WO2021117362A1 - ガス分離方法及びガス分離装置 - Google Patents

ガス分離方法及びガス分離装置 Download PDF

Info

Publication number
WO2021117362A1
WO2021117362A1 PCT/JP2020/040120 JP2020040120W WO2021117362A1 WO 2021117362 A1 WO2021117362 A1 WO 2021117362A1 JP 2020040120 W JP2020040120 W JP 2020040120W WO 2021117362 A1 WO2021117362 A1 WO 2021117362A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
gas
separation
layer
separation membrane
Prior art date
Application number
PCT/JP2020/040120
Other languages
English (en)
French (fr)
Inventor
裕徳 竹本
エイ キョウ
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021117362A1 publication Critical patent/WO2021117362A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers

Definitions

  • the present invention relates to a gas separation method and a gas separation device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-166131
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2016-101558
  • Patent Application Laid-Open No. 2 Patent Document 2 describes a separation membrane in which a separation layer made of resin is provided on a non-woven fabric.
  • high-pressure gas may be supplied to the separation membrane. It has been found that when such a high-pressure gas is supplied to the separation membrane to perform gas separation, the separation efficiency is lowered.
  • An object of the present invention is to provide a gas separation method and a gas separation device capable of suppressing a decrease in separation efficiency.
  • the present invention provides the following gas separation method and gas separation device.
  • the separation membrane sheet is It has a first porous layer, a separation functional layer laminated on the first porous layer, and a second porous layer laminated on the side of the first porous layer opposite to the separation functional layer.
  • the separation functional layer is a non-porous resin composition layer, and is The first porous layer and the second porous layer are different porous layers from each other.
  • the average pore size of the first porous layer is 0.005 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the first porous layer is 5 ⁇ m or more and 150 ⁇ m or less.
  • the basis weight of the second porous layer is 10 g / m 2 or more and 200 g / m 2 or less.
  • the gas separation method is A step of supplying a raw material gas containing at least the specific gas component from the side of the separation membrane sheet opposite to the second porous layer is included.
  • P ⁇ 1 / s (1) [2]
  • the separation membrane sheet separates a supply-side space for supplying the raw material gas and a permeation-side space for receiving a permeated gas containing the specific gas component that has permeated the separation membrane sheet.
  • the supply side space is provided on the side of the separation membrane sheet opposite to the second porous layer.
  • the permeation side space is provided on the second porous layer side of the separation membrane sheet.
  • the supply step includes a step of supplying the raw material gas to the supply side space. Further, a step of discharging the permeated gas from the permeated side space and
  • the separation functional layer contains a hydrophilic resin and contains a hydrophilic resin.
  • a gas separation device including a separation membrane sheet that selectively permeates a specific gas component.
  • the separation membrane sheet is It has a first porous layer, a separation functional layer laminated on the first porous layer, and a second porous layer laminated on the side of the first porous layer opposite to the separation functional layer.
  • the separation functional layer is a non-porous resin composition layer, and is The first porous layer and the second porous layer are different porous layers from each other.
  • the average pore size of the first porous layer is 0.005 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the first porous layer is 5 ⁇ m or more and 150 ⁇ m or less.
  • the basis weight of the second porous layer is 10 g / m 2 or more and 200 g / m 2 or less.
  • the gas separator is It has a supply unit for supplying a raw material gas containing at least the specific gas component from the side of the separation membrane sheet opposite to the second porous layer.
  • the supply unit supplies the raw material gas so that the pressure P [MPaA] of the raw material gas and the basis weight deviation s [g / m 2 ] of the second porous layer satisfy the relationship of the formula (1).
  • Gas separator [12] A supply-side space and a transmission-side space separated from each other by the separation membrane sheet, A supply-side inlet for supplying the raw material gas from the supply unit to the supply-side space, A permeation side outlet for discharging a permeated gas containing the specific gas component that has permeated the separation membrane sheet from the permeation side space, and a permeation side outlet.
  • the gas separation device according to [11] comprising a non-permeation side outlet for discharging the raw material gas that has not permeated the separation membrane sheet from the supply side space.
  • the gas separation method of the present embodiment is a gas separation method using a separation membrane sheet that selectively permeates a specific gas component.
  • the separation membrane sheet will be described first, and then the gas separation method using the separation membrane sheet will be described.
  • the separation membrane sheet 10 shown in FIG. 1A is a separation membrane sheet 10 that selectively permeates a specific gas component, and includes a first porous layer 11 and a separation functional layer 15 laminated on the first porous layer 11.
  • the first porous layer 11 has a second porous layer 12 laminated on the opposite side of the separation functional layer 15.
  • the separation functional layer 15 is a non-porous resin composition layer, and the first porous layer 11 and the second porous layer 12 are different porous layers from each other.
  • the average pore size of the first porous layer 11 is 0.005 ⁇ m or more and 1 ⁇ m or less, and the thickness of the first porous layer 11 is 5 ⁇ m or more and 150 ⁇ m or less.
  • the basis weight of the second porous layer 12 is 10 g / m 2 or more and 200 g / m 2 or less.
  • first porous layer 11 and the second porous layer 12 are different from each other means that the first porous layer 11 and the second porous layer 12 are not completely the same, for example, the first porous layer.
  • Types and forms of materials constituting 11 and the second porous layer 12 porous film, non-woven fabric, woven fabric, foam, etc.
  • thickness, density, average pore size, porosity of the first porous layer 11 and the second porous layer 12. At least one of physical properties such as air permeability is different.
  • the first porous layer 11 and the second porous layer 12 are different in at least one of the thickness and the air permeability.
  • the thickness of the first porous layer 11 and the thickness of the second porous layer 12 are different from each other, the thickness of the first porous layer 11 is preferably smaller than the thickness of the second porous layer 12.
  • the air permeability of the first porous layer 11 and the air permeability of the second porous layer 12 are different from each other, the air permeability of the first porous layer 11 is preferably smaller than the air permeability of the second porous layer 12.
  • first porous layer 11 is a porous membrane and the second porous layer 12 is a non-woven fabric.
  • the second porous layer 12 is preferably arranged on the transmission side flow path member side in the separation membrane element described later.
  • the separation membrane sheet 10 may have a third porous layer 13 on the opposite side of the separation functional layer 15 from the first porous layer 11, and the separation function of the third porous layer 13 may be provided.
  • a fourth porous layer 14 may be provided on the opposite side of the layer 15.
  • the specific gas component that the separation membrane sheet 10 selectively permeates is preferably an acid gas.
  • the acidic gases carbon dioxide (CO 2), hydrogen sulfide (H 2 S), carbonyl sulfide, sulfur oxides (SO x), nitrogen oxides (NO x), include hydrogen halides such as hydrogen chloride, and ..
  • the specific gas component is preferably carbon dioxide.
  • the separation function layer 15 has gas selective permeability mainly for selectively permeating a specific gas component.
  • the separation functional layer 15 is a non-porous resin composition layer formed by using the resin composition, and is preferably a gel-like resin composition layer.
  • the non-porous resin composition layer is not a porous layer (molecular sieving membrane) that selectively permeates by utilizing the difference in the size and shape of the molecule, but the difference in the solubility and diffusivity of the molecule. Refers to a layer (dissolved-diffusing membrane) that is selectively permeated using.
  • the non-porous resin composition layer include a promoted transport membrane containing a substance that promotes the solubility and / and diffusivity of gas molecules.
  • the resin composition layer preferably contains at least a hydrophilic resin and a carrier that reversibly reacts with a specific gas component, and may contain an additive other than the hydrophilic resin and the carrier, if necessary. ..
  • the hydrophilic resin is a resin having a hydrophilic group such as a hydroxyl group or an ion exchange group, and includes a crosslinked hydrophilic resin that exhibits high water retention by having a network structure in which the molecular chains of the hydrophilic resin are crosslinked. Is more preferable.
  • the polymer forming the hydrophilic resin preferably has, for example, an acrylic acid alkyl ester, a methacrylic acid alkyl ester, a vinyl ester of a fatty acid, or a structural unit derived from a derivative thereof.
  • examples of the polymer exhibiting such hydrophilicity include a polymer obtained by polymerizing a monomer such as acrylic acid, itaconic acid, crotonic acid, methacrylic acid, and vinyl acetate, and specifically, an ion exchange group.
  • Polyacrylic acid-based resin having a carboxyl group polyitaconic acid-based resin, polycrotonic acid-based resin, polymethacrylic acid-based resin, etc., polyvinyl alcohol-based resin having a hydroxyl group, etc.
  • examples thereof include a polymerization system resin, an acrylic acid-methacrylic acid copolymer system resin, an acrylic acid-methyl methacrylate copolymer system resin, and a methacrylic acid-methyl methacrylate copolymer system resin.
  • polyacrylic acid-based resin which is a polymer of acrylic acid
  • polymethacrylic acid-based resin which is a polymer of methacrylic acid
  • polyvinyl alcohol-based resin obtained by hydrolyzing a polymer of vinyl acetate, methyl acrylate and vinyl acetate.
  • Acrylate-vinyl alcohol copolymer resin obtained by saponifying the copolymer of the above acrylic acid-methacrylic acid copolymer resin which is a copolymer of acrylic acid and methacrylic acid is more preferable, and polyacrylic acid and acrylate are more preferable.
  • -Vinyl alcohol copolymer resin is more preferred.
  • the crosslinked hydrophilic resin may be prepared by reacting a polymer exhibiting hydrophilicity with a crosslinking agent, or a monomer which is a raw material of the polymer exhibiting hydrophilicity and a crosslinkable monomer are copolymerized. May be prepared.
  • the cross-linking agent or cross-linking monomer is not particularly limited, and conventionally known cross-linking agents or cross-linking monomers can be used.
  • cross-linking agent examples include epoxy cross-linking agents, polyhydric glycidyl ethers, polyhydric alcohols, polyhydric isocyanates, polyhydric aziridines, haloepoxy compounds, polyhydric aldehydes, polyvalent amines, organic metal-based cross-linking agents, metal-based cross-linking agents and the like. Examples thereof include conventionally known cross-linking agents.
  • crosslinkable monomer include conventionally known crosslinkable monomers such as divinylbenzene, N, N'-methylenebisacrylamide, trimethylolpropane triallyl ether, and pentaerythritol tetraallyl ether.
  • cross-linking method examples include methods such as thermal cross-linking, ultraviolet cross-linking, electron beam cross-linking, radiation cross-linking, and photo-crosslinking, and methods described in JP-A-2003-26809 and JP-A-7-88171. Conventionally known methods can be used.
  • a carrier that reversibly reacts with a specific gas component exists in the resin composition layer constituting the separation functional layer 15, and reacts reversibly with the specific gas component dissolved in the resin composition layer. Selectively permeates a specific gas component.
  • the carrier contained in the separation function layer 15 may be one type or two or more types.
  • the carrier used when the specific gas component is an acid gas include an alkali metal carbonate, an alkali metal bicarbonate, and an alkanolamine (for example, No. 7-102310) when the acid gas is carbon dioxide. (Described in Japanese Patent No. 2086581), etc.) and alkali metal hydroxides (for example, described in the pamphlet of International Publication No. 2016/024523), when the acid gas is a sulfur oxide, a sulfur-containing compound or When the acid gas is a nitrogen oxide, the alkali metal citrate and the transition metal complex (for example, described in Japanese Patent No. 2879057) and the like are alkali metal nitrite and the transition metal complex (for example, Patent No. 2879057). (Described in the Gazette, etc.), etc., respectively.
  • the thickness of the separation functional layer 15 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, further preferably 100 ⁇ m or less, and usually 5 ⁇ m or more.
  • the thickness can be determined by observing the cross section of the separation functional layer 15 using an optical microscope or an electron microscope.
  • the separation functional layer 15 contains, for example, a hydration reaction catalyst for improving the reaction rate between a specific gas component and the carrier, a surfactant, and the like as additives. May be good.
  • An oxo acid compound can be mentioned as a hydration reaction catalyst when a specific gas component is an acid gas.
  • the oxoacid compound is preferably an oxoacid compound of at least one element selected from the group consisting of Group 14 elements, Group 15 elements, and Group 16 elements, and is preferably a tellurous acid compound, a selenous acid compound, and a sub. It is more preferable that the compound is at least one selected from the group consisting of the tellurous acid compound and the orthosilicic acid compound.
  • the separation functional layer 15 may contain one or more oxoacid compounds.
  • the surfactant is not particularly limited, but for example, polyoxyethylene polyoxypropylene glycols, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl ethers, fluorine-based surfactants, silicone-based surfactants and the like. Conventionally known surfactants can be used. One type of surfactant may be used alone, or two or more types may be used in combination.
  • the first porous layer 11 can be used as a support layer for supporting the separation function layer 15.
  • the first porous layer 11 may be a layer to which a coating liquid containing a resin composition is applied in order to form the separation functional layer 15.
  • the first porous layer 11 is contained in the raw material gas supplied to the separation functional layer 15, particularly the raw material gas, and does not serve as a diffusion resistance of a specific gas component that selectively permeates the separation functional layer 15. As described above, it has high porosity with high gas permeability.
  • the first porous layer 11 may have a single-layer structure or may have a multi-layer structure.
  • the layers may be the same as each other or different from each other.
  • the average pore size of the first porous layer 11 is 0.005 ⁇ m or more, preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and 1 ⁇ m or less, 0.7 ⁇ m or less. It is preferably 0.5 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the average pore size of the first porous layer 11 can be measured by the method described in Examples described later.
  • the thickness of the first porous layer 11 is 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 30 ⁇ m or more, and 150 ⁇ m or less, 120 ⁇ m or less. It is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the thickness of the first porous layer 11 is preferably smaller than the thickness of the second porous layer 12, which will be described later. The thickness can be measured by the method described in Examples described later.
  • the average pore diameter and thickness of the first porous layer 11 are within the above ranges, it does not become a diffusion resistance of a specific gas component that selectively permeates the separation function layer 15, and serves as a support layer for the separation function layer 15. It can be preferably used. Further, when the resin composition is applied on the first porous layer 11 in order to form the resin composition layer constituting the separation functional layer 15, stable film forming property can be easily obtained.
  • the porosity of the first porous layer 11 is preferably 5% or more, preferably 10%, from the viewpoint of being suitably used as a support layer for the separation functional layer while suppressing the diffusion resistance of a specific gas component. It may be more than, 20% or more, 30% or more, preferably 99% or less, 95% or less, 90% or less. You may.
  • the true density of the first porous layer 11 is determined by measuring the volume and weight of the melt-solidified sample obtained by heating the cut-out sample to a melting point or higher, melting it to make it non-porous, and then cooling and solidifying it. Can be decided.
  • the true density of the material constituting the first porous layer 11 can be determined based on the ratio (thickness ratio) of each layer contained in the cut-out sample.
  • the air permeability of the first porous layer 11 has a Garley value of 30 seconds or more, which indicates the air permeability, from the viewpoint that it is suitably used as a support layer for the separation function layer while suppressing the diffusion resistance of a specific gas component. It is preferably 60 seconds or more, 90 seconds or more, 2000 seconds or less, 1500 seconds or less, 1000 seconds or less. It may be 500 seconds or less.
  • the air permeability of the first porous layer 11 is preferably smaller than the air permeability of the second porous layer 12, which will be described later.
  • the Garley value indicating the aeration resistance can be determined by measuring in accordance with JIS L 1096, and more specifically, it can be determined by the method described in Examples described later.
  • the Young's modulus of the first porous layer 11 is preferably 20 GPa or more, preferably 100 GPa or more, from the viewpoint of being suitably used as a support layer of the separation functional layer while suppressing the diffusion resistance of a specific gas component. It may be 200 GPa or more, preferably 1200 GPa or less, 1000 GPa or less, 800 GPa or less, or 600 GPa or less.
  • Young's modulus can be measured by the following procedure. A small piece is cut out from the first porous layer 11 into a dumbbell shape specified by JIS K6251-3. Under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH, a small piece of film is attached to the autograph device and pulled at a constant speed of 50 mm / min. Young's modulus is calculated from the initial stress and strain in this measurement. The measurement is performed three times, and the average value is defined as the Young's modulus of the first porous layer 11.
  • the first porous layer 11 is preferably hydrophobic, and the contact angle of water at a temperature of 25 ° C. may be 90 degrees or more, 95 degrees or more, or 100 degrees or more. ..
  • the contact angle of water can be measured with a contact angle meter (for example, manufactured by Kyowa Interface Science Co., Ltd .; trade name: "DropMaster500").
  • the first porous layer 11 is preferably formed of a resin material or an inorganic material.
  • the resin material constituting the first porous layer 11 include polyolefin resins such as polyethylene (PE) and polypropylene (PP); polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), and vinylidene polyvinylfluoride (PVDF).
  • a polyolefin resin or a fluorine-containing resin is preferable from the viewpoint of water repellency and heat resistance.
  • the inorganic material constituting the first porous layer 11 include metals, glass, ceramics and the like.
  • the first porous layer 11 may contain both a resin material and an inorganic material.
  • the first porous layer 11 is not particularly limited as long as it is a porous material, and may be in the form of, for example, a porous membrane, a non-woven fabric, a woven fabric, a foam, a net, or the like.
  • the first porous layer 11 is preferably a porous film from the viewpoint that it is suitably used as a support layer for the separation functional layer while suppressing the diffusion resistance of a specific gas component.
  • the porous film refers to a porous resin film. Examples of the porous membrane include a porous membrane obtained by a stretching method or a phase separation method.
  • the second porous layer 12 is laminated on the side opposite to the separation functional layer 15 of the first porous layer 11, and can be used as a reinforcing layer for reinforcing the function of the first porous layer 11 as a support layer.
  • the second porous layer 12 it is possible to additionally impart strength that can withstand the pressure load applied to the separation membrane sheet 10 when a specific gas component in the raw material gas is selectively permeated.
  • the resin composition is applied on the first porous layer 11 in order to form the resin composition layer constituting the separation functional layer 15, the strength capable of withstanding the tension load applied to the first porous layer 11 is increased. It can be additionally given.
  • the second porous layer 12 may have a single-layer structure or may have a multi-layer structure.
  • the layers may be the same as each other or different from each other.
  • the basis weight of the second porous layer 12 is preferably 10 g / m 2 or more, and more preferably 15 g / m 2 or more, from the viewpoint of imparting strength that can withstand the pressure and tension applied to the separation membrane sheet 10. , 20 g / m 2 or more, usually 200 g / m 2 or less, and 150 g / m 2 or less.
  • the basis weight can be measured by the method described in Examples described later.
  • the thickness of the second porous layer 12 is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more, from the viewpoint of imparting strength that can withstand the pressure and tension applied to the separation membrane sheet 10. It may be 700 ⁇ m or less, preferably 600 ⁇ m or less, 500 ⁇ m or less, or 400 ⁇ m or less. The thickness can be measured by the method described in Examples described later.
  • the porosity of the second porous layer 12 is preferably 5% or more, preferably 10% or more, and 20% or more, from the viewpoint of imparting strength that can withstand the pressure and tension applied to the separation membrane sheet 10. It may be 30% or more, preferably 99% or less, 95% or less, or 90% or less.
  • the porosity can be calculated by the method described above.
  • the air permeability of the second porous layer 12 preferably has a Garley value of 0.01 seconds or more, may be 0.05 seconds or more, and is usually 30 seconds or less, 20 seconds or less. It may be 10 seconds or less.
  • the Garley value indicating the aeration resistance can be measured and determined in accordance with JIS L 1096, and more specifically, it can be determined by the method described in Examples described later.
  • the Young's modulus of the second porous layer 12 is preferably 20 GPa or more, preferably 50 GPa or more, or 100 GPa or more, from the viewpoint of imparting strength that can withstand the pressure and tension applied to the separation membrane sheet 10. It may be 400 GPa or less, preferably 300 GPa or less, or 200 GPa or less. Young's modulus can be calculated by the method described above.
  • the second porous layer 12 is preferably formed of a resin material or an inorganic material.
  • the resin material or the inorganic material constituting the second porous layer 12 include a resin material or an inorganic material for forming the first porous layer 11.
  • the resin material for forming the second porous layer 12 is preferably a polyolefin resin or polyphenylene sulfide.
  • the second porous layer 12 is not particularly limited as long as it is a porous material, and may be in the form of, for example, a porous membrane, a non-woven fabric, a woven fabric, a foam, a net, or the like.
  • the second porous layer 12 is preferably a non-woven fabric from the viewpoint of imparting strength that can withstand the pressure and tension applied to the separation membrane sheet 10.
  • the non-woven fabric include spunbond non-woven fabric, melt blow non-woven fabric, air-laid non-woven fabric, spunlace non-woven fabric, and card non-woven fabric.
  • the average fiber diameter of the fibers constituting the non-woven fabric is usually 1 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, and usually 80 ⁇ m or less. Yes, it may be 60 ⁇ m or less, 50 ⁇ m or less, or 30 ⁇ m or less.
  • the average fiber diameter can be an average value of the fiber diameters measured for 50 arbitrarily selected fibers by photographing the surface of the second porous layer 12 using an optical microscope or an electron microscope.
  • the second porous layer 12 is preferably fixed to the first porous layer 11.
  • a conventionally known method can be used, and examples thereof include a method of bonding via an adhesive or an adhesive, a heat fusion method, and the like.
  • the first porous layer 11 and the second porous layer 11 and the second porous layer 12 are bonded.
  • the layer 12 may be bonded.
  • the amount of the adhesive or the pressure-sensitive adhesive interposed between the first porous layer 11 and the second porous layer 12 can be, for example, 1 g / m 2 or more and 1000 g / m 2 or less, and 5 g / m 2 or more and 200 g / m. It may be m 2 or less.
  • Examples of the method of fixing by the heat fusion method include a method in which the first porous layer 11 and the second porous layer 12 are laminated and then heat or vibration is applied from the outside to melt and fuse the joint surfaces. Be done.
  • the separation membrane sheet 10 When the space between the first porous layer 11 and the second porous layer 12 or between the second porous layer 12 and another layer is fixed with an adhesive or an adhesive, these are taken from the separation membrane sheet 10.
  • the separation membrane sheet 10 When taking out the layer, first, the separation membrane sheet 10 is washed with water and dried to remove the separation function layer 15. Next, the adhesive or the pressure-sensitive adhesive may be dissolved and removed using a solvent or the like, the first porous layer 11 and the second porous layer 12 may be taken out, and the various physical properties described above may be measured.
  • the basis weight of the second porous layer 12 is as follows. It can be measured by the procedure of. First, the separation membrane sheet 10 is washed with water and dried to remove the separation functional layer 15. Next, a first sample cut out to a size of 50 mm ⁇ 50 mm was prepared so as to include the entire layer fixed to the second porous layer 12 by heat fusion, and a second sample was observed from the cross section of the first sample. The thickness of the porous layer 12 is measured, and the average value thereof is calculated.
  • the basis weight deviation of the second porous layer 12 is Except for using the basis weight value calculated above, the measurement can be performed according to the method described in Examples described later.
  • the third porous layer 13 is laminated on the opposite side of the separation functional layer 15 from the first porous layer 11, and can be used as a protective layer for protecting the separation functional layer 15.
  • the third porous layer 13 may have a single-layer structure or may have a multi-layer structure.
  • the layers may be the same as each other or different from each other.
  • the third porous layer 13 for example, the same one as the first porous layer 11 can be used.
  • the fourth porous layer 14 is laminated on the side opposite to the separation function layer 15 of the third porous layer 13, and can be used as a reinforcing layer for reinforcing the function of the third porous layer 13 as a protective layer.
  • the fourth porous layer 14 may have a single-layer structure or may have a multi-layer structure. When the fourth porous layer 14 has a multi-layer structure, the layers may be the same as each other or different from each other.
  • the fourth porous layer 14 for example, the same one as the second porous layer 12 can be used.
  • the fourth porous layer 14 may or may not be fixed to the third porous layer 13.
  • a conventionally known fixing method can be applied. For example, the above-mentioned fixing method of the first porous layer 11 and the second porous layer 12 can be applied. Can be mentioned.
  • the method for producing the separation membrane sheet 10 includes, for example, a step of preparing a coating liquid containing a resin composition for forming the separation functional layer 15 (hereinafter, may be referred to as a “preparation step”) and a first porous layer.
  • the step of applying the coating liquid on the 11 (hereinafter, may be referred to as “coating step”) can be included.
  • the second porous layer 12 is laminated on the side of the first porous layer 11 to which the coating liquid is applied in advance, on the side opposite to the side on which the coating liquid is applied. It may have a process.
  • the second porous layer 12 is laminated on the side of the first porous layer 11 opposite to the separation functional layer 15. It may have a step to carry out.
  • the preparation step is a step of preparing a coating liquid to be applied on the first porous layer 11.
  • the coating liquid can be prepared by mixing the resin composition for forming the separation functional layer 15 and the medium.
  • the resin composition can include the above-mentioned resin, a carrier that reversibly reacts with a specific gas component, a hydration reaction catalyst, a surfactant, and the like.
  • Examples of the medium include protic polar solvents such as water, methanol, ethanol, alcohols such as 1-propanol and 2-propanol; non-polar solvents such as toluene, xylene and hexane; and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. , N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and other aprotic polar solvents; and the like.
  • One type of medium may be used alone, or two or more types may be used in combination as long as they are compatible with each other.
  • a medium containing at least one selected from the group consisting of alcohols such as water, methanol, ethanol, 1-propanol and 2-propanol is preferable, and a medium containing water is more preferable.
  • the preparation step may include a defoaming step for removing air bubbles contained in the prepared coating liquid.
  • the defoaming step include a method of applying shear by stirring or filtering the coating liquid, a method of vacuum degassing or degassing the coating liquid under reduced pressure, a method of heating the coating liquid to degas, and the like. Can be done.
  • the coating step is a step of applying the coating liquid prepared in the preparation step onto the first porous layer 11.
  • the coating process is by slot die coating, spin coating method, bar coating, die coating, blade coating, air knife coating, gravure coating, roll coating coating, spray coating, dip coating, comma roll method, kiss coating method, screen printing, inkjet printing, etc. It can be carried out.
  • the coating step preferably includes a step of removing the medium from the film of the coating liquid formed by applying the coating liquid on the first porous layer 11.
  • Examples of the step of removing the medium include a method of evaporating and removing the medium from the film of the coating liquid by heating or the like.
  • the third porous layer 13 is laminated on the side opposite to the first porous layer 11 of the membrane formed by the coating liquid. It may have a process. After laminating the third porous layer 13, a step of further removing the medium in the film of the coating liquid may be performed.
  • the separation membrane sheet 10 further has the fourth porous layer 14, the method for producing the separation membrane sheet 10 is the side of the third porous layer 13 facing the film of the coating liquid prior to the step of laminating the third porous layer 13. There may be a step of laminating the fourth porous layer 14 on the opposite side to the above.
  • the third porous layer 13 is laminated on the separation functional layer 15, and then the fourth porous layer 14 is laminated on the side of the third porous layer 13 opposite to the separation functional layer 15. It may have a process.
  • the gas separation method of the present embodiment is performed using the separation membrane sheet 10, and is a step of supplying a raw material gas containing at least a specific gas component from the side of the separation membrane sheet 10 opposite to the second porous layer 12. (Hereinafter, it may be referred to as "supply process").
  • supply process the pressure of the raw material gas and the basis weight deviation s [g / m 2 ] of the second porous layer 12 satisfy the relationship of the formula (1).
  • the raw material gas supplied to the separation membrane sheet 10 is a third porous layer when the separation membrane sheet 10 has the third porous layer 13 and the fourth porous layer 14, as shown in FIGS. 1A and 1B. It is supplied to the 13 or the 4th porous layer 14 side.
  • the separation membrane sheet 10 having the second porous layer 12 having a large basis weight unevenness tends to have non-uniform strength, and when the raw material gas is supplied, the separation membrane sheet 10 is separated in a region or the like where the basis weight deviation s is relatively large. Damage such as breakage is likely to occur in the membrane sheet 10 (particularly, the separation functional layer 15). In the damaged region of the separation membrane sheet 10, the raw material gas flows out without being separated, so that the separation efficiency tends to decrease.
  • the pressure P of the raw material gas supplied to the separation membrane sheet 10 is large, the unevenness of the basis weight (that is, the basis weight deviation s) of the second porous layer 12 is reduced to make the strength of the separation membrane sheet 10 uniform. Is preferable.
  • the pressure P of the raw material gas supplied to the separation membrane sheet 10 is small, even if there is some non-uniformity in the strength of the separation membrane sheet 10, the separation membrane sheet 10 is supplied by the supply of the raw material gas. Since damage such as breakage is unlikely to occur, the separation efficiency is unlikely to decrease, and it is considered that the unevenness of the texture of the second porous layer 12 (that is, the texture deviation s) may be large.
  • the pressure P of the raw material gas in the supply step is selected so as to satisfy the relationship of the above formula (1), and the basis weight deviation s of the basis weight of the second porous layer 12 in the separation membrane sheet 10 is set. It has been selected. Therefore, when the pressure P of the raw material gas in the supply process is large, it is possible to suppress a decrease in the separation efficiency by reducing the basis weight deviation s of the second porous layer 12. On the other hand, when the basis weight deviation s of the basis weight of the second porous layer 12 is large, it is possible to suppress the decrease in separation efficiency by performing gas separation under the condition that the pressure P of the raw material gas in the supply process is small. ..
  • the pressure P of the raw material gas is not particularly limited, but is usually 0.01 MPaA or more, may be 0.05 MPaA or more, may be 0.1 MPaA or more, and is usually 10 MPaA or less and 5 MPaA or less. It may be present, or it may be 3 MPaA or less.
  • the texture deviation of the second porous layer 12 is not particularly limited , but is preferably 4 g / m 2 or less, preferably 3.5 g / m 2 or less, and more preferably 3 g / m 2 or less. Usually, it is 0.01 g / m 2 or more, and may be 0.1 g / m 2 or more.
  • the basis weight deviation of the second porous layer 12 can be measured by the method described in Examples described later.
  • the separation membrane sheet 10 separates the supply side space for supplying the raw material gas and the permeation side space for receiving the permeated gas containing a specific gas component that has permeated the separation membrane sheet 10. It is preferable that it is a thing.
  • the supply side space is provided on the side opposite to the second porous layer 12 of the separation membrane sheet 10, and the permeation side space is provided on the second porous layer 12 side of the separation membrane sheet 10.
  • the supply side space is provided on the third porous layer 13 side and the fourth porous layer 14 side of the separation membrane sheet 10.
  • the separation membrane sheet 10 used in the above-mentioned gas separation method is usually preferably used in a state of being incorporated in a separation membrane element or a separation membrane module.
  • the separation membrane sheet 10 can be used for known separation membrane elements such as spiral type, flat membrane type, hollow fiber type, tube type, pleated type, and plate and frame type.
  • FIG. 2 is a schematic cross-sectional view schematically showing an example of a laminated body including a separation membrane sheet provided in the separation membrane element.
  • the separation membrane element 20 has a supply-side flow path member 3 that forms a flow path through which the raw material gas containing a specific gas component flows, and a flow path through which the permeated gas that has passed through the separation membrane sheet 10 flows.
  • the transmission side flow path member 4 to be formed is included.
  • the supply side flow path member 3 is arranged on the side opposite to the second porous layer 12 of the separation membrane sheet 10, and the transmission side flow path member 4 is on the second porous layer 12 side of the separation membrane sheet 10. Be placed.
  • the supply-side flow path member 3 is arranged on the third porous layer 13 side or the fourth porous layer 14 side.
  • the supply side flow path member 3 is arranged on the fourth porous layer 14 side of the separation membrane sheet 10.
  • FIGS. 3A and 3B are schematic perspective views provided with a partially developed portion showing an example of the separation membrane element of the present embodiment.
  • the separation membrane elements shown in FIGS. 3A and 3B are spiral type separation membrane elements 21 and 21a.
  • the spiral type separation membrane elements 21 and 21a are, as shown in FIGS. 3A and 3B, as shown in FIGS. 3A and 3B.
  • a supply-side flow path member 3 that forms a flow path through which a raw material gas containing a specific gas component flows
  • a separation membrane sheet 10 that selectively separates and permeates a specific gas component contained in the raw material gas flowing through the supply-side flow path member 3.
  • a permeation-side flow path member 4 that forms a flow path through which a permeated gas containing a specific gas component that has permeated the separation membrane sheet 10 flows.
  • a sealing part to prevent mixing of the raw material gas and the permeated gas It has a central tube 5 for collecting the permeated gas flowing through the permeation side flow path member 4, and has.
  • An element laminate in which at least one or more of the supply-side flow path member 3, the separation membrane sheet 10, and the transmission-side flow path member 4 are laminated can be provided with a wound body wound around a central tube 5. ..
  • the winding body may have an arbitrary shape such as a cylindrical shape or a square tubular shape.
  • the central tube 5 has a plurality of holes 50 on the outer peripheral surface thereof that communicate the flow path space of the permeated gas formed by the permeation side flow path member 4 and the hollow space inside the central tube 5.
  • the spiral type separation membrane element 21a may further include a fixing member such as an outer peripheral tape or a telescope prevention plate 55 shown in FIG. 3B in order to prevent the winding body from being unwound or unwound.
  • a fixing member such as an outer peripheral tape or a telescope prevention plate 55 shown in FIG. 3B in order to prevent the winding body from being unwound or unwound.
  • An outer wrap (reinforcing layer) may be provided on the outermost periphery of the wound body in order to secure the strength against the load due to the internal pressure and the external pressure applied to the separation membrane element.
  • the supply-side flow path member 3 and the permeation-side flow path member 4 promote turbulence (surface renewal of the membrane surface) of the permeated gas that has permeated the raw material gas and the separation membrane sheet 10, and the film of the permeated gas in the raw material gas. It is preferable to have a function of increasing the permeation rate and a function of minimizing the pressure loss of the supplied raw material gas and the permeation gas that has permeated the separation membrane sheet 10.
  • the supply-side flow path member 3 and the permeation-side flow path member 4 have a function of causing turbulence in the raw material gas and the permeated gas in addition to a function as a spacer for forming a flow path of the raw material gas and the permeated gas.
  • a mesh-like one (net-like, mesh-like, etc.) is preferably used. Since the gas flow path changes depending on the shape of the mesh, the shape of the unit lattice of the mesh is preferably selected from, for example, a square, a rectangle, a rhombus, a parallelogram, and the like, depending on the purpose.
  • the material of the supply side flow path member 3 and the transmission side flow path member 4 is not particularly limited, but a material having heat resistance capable of withstanding the operating temperature conditions of the separation device provided with the separation membrane elements 20, 21 and 21a is preferable. ..
  • the sealing portion is provided to prevent mixing of the raw material gas and the permeated gas, and can be formed by, for example, the sealing material permeating into the permeation side flow path member 4 and the separation membrane sheet 10 and hardening. ..
  • the sealing portion is usually the center of the end portions located at both ends in the direction parallel to the axis of the central tube 5 of the wound body and the end portions located at both ends in the direction orthogonal to the axis of the central tube 5. It is provided at the end on the side where the distance between the tube 5 and the end is long, and can form a so-called envelope shape.
  • a material generally used as an adhesive can be used, and for example, an epoxy resin or the like can be used.
  • the central tube 5 is a conduit for collecting the permeated gas that has passed through the separation membrane sheet 10 and discharging it from the separation membrane elements 21 and 21a.
  • the central tube 5 is preferably a material having heat resistance that can withstand the operating temperature conditions of the separation device provided with the separation membrane elements 21 and 21a, and mechanical strength that can withstand the winding of the element laminate.
  • the separation membrane element can be used in the separation membrane module.
  • the separation membrane module has one or more separation membrane elements.
  • the separation membrane module includes a raw material gas supply port (a portion communicating with the supply side end portion 51 shown in FIG. 3B) and a non-permeable gas discharge port (a portion communicating with the flow path formed by the supply side flow path member 3 of the separation membrane element).
  • a permeation gas discharge port (a portion communicating with the discharge side end 53 shown in FIG. 3B) and a permeation gas discharge port (communication with the discharge port 52 shown in FIG. 3B) communicating with the flow path formed by the permeation side flow path member 4 of the separation membrane element. Part).
  • the raw material gas is supplied to the separation membrane sheet 10 through the raw material gas supply port, and the permeated gas that has passed through the separation membrane sheet 10 is discharged through the permeation gas discharge port and permeates the separation membrane sheet 10.
  • the missing raw material gas is discharged through the non-permeable gas outlet.
  • the above-mentioned raw material gas supply port, non-permeated gas discharge port, and permeated gas discharge port may be provided in the main body of the separation membrane element, and may be a container for accommodating the separation membrane element (hereinafter, may be referred to as “housing”). It may be provided in.
  • the housing can form a space for enclosing the raw material gas flowing in the separation membrane module, and includes, for example, a tubular member such as stainless steel and a closing member for closing both ends of the tubular member in the axial direction. May have.
  • the housing may have an arbitrary cylindrical shape such as a cylindrical shape or a square tubular shape, but since the separation membrane element is usually cylindrical, it is preferably cylindrical.
  • a partition is provided inside the housing to prevent mixing of the raw material gas supplied to the supply side end portion 51 and the non-permeated gas that has not permeated the separation membrane sheet provided in the separation membrane element. Can be done.
  • the raw material gas supplied to each separation membrane element may be supplied in parallel or in series.
  • supplying the raw material gas in parallel means that at least the raw material gas is distributed and introduced into a plurality of separation membrane elements
  • supplying the raw material gas in series means that at least the raw material gas is discharged from the separation membrane element in the previous stage.
  • the gas separation device of the present embodiment is a device for performing the above-mentioned gas separation method by using a separation membrane sheet that selectively permeates a specific gas component.
  • the gas separation device has a supply unit for supplying a raw material gas containing at least a specific gas component from the side opposite to the second porous layer 12 of the separation membrane sheet 10, and the supply unit has a pressure P [MPaA] of the raw material gas. ]
  • the grain deviation s [g / m 2 ] of the second porous layer 12 satisfy the relationship of the above formula (1), so that the raw material gas is supplied.
  • the gas separation device includes a supply-side space and a permeation-side space separated from each other by a separation membrane sheet 10, a supply-side inlet for supplying a raw material gas containing at least a specific gas component from the supply unit to the supply-side space.
  • the supply unit supplies the raw material gas at pressure P to the separation membrane sheet 10 and the supply side space.
  • the supply-side space and the transmission-side space can be composed of, for example, the supply-side flow path member 3 and the transmission-side flow path member 4 in the separation membrane element described above, respectively.
  • the gas separation device can include at least one separation membrane module including the separation membrane element having the above-mentioned separation membrane sheet 10.
  • the arrangement and number of separation membrane modules provided in the separation device can be selected according to the required processing amount, the recovery rate of a specific gas component, the size of the place where the separation device is installed, and the like.
  • the time required for 300 mL of air to ventilate the sample ie, the number of Garleys
  • the average value of the measurement results at three different points of each sample piece was taken as the Garley value.
  • the peeled second porous layer was divided into three in the width direction, and a measurement sample of 250 mm (width direction) ⁇ 200 mm was cut out from the portion of each region excluding the sealing portion.
  • the width direction was set to be parallel to the axis of the central canal in the separation membrane element produced in Examples and Comparative Examples.
  • the weight and area of each of the cut out measurement samples were measured to calculate the grain (weight [g] / area [m 2 ]).
  • the basis weight deviation was calculated from the following formula based on the basis weight value of each measurement sample.
  • Basis weight deviation ⁇ sigma [(basis weight of each sample for measurement) - (average of basis weight of the three test sample)] 2/3 ⁇ 0.5
  • means that the squared value of the difference between the basis weight of the measurement sample and the average value of the basis weights of the three measurement samples is calculated and added for each measurement sample.
  • the separation membrane element 22 is separated from the supply side end 51 side of the supply side space portion of the separation membrane element 22 and the discharge port 52 side of the central canal 5 by the separation membrane sheet 10. It was fixed in the stainless steel housing 36 in the test apparatus N. The discharge port 52 side of the central canal 5 was led out to the outside of the housing 36, and the other side was closed. The supply-side end 51 and the discharge-side end of the supply-side space portion of the separation membrane element 22 are opened in the housing 36. That is, the gas supplied to the housing 36 was allowed to flow into the separation membrane element 22 from both ends of the supply side space portion (supply side end portion 51 and discharge side end portion) of the separation membrane element 22.
  • a cylinder for supplying nitrogen (N 2 ) gas was attached to the inside of the housing 36 via a valve, and a pressure gauge 35 for measuring the pressure inside the housing 36 was attached.
  • N 2 nitrogen
  • the housing 36 by supplying the N 2 gas at room temperature (20 ° C.), the supply-side end portion 51 side and the discharge side end portion of the separation membrane element 22, pressure is applied to the 1600KPaA (absolute pressure). The pressure was confirmed with a pressure gauge 35. On the other hand, the pressure on the discharge port 52 side of the central canal 5 was adjusted to atmospheric pressure.
  • N 2 gas permeation performance evaluation of the separation membrane element 22 While maintaining this state, by measuring the time variation of the pressure within the housing 36 by the pressure gauge 35, performs a leak test of the separation membrane element 22 were N 2 gas permeation performance evaluation of the separation membrane element 22. Specifically, the permeance of N 2 (mol / (m 2 ⁇ s ⁇ kPa)) is calculated based on the time change of the measured pressure, and the permeance is 1.0 ⁇ 10 -7 mol / (m 2). If it is s ⁇ kPa) or less, it is evaluated as A as the airtightness of the separation membrane element 22 is maintained, and the permeance is more than 1.0 ⁇ 10 -7 mol / (m 2 ⁇ s ⁇ kPa). The case was evaluated as B.
  • Example 1 Preparation of separation membrane sheet
  • 1000 parts by weight of water as a medium 24.79 parts by weight of crosslinked polyacrylic acid (“Akpec HV-501” manufactured by Sumitomo Seika Co., Ltd.) as a hydrophilic resin
  • non-crosslinked polyacrylic acid Sumitomo Sei
  • “Akpana AP-40F” manufactured by Kasha Co., Ltd. (40% Na-saken) was charged with 4.96 parts by weight to obtain a dispersion liquid in which a hydrophilic resin was dispersed in water.
  • the separation membrane sheet 10 obtained in the preparation of the separation membrane sheet was cut to a length of 1.575 mm, and the cut separation membrane sheet 10 was folded in half with the second porous layer 12 side to the outside, and the flow path on the supply side was formed.
  • a film leaf was obtained by sandwiching the member 3.
  • the central tube was fixed to one end of the permeation side flow path member 4 of the first layer using an epoxy adhesive.
  • the film leaf obtained above was laminated on the permeation side flow path member 4 of the first layer.
  • the membrane leaf was laminated on the first layer of the transmission side flow path member 4 so that the fold portion of the separation membrane sheet 10 was parallel to the axial direction of the central canal and the crease portion was located on the central tube side. Further, the same adhesive as above is applied to the three edge portions of the membrane leaf except for the edge located at the crease portion of the separation membrane sheet 10, and the first layer transmission side flow path member 4 and the membrane leaf are attached. It fits.
  • the same adhesive as above is applied to the three edge portions of the first layer membrane leaf opposite to the permeation side flow path member 4 of the first layer, except for the edge located at the crease portion, as described above.
  • the second layer of the transmission side flow path member was laminated.
  • the second film leaf was laminated on the side opposite to the first film leaf of the second layer permeation side flow path member in the same manner as the first film leaf.
  • the stacking position of the second layer film leaf was set so that the position of the edge portion of the crease portion was offset (shifted) in the direction orthogonal to the crease portion and in the direction away from the central canal.
  • both ends extending along the direction orthogonal to the axial direction of the central tube are described above.
  • the same adhesive as above was applied, and the laminate was wound around the central tube to form a wound body, and a heat-resistant tape as an outer peripheral tape was wound around the outer periphery of the wound body.
  • a telescope prevention plate is attached so as to be in contact with the cut surface, and an outer wrap (reinforcement) is made with a fiber reinforced resin in which glass fiber is impregnated with epoxy resin on the outermost periphery of the winding body.
  • a layer) was formed to obtain a separation membrane element.
  • the obtained separation membrane element was subjected to an airtightness test. The results are shown in Table 1.
  • Example 2 As the first porous layer and the third porous layer, the PTFE porous membrane having the average pore size, thickness, and Garley value shown in Table 1 was used, and as the second porous layer, the basis weight, basis weight deviation, thickness, and Gurley value PPS shown in Table 1 were used.
  • a separation membrane element was obtained in the same manner as in Example 1 except that a non-woven fabric was used. The obtained separation membrane element was subjected to an airtightness test. The results are shown in Table 1.
  • Example 3 As the first porous layer and the third porous layer, the PTFE porous membrane having the average pore size, thickness, and Garley value shown in Table 1 was used, and as the second porous layer, the basis weight, basis weight deviation, thickness, and Gurley value PPS shown in Table 1 were used. A separation membrane element was obtained in the same manner as in Example 1 except that a non-woven fabric was used. The obtained separation membrane element was subjected to an airtightness test. The results are shown in Table 1.
  • Example 1 As the first porous layer and the third porous layer, the PTFE porous membrane having the average pore size, thickness, and Garley value shown in Table 1 was used, and as the second porous layer, the basis weight, basis weight deviation, thickness, and Gurley value PPS shown in Table 1 were used. A separation membrane element was obtained in the same manner as in Example 1 except that a non-woven fabric was used. The obtained separation membrane element was subjected to an airtightness test. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

特定のガス成分を選択的に透過する分離膜シートを用いたガス分離方法である。分離膜シートは、第1多孔層と、第1多孔層上に積層される分離機能層と、第1多孔層の前記分離機能層とは反対側に積層される第2多孔層とを有する。分離機能層は、無孔質の樹脂組成物層であり、第1多孔層と第2多孔層とは互いに異なる多孔層である。第1多孔層の平均孔径は、0.005μm以上1μm以下であり、第1多孔層の厚みは、5μm以上150μm以下であり、第2多孔層の目付は、10g/m以上200g/m以下である。ガス分離方法は、分離膜シートの第2多孔層とは反対側から、特定のガス成分を少なくとも含む原料ガスを供給する工程を含み、供給する工程において、原料ガスの圧力P[MPaA]と、第2多孔層の目付偏差s[g/m]とは、式(1)の関係を満たす。 P≦1/s (1)

Description

ガス分離方法及びガス分離装置
 本発明は、ガス分離方法及びガス分離装置に関する。
 高分子化合物を用いた高分子膜は、液体、気体、固体及び少なくともそれらの2つを含む混合物等の流体に含まれる特定の成分の選択的な分離に用いられることが知られている。例えば、特開2013-166131号公報(特許文献1)には、樹脂で構成された多孔質層上に樹脂で構成された分離層を設けた分離膜が記載されており、特開2016-101558号公報(特許文献2)には、不織布上に樹脂で構成された分離層を設けた分離膜が記載されている。
特開2013-166131号公報 特開2016-101558号公報
 ガス分離に際して、分離膜に高圧のガスが供給されることがある。このような高圧のガスを分離膜に供給してガス分離を行った場合に、分離効率が低下することが見出された。
 本発明は、分離効率の低下を抑制することができるガス分離方法及びガス分離装置の提供を目的とする。
 本発明は、以下のガス分離方法及びガス分離装置を提供する。
 〔1〕 特定のガス成分を選択的に透過する分離膜シートを用いたガス分離方法であって、
 前記分離膜シートは、
  第1多孔層と、前記第1多孔層上に積層される分離機能層と、前記第1多孔層の前記分離機能層とは反対側に積層される第2多孔層と、を有し、
  前記分離機能層は、無孔質の樹脂組成物層であり、
  前記第1多孔層と前記第2多孔層とは互いに異なる多孔層であり、
  前記第1多孔層の平均孔径は、0.005μm以上1μm以下であり、
  前記第1多孔層の厚みは、5μm以上150μm以下であり、
  前記第2多孔層の目付は、10g/m以上200g/m以下であり、
 前記ガス分離方法は、
 前記分離膜シートの前記第2多孔層とは反対側から、前記特定のガス成分を少なくとも含む原料ガスを供給する工程を含み、
 前記供給する工程において、前記原料ガスの圧力P[MPaA]と、前記第2多孔層の目付偏差s[g/m]とは、式(1)の関係を満たす、ガス分離方法。
  P≦1/s  (1)
 〔2〕 前記分離膜シートは、前記原料ガスを供給するための供給側空間と、前記分離膜シートを透過した前記特定のガス成分を含む透過ガスを受け入れるための透過側空間とを隔てるものであり、
 前記供給側空間は、前記分離膜シートの前記第2多孔層とは反対側に設けられ、
 前記透過側空間は、前記分離膜シートの前記第2多孔層側に設けられ、
 前記供給する工程は、前記供給側空間に前記原料ガスを供給する工程を含み、
 さらに、前記透過ガスを前記透過側空間から排出する工程と、
 前記分離膜シートを透過しなかった前記原料ガスを前記供給側空間から排出する工程と、を含む、〔1〕に記載のガス分離方法。
 〔3〕 前記第1多孔層の厚みは、前記第2多孔層の厚みよりも小さい、〔1〕又は〔2〕に記載のガス分離方法。
 〔4〕 前記第1多孔層の通気度は、前記第2多孔層の通気度よりも小さい、〔1〕~〔3〕のいずれかに記載の分離膜シート。
 〔5〕 前記樹脂組成物層は、ゲル状である、〔1〕~〔4〕のいずれかに記載の分離膜シート。
 〔6〕 前記分離機能層は、親水性樹脂を含み、
 前記第1多孔層は、疎水性である、〔1〕~〔5〕のいずれかに記載の分離膜シート。
 〔7〕 前記第1多孔層は、多孔膜である、〔1〕~〔6〕のいずれかに記載のガス分離方法。
 〔8〕 前記第2多孔層は、不織布である、〔1〕~〔7〕のいずれかに記載の分離膜シート。
 〔9〕 前記分離機能層は、前記特定のガス成分と可逆的に反応するキャリアを含む、〔1〕~〔8〕のいずれかに記載のガス分離方法。
 〔10〕 前記特定のガス成分は、酸性ガスである、〔1〕~〔9〕のいずれかに記載のガス分離方法。
 〔11〕 特定のガス成分を選択的に透過する分離膜シートを含むガス分離装置であって、
 前記分離膜シートは、
  第1多孔層と、前記第1多孔層上に積層される分離機能層と、前記第1多孔層の前記分離機能層とは反対側に積層される第2多孔層と、を有し、
  前記分離機能層は、無孔質の樹脂組成物層であり、
  前記第1多孔層と前記第2多孔層とは互いに異なる多孔層であり、
  前記第1多孔層の平均孔径は、0.005μm以上1μm以下であり、
  前記第1多孔層の厚みは、5μm以上150μm以下であり、
  前記第2多孔層の目付は、10g/m以上200g/m以下であり、
 前記ガス分離装置は、
 前記分離膜シートの前記第2多孔層とは反対側から、前記特定のガス成分を少なくとも含む原料ガスを供給する供給部を有し、
 前記供給部は、前記原料ガスの圧力P[MPaA]と前記第2多孔層の目付偏差s[g/m]とが式(1)の関係を満たすように、前記原料ガスを供給する、ガス分離装置。
 〔12〕 前記分離膜シートによって互いに隔てられた供給側空間及び透過側空間と、
 前記供給部から前記原料ガスを前記供給側空間に供給するための供給側入口と、
 前記分離膜シートを透過した前記特定のガス成分を含む透過ガスを前記透過側空間から排出するための透過側出口と、
 前記分離膜シートを透過しなかった原料ガスを前記供給側空間から排出するための非透過側出口と、を備える、〔11〕に記載のガス分離装置。
 本発明によれば、分離効率の低下を抑制することができるガス分離方法及びガス分離装置を提供することができる。
本発明のガス分離方法に用いる分離膜シートの一例を模式的に示す概略断面図である。 本発明のガス分離方法に用いる分離膜シートの他の一例を模式的に示す概略断面図である。 分離膜エレメントに備わる分離膜シートを含む積層体の一例を模式的に示す概略断面図である。 分離膜エレメントの一例を示す、一部展開部分を設けた概略の斜視図である。 分離膜エレメントの他の一例を示す、一部展開部分を設けた概略の斜視図である。 実施例で行った気密試験の試験装置を説明する概略の模式図である。
 本実施形態のガス分離方法は、特定のガス成分を選択的に透過する分離膜シートを用いたガス分離方法である。以下では、まず分離膜シートについて説明し、次に分離膜シートを用いたガス分離方法について説明する。
 (分離膜シート)
 図1A及び図1Bは、本実施形態のガス分離方法に用いる分離膜シートの一例を模式的に示す概略断面図である。図1Aに示す分離膜シート10は、特定のガス成分を選択的に透過する分離膜シート10であって、第1多孔層11と、第1多孔層11上に積層される分離機能層15と、第1多孔層11の分離機能層15とは反対側に積層される第2多孔層12とを有する。分離機能層15は、無孔質の樹脂組成物層であり、第1多孔層11と第2多孔層12とは、互いに異なる多孔層である。第1多孔層11の平均孔径は、0.005μm以上1μm以下であり、第1多孔層11の厚みは、5μm以上150μm以下である。第2多孔層12の目付は、10g/m以上200g/m以下である。
 第1多孔層11と第2多孔層12とが互いに異なる多孔層であるとは、第1多孔層11と第2多孔層12とが完全に同じではないことをいい、例えば、第1多孔層11及び第2多孔層12を構成する材料の種類や形態(多孔膜、不織布、織布、発泡体等)、第1多孔層11及び第2多孔層12の厚み、密度、平均孔径、空隙率、通気度等の物性等のうちの少なくとも1つが異なることをいう。
 第1多孔層11と第2多孔層12とは、厚み及び通気度のうちの少なくとも一方が異なっていることが好ましい。第1多孔層11の厚みと第2多孔層12の厚みとが互いに異なっている場合、第1多孔層11の厚みは、第2多孔層12の厚みよりも小さいことが好ましい。第1多孔層11の通気度と第2多孔層12の通気度とが互いに異なっている場合、第1多孔層11の通気度は、第2多孔層12の通気度よりも小さいことが好ましい。
 第1多孔層11は多孔膜であり、第2多孔層12は不織布であることが好ましい。
 第2多孔層12は、後述する分離膜エレメントにおいて、透過側流路部材側に配置されることが好ましい。
 分離膜シート10は、図1Bに示すように、分離機能層15の第1多孔層11とは反対側に、第3多孔層13を有していてもよく、第3多孔層13の分離機能層15とは反対側に、第4多孔層14を有していてもよい。
 分離膜シート10が選択的に透過させる特定のガス成分は、酸性ガスであることが好ましい。酸性ガスとしては、二酸化炭素(CO)、硫化水素(HS)、硫化カルボニル、硫黄酸化物(SO)、窒素酸化物(NO)、塩化水素等のハロゲン化水素等が挙げられる。特定のガス成分は、二酸化炭素であることが好ましい。
 (分離機能層)
 分離機能層15は、主に特定のガス成分を選択的に透過させるガス選択透過性を有する。分離機能層15は、樹脂組成物を用いて形成された無孔質の樹脂組成物層であり、ゲル状の樹脂組成物層であることが好ましい。本明細書において無孔質の樹脂組成物層とは、分子のサイズや形状の差異を利用して選択透過させる多孔質の層(分子ふるい膜)ではなく、分子の溶解性及び拡散性の差異を利用して選択透過させる層(溶解-拡散膜)をいう。無孔質の樹脂組成物層としては、例えばガス分子の溶解性又は/及び拡散性を促進する物質を含む促進輸送膜が挙げられる。
 樹脂組成物層は、少なくとも親水性樹脂、及び、特定のガス成分と可逆的に反応するキャリアを含むことが好ましく、必要に応じて、親水性樹脂やキャリア以外の添加剤を含んでいてもよい。
 親水性樹脂は、水酸基やイオン交換基等の親水性基を有する樹脂であり、親水性樹脂の分子鎖同士が架橋により網目構造を有することで高い保水性を示す架橋型親水性樹脂を含むことがより好ましい。
 親水性樹脂を形成する重合体は、例えば、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、脂肪酸のビニルエステル、又はそれらの誘導体に由来する構造単位を有していることが好ましい。このような親水性を示す重合体としては、アクリル酸、イタコン酸、クロトン酸、メタクリル酸、酢酸ビニル等の単量体を重合してなる重合体が挙げられ、具体的には、イオン交換基としてカルボキシル基を有するポリアクリル酸系樹脂、ポリイタコン酸系樹脂、ポリクロトン酸系樹脂、ポリメタクリル酸系樹脂等、水酸基を有するポリビニルアルコール系樹脂等、それらの共重合体であるアクリル酸-ビニルアルコール共重合体系樹脂、アクリル酸-メタクリル酸共重合体系樹脂、アクリル酸-メタクリル酸メチル共重合体系樹脂、メタクリル酸-メタクリル酸メチル共重合体系樹脂等が挙げられる。この中でも、アクリル酸の重合体であるポリアクリル酸系樹脂、メタクリル酸の重合体であるポリメタクリル酸系樹脂、酢酸ビニルの重合体を加水分解したポリビニルアルコール系樹脂、アクリル酸メチルと酢酸ビニルとの共重合体を鹸化したアクリル酸塩-ビニルアルコール共重合体系樹脂、アクリル酸とメタクリル酸との共重合体であるアクリル酸-メタクリル酸共重合体系樹脂がより好ましく、ポリアクリル酸、アクリル酸塩-ビニルアルコール共重合体系樹脂がさらに好ましい。
 架橋型親水性樹脂は、親水性を示す重合体を架橋剤と反応させて調製してもよいし、親水性を示す重合体の原料となる単量体と架橋性単量体とを共重合させて調製してもよい。架橋剤又は架橋性単量体としては特に限定されず、従来公知の架橋剤又は架橋性単量体を使用することができる。
 架橋剤としては、例えば、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤、金属系架橋剤等の、従来公知の架橋剤が挙げられる。架橋性単量体としては、例えば、ジビニルベンゼン、N,N’-メチレンビスアクリルアミド、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル等の、従来公知の架橋性単量体が挙げられる。架橋方法としては、例えば、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等の方法や、特開2003-268009号公報、特開平7-88171号公報に記載されている方法等、従来公知の手法を使用することができる。
 特定のガス成分と可逆的に反応するキャリアは、分離機能層15を構成する樹脂組成物層内に存在し、樹脂組成物層内に溶解した特定のガス成分と可逆的に反応することにより、特定のガス成分を選択的に透過させる。分離機能層15に含まれるキャリアは、1種であってもよく2種以上であってもよい。
 特定のガス成分が酸性ガスである場合に用いられるキャリアの具体例としては、酸性ガスが二酸化炭素の場合、アルカリ金属炭酸塩やアルカリ金属重炭酸塩、アルカノールアミン(例えば、特公平7-102310号公報(特許第2086581号)等に記載)、及びアルカリ金属水酸化物(例えば、国際公開公報2016/024523号パンフレット等に記載)等が、酸性ガスが硫黄酸化物の場合、硫黄含有化合物や、アルカリ金属のクエン酸塩、及び遷移金属錯体(例えば、特許第2879057号公報等に記載)等が、酸性ガスが窒素酸化物の場合、アルカリ金属亜硝酸塩や、遷移金属錯体(例えば、特許第2879057号公報等に記載)等が、それぞれ挙げられる。
 分離機能層15の厚みは、1000μm以下であることが好ましく、500μm以下であることがより好ましく、100μm以下であることがさらに好ましく、また、通常5μm以上である。厚みは、光学顕微鏡や電子顕微鏡を用いて、分離機能層15の断面観察を行うことによって決定することができる。
 分離機能層15には、親水性樹脂、キャリアのほかに、例えば特定のガス成分とキャリアとの反応速度を向上させるための水和反応触媒や、界面活性剤等が添加剤として含まれていてもよい。
 特定のガス成分が酸性ガスである場合の水和反応触媒としては、オキソ酸化合物が挙げられる。オキソ酸化合物としては、14族元素、15族元素、及び16族元素からなる群より選択される少なくとも1つの元素のオキソ酸化合物であることが好ましく、亜テルル酸化合物、亜セレン酸化合物、亜ヒ酸化合物、及びオルトケイ酸化合物からなる群より選択される少なくとも1つであることがさらに好ましい。分離機能層15は、オキソ酸化合物を1種又は2種以上含むことができる。
 界面活性剤としては、特に限定されないが、例えば、ポリオキシエチレンポリオキシプロピレングリコール類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルエーテル類、フッ素系界面活性剤、シリコーン系界面活性剤等の従来公知の界面活性剤を使用することができる。界面活性剤は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 (第1多孔層)
 第1多孔層11は、分離機能層15を支持するための支持層として用いることができる。第1多孔層11は、分離機能層15を形成するために樹脂組成物を含む塗布液が塗布される層であってもよい。第1多孔層11は、分離膜シート10において、分離機能層15に供給された原料ガス、特に原料ガスに含まれ、分離機能層15を選択的に透過する特定のガス成分の拡散抵抗とならないように、ガス透過性の高い多孔性を有する。
 第1多孔層11は、単層構造を有するものであってもよく、多層構造を有していてもよい。第1多孔層11が多層構造を有する場合、各層は互いに同じであってもよく互いに異なっていてもよい。
 第1多孔層11の平均孔径は、0.005μm以上であり、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、また、1μm以下であり、0.7μm以下であることが好ましく、0.5μm以下であることがより好ましい。第1多孔層11の平均孔径は、後述する実施例に記載の方法によって測定することができる。
 第1多孔層11の厚みは、5μm以上であり、10μm以上であることが好ましく、15μm以上であることがより好ましく、30μm以上であることがさらに好ましく、また、150μm以下であり、120μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であることがさらに好ましい。第1多孔層11の厚みは、後述する第2多孔層12の厚みよりも小さいことが好ましい。厚みは、後述する実施例に記載の方法によって測定することができる。
 第1多孔層11の平均孔径及び厚みが上記の範囲内であることにより、分離機能層15を選択的に透過する特定のガス成分の拡散抵抗となることなく、分離機能層15の支持層として好適に用いることができる。また、分離機能層15を構成する樹脂組成物層を形成するために、第1多孔層11上に樹脂組成物を塗布する場合に、安定した成膜性を得やすくなる。
 第1多孔層11の空隙率は、特定のガス成分の拡散抵抗となることを抑制しつつ分離機能層の支持層として好適に用いられるという観点から、5%以上であることが好ましく、10%以上であってもよく、20%以上であってもよく、30%以上であってもよく、また、99%以下であることが好ましく、95%以下であってもよく、90%以下であってもよい。
 空隙率は、次の手順で算出することができる。まず、第1多孔層11を、250mm×200mmのサイズに切り出したサンプルについて、面積、厚み、及び重量[g]を測定する。第1多孔層11を構成する材料の真密度をρ[g/cm]として、下式にしたがって空隙率を算出する。
 空隙率[%]=[(サンプルの面積×サンプルの厚み×ρ)-サンプルの重量]/(サンプルの面積×サンプルの厚み×ρ)
 第1多孔層11の真密度は、切り出したサンプルを融点以上に加熱し、溶融させて無孔状とした後、冷却・固化させて得られた溶融固化サンプルについて、容積及び重量を測定して決定することができる。第1多孔層11が多層構造を有する場合、第1多孔層11を構成する材料の真密度は、切り出したサンプルに含まれる各層の割合(厚み比)に基づいて、決定することができる。
 第1多孔層11の通気度は、特定のガス成分の拡散抵抗となることを抑制しつつ分離機能層の支持層として好適に用いられるという観点から、通気抵抗度を示すガーレー値が30秒以上であることが好ましく、60秒以上であることがより好ましく、90秒以上であってもよく、また、2000秒以下であることが好ましく、1500秒以下であってもよく、1000秒以下であってもよく、500秒以下であってもよい。第1多孔層11の通気度は、後述する第2多孔層12の通気度よりも小さいことが好ましい。通気抵抗度を示すガーレー値は、JIS L 1096に準拠して測定することにより決定することができ、より具体的には、後述する実施例に記載の方法によって決定することができる。
 第1多孔層11のヤング率は、特定のガス成分の拡散抵抗となることを抑制しつつ分離機能層の支持層として好適に用いられるという観点から、20GPa以上であることが好ましく、100GPa以上であってもよく、200GPa以上であってもよく、また、1200GPa以下であることが好ましく、1000GPa以下であってもよく、800GPa以下であってもよく、600GPa以下であってもよい。
 ヤング率は、次の手順で測定することができる。第1多孔層11から、JIS K6251-3規定のダンベル形状に小片を切り出す。温度23℃、相対湿度50%RHの条件下で、オートグラフ装置にフィルムの小片を装着し、50mm/minの一定速度で引っ張る。この測定における初期の応力及び歪からヤング率を算出する。測定は3回行い、その平均値を第1多孔層11のヤング率とする。
 第1多孔層11は、疎水性であることが好ましく、温度25℃における水の接触角が90度以上であってもよく、95度以上であってもよく、100度以上であってもよい。水の接触角は、接触角計(例えば、協和界面科学(株)製;商品名:「DropMaster500」)で測定することができる。
 第1多孔層11は、樹脂材料又は無機材料によって形成されていることが好ましい。第1多孔層11を構成する樹脂材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)等のフッ素含有樹脂;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル樹脂;ポリスチレン(PS)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリアクリロニトリル(PAN)、ポリフェニレンオキシド(PPO)、ポリアミド(PA)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、高分子量ポリエステル、耐熱性ポリアミド、アラミド、ポリカーボネート、これらの樹脂材料のうちの2種以上の混合物等が挙げられる。これらの中でも、撥水性及び耐熱性の点から、ポリオレフィン系樹脂又はフッ素含有樹脂であることが好ましい。第1多孔層11を構成する無機材料としては、金属、ガラス、セラミックス等が挙げられる。第1多孔層11は、樹脂材料と無機材料との両方を含んでいてもよい。
 第1多孔層11は、多孔体であれば特に限定されず、例えば、多孔膜、不織布、織布、発泡体、ネット等の形態であってもよい。第1多孔層11は、特定のガス成分の拡散抵抗となることを抑制しつつ分離機能層の支持層として好適に用いられるという観点から、多孔膜であることが好ましい。多孔膜とは、多孔性の樹脂フィルムをいう。多孔膜としては、延伸法や相分離法で得られた多孔膜が挙げられる。
 (第2多孔層)
 第2多孔層12は、第1多孔層11の分離機能層15とは反対側に積層され、第1多孔層11の支持層としての機能を補強するための補強層として用いることができる。第2多孔層12を設けることにより、原料ガス中の特定のガス成分を選択的に透過させる際に分離膜シート10にかかる圧力負荷に耐え得る強度を追加的に付与することができる。また、分離機能層15を構成する樹脂組成物層を形成するために、第1多孔層11上に樹脂組成物を塗布する場合には、第1多孔層11にかかる張力負荷に耐え得る強度を追加的に付与することができる。
 第2多孔層12は、単層構造を有するものであってもよく、多層構造を有していてもよい。第2多孔層12が多層構造を有する場合、各層は互いに同じであってもよく互いに異なっていてもよい。
 第2多孔層12の目付は、分離膜シート10にかかる圧力や張力に耐え得る強度を付与する観点から、10g/m以上であることが好ましく、15g/m以上であることがより好ましく、20g/m以上であってもよく、また、通常200g/m以下であり、150g/m以下であってもよい。目付は、後述する実施例に記載の方法によって測定することができる。
 第2多孔層12の厚みは、分離膜シート10にかかる圧力や張力に耐え得る強度を付与する観点から、10μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であってもよく、また、700μm以下であることが好ましく、600μm以下であってもよく、500μm以下であってもよく、400μm以下であってもよい。厚みは、後述する実施例に記載の方法によって測定することができる。
 第2多孔層12の空隙率は、分離膜シート10にかかる圧力や張力に耐え得る強度を付与する観点から、5%以上であることが好ましく、10%以上であってもよく、20%以上であってもよく、30%以上であってもよく、また、99%以下であることが好ましく、95%以下であってもよく、90%以下であってもよい。空隙率は、上記した方法によって算出することができる。
 第2多孔層12の通気度は、ガーレー値が0.01秒以上であることが好ましく、0.05秒以上であってもよく、また、通常30秒以下であり、20秒以下であってもよく、10秒以下であってもよい。通気抵抗度を示すガーレー値は、JIS L 1096に準拠して測定して決定することができ、より具体的には、後述する実施例に記載の方法によって決定することができる。
 第2多孔層12のヤング率は、分離膜シート10にかかる圧力や張力に耐え得る強度を付与する観点から、20GPa以上であることが好ましく、50GPa以上であってもよく、100GPa以上であってもよく、また、400GPa以下であることが好ましく、300GPa以下であってもよく、200GPa以下であってもよい。ヤング率は、上記した方法によって算出することができる。
 第2多孔層12は、樹脂材料又は無機材料によって形成されていることが好ましい。第2多孔層12を構成する樹脂材料又は無機材料としては、第1多孔層11を形成するための樹脂材料又は無機材料を挙げることができる。第2多孔層12を形成するための樹脂材料は、ポリオレフィン系樹脂又はポリフェニレンサルファイドであることが好ましい。
 第2多孔層12は、多孔体であれば特に限定されず、例えば、多孔膜、不織布、織布、発泡体、ネット等の形態であってもよい。第2多孔層12は、分離膜シート10にかかる圧力や張力に耐え得る強度を付与する観点から、不織布であることが好ましい。不織布としては、例えば、スパンボンド不織布、メルトブロー不織布、エアレイド不織布、スパンレース不織布、カード不織布等が挙げられる。
 第2多孔層12が不織布である場合、不織布を構成する繊維の平均繊維径は、通常1μm以上であり、5μm以上であってもよく、10μm以上であってもよく、また、通常80μm以下であり、60μm以下であってもよく、50μm以下であってもよく、30μm以下であってもよい。平均繊維径は、光学顕微鏡や電子顕微鏡を用いて、第2多孔層12の表面を撮影し、任意に選んだ50本の繊維について測定した繊維径の平均値とすることができる。
 第2多孔層12は、第1多孔層11に固定されていることが好ましい。固定方法としては、従来公知の方法を用いることができ、例えば、接着剤又は粘着剤を介して貼合する方法や熱融着法等が挙げられる。接着剤や粘着剤を介して貼合する場合は、第1多孔層11及び第2多孔層12のうちの少なくとも一方に接着剤又は粘着剤を塗布した後、第1多孔層11と第2多孔層12とを貼合すればよい。第1多孔層11と第2多孔層12との間に介在する接着剤又は粘着剤の量は、例えば1g/m以上1000g/m以下とすることができ、5g/m以上200g/m以下であってもよい。熱融着法によって固定する方法としては、例えば、第1多孔層11と第2多孔層12とを積層した後、外部から熱又は振動を加えて接合面を溶融させて融着させる方法が挙げられる。
 なお、第1多孔層11と第2多孔層12との間や、第2多孔層12と他の層との間が、接着剤や粘着剤で固定されている場合、分離膜シート10からこれらの層を取り出す際には、まず、分離膜シート10を水洗・乾燥して分離機能層15を除去する。次いで、接着剤や粘着剤を溶媒等を用いて溶解除去して、第1多孔層11及び第2多孔層12を取り出し、上記した各種物性の測定等を行えばよい。
 第1多孔層11と第2多孔層12との間や、第2多孔層12と他の層との間が、熱融着によって固定されている場合の第2多孔層12の目付は、次の手順で測定することができる。まず、分離膜シート10を水洗・乾燥して分離機能層15を除去する。次いで、第2多孔層12に熱融着により固定されている層全体を含むように、50mm×50mmのサイズに切り出した第1のサンプルを用意し、この第1のサンプルの断面観察から第2多孔層12の厚みを測定し、その平均値を算出する。続いて、上記第1のサンプルにおいて、層表面に設定する互いに重ならない直径12mmの複数の円状領域から任意に選んだ10箇所から、第2多孔層12のみを含むように、第2のサンプル(合計10個)を取得し、各第2のサンプルの密度を測定し、その平均値を算出する。これらの平均値を用いて下式に基づいて、第2多孔層12の目付を決定する。
  第2多孔層の目付=(第2のサンプルの密度の平均値)×(第1のサンプルにおける第2多孔層の厚みの平均値)
 第1多孔層11と第2多孔層12との間や、第2多孔層12と他の層との間が、熱融着によって固定されている場合の第2多孔層12の目付偏差は、上記で算出した目付の値を用いること以外は、後述する実施例に記載の方法に準じて測定することができる。
 (第3多孔層)
 第3多孔層13は、分離機能層15の第1多孔層11とは反対側に積層され、分離機能層15を保護するための保護層として用いることができる。第3多孔層13は、単層構造を有するものであってもよく、多層構造を有していてもよい。第3多孔層13が多層構造を有する場合、各層は互いに同じであってもよく互いに異なっていてもよい。第3多孔層13としては、例えば、第1多孔層11と同じものを用いることができる。
 (第4多孔層)
 第4多孔層14は、第3多孔層13の分離機能層15とは反対側に積層され、第3多孔層13の保護層としての機能を補強するための補強層として用いることができる。第4多孔層14は、単層構造を有するものであってもよく、多層構造を有していてもよい。第4多孔層14が多層構造を有する場合、各層は互いに同じであってもよく互いに異なっていてもよい。第4多孔層14としては、例えば、第2多孔層12と同じものを用いることができる。第4多孔層14は、第3多孔層13に、固定されていてもよいし、固定されていなくてもよい。第4多孔層14と第3多孔層13とが固定される場合は、従来公知の固定方法を適用することができ、例えば、上記した第1多孔層11と第2多孔層12との固定方法が挙げられる。
 (分離膜シートの製造方法)
 分離膜シート10の製造方法は、例えば、分離機能層15を形成するための樹脂組成物を含む塗布液を準備する工程(以下、「準備工程」ということがある。)と、第1多孔層11上に塗布液を塗布する工程(以下、「塗布工程」ということがある。)とを含むことができる。分離膜シート10の製造方法は、塗布工程に先立って、予め塗工液が塗布される第1多孔層11の塗布液が塗布される側とは反対側に、第2多孔層12を積層する工程を有していてもよい。あるいは、分離膜シート10の製造方法は、第1多孔層11上に分離機能層15を形成した後に、第1多孔層11の分離機能層15とは反対側に、第2多孔層12を積層する工程を有していてもよい。
 準備工程は、第1多孔層11上に塗布される塗布液を準備する工程である。準備工程では、例えば、分離機能層15を形成するための樹脂組成物と媒質とを混合して塗布液を準備することができる。樹脂組成物は、上記した樹脂、特定のガス成分と可逆的に反応するキャリア、水和反応触媒、及び界面活性剤等を含むことができる。媒質としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール等のプロトン性極性溶媒;トルエン、キシレン、ヘキサン等の無極性溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の非プロトン性極性溶媒;等が挙げられる。媒質は、1種類を単独で用いてもよく、相溶する範囲で2種類以上を併用してもよい。これらの中でも、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコールからなる群から選択される少なくとも1つが含まれる媒質が好ましく、水が含まれる媒質がより好ましい。
 準備工程は、準備した塗布液に含まれる気泡を除去するための脱泡工程を含んでいてもよい。脱泡工程は、例えば、塗布液を撹拌する、濾過する等によりせん断を与える方法、塗布液を真空脱気又は減圧脱気する方法、塗布液を加温して脱気する方法等を挙げることができる。
 塗布工程は、準備工程で準備した塗布液を第1多孔層11上に塗布する工程である。塗布工程は、スロットダイ塗布、スピンコート法、バー塗布、ダイコート、ブレード塗布、エアナイフ塗布、グラビアコート、ロールコーティング塗布、スプレー塗布、ディップ塗布、コンマロール法、キスコート法、スクリーン印刷、インクジェット印刷等によって行うことができる。
 塗布工程は、第1多孔層11上に塗布液を塗布して形成された塗布液の膜から、媒質を除去する工程を含むことが好ましい。媒質を除去する工程は、加熱等により塗布液の膜から媒質を蒸発除去させる方法等を挙げることができる。
 分離膜シート10の製造方法は、分離膜シート10が第3多孔層13を有する場合、塗布液によって形成される膜の第1多孔層11とは反対側に、第3多孔層13を積層する工程を有していてもよい。第3多孔層13を積層した後に、塗布液の膜中の媒質をさらに除去する工程を行ってもよい。分離膜シート10がさらに第4多孔層14を有する場合、分離膜シート10の製造方法は、第3多孔層13を積層する工程に先立ち、第3多孔層13の塗布液の膜と対向する側とは反対側に第4多孔層14を積層する工程を有していてもよい。あるいは、分離膜シート10の製造方法は、分離機能層15上に第3多孔層13を積層した後に、第3多孔層13の分離機能層15とは反対側に第4多孔層14を積層する工程を有していてもよい。
 (ガス分離方法)
 本実施形態のガス分離方法は、分離膜シート10を用いて行うものであり、分離膜シート10の第2多孔層12とは反対側から、特定のガス成分を少なくとも含む原料ガスを供給する工程(以下、「供給工程」ということがある。)を含む。供給工程において、原料ガスの圧力P[MPaA](絶対圧)と、第2多孔層12の目付偏差s[g/m]とは、式(1)の関係を満たす。
  P≦1/s  (1)
 供給工程において、分離膜シート10に供給される原料ガスは、図1A及び図1Bに示すように、分離膜シート10が第3多孔層13や第4多孔層14を有する場合、第3多孔層13又は第4多孔層14側に供給される。
 分離膜シート10における第2多孔層12の目付偏差sが大きい場合、第2多孔層12の目付のムラが大きい。目付のムラの大きい第2多孔層12を有する分離膜シート10では、その強度が不均一となりやすく、原料ガスを供給すると、第2多孔層12の相対的に目付偏差sの大きい領域等において分離膜シート10(特に、分離機能層15)に破断等の損傷が生じやすくなる。分離膜シート10の損傷が生じた領域では、原料ガスが分離されることなく流出するため、分離効率が低下しやすくなる。そのため、分離膜シート10に供給される原料ガスの圧力Pが大きい場合には、第2多孔層12の目付のムラ(すなわち、目付偏差s)を小さくして、分離膜シート10の強度を均一にすることが好ましい。これに対し、分離膜シート10に供給される原料ガスの圧力Pが小さい場合には、分離膜シート10の強度に多少の不均一性が生じていても、原料ガスの供給によって分離膜シート10に破断等の損傷が生じにくいため、分離効率の低下が生じにくいため、第2多孔層12の目付のムラ(すなわち、目付偏差s)が大きくてもよいと考えられる。
 本実施形態のガス分離方法では、上記式(1)の関係を満たすように、供給工程における原料ガスの圧力Pを選択し、分離膜シート10における第2多孔層12の目付の目付偏差sを選定している。そのため、供給工程における原料ガスの圧力Pが大きい場合には、第2多孔層12の目付の目付偏差sを小さくすることによって、分離効率の低下を抑制することができる。一方、第2多孔層12の目付の目付偏差sが大きい場合には、供給工程における原料ガスの圧力Pが小さい条件下でガス分離を行うようにして、分離効率の低下を抑制することができる。
 原料ガスの圧力Pは特に限定されないが、通常0.01MPaA以上であり、0.05MPaA以上であってもよく、0.1MPaA以上であってもよく、また、通常10MPaA以下であり、5MPaA以下であってもよく、3MPaA以下であってもよい。
 第2多孔層12の目付偏差は特に限定されないが、4g/m以下であることが好ましく、3.5g/m以下であることが好ましく、3g/m以下であることがより好ましく、通常、0.01g/m以上であり、0.1g/m以上であってもよい。第2多孔層12の目付偏差は、後述する実施例に記載の方法によって測定することができる。
 上記したガス分離方法において、分離膜シート10は、原料ガスを供給するための供給側空間と、分離膜シート10を透過した特定のガス成分を含む透過ガスを受け入れるための透過側空間とを隔てるものであることが好ましい。この場合、上記のガス分離方法では、供給側空間を分離膜シート10の第2多孔層12とは反対側に設け、透過側空間を分離膜シート10の第2多孔層12側に設けた上で、原料ガスを供給側空間に供給する工程と、透過ガスを透過側空間から排出する工程と、分離膜シートを透過しなかった原料ガスを供給側空間から排出する工程とを含むことができる。これにより、分離効率の低下を抑制しながらガス分離を行うことができる。
 分離膜シート10が第3多孔層13や第4多孔層14を有する場合、供給側空間は、分離膜シート10の第3多孔層13側や第4多孔層14側に設けられる。
 上記したガス分離方法に用いられる分離膜シート10は、通常、分離膜エレメント又は分離膜モジュールに組み入れられた状態で用いられることが好ましい。
 (分離膜エレメント)
 分離膜シート10は、スパイラル型、平膜型、中空糸型、チューブ型、プリーツ型、プレートアンドフレーム型等の公知の分離膜エレメントに用いることができる。
 図2は、分離膜エレメントに備わる分離膜シートを含む積層体の一例を模式的に示す概略断面図である。分離膜エレメント20は、図2に示すように、特定のガス成分を含む原料ガスが流れる流路を形成する供給側流路部材3と、分離膜シート10を透過した透過ガスが流れる流路を形成する透過側流路部材4とを含む。分離膜エレメント20において、供給側流路部材3は分離膜シート10の第2多孔層12とは反対側に配置され、透過側流路部材4は分離膜シート10の第2多孔層12側に配置される。分離膜シート10が第3多孔層13や第4多孔層14を有する場合、供給側流路部材3は、第3多孔層13側又は第4多孔層14側に配置される。図2に示す分離膜エレメント20では、分離膜シート10の第4多孔層14側に供給側流路部材3が配置される。
 図3A及び図3Bは、本実施形態の分離膜エレメントの一例を示す、一部展開部分を設けた概略の斜視図である。図3A及び図3Bに示す分離膜エレメントは、スパイラル型の分離膜エレメント21,21aである。スパイラル型の分離膜エレメント21,21aは、図3A及び図3Bに示すように、
 特定のガス成分を含む原料ガスが流れる流路を形成する供給側流路部材3と、
 供給側流路部材3を流れる原料ガスに含まれる特定のガス成分を選択的に分離して透過させる分離膜シート10と、
 分離膜シート10を透過した特定のガス成分を含む透過ガスが流れる流路を形成する透過側流路部材4と、
 原料ガスと透過ガスとの混合を防止するための封止部と、
 透過側流路部材4を流れる透過ガスを収集する中心管5と、を有し、
 供給側流路部材3と、分離膜シート10と、透過側流路部材4とをそれぞれ少なくとも1以上積層したエレメント用積層体が、中心管5に巻回された巻回体を備えることができる。巻回体は、円筒状、角筒状等の任意の形状であってもよい。中心管5は、その外周面に透過側流路部材4で形成される透過ガスの流路空間と中心管5内部の中空空間とを連通させる複数の孔50を有している。
 スパイラル型の分離膜エレメント21aは、さらに、巻回体の巻戻しや巻崩れを防止するために、外周テープや、図3Bに示すテレスコープ防止板55等の固定部材を備えていてもよく、分離膜エレメントにかかる内圧及び外圧による負荷に対する強度を確保するために、巻回体の最外周にアウターラップ(補強層)を有していてもよい。
 供給側流路部材3及び透過側流路部材4は、原料ガス及び分離膜シート10を透過した透過ガスの乱流(膜面の表面更新)を促進して、原料ガス中の透過ガスの膜透過速度を増加させる機能と、供給される原料ガス及び分離膜シート10を透過した透過ガスの圧力損失をできるだけ小さくする機能とを有していることが好ましい。供給側流路部材3及び透過側流路部材4は、原料ガス及び透過ガスの流路を形成するスペーサとしての機能に加えて、原料ガス及び透過ガスに乱流を生じさせる機能を備えていることが好ましいことから、網目状(ネット状、メッシュ状等)のものが好適に用いられる。網目の単位格子の形状は、網目の形状によりガスの流路が変わることから、目的に応じて、例えば、正方形、長方形、菱形、平行四辺形等の形状から選択されることが好ましい。供給側流路部材3及び透過側流路部材4の材質としては、特に限定されないが、分離膜エレメント20,21,21aが設けられる分離装置の運転温度条件に耐え得る耐熱性を有する材料が好ましい。
 封止部は、原料ガスと透過ガスとの混合を防止するために設けられ、例えば透過側流路部材4及び分離膜シート10に封止材料が浸透して硬化することにより形成することができる。封止部は、通常、巻回体の中心管5の軸に平行な方向の両端に位置する端部、及び、中心管5の軸に直交する方向の両端に位置する端部のうち、中心管5と端部との距離が長い側の端部に設けられて、いわゆるエンベロープ状をなすことができる。封止部は、一般に接着剤として用いられる材料を用いることができ、例えば、エポキシ系樹脂等を用いることができる。
 中心管5は、分離膜シート10を透過した透過ガスを収集して、分離膜エレメント21,21aから排出するための導管である。中心管5は、分離膜エレメント21,21aが設けられる分離装置の使用温度条件に耐え得る耐熱性を有し、エレメント用積層体の巻き付けに耐え得る機械的強度を有する材料であることが好ましい。
 (分離膜モジュール)
 分離膜エレメントは、分離膜モジュールに用いることができる。分離膜モジュールは、分離膜エレメントを1基以上有する。分離膜モジュールは、分離膜エレメントの供給側流路部材3で形成される流路と連通する原料ガス供給口(図3Bに示す供給側端部51と連通する部分)、非透過ガス排出口(図3Bに示す排出側端部53と連通する部分)、及び分離膜エレメントの透過側流路部材4で形成される流路と連通する透過ガス排出口(図3Bに示す排出口52と連通する部分)を備えている。分離膜モジュールでは、原料ガス供給口を介して分離膜シート10に原料ガスが供給され、分離膜シート10を透過した透過ガスが透過ガス排出口を介して排出され、分離膜シート10を透過しなかった原料ガスが非透過ガス排出口を介して排出される。上記の原料ガス供給口、非透過ガス排出口及び透過ガス排出口は、分離膜エレメントの本体に設けられてもよく、分離膜エレメントを収納する容器(以下、「ハウジング」ということがある。)に設けられてもよい。
 ハウジングは、分離膜モジュール内を流通する原料ガスを封入するための空間を形成することができ、例えばステンレス等の筒状部材と、この筒状部材の軸方向両端を閉塞するための閉塞部材とを有していてもよい。ハウジングは、円筒状、角筒状等の任意の筒状形状であってもよいが、分離膜エレメントは通常、円筒状であることから、円筒状であることが好ましい。また、ハウジングの内部には、供給側端部51に供給される原料ガスと、分離膜エレメントに備えられた分離膜シート透過しなかった非透過ガスとの混合を防止するための仕切りを設けることができる。
 ハウジング内に2以上の分離膜エレメントを配置する場合、各分離膜エレメントに供給される原料ガスは、並列に供給されてもよく、直列に供給されてもよい。ここで、原料ガスを並列に供給するとは、少なくとも原料ガスを分配して複数の分離膜エレメントに導入することをいい、原料ガスを直列に供給するとは、少なくとも前段の分離膜エレメントから排出された透過ガス及び/又は非透過ガスを、後段の分離膜エレメントに導入することをいう。
 (ガス分離装置)
 本実施形態のガス分離装置は、特定のガス成分を選択的に透過する分離膜シートを用いて、上記したガス分離方法を行うための装置である。ガス分離装置は、分離膜シート10の第2多孔層12とは反対側から、特定のガス成分を少なくとも含む原料ガスを供給する供給部を有し、供給部は、原料ガスの圧力P[MPaA]と、第2多孔層12の目付偏差s[g/m]とが上記した式(1)の関係を満たすように、原料ガスを供給するものである。
 ガス分離装置は、分離膜シート10によって互いに隔てられた供給側空間及び透過側空間と、特定のガス成分を少なくとも含む原料ガスを、供給部から供給側空間に供給するための供給側入口と、分離膜シート10を透過した特定のガス成分を含む透過ガスを透過側空間から排出するための透過側出口と、分離膜シート10を透過しなかった原料ガスを供給側空間から排出するための非透過側出口と、を備えていてもよい。
 供給部は、分離膜シート10や供給側空間に、圧力Pの原料ガスを供給するものである。供給側空間及び透過側空間はそれぞれ、例えば、上記した分離膜エレメントにおける供給側流路部材3及び透過側流路部材4によって構成することができる。
 ガス分離装置は、上記した分離膜シート10を有する分離膜エレメントを備える分離膜モジュールを少なくとも1つ備えることができる。分離装置に備えられる分離膜モジュールの配列及び個数は、要求される処理量、特定のガス成分の回収率、分離装置を設置する場所の大きさ等に応じて選択することができる。
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 [第1多孔層の平均孔径の測定]
 キャピラリー・フロー・ポロメーター(Capillary Flow Porometer)からのモデルCFP1500AXLCを用いるASTM F316-03に準ずる測定方法に従って測定した。バブル溶液としてシルウイック・シリコーン・フルイド(SilWick Silicone Fluid)を、試料室の底部クランプとして2.54cm径かつ、3.175mm厚さの多孔質金属ディスクインソートを、試料室の上部クランプとして3.175mm径の穴を使用して測定した。
 [厚みの測定]
 株式会社ミツトヨ製「VL50AS」(平面端子、押圧力:0.1N)を用いて、第1多孔層及び第2多孔層の厚みを測定した。
 [ガーレー値の測定]
 PA-301ガーレー式デンソメーターB型(テスター産業社製、内筒:高さ254mm、内径74mm、外径76.2mm、質量567g、外筒:高さ254mm、内径82.6mm)を用いて、JIS L1096に準拠した方法で第1多孔層及び第2多孔層のガーレー値の測定を行った。第1多孔層及び第2多孔層のそれぞれについて、異なる5箇所から約50mm×50mmのサンプル片を採取し、ガスケットと締付板との間にサンプル片を固定した。次に、一定の圧力(内筒の自重による)の下で、300mLの空気がサンプルを通気する所要時間(すなわち、ガーレー数)を測った。5つのサンプル片について、それぞれのサンプル片の異なる3箇所について測定した結果の平均値をガーレー値とした。
 [第2多孔層の目付及び目付偏差の測定]
 実施例及び比較例で得た分離膜エレメントから分離膜シートを取り出した。取り出した分離膜シートを水洗して乾燥し、ゲル状の分離機能層を除去した。洗浄後、分離膜シートから第2多孔層を剥離した。第2多孔層の剥離においては、第1多孔層と第2多孔層との間に介在する粘着剤は、酢酸エチルに溶解させてから剥がした。
 剥離した第2多孔層を幅方向に3分割し、各領域のそれぞれにおいて封止部を除く部分から、250mm(幅方向)×200mmの測定用サンプルを切り出した。なお、幅方向は、実施例・比較例において作製した分離膜エレメントにおける中心管の軸に平行な方向とした。切り出した各測定用サンプルのそれぞれについて、重量及び面積を測定して目付(重量[g]/面積[m])を算出した。各測定用サンプルの目付の値に基づいて、下記式より目付偏差を算出した。
  目付偏差={Σ[(各測定用サンプルの目付)-(3つの測定用サンプルの目付の平均値)]/3}0.5
 上記式中、Σは、測定用サンプルの目付と3つの測定用サンプルの目付の平均値との差を二乗した値を各測定用サンプル毎に算出して足し合わせることを意味する。
 [分離膜エレメントの気密試験]
 図4に示すように、分離膜エレメント22における供給側空間部分の供給側端部51側と中心管5の排出口52側とが分離膜シート10で隔てられるように、分離膜エレメント22を、試験装置Nにおけるステンレス製のハウジング36内に固定した。中心管5の排出口52側はハウジング36の外部に導出し、他方側は閉栓した。分離膜エレメント22における供給側空間部分の供給側端部51及び排出側端部は、ハウジング36内に開放した。すなわち、ハウジング36に供給したガスを、分離膜エレメント22における供給側空間部分の両端(供給側端部51及び排出側端部)から、分離膜エレメント22の内部に流入させた。
 ハウジング36内に窒素(N)ガスを供給するボンベを、バルブを介して取り付けるとともに、ハウジング36内の圧力を測定する圧力計35を取り付けた。ハウジング36内に、室温(20℃)のNガスを供給して、分離膜エレメント22の供給側端部51側及び排出側端部に、1600kPaA(絶対圧)の圧力を加えた。当該圧力は圧力計35で確認した。一方、中心管5の排出口52側の圧力は大気圧に調節した。
 この状態を保ちながら、圧力計35でハウジング36内の圧力の時間変化を測定することにより、分離膜エレメント22の気密試験を行い、分離膜エレメント22のNガス透過性能評価を行った。具体的には、測定した圧力の時間変化に基づいて、Nのパーミアンス(mol/(m・s・kPa))を算出し、当該パーミアンスが1.0×10-7mol/(m・s・kPa)以下であれば、分離膜エレメント22の気密性が保たれているとしてAと評価し、当該パーミアンスが1.0×10-7mol/(m・s・kPa)超の場合はBと評価した。
 〔実施例1〕
 (分離膜シートの作製)
 容器に、媒質としての水を1000重量部と、親水性樹脂としての架橋ポリアクリル酸(住友精化社製「アクペックHV-501」)を24.79重量部及び非架橋ポリアクリル酸(住友精化社製「アクパーナAP-40F」、40%Na鹸化)4.96重量部とを仕込み、親水性樹脂を水に分散させた分散液を得た。この分散液に、50%水酸化セシウム水溶液を236.03重量部添加し混合した後、添加剤として10%亜テルル酸ナトリウム水溶液を78.76重量部加えて混合し、さらに10%界面活性剤(AGCセイミケミカル社製「サーフロンS-242」)水溶液を7.44重量部加えて混合して塗工液を得た。得られた塗工液を、第1多孔層としての厚み53μm及び平均孔径0.1μmのPTFE多孔膜の一方の面上に塗布した後、第3多孔層として、上記第1多孔層に用いたものと同じPTFE多孔膜を被せ、温度120℃程度で15分間程度乾燥させた。上記第1多孔層の塗布面とは反対側に第2多孔層として目付偏差0.24g/mのPPS不織布(厚み178μm、目付82.6g/m)を積層した。これにより、第2多孔層12、第1多孔層11、無孔質であってゲル状の樹脂組成物層である分離機能層15、及び第3多孔層13をこの順に備える分離膜シート10を作製した。
 (分離膜エレメントの作製)
 分離膜シートの作製で得た分離膜シート10を長さ1.575mmにカットし、カットした分離膜シート10について第2多孔層12側を外側にして二つ折りにしたものの間に供給側流路部材3を挟み込んで膜リーフを得た。
 1層目の透過側流路部材4の一端に、エポキシ系接着剤を用いて中心管を固定した。1層目の透過側流路部材4に、上記で得た膜リーフを積層した。膜リーフは、分離膜シート10の折り目部分が中心管の軸方向に平行となり、且つ、中心管側に折り目部分が位置するように、1層目の透過側流路部材4に積層した。また、膜リーフにおける分離膜シート10の折り目部分に位置する縁を除く3つの縁部分に、上記と同じ接着剤を塗布して、1層目の透過側流路部材4と膜リーフとを貼合した。
 続いて、1層目の膜リーフにおける1層目の透過側流路部材4とは反対側に、上記と同様に折り目部分に位置する縁を除く3つの縁部分に上記と同じ接着剤を塗布した後、2層目の透過側流路部材を積層した。2層目の透過側流路部材の1層目の膜リーフと反対側に、1層目の膜リーフと同様にして、2層目の膜リーフを積層した。このとき、2層目の膜リーフの積層位置は、折り目部分の縁部の位置が、折り目部分と直交する方向であって中心管から離れる方向にオフセットする(ずれる)ようにした。この一連の操作を繰り返し、透過側流路部材4と膜リーフとを交互に3枚ずつ積層した積層体を得た。
 積層体における、1層目の透過側流路部材の中心管及び膜リーフが積層されていない表面及び最上面の膜リーフにおいて、中心管の軸方向に直交する方向に沿って延びる両端部に上記と同じ接着剤を塗布し、中心管に積層体を巻き付けて巻回体とし、外周テープとしての耐熱テープを巻回体の外周に巻き付けた。その後、巻回体の軸方向両端部を切断し、切断面に接するようにテレスコープ防止板を取り付け、巻回体の最外周にガラスファイバーにエポキシ樹脂を含浸した繊維強化樹脂でアウターラップ(補強層)を形成して、分離膜エレメントを得た。得られた分離膜エレメントについて気密試験を行った。結果を表1に示す。
 〔実施例2〕
 第1多孔層及び第3多孔層として表1に示す平均孔径、厚み、及びガーレー値のPTFE多孔膜を用い、第2多孔層として表1に示す目付、目付偏差、厚み、及びガーレー値のPPS不織布を用いたこと以外は、実施例1と同様にして分離膜エレメントを得た。得られた分離膜エレメントについて気密試験を行った。結果を表1に示す。
 〔実施例3〕
 第1多孔層及び第3多孔層として表1に示す平均孔径、厚み、及びガーレー値のPTFE多孔膜を用い、第2多孔層として表1に示す目付、目付偏差、厚み、及びガーレー値のPPS不織布を用いたこと以外は、実施例1と同様にして分離膜エレメントを得た。得られた分離膜エレメントについて気密試験を行った。結果を表1に示す。
 〔比較例1〕
 第1多孔層及び第3多孔層として表1に示す平均孔径、厚み、及びガーレー値のPTFE多孔膜を用い、第2多孔層として表1に示す目付、目付偏差、厚み、及びガーレー値のPPS不織布を用いたこと以外は、実施例1と同様にして分離膜エレメントを得た。得られた分離膜エレメントについて気密試験を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 3 透過側流路部材、4 透過側流路部材、5 中心管、10 分離膜シート、11 第1多孔層、12 第2多孔層、13 第3多孔層、14 第4多孔層、15 分離機能層、20,21,21a 分離膜エレメント、22 分離膜エレメント、35 圧力計、36 ハウジング、50 孔、51 供給側端部、52 排出口、53 排出側端部、55 テレスコープ防止板、N 試験装置。

Claims (12)

  1.  特定のガス成分を選択的に透過する分離膜シートを用いたガス分離方法であって、
     前記分離膜シートは、
      第1多孔層と、前記第1多孔層上に積層される分離機能層と、前記第1多孔層の前記分離機能層とは反対側に積層される第2多孔層と、を有し、
      前記分離機能層は、無孔質の樹脂組成物層であり、
      前記第1多孔層と前記第2多孔層とは互いに異なる多孔層であり、
      前記第1多孔層の平均孔径は、0.005μm以上1μm以下であり、
      前記第1多孔層の厚みは、5μm以上150μm以下であり、
      前記第2多孔層の目付は、10g/m以上200g/m以下であり、
     前記ガス分離方法は、
     前記分離膜シートの前記第2多孔層とは反対側から、前記特定のガス成分を少なくとも含む原料ガスを供給する工程を含み、
     前記供給する工程において、前記原料ガスの圧力P[MPaA]と、前記第2多孔層の目付偏差s[g/m]とは、式(1)の関係を満たす、ガス分離方法。
      P≦1/s  (1)
  2.  前記分離膜シートは、前記原料ガスを供給するための供給側空間と、前記分離膜シートを透過した前記特定のガス成分を含む透過ガスを受け入れるための透過側空間とを隔てるものであり、
     前記供給側空間は、前記分離膜シートの前記第2多孔層とは反対側に設けられ、
     前記透過側空間は、前記分離膜シートの前記第2多孔層側に設けられ、
     前記供給する工程は、前記供給側空間に前記原料ガスを供給する工程を含み、
     さらに、前記透過ガスを前記透過側空間から排出する工程と、
     前記分離膜シートを透過しなかった前記原料ガスを前記供給側空間から排出する工程と、を含む、請求項1に記載のガス分離方法。
  3.  前記第1多孔層の厚みは、前記第2多孔層の厚みよりも小さい、請求項1又は2に記載のガス分離方法。
  4.  前記第1多孔層の通気度は、前記第2多孔層の通気度よりも小さい、請求項1~3のいずれか1項に記載のガス分離方法。
  5.  前記樹脂組成物層は、ゲル状である、請求項1~4のいずれか1項に記載のガス分離方法。
  6.  前記分離機能層は、親水性樹脂を含み、
     前記第1多孔層は、疎水性である、請求項1~5のいずれか1項に記載のガス分離方法。
  7.  前記第1多孔層は、多孔膜である、請求項1~6のいずれか1項に記載のガス分離方法。
  8.  前記第2多孔層は、不織布である、請求項1~7のいずれか1項に記載のガス分離方法。
  9.  前記分離機能層は、前記特定のガス成分と可逆的に反応するキャリアを含む、請求項1~8のいずれか1項に記載のガス分離方法。
  10.  前記特定のガス成分は、酸性ガスである、請求項1~9のいずれか1項に記載のガス分離方法。
  11.  特定のガス成分を選択的に透過する分離膜シートを含むガス分離装置であって、
     前記分離膜シートは、
      第1多孔層と、前記第1多孔層上に積層される分離機能層と、前記第1多孔層の前記分離機能層とは反対側に積層される第2多孔層と、を有し、
      前記分離機能層は、無孔質の樹脂組成物層であり、
      前記第1多孔層と前記第2多孔層とは互いに異なる多孔層であり、
      前記第1多孔層の平均孔径は、0.005μm以上1μm以下であり、
      前記第1多孔層の厚みは、5μm以上150μm以下であり、
      前記第2多孔層の目付は、10g/m以上200g/m以下であり、
     前記ガス分離装置は、
     前記分離膜シートの前記第2多孔層とは反対側から、前記特定のガス成分を少なくとも含む原料ガスを供給する供給部を有し、
     前記供給部は、前記原料ガスの圧力P[MPaA]と前記第2多孔層の目付偏差s[g/m]とが式(1)の関係を満たすように、前記原料ガスを供給する、ガス分離装置。
      P≦1/s  (1)
  12.  前記分離膜シートによって互いに隔てられた供給側空間及び透過側空間と、
     前記供給部から前記原料ガスを前記供給側空間に供給するための供給側入口と、
     前記分離膜シートを透過した前記特定のガス成分を含む透過ガスを前記透過側空間から排出するための透過側出口と、
     前記分離膜シートを透過しなかった前記原料ガスを前記供給側空間から排出するための非透過側出口と、を備える、請求項11に記載のガス分離装置。
PCT/JP2020/040120 2019-12-13 2020-10-26 ガス分離方法及びガス分離装置 WO2021117362A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019225283A JP2021094496A (ja) 2019-12-13 2019-12-13 ガス分離方法及びガス分離装置
JP2019-225283 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021117362A1 true WO2021117362A1 (ja) 2021-06-17

Family

ID=76329724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040120 WO2021117362A1 (ja) 2019-12-13 2020-10-26 ガス分離方法及びガス分離装置

Country Status (2)

Country Link
JP (1) JP2021094496A (ja)
WO (1) WO2021117362A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021133A1 (ja) * 2012-07-31 2014-02-06 東レ株式会社 分離膜および分離膜エレメント
WO2015015802A1 (ja) * 2013-07-30 2015-02-05 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
WO2016117349A1 (ja) * 2015-01-21 2016-07-28 富士フイルム株式会社 酸性ガス分離モジュール
WO2019065493A1 (ja) * 2017-09-29 2019-04-04 住友化学株式会社 スパイラル型ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021133A1 (ja) * 2012-07-31 2014-02-06 東レ株式会社 分離膜および分離膜エレメント
WO2015015802A1 (ja) * 2013-07-30 2015-02-05 富士フイルム株式会社 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
WO2016117349A1 (ja) * 2015-01-21 2016-07-28 富士フイルム株式会社 酸性ガス分離モジュール
WO2019065493A1 (ja) * 2017-09-29 2019-04-04 住友化学株式会社 スパイラル型ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置

Also Published As

Publication number Publication date
JP2021094496A (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
TWI698274B (zh) 螺旋形酸性氣體分離膜元件、酸性氣體分離膜模組,以及酸性氣體分離裝置
US9839882B2 (en) Method for producing acid gas separation composite membrane, and acid gas separation membrane module
US9718030B2 (en) Method for producing acid gas separation composite membrane, and acid gas separation membrane module
KR102306543B1 (ko) 스파이럴형 가스 분리막 엘리먼트, 가스 분리막 모듈 및 가스 분리 장치
KR102475635B1 (ko) 가스 분리막 엘리먼트, 가스 분리막 모듈 및 가스 분리 장치
JP6964070B2 (ja) 酸性ガス分離膜及びこれを用いた酸性ガス分離方法、並びに酸性ガス分離モジュール及び酸性ガス分離装置
WO2019097994A1 (ja) 酸性ガス分離膜シート及びその製造方法
CN110545896B (zh) 螺旋型气体分离膜元件、气体分离膜模块及气体分离装置
WO2019097995A1 (ja) 酸性ガス分離膜シートの製造方法及び製造装置
WO2019009000A1 (ja) ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置
WO2021117362A1 (ja) ガス分離方法及びガス分離装置
WO2021117361A1 (ja) 分離膜シート、分離膜エレメント、分離膜モジュール、及び分離装置
WO2021153062A1 (ja) ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置
WO2018150827A1 (ja) 促進輸送膜の包装方法
WO2022014301A1 (ja) ガス分離膜及びその製造方法
WO2021039309A1 (ja) 酸性ガス分離膜、酸性ガス分離装置、酸性ガス分離膜の製造方法、及び酸性ガス分離方法
JP2017013055A (ja) 分離膜エレメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898328

Country of ref document: EP

Kind code of ref document: A1