離膜連続シートを得た。
 次いで、分離膜の透過側にスリット幅0.5mm、ピッチ1.0mmの櫛形のシムを装填した2液共注型ホットメルトアプリケーターを用いて、以下の条件で、走行速度6m/minで2層を同時に塗布することで、投影面積比が0.55であり、断面形状が略台形であって、平面形状がストライプである流路材を分離膜本体上に形成した。
 第1層:
  材料:エチレン酢酸ビニル共重合体系ホットメルト樹脂(商品名:701A、TEX YEAR INDUSTRIES INC.製、圧縮弾性率:0.04GPa)
  樹脂温度:130℃
  厚み:30μm
 第2層:
  材料:ポリオレフィン系ホットメルト樹脂(商品名:PHC9275、積水フーラー(株)製、圧縮弾性率:0.18GPa)
  樹脂温度:150℃
  厚み:250μm
 なお、第1層は分離膜本体上に接するように塗布された層であり、第2層は第1層の上に重なるように塗布された層である。以下、他の実施例および比較例でも、「第1」、「第2」、「第3」とは、分離膜本体上に配置された層の順番を表す。
 その後、分離膜シートを裁断し、1辺が開口するように折りたたまれた分離膜シートの間に供給側流路材としてネット(厚み:800μm、ピッチ5mm×5mm)を連続的に積層し、分離膜シートの有孔集水管の長手方向の両側の端部にウレタン系接着剤(イソシアネート:ポリオール=1:3)を塗布した後、重ね合わせて、分離膜エレメントでの有効面積が8mになるように、幅930mmの封筒状膜6枚を作製した。
 その後、封筒状膜の開口部側の所定部分を有孔集水管の外周面に接着し、さらにスパイラル状に巻囲することで巻囲体を作製した。巻囲体の外周面にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけ、フィラメントワインディングを行い、4インチエレメントを作製した。
 該分離膜エレメントを繊維強化プラスチック製筒型圧力容器に入れて、上述の方法で脱塩率および造水量を測定したところ、表1に示すように、実施例1においては、初期性能は脱塩率99.4%、造水量5.9m/日であった。また、同条件で1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.6%、造水量5.2m/日であり耐久性は良好であった。
(実施例2)
 第1層の樹脂温度を110℃として、透過側流路材の含浸率を20%に変更した以外は実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.4%、造水量6.0m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.5%、造水量5.2m/日であり耐久性は良好であった。
(実施例3)
 第1層の樹脂温度を100℃として、透過側流路材の含浸率を7%に変更した以外は実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.3%、造水量6.0m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.4%、造水量5.1m/日であり耐久性は良好であった。
(実施例4)
 第1層の樹脂温度を90℃として、透過側流路材の含浸率を3%に変更した以外は実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.5%、造水量6.1m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.5%、造水量4.8m/日であり、一部で流路材のずれが生じたため造水量の低下率が大きくなった。
(実施例5)
 櫛形シムの形状をスリット幅0.6mm、ピッチ1.0mmとすることで、透過側流路材の投影面積比を0.80に変更した以外は、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.5%、造水量5.4m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.6%、造水量5.0m/日であり、初期造水量は若干低下したが耐久性は良好であった。
(実施例6)
 櫛形シムの形状をスリット幅0.2mm、ピッチ1.0mmとして、透過側流路材の投影面積比を0.25に変更した以外は、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。その結果、初期性能は脱塩率99.4%、造水量6.0m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.3%、造水量4.0m/日であり、分離膜が流路材間の隙間に落ち込み一部流路が閉塞したため造水量の低下率が大きくなった。
(実施例7)
 第1層のストライプ厚みを150μm、第2層のストライプ厚みを100μmに変更した以外は、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.3%、造水量5.7m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.4%、造水量3.8m/日であり、第1層の樹脂が圧縮変形し一部流路が閉塞したため造水量の低下率が大きくなった。
(実施例8)
 第2層として、ポリプロピレン樹脂(商品名:F219DA、(株)プライムポリマー製、圧縮弾性率:1.3GPa)を樹脂温度170℃に変更した以外は、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。その結果、初期性能は脱塩率99.3%、造水量5.6m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.4%、造水量5.1m/日であり、耐久性は良好であった。
(実施例9)
 ノズル型ホットメルトアプリケーターを用いて、以下の条件かつ走行速度3m/minで、第1層を形成した後、第2層を順次形成することで、投影面積比が0.50で、断面形状が略半楕円形のドットを形成した。
 第1層:
  材料:エチレン酢酸ビニル共重合体系ホットメルト樹脂(商品名:701A、TEX YEAR INDUSTRIES INC.製、圧縮弾性率:0.04GPa)
  樹脂温度:130℃
  厚み:30μm
 第2層:
  材料:ポリオレフィン系ホットメルト樹脂(商品名:PHC9275、積水フーラー(株)製、圧縮弾性率:0.18GPa)
  樹脂温度:150℃
  厚み:250μm
 その後、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.3%、造水量5.7m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.4%、造水量5.1m/日であり、あり耐久性は良好であった。
(実施例10)
 実施例10では、分離膜の基材を長繊維不織布から抄紙法で得られた不織布に変更した以外は、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。その結果、分離膜の透過流路材接合時の加工性が低下したため、初期性能は脱塩率98.9%、造水量5.6m/日であり脱塩率が若干低下した。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率98.5%、造水量5.0m/日であり脱塩率がさらに低下した。
(実施例11)
 実施例11では、3液共注型ホットメルトアプリケーターを用いて、次の条件かつ走行速度6m/minで、3層を同時に塗布することで、膜に対する投影面積比が0.55であり、断面形状が略台形であり、平面形状がストライプである流路材を形成した。
 第1層:
  材料:エチレン酢酸ビニル共重合体系ホットメルト樹脂(商品名:701A、TEX YEAR INDUSTRIES INC.製、圧縮弾性率:0.04GPa)
  樹脂温度:130℃
  ストライプ厚み:30μm
 第2層:
  材料:ポリオレフィン系ホットメルト樹脂(商品名:PHC9275、積水フーラー(株)製、圧縮弾性率:0.18GPa)
  樹脂温度:150℃
  厚み:100μm
 第3層:
  材料:ポリプロピレン樹脂(商品名:F219DA、(株)プライムポリマー製、圧縮弾性率:1.3GPa)
  樹脂温度:170℃
  厚み:150μm
 その後、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.3%、造水量5.4m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.4%、造水量5.1m/日であり、あり耐久性は良好であった。
(比較例1)
 比較例1では、透過側流路材として従来から用いられているトリコットを、分離膜と接着させずに用いた以外は、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.4%、造水量5.3m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率99.5%、造水量4.8m/日であり、実施例1に比べ透過側の流動抵抗が高く初期造水量が低い値であった。
(比較例2)
 2液共注型ホットメルトアプリケーターの一方のノズルのみを用いて、以下の条件かつ走行速度6m/minで、投影面積比が0.55であり、断面形状が略台形である、単層のストライプ状の流路材を形成した。
  材料:エチレン酢酸ビニル共重合体系ホットメルト樹脂(商品名:701A、TEX YEAR INDUSTRIES INC.製、圧縮弾性率:0.04GPa)
  樹脂温度:130℃
  厚み:280μm
 その後、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率98.9%、造水量3.2m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率98.8%、造水量2.9m/日であり、第1層の樹脂が圧縮変形し一部流路が閉塞したため造水量の低下率が大きくなった。
(比較例3)
 2液共注型ホットメルトアプリケーターの一方のノズルのみを用いて、以下の条件かつ走行速度6m/minで、投影面積比が0.55であり、断面形状が略台形のストライプである、単層の流路材を形成した。
  材料:ポリオレフィン系ホットメルト樹脂(商品名:PHC9275、積水フーラー(株)製、圧縮弾性率:0.18GPa)
  樹脂温度:150℃
  厚み:280μm
  その後、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。
 その結果、初期性能は脱塩率99.2%、造水量5.2m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率98.4%、造水量3.6m/日であり、第1層の樹脂が基材から一部剥離して、ずれが生じたため流路が閉塞し造水量の低下率が大きくなった。
(比較例4)
 2液共注型ホットメルトアプリケーターの一方のノズルのみを用いて、以下の条件かつ走行速度6m/minで、投影面積比が0.55であり、断面形状が略台形のストライプである、単層の流路材を形成した。
  材料:ポリプロピレン樹脂(商品名:F219DA、(株)プライムポリマー製、圧縮弾性率:1.3GPa)
  樹脂温度:170℃
  厚み:280μm
 その後、実施例1と同様の方法で分離膜エレメントを作製し評価を行った。その結果、初期性能は脱塩率99.2%、造水量5.4m/日であった。また、圧力5.5MPaで1分間×2,000回繰り返し通水した耐久性試験後の性能は、脱塩率97.6%、造水量3.0m/日であり、あり第1層の樹脂が基材から剥離して、ずれが生じたため流路が閉塞し造水量の低下率が大きくなった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の分離膜および分離膜エレメントは、特に、かん水や海水の脱塩に好適に用いることができる。
1      :分離膜エレメント
2      :供給側流路材
3,31,32:分離膜
30,301,302 :分離膜本体
4,40~49:透過側流路材
11,15  :基材
12     :多孔性支持層
13,16  :分離機能層
5      :封筒状膜
6      :有孔集水管
7      :供給水(原流体)
8      :透過水
9      :濃縮水
17     :供給側の面
18     :透過側の面
21     :接着層(第1層)
22     :他の層(第2層)
23     :他の層(第3層)

Claims (8)

  1.  供給側の面と透過側の面とを有する分離膜本体と、前記分離膜本体の透過側の面に固着する流路材とを備える分離膜であって、前記流路材が2つ以上の層を含む分離膜。
  2.  前記流路材において、層間が接合している請求項1に記載の分離膜。
  3.  前記流路材は、前記分離膜本体に1N/m以上の接着力で固着する請求項1または2に記載の分離膜。
  4.  前記流路材は、前記分離膜本体に接着する接着層と、前記接着層に積層された高弾性層とを有し、前記高弾性層の圧縮弾性率は、0.1GPa以上5.0GPa以下である請求項1~3に記載の分離膜。
  5.  前記流路材が熱可塑性樹脂で形成されている請求項1~4のいずれかに記載の分離膜。
  6.  前記分離膜は、基材、前記基材上に形成された多孔性支持層、および前記多孔性支持層上に形成された分離機能層を備える請求項1~5のいずれかに記載の分離膜。
  7.  前記基材が長繊維不織布である請求項1~6に記載の分離膜。
  8.  請求項1~7のいずれかに記載の分離膜を含む分離膜エレメント。
PCT/JP2013/069852 2012-07-31 2013-07-23 分離膜および分離膜エレメント WO2014021133A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013537987A JP6206185B2 (ja) 2012-07-31 2013-07-23 分離膜および分離膜エレメント
CN201380037569.9A CN104470624A (zh) 2012-07-31 2013-07-23 分离膜及分离膜元件
KR20147036925A KR20150035802A (ko) 2012-07-31 2013-07-23 분리막 및 분리막 엘리먼트
US14/409,565 US20150298064A1 (en) 2012-07-31 2013-07-23 Separation membrane and separation membrane element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012169409 2012-07-31
JP2012-169409 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014021133A1 true WO2014021133A1 (ja) 2014-02-06

Family

ID=50027813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069852 WO2014021133A1 (ja) 2012-07-31 2013-07-23 分離膜および分離膜エレメント

Country Status (5)

Country Link
US (1) US20150298064A1 (ja)
JP (1) JP6206185B2 (ja)
KR (1) KR20150035802A (ja)
CN (1) CN104470624A (ja)
WO (1) WO2014021133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117362A1 (ja) * 2019-12-13 2021-06-17 住友化学株式会社 ガス分離方法及びガス分離装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001013B2 (ja) * 2013-08-13 2016-10-05 富士フイルム株式会社 酸性ガス分離用スパイラル型モジュール
GB201317521D0 (en) * 2013-10-03 2013-11-20 Fujifilm Mfg Europe Bv Membranes
CN109715275B (zh) * 2016-09-21 2021-12-31 东丽株式会社 分离膜元件及其运转方法
US11745143B2 (en) 2017-04-20 2023-09-05 Aqua Membranes, Inc. Mixing-promoting spacer patterns for spiral-wound elements
KR102306543B1 (ko) * 2017-09-29 2021-09-30 스미또모 가가꾸 가부시키가이샤 스파이럴형 가스 분리막 엘리먼트, 가스 분리막 모듈 및 가스 분리 장치
WO2019075370A1 (en) 2017-10-13 2019-04-18 Aqua Membranes Llc BRIDGE BRACKET AND REDUCED POWER SUPPLIES FOR SPIRAL WINDING ELEMENTS
GB201912458D0 (en) * 2019-08-30 2019-10-16 Fujifilm Mfg Europe Bv Gas seperations elements and modules
JPWO2021193785A1 (ja) * 2020-03-27 2021-09-30
CN114751040B (zh) * 2022-04-25 2023-03-28 重庆大学 装配式建筑板料样品膜分离装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431087A (en) * 1977-08-11 1979-03-07 Toray Ind Inc Separating apparatus for liquid
JPS58104604A (ja) * 1981-12-07 1983-06-22 ヘキスト・アクチエンゲゼルシヤフト 液体またはガス状多成分系を分離するフイルムおよびその製法ならびに薄膜分離装置の製法
JPS58163405A (ja) * 1982-03-24 1983-09-28 Daicel Chem Ind Ltd 選択透過性半透膜及びその製造方法並びに「あ」過型人工腎臓
JP2011161344A (ja) * 2010-02-08 2011-08-25 Toray Ind Inc 分離膜支持体ならびにそれを用いた分離膜および流体分離素子
WO2013047744A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜および分離膜エレメント
WO2013047746A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244578A (en) * 1989-09-28 1993-09-14 Terumo Kabushiki Kaisha Blood plasma-separating membrane and blood plasma separator using the membrane
WO2003004993A2 (en) * 2001-07-06 2003-01-16 Millipore Corporation Satterned composite membrane and stenciling method for the manufacture thereof
US7051883B2 (en) * 2003-07-07 2006-05-30 Reemay, Inc. Wetlaid-spunbond laminate membrane support
JP5186921B2 (ja) * 2006-03-31 2013-04-24 東レ株式会社 液体分離素子、流路材およびその製造方法
JPWO2011152484A1 (ja) * 2010-06-03 2013-08-01 東レ株式会社 分離膜エレメント
EP2604333A4 (en) * 2010-08-11 2017-04-12 Toray Industries, Inc. Separation membrane element and method for producing composite semipermeable membrane
KR20140016876A (ko) * 2010-12-28 2014-02-10 도레이 카부시키가이샤 분리막 엘리먼트
JP5623984B2 (ja) * 2011-06-17 2014-11-12 株式会社ユアサメンブレンシステム スパイラル型ろ過モジュール及びそれを用いた液処理方法
CN103648621B (zh) * 2011-07-07 2017-09-15 东丽株式会社 分离膜、分离膜元件以及分离膜的制造方法
WO2013080391A1 (ja) * 2011-12-02 2013-06-06 東レ株式会社 分離膜エレメントおよび分離膜エレメントの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431087A (en) * 1977-08-11 1979-03-07 Toray Ind Inc Separating apparatus for liquid
JPS58104604A (ja) * 1981-12-07 1983-06-22 ヘキスト・アクチエンゲゼルシヤフト 液体またはガス状多成分系を分離するフイルムおよびその製法ならびに薄膜分離装置の製法
JPS58163405A (ja) * 1982-03-24 1983-09-28 Daicel Chem Ind Ltd 選択透過性半透膜及びその製造方法並びに「あ」過型人工腎臓
JP2011161344A (ja) * 2010-02-08 2011-08-25 Toray Ind Inc 分離膜支持体ならびにそれを用いた分離膜および流体分離素子
WO2013047744A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜および分離膜エレメント
WO2013047746A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117362A1 (ja) * 2019-12-13 2021-06-17 住友化学株式会社 ガス分離方法及びガス分離装置

Also Published As

Publication number Publication date
US20150298064A1 (en) 2015-10-22
JP6206185B2 (ja) 2017-10-04
JPWO2014021133A1 (ja) 2016-07-21
KR20150035802A (ko) 2015-04-07
CN104470624A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP6206185B2 (ja) 分離膜および分離膜エレメント
JP6111668B2 (ja) 分離膜エレメント、および分離膜エレメントの製造方法
JP6179402B2 (ja) 分離膜エレメント
JP6136269B2 (ja) 水処理用分離膜エレメント
JP2017148805A (ja) 分離膜、分離膜エレメントおよび分離膜の製造方法
JP6485044B2 (ja) 分離膜エレメント
WO2013125505A1 (ja) 分離膜および分離膜エレメント
WO2015016253A1 (ja) 分離膜エレメント
JP6179403B2 (ja) 分離膜および分離膜エレメント
WO2014208602A1 (ja) 分離膜エレメント
JP2014064973A (ja) 分離膜および分離膜エレメント
JP2015071159A (ja) 分離膜エレメント
JP2015006661A (ja) 分離膜エレメント
JP2015142911A (ja) 分離膜および分離膜エレメント
JP2016068081A (ja) 分離膜エレメント
JP2021020204A (ja) 分離膜エレメント
JP2015027666A (ja) 分離膜および分離膜エレメント
JP2014193459A (ja) 分離膜エレメント
JP2014193460A (ja) 分離膜および分離膜エレメント
JP2015142899A (ja) 分離膜エレメント
JP2015091574A (ja) 分離膜エレメント
JP2015085322A (ja) 分離膜エレメント
JP2015142894A (ja) 分離膜エレメント
JP2017013055A (ja) 分離膜エレメント
JP2018023971A (ja) 流路材および分離膜エレメント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537987

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409565

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147036925

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826423

Country of ref document: EP

Kind code of ref document: A1