WO2014020926A1 - 充放電装置 - Google Patents

充放電装置 Download PDF

Info

Publication number
WO2014020926A1
WO2014020926A1 PCT/JP2013/053430 JP2013053430W WO2014020926A1 WO 2014020926 A1 WO2014020926 A1 WO 2014020926A1 JP 2013053430 W JP2013053430 W JP 2013053430W WO 2014020926 A1 WO2014020926 A1 WO 2014020926A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality detection
power
charge
power conversion
charging
Prior art date
Application number
PCT/JP2013/053430
Other languages
English (en)
French (fr)
Inventor
和徳 畠山
篠本 洋介
崇 山川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13825954.4A priority Critical patent/EP2882066B1/en
Priority to US14/416,106 priority patent/US9685800B2/en
Priority to KR1020157001391A priority patent/KR101616233B1/ko
Priority to CN201380040391.3A priority patent/CN104508938B/zh
Publication of WO2014020926A1 publication Critical patent/WO2014020926A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a charge / discharge device.
  • the charging / discharging cable connected to the charging / discharging device is provided with a detachable charging / discharging connector (hereinafter referred to as “connector”) at the connector connection port of the electric vehicle, and the storage battery mounted on the electric vehicle is connected via this connector. Electrically connected to the charging / discharging device.
  • a detachable charging / discharging connector hereinafter referred to as “connector”
  • the connector is provided with a mechanical lock mechanism (connector disconnection prevention mechanism).
  • a lock actuator drive signal (lock mechanism is When the signal to be operated is transmitted to the connector, the locking mechanism provided in the connector works, and the mechanical connection state between the connector connection port and the connector is maintained.
  • connection a state in which the electrical connection between the storage battery and the charge / discharge device is released.
  • the conventional technique represented by the above-mentioned Patent Document 1 has a power conversion unit (inverter or An abnormality detection unit that stops the operation of the power conversion unit in hardware by transmitting an abnormality detection signal to the control unit of the converter.
  • This abnormality detection unit includes not only a disconnection detection element that detects a disconnection, but also an abnormality detection element that detects an abnormality caused by a factor (overcurrent, overvoltage, etc.) other than the disconnection that has occurred in the charging / discharging device. include.
  • the power conversion unit is provided with a protection function that stops the operation of the power conversion unit when an abnormality is detected, and until the protection function is cleared after the abnormality detection signal is input Is stopped.
  • the power conversion unit cannot distinguish whether the abnormality detection signal is caused by disconnection or the like or other factors. Therefore, when the protection function of the power conversion unit is cleared by the clear signal from the control unit even though an abnormality such as an overcurrent has actually occurred, the power conversion unit is broken by the overcurrent. there is a possibility.
  • the connector is provided with a solenoid for operating the locking mechanism of the connector
  • the charging / discharging device is provided with a switch for supplying power to the solenoid.
  • the switch is turned ON (CLOSE) by an ON signal from the control unit, power is supplied to the solenoid, and when charging / discharging is stopped, the switch is turned OFF by an OFF signal from the control unit ( OPEN) and power supply to the solenoid is stopped. Therefore, when the connector is connected to the electric vehicle and charging / discharging is stopped, the solenoid driving power is not supplied to the solenoid of the connector, so that the latch provided in the connector does not operate.
  • the connector is provided with an interlocking switch that interlocks with the latch.
  • the interlocking switch has one end connected to the solenoid and the other end connected to the input end of the disconnection detection element, and power is supplied to the solenoid. If not, it is OFF (OPEN). Therefore, when charging / discharging is stopped, since the latch does not work, the interlock switch also becomes OPEN (CLOSE), and a voltage lower than the reference voltage is applied to the input terminal of the disconnection detection element. Therefore, in the disconnection detection element, it is determined that a disconnection or the like has occurred, and an abnormality detection signal is output to the control unit and the power conversion unit.
  • the connector is thus connected to the electric vehicle and charging / discharging with the electric vehicle is stopped, the power conversion unit that outputs the abnormality detection signal to the power conversion unit and receives the abnormality detection signal Then, the protection function works and cannot be activated until the protection function is cleared.
  • Patent Document 1 As described above, the conventional technique represented by Patent Document 1 described above prevents the power conversion unit from being damaged when an abnormality such as overcurrent occurs, and the protection function of the power conversion unit when charging / discharging is not performed. Therefore, there has been a problem that it is impossible to satisfy both the prevention of unnecessary operations and the need to further improve the reliability.
  • the present invention has been made in view of the above, and an object thereof is to obtain a charge / discharge device capable of further improving the reliability.
  • the present invention is a charge / discharge device that is interposed between a system power supply and a storage battery and charges and discharges the storage battery, and the storage battery, the charge / discharge device, AC / DC conversion when AC power is input, a charging / discharging connector that electrically connects the charging / discharging connector, one end connected to the charging / discharging connector, and the other end connected to the charging / discharging device
  • a power conversion unit that operates as a DC / AC converter
  • a control unit that controls the operation of the power conversion unit, the storage battery, and the charge / discharge
  • a signal indicating the start of operation of the power conversion unit is output from the control unit, at least one of the control unit and the power conversion unit Power conversion Characterized by comprising operating an abnormality detection section for outputting an abnormality detection signal for stopping of the.
  • the present invention by providing a function to stop the protection function of the power conversion unit only when a disconnection or the like occurs, it is possible to prevent damage to the power conversion unit when an abnormality such as an overcurrent occurs and to charge / discharge Since both the prevention of the unnecessary operation of the protection function of the power conversion unit when it is not performed are achieved, there is an effect that the reliability can be further improved.
  • FIG. 1 is a diagram schematically illustrating a connection relationship among a charge / discharge device, an electric vehicle, a system power supply, and a home load according to the embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a connection relationship between the charging / discharging device and the charging / discharging cable.
  • FIG. 3 is a diagram illustrating the structure of the charge / discharge connector.
  • FIG. 4 is a diagram showing a configuration of the abnormality detection unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating details of the power conversion unit and the control unit illustrated in FIG. 2.
  • FIG. 6 is a diagram for explaining the operation of the protection unit.
  • FIG. 7 is a first diagram for explaining the operation of a conventional charging / discharging device.
  • FIG. 8 is a second diagram for explaining the operation of the conventional charging / discharging device.
  • FIG. 9 is a diagram for explaining the operation of the conventional disconnection detection element and the operation of the disconnection detection element of the first embodiment of the present invention in comparison.
  • FIG. 10 is a diagram showing a modification of the charge / discharge device according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram showing a configuration of a charge / discharge device according to Embodiment 2 of the present invention.
  • FIG. 12 is a diagram illustrating a configuration of a conventional charging / discharging device.
  • FIG. 13 is a first flowchart for explaining the operation of the conventional charge / discharge device.
  • FIG. 14 is a second flowchart for explaining the operation of the conventional charging / discharging device.
  • FIG. 15 is a first flowchart for explaining the operation of the charge / discharge device according to the second embodiment of the present invention.
  • FIG. 16 is a second flowchart for explaining the operation of the charge / discharge device according to the second embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a connection relationship among a charge / discharge device 100, an electric vehicle (hereinafter “automobile”) 4, a system power supply 1, and a home load 2 according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a connection relationship between the charge / discharge device 100 and a charge / discharge cable (hereinafter “cable”) 15, and
  • FIG. 3 is a diagram illustrating a structure of the charge / discharge connector (hereinafter “connector”) 3.
  • the automobile 4 is mounted with a storage battery for driving, a vehicle controller, and the like (not shown).
  • the system power source 1 is electrically connected to the home load 2 via the switch 8 and is also electrically connected to the charging / discharging device 100.
  • One end of a cable 15 is connected to the charging / discharging device 100, and the other end of the cable 15 is provided with a connector 3 that can be attached to and detached from a connector connection port (not shown) provided in the housing of the automobile 4.
  • a lithium ion battery is generally used as a storage battery in the automobile 4.
  • the voltage per battery cell is about 3 to 4 V
  • a plurality of battery cells are connected in series, and the voltage across the storage battery is High pressure.
  • the voltage across the storage battery in this case reaches 355.2 V.
  • the number of battery cells of the storage battery varies depending on the vehicle type because the distance traveled differs depending on the vehicle type, and the battery per cell also varies depending on the manufacturer, so the voltage of the storage battery is 200 to 400V.
  • the storage battery thus increased in pressure is mounted in a state of being insulated from the housing of the automobile 4 and is in a floating state in which both ends of the storage battery are not connected to the ground of the housing.
  • the vehicle controller measures information related to the storage battery (for example, battery voltage, charge / discharge current, battery capacity, SOC (State of Charge), temperature, etc.) and monitors the charge / discharge operation, and the charge capacity of the storage battery. In addition, information is communicated with the charge / discharge device 100 so that the allowable discharge amount is not exceeded, and an operation command to the charge / discharge device 100 is output. In addition, the vehicle controller transmits information about the storage battery to the charging / discharging device 100 as necessary, and also requests information from the charging / discharging device 100.
  • information related to the storage battery for example, battery voltage, charge / discharge current, battery capacity, SOC (State of Charge), temperature, etc.
  • an auxiliary battery built in the automobile 4 is used as the power source of the vehicle controller, and the auxiliary battery is charged from a high-voltage storage battery.
  • a battery having a terminal voltage of 12V or 24V is generally used as the auxiliary battery, but the battery is not limited to this.
  • the auxiliary battery is insulated from the high-voltage storage battery that drives the automobile 4 and is grounded to the vehicle casing. Since the tire is interposed between the housing and the ground, the automobile 4 is grounded through the tire and cannot be said to be completely grounded, but the tire impedance is an ultra-high voltage potential such as lightning. The lightning current is discharged to the ground via the tire.
  • the auxiliary battery is charged by the generator while the engine is operating, but the electric vehicle has no generator.
  • the battery is charged.
  • an insulated step-down charging circuit is inserted between the storage battery and the auxiliary battery.
  • the charging / discharging device 100 includes a power conversion unit 10, a control unit 11, and an abnormality detection unit 12.
  • a power line 13 in the cable 15 is connected to the power conversion unit 10, and charging / discharging between the charging / discharging device 100 and the storage battery of the automobile 4 is performed by the power line 13.
  • the signal line group 14 in the cable 15 is connected to the control unit 11, and predetermined communication is performed between the control unit 11 and the vehicle controller by the signal line group 14.
  • the abnormality detection unit 12 detects a disconnection or the like (connector disconnection or disconnection of the cable 15) and outputs an abnormality detection signal 30a indicating that the disconnection or the like has occurred, and an abnormality such as an overcurrent or an overvoltage (for example, (Abnormality other than disconnection or the like) and a function of outputting an abnormality detection signal 31a indicating that an abnormality other than disconnection or the like has occurred. Details of the abnormality detection unit 12 will be described later.
  • FIG. 3 shows an example of a terminal group provided in the connector 3.
  • the connector 3 includes, for example, a “feed ( ⁇ )” terminal and a “feed (+)” terminal to which the power line 13 is connected, a signal “CAN-H” terminal, “CAN-L” terminal, “charge permission prohibition” terminal, “lock actuator drive signal” terminal, other terminals for transmitting / receiving other I / O signals, etc., to which the line group 14 is connected Is provided.
  • the “CAN-H” terminal and the “CAN-L” terminal are terminals used by the control unit 11 to perform necessary CAN (Controller Area Network) communication with the automobile 4.
  • the vehicle controller designates an optimum charging current according to the state of the storage battery, and the charging / discharging device 100 supplies a direct current according to information transmitted from the vehicle controller.
  • the connector 3 is provided with a lock mechanism 5 that is a mechanical connector disconnection preventing function. For example, when the lock mechanism 5 works, the mechanical connection state between the connector connection port on the automobile 4 side and the connector 3 is maintained. The operation of the lock mechanism 5 will be described later.
  • FIG. 4 is a diagram showing a configuration of the abnormality detection unit 12 according to Embodiment 1 of the present invention.
  • the abnormality detection unit 12 includes a disconnection detection element 30 and an abnormality detection element 31.
  • the disconnection detecting element 30 includes a solenoid driving power switch S1 controlled by an ON / OFF signal 11d from the control unit 11, a comparator 20, an AND circuit 21, and a plurality of resistors R.
  • the switch S1 has one end connected to the circuit power supply 7 and the other end connected to the connection end of the solenoid 3a and the diode 3b in the connector 3.
  • An ON / OFF signal 11d from the control unit 11 is input to the switch S1.
  • an ON signal (ON / OFF signal 11d) for causing the switch S1 to be CLOSE is output from the control unit 11.
  • the switch S 1 is turned on by this ON signal, and the circuit power supply 7 is supplied to the connector 3 through the signal line group 14.
  • the power supplied to the connector 3 is referred to as a lock actuator drive signal 6.
  • the divided input voltage is applied to one input terminal (minus side input terminal) of the comparator 20, and the reference voltage is applied to the other input terminal (plus side input terminal) of the comparator 20.
  • the output terminal of the comparator 20 is connected to one input terminal of the AND circuit 21.
  • the comparator 20 the voltage at the negative input end is compared with the voltage at the positive input end, and when the voltage at the negative input end is lower than the voltage at the positive input end, the output end of the comparator 20 becomes High. For example, when the switch S2 in the connector 3 becomes OPEN and the connector is disconnected, the minus input terminal becomes the GND potential, and the minus input terminal voltage becomes lower than the plus input voltage. For this reason, the output terminal of the comparator 20 becomes High, and this is input to the AND circuit 21 as an output signal.
  • the AND circuit 21 receives the output signal of the comparator 20 and the ON / OFF signal 11d from the control unit 11, and when the AND condition of these signals is satisfied, the AND circuit 21 has a disconnection or the like. Is output.
  • the abnormality detection element 31 When detecting an abnormality other than disconnection, the abnormality detection element 31 outputs an abnormality detection signal 31a indicating that an abnormality other than disconnection or the like has occurred.
  • the connector 3 includes a diode 3b, a resistor 3c having one end connected to the cathode of the diode 3b, a solenoid 3a having one end connected to the anode of the diode 3b and the other end connected to the other end of the resistor 3c, a switch S2.
  • the switch S2 is a switch that interlocks with the lock mechanism 5 described above. One end of the switch S2 is connected to the connection end between the solenoid 3a and the resistor 3c, and the other end is connected to the minus of the comparator 20 via the signal line group 14 and the resistor R. It is connected to the side input terminal.
  • the control unit 11 When a charge / discharge start operation is performed in the charge / discharge device 100, the control unit 11 outputs an ON signal that causes the switch S1 to be CLOSE, and this signal is input to the switch S1. With this signal, the switch S1 is turned ON, and the lock actuator drive signal 6 is supplied to the solenoid 3a.
  • the lock actuator driving signal 6 is not supplied to the solenoid 3a and the comparator 20.
  • the voltage applied to the negative input end of the comparator 20 is lower than the voltage applied to the positive input end due to the voltage division ratio between the resistance component of the solenoid 3a and the resistor R at the negative input end of the comparator 20.
  • the output of the comparator 20 changes from Low to High. Since the ON signal from the control unit 11 is also input to the AND circuit 21, the AND condition of the AND circuit 21 is satisfied, and the abnormality detection signal 30 a is output from the AND circuit 21.
  • the abnormality detection signal 30a is input to, for example, the control unit 11 and the power conversion unit 10, and the control unit 11 to which the abnormality detection signal 30a is input stops outputting the operation signal 11a to the power conversion unit 10. Similarly, the power conversion unit 10 to which the abnormality detection signal 30a is input stops outputting the drive signal 18a from the protection unit 19 described later to each power conversion unit (16, 17). By this operation, the operation of the power conversion unit 10 is stopped, and an electric shock when the connector is disconnected during charging / discharging is prevented.
  • the abnormality detection signal 30a from the AND circuit 21 is input to both the control unit 11 and the power conversion unit 10, but the present invention is not limited to this.
  • the power conversion unit 10 is configured by hardware, but the control unit 11 is configured by software. Therefore, the control unit 11 performs discrete control. For this reason, in the control unit 11, a time lag occurs after the abnormality detection signal 30a is input until the operation signal 11a is stopped. However, in the power conversion unit 10, such a time lag does not occur.
  • the configuration of the charge / discharge device 100 can be simplified and the operation of the power conversion unit 10 can be stopped immediately.
  • the manufacturing cost of the charge / discharge device 100 can be reduced although a slight time lag occurs in the control unit 11.
  • it comprises so that the abnormality detection signal 30a may be input into the control part 11 and the power converter 10 operation
  • movement of the power converter 10 can be stopped immediately and reliability can be improved.
  • FIG. 5 is a diagram showing details of the power conversion unit 10 and the control unit 11 shown in FIG.
  • the power conversion unit 10 includes a second power conversion unit 16, a first power conversion unit 17, a plurality of protection units 19, and a plurality of drive units 18.
  • FIG. 5 as an example, one drive unit 18 for controlling the switching elements of the first power conversion unit 17, the primary side switching elements and the secondary side switching elements of the second power conversion unit 16. Two drive units 18 for individually controlling are shown. Further, a protection unit 19 is provided on the output side of each drive unit 18.
  • the abnormality detection signals 30 a and 31 a are input to the control unit 11, and the operation signal 11 a, the protection clear signal 11 b, and the open / close signal 11 c are output from the control unit 11.
  • the signal input to the control unit 11 and the signal output from the control unit 11 are not limited to these.
  • the control unit 11 receives a signal from a “charge permission prohibition” terminal shown in FIG.
  • a signal from the “charge start / stop” terminal is also input.
  • the first power converter 17 operates as an AC / DC converter or a DC / AC converter.
  • AC power supplied from the system power supply 1 via the switch 8 is converted into DC power and output to the second power converter 16.
  • the second power conversion unit 16 operates as a DC / DC converter, and the direct current power from the first power conversion unit 17 is converted into a voltage that can be supplied to the automobile 4, and the direct current power from the automobile 4 is the first. Is converted to a voltage that can be input to the power converter 17.
  • a drive signal 18 a (PWM gate pulse) for controlling the switching elements of the first power conversion unit 17 and the second power conversion unit 16 is generated by the operation signal 11 a from the control unit 11.
  • Each protection unit 19 outputs the drive signal 18a from the drive unit 18 to each power conversion unit (16, 17) when the abnormality detection signal 30a or the abnormality detection signal 31a from the abnormality detection unit 12 is not input.
  • the abnormality detection signal 30a or the abnormality detection signal 31a is input, the output of the drive signal 18a to each power conversion unit (16, 17) is stopped, and the state is maintained until the protection clear signal 11b from the control unit 11 is input.
  • a signal 16 a indicating that an overcurrent or an overcurrent has occurred is input to the protection unit 19.
  • the signal 16 a is configured to be captured by the abnormality detection element 31 of the abnormality detection unit 12. May be.
  • the 1st power converter 17 shown by FIG. 5 is comprised by the single-phase inverter of 4 element structure, it may be a 3-phase inverter of 6 element structure. In the case of a single-phase inverter, it becomes a single-phase two-wire output, but if it is a three-phase inverter, a single-phase three-wire output can also be produced, and it can be applied to a three-phase power source.
  • the 2nd power conversion part 16 shown by FIG. 5 is comprised by two single phase inverters, the structure of the 2nd power conversion part 16 is not limited to this.
  • the second power conversion unit 16 may be constituted by two three-phase inverters, and in this case, the insulation transformer has YY connection, Y- ⁇ connection, or ⁇ - ⁇ connection. Is used. Further, when the second power conversion unit 16 is configured by combining a single-phase inverter and a three-phase inverter, an insulating transformer having a Scott connection is used.
  • the power conversion unit 10 is operated from the single control unit 11.
  • a plurality of driving units 18 are used for the purpose of insulating the signal 11a, but the configuration is not limited to the configuration shown in FIG.
  • the insulating transformer is provided between the two single-phase inverters.
  • the insulating transformer may be provided on the AC side of the first power conversion unit 17.
  • the size of the isolation transformer is increased, but the second power conversion unit 16 is not required, and thus the switching element used in the power conversion unit 10 is not necessary.
  • the number can be reduced, and switching loss can be reduced and reliability can be improved.
  • the two single-phase inverters have the same potential, it is possible to reduce the drive unit 18 and the like for insulating the operation signal 11a, to reduce signal transmission delay and variation due to insulation, and to improve controllability and drive
  • the frequency (carrier frequency) of the signal 18a can be improved.
  • FIG. 6 is a diagram for explaining the operation of the protection unit 19.
  • the protection unit 19 When the abnormality detection signal 30a or the abnormality detection signal 31a is not input to the protection unit 19, the protection unit 19 is in an OFF state as shown on the left side of FIG. At this time, the drive signal 18a is input to each power converter (16, 17).
  • the protection unit 19 When the abnormality detection signal 30a or the abnormality detection signal 31a is input to the protection unit 19, the protection unit 19 is turned on as shown in the center of FIG. At this time, the drive signal 18a is not input to each power converter (16, 17). Thereafter, when the protection of the protection unit 19 is cleared by the protection clear signal 11b from the control unit 11, the protection unit 19 is turned off as shown on the right side of FIG. Therefore, the drive signal 18a is input again to each power converter (16, 17).
  • FIG. 7 is a first diagram for explaining the operation of the conventional charging / discharging device 100 ′
  • FIG. 8 is a second diagram for explaining the operation of the conventional charging / discharging device 100 ′.
  • the same parts as those in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described here.
  • 7 is provided with a disconnection detection element 30 'instead of the disconnection detection element 30 shown in FIG.
  • the disconnection detection element 30 ′ is not provided with the AND circuit 21 shown in FIG. 4, and the output of the comparator 20 is input to the control unit 11 and the power conversion unit 10 as an abnormality detection signal 30 a ′.
  • the table shown in FIG. 8 shows the relationship between the switches S1 and S2 provided in the charging / discharging device 100 ', the presence / absence of the connector disconnection, and the presence / absence of the output of the abnormality detection signal 30a'.
  • (1) of the table when charging / discharging is not performed, the switch S1 is turned OFF, and the lock actuator drive signal 6 is not supplied to the solenoid 3a. Therefore, the lock mechanism 5 does not work and the switch S2 is also turned off. Accordingly, since the voltage applied to the negative input terminal of the comparator 20 is lower than the voltage applied to the positive input terminal, the output of the comparator 20 becomes High, and the abnormality detection signal 30a 'is output from the comparator 20.
  • the lock actuator driving signal 6 is not supplied to the solenoid 3a, so that the abnormality detection signal is connected even though the connector 3 is connected. 30a 'is output. Therefore, even when the protection unit 19 of the power conversion unit 10 is activated by the abnormality detection signal 30a ′ and an operation to start charging / discharging is performed, each power conversion unit (16, 17) until the protection clear signal 11b is output. Can not start.
  • the control unit 11 determines that the signal from the abnormality detection unit 12 ′ is an abnormality detection signal 30a ′ representing disconnection, and outputs the protection clear signal 11b, even though the protection unit 19 is activated due to overcurrent or the like. In such a case, the power conversion unit may be broken.
  • the charging / discharging device 100 is configured to output the abnormality detection signal 30a only when an AND condition between the output signal of the comparator 20 and the ON / OFF signal 11d from the control unit 11 is satisfied. Yes. Therefore, the abnormality detection signal 30a is not output during non-charging / discharging, that is, when the switch S1 is OFF. Therefore, except when the abnormality detection signal 31a is output, the protection unit 19 of the power conversion unit 10 does not work at the time of non-charging / discharging, and each power conversion unit is promptly operated when an operation to start charging / discharging is performed. (16, 17) can be activated.
  • (3) in the table represents a state in which, for example, the switch S2 does not return from ON to OFF, but the abnormality detection signal 30a ′ is continuously output from the comparator 20 in the non-charging / discharging state. . Also in this case, similarly to (1), the lock actuator drive signal 6 is not supplied to the solenoid 3a, so that it is determined that the wire is disconnected and the abnormality detection signal 30a 'is output.
  • Tables (5) to (6) show the operation of the conventional charging / discharging device 100 ′ during charging / discharging.
  • the switch S2 is ON and connector disconnection occurs during charging / discharging. If not, the output of the abnormality detection signal 30a ′ is stopped.
  • the description of the operations (5), (6), and (8) will be omitted.
  • FIG. 9 is a diagram for explaining the operation of the conventional disconnection detection element 30 ′ and the operation of the disconnection detection element 30 according to the first embodiment of the present invention.
  • 9A shows the relationship between the abnormality detection signal 30a ′ output from the conventional disconnection detection element 30 ′, the switch S1, and the connector 3
  • FIG. 9B shows the output from the disconnection detection element 30. The relationship among the abnormality detection signal 30a, the switch S1, and the connector 3 is shown.
  • the abnormality detection signal 30a ′ is output when the connector 3 is not connected and the switch S1 is OFF, and then the switch S1 changes from OFF to ON. The output of the abnormality detection signal 30a ′ is stopped.
  • FIG. 9B in the disconnection detection element 30 of the first embodiment, when the connector 3 is not connected and the switch S1 is OFF, the output of the abnormality detection signal 30a is stopped. The abnormality detection signal 30a is output when the switch S1 changes from OFF to ON and a connector is disconnected.
  • FIG. 10 is a diagram showing a modification of the charge / discharge device 100-1 according to Embodiment 1 of the present invention.
  • an abnormality detection unit 12-1 is used instead of the abnormality detection unit 12, and the abnormality detection unit 12-1 includes a disconnection detection element 30 (first In addition to the abnormality detection element) and the abnormality detection element 31 (second abnormality detection element), an OR circuit 22 is provided.
  • the OR circuit 22 receives the abnormality detection signal 30a from the AND circuit 21 and the abnormality detection signal 31a from the abnormality detection element 31, and the OR circuit 22 sends the abnormality detection signal 30a or the abnormality detection signal 31a to the control unit 11. And output to the power converter 10.
  • the abnormality detection unit 12-1 detects that the electrical connection between the storage battery and the charging / discharging device 100-1 has been released, and detects a signal (ON / ON) indicating the start of operation of the power conversion unit 10.
  • the first abnormality detection element (30) that outputs the first abnormality detection signal (30a) for stopping the operation of the power conversion unit 10
  • the first abnormality A second abnormality detection element that outputs a second abnormality detection signal (31a) for stopping the operation of the power converter 10 when an abnormality (such as an overcurrent) other than the abnormality detected by the detection element (30) is detected.
  • (31) and OR for outputting the first abnormality detection signal (30a) from the first abnormality detection element (30) or the second abnormality detection signal (31a) from the second abnormality detection element (31) A circuit 22.
  • the abnormality detection signal 30a is output only when the AND condition is satisfied in the AND circuit 21, the abnormality detection signal 30a is input to the OR circuit 22 only when the connector disconnection is detected. Even when the number of signal lines through which the abnormality detection signals 30a and 31a are transmitted is reduced from two to one, the abnormality detection signal 30a or the abnormality detection signal 31a output from the OR circuit 22 is controlled via this signal line. To the unit 11 and the power conversion unit 10. Further, by reducing the number of signal lines of the abnormality detection signals 30a and 31a from two to one, the circuit configuration is simplified compared to the charge / discharge device 100 shown in FIG. 4, and cost reduction and reliability improvement are achieved. Can be planned.
  • the 10 may be configured such that the output from the OR circuit 22 is input only to the power conversion unit 10, similarly to the charge / discharge device 100 illustrated in FIG. Then, the output from the OR circuit 22 may be input only to the control unit 11, or the output from the OR circuit 22 may be input to the control unit 11 and the power conversion unit 10. That is, when the output from the OR circuit 22 is configured to be input only to the power conversion unit 10, the configuration of the charge / discharge device 100 can be simplified and the operation of the power conversion unit 10 can be stopped immediately. Can do. Further, when the output from the OR circuit 22 is configured to be input only to the control unit 11, the manufacturing cost of the charge / discharge device 100 can be reduced. Further, when the output from the OR circuit 22 is configured to be input to the control unit 11 and the power conversion unit 10, the operation of the power conversion unit 10 can be stopped immediately and the reliability can be increased. .
  • charging / discharging device 100 is interposed between system power supply 1 and a storage battery (for example, one mounted on automobile 4), and performs charging / discharging of storage battery 100.
  • a connector 3 for electrically connecting the storage battery and the charging / discharging device 100, a cable 15 having one end connected to the connector 3 and the other end connected to the charging / discharging device 100, and a first input / output terminal When AC power is input from the side (see FIG. 5), it operates as an AC / DC converter, and a desired direct current is applied to the second input / output terminal (see FIG. 5) side different from the first input / output terminal.
  • Electric power is output, and when DC power from the storage battery is input from the second input / output end side, it operates as a DC / AC converter and outputs desired AC power from the first input / output end side.
  • Conversion unit 10 and control unit that controls the operation of power conversion unit 10 1 and that the electrical connection between the storage battery and the charging / discharging device 100 is detected, and a signal (ON / OFF signal 11d) indicating the operation start of the power conversion unit 10 is output from the control unit 11
  • a signal (ON / OFF signal 11d) indicating the operation start of the power conversion unit 10 is output from the control unit 11
  • the control unit 11 and the power conversion unit 10 stops the operation of the power conversion unit 10
  • an abnormality detection unit 12 that outputs an abnormality detection signal 30a.
  • the protection function of the power conversion unit 10 can be stopped only when the connector 3 is disconnected or the cable 15 is disconnected. . Therefore, it is possible to satisfy both the prevention of damage to the power conversion unit 10 and the prevention of unnecessary operation of the protection function of the power conversion unit 10 when an abnormality other than connector disconnection and disconnection occurs. As a result, it is possible to improve reliability, such as preventing damage to the charge / discharge device 100 and human electric shock.
  • Embodiment 2 Since the second power conversion unit 16 shown in FIG. 5 is composed of two single-phase inverters, the charge / discharge device 100 has three drive signals 18a for driving each power conversion unit (16, 17). is necessary. On the other hand, a general microcomputer constituting the control unit 11 generally has about two outputs. Therefore, two or more microcomputers are required to drive each power converter (16, 17). Further, a communication signal line for transmitting / receiving information to / from each other is required between the two microcomputers.
  • the second embodiment is an example of the configuration of the charging / discharging device 100-2 provided with two microcomputers.
  • the same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted. Only the differences are described.
  • FIG. 11 is a diagram showing a configuration of a charge / discharge device 100-2 according to Embodiment 2 of the present invention. 4 is different from the charging / discharging device 100 in that two control units (first control unit 11-1 and second control unit 11-2) are used instead of the control unit 11.
  • the point that 31a can be input to each control unit, and the operation signal 11a-1 from the first control unit 11-1 and the operation signal 11a-2 from the second control unit 11-2 include This is a point that is input to the power conversion unit 10.
  • the first control unit 11-1 is provided so as to be able to control the first power conversion unit 17 shown in FIG. 5, and the second control unit 11-2 is a second power shown in FIG.
  • the conversion unit 16 is provided to be controllable.
  • FIG. 12 is a diagram showing a configuration of a conventional charging / discharging device 100-2 ′.
  • an abnormality detection unit 12-2 ′ is used instead of the abnormality detection unit 12-2.
  • the detection unit 12-2 ′ uses the disconnection detection element 30 ′ and the abnormality detection element 31.
  • the disconnection detection element 30 ′ includes the AND shown in FIG. The circuit 21 is not used.
  • FIG. 13 is a first flowchart for explaining the operation of the conventional charging / discharging device 100-2 '.
  • FIG. 13 schematically shows processing executed by the first control unit 11-1 and the second control unit 11-2 in the conventional charge / discharge device 100-2 '.
  • the first control unit 11-1 notifies the second control unit 11-2 of a charge start command (start command) through the communication line, and further performs the first control.
  • the unit 11-1 makes an ON inquiry (inquiry as to whether the switch S1 can be turned on) to the second control unit 11-2.
  • the second control unit 11-2 that has received the ON request notifies the first control unit 11-1 of the ON permission of the switch S1, and the first control unit 11-1 that has received the ON permission Switch S1 is turned on.
  • the second control unit 11-2 grasps the state of the switch S1.
  • the second control unit 11-2 receives the abnormality detection signal 30a thereafter, the second control unit 11-2 can grasp that a disconnection or the like has occurred.
  • FIG. 14 is a second flowchart for explaining the operation of the conventional charging / discharging device 100-2 '.
  • the flowchart of FIG. 14 shows an operation when the second control unit 11-2 that has notified the switch S1 ON permission is reset by some factor. In this case, the second control unit 11-2 again performs a process as to whether or not an ON request for the switch S1 has been received.
  • FIG. 15 is a first flowchart for explaining the operation of the charging / discharging device 100-2 according to the second embodiment of the present invention, and corresponds to the flowchart of FIG.
  • the abnormality detection signal 30a is Output to the control unit. Therefore, the first control unit 11-1 does not need to notify the second control unit 11-2 that the switch S1 is turned on, and can operate the switch S1. Therefore, it is possible to shorten the time from when the charge / discharge operation is performed until the switch S1 is turned on, and the power conversion unit 10 can be activated immediately.
  • FIG. 16 is a second flowchart for explaining the operation of the charge / discharge device 100-2 according to the second embodiment of the present invention, and corresponds to the flowchart of FIG.
  • the abnormality detection signal 30a is output to each control unit.
  • the first control unit 11-1 does not need to notify the second control unit 11-2 that the switch S1 is turned on, and the second control unit 11-2 transmits an abnormality detection signal 30a. Based on this, it is possible to quickly stop the power conversion unit, and to suppress an electric shock of the operator.
  • the ON / OFF signal 11d from the first control unit 11-1 is input to the switch S1 and the AND circuit 21, but the second control unit 11-2.
  • the ON / OFF signal 11d may be output from
  • the output of the AND circuit 21 is input to all of the first control unit 11-1, the second control unit 11-2, and the power conversion unit 10.
  • the present invention is not limited to this. Is not to be done.
  • the configuration of the charge / discharge device 100-2 can be simplified and the operation of the power conversion unit 10 can be stopped immediately. Can do.
  • the manufacturing cost of the charge / discharge device 100-2 can be reduced.
  • the abnormality detection signal 30a is configured to be input to each control unit (11-1, 11-2) and the power conversion unit 10
  • the operation of the power conversion unit 10 can be stopped immediately and the reliability can be improved. It is possible to increase.
  • the OR circuit 22 shown in FIG. 10 can be used for the charging / discharging device 100-2 of the second embodiment.
  • the abnormality detection signal 30a from the AND circuit 21 and the abnormality detection signal 31a from the abnormality detection element 31 are input to the OR circuit 22, and the output of the OR circuit 22 is input to at least the first control unit 11-1
  • the control unit 11-2 and the power conversion unit 10 may be configured to input to any one of the control unit 11-2 and the power conversion unit 10. Even in such a configuration, as in the first embodiment, the increase in size and cost of the charge / discharge device 100-2 can be suppressed.
  • charging / discharging device 100-2 performs AC / DC conversion when AC power is input from connector 3, cable 15, and the first input / output end side.
  • a desired DC power is output to a second input / output terminal side different from the first input / output terminal and the DC power from the storage battery is input from the second input / output terminal side.
  • the first power converter 17 that operates as a DC / AC converter and outputs desired AC power from the first input / output end side, and the DC power from the first power converter 17 are desired.
  • the DC power input from the second input / output terminal side is converted to a desired value of DC power to convert the first power to the first input / output terminal side.
  • each control unit (11-1, 11-2) and at least one of the power converters (16, 17) includes an abnormality detector 12-2 that outputs an abnormality detection signal 30a for stopping the operation of each power converter. It is configured.
  • the same effects as in the first embodiment can be obtained, and even when the power conversion unit 10 is controlled by two microcomputers, the power conversion unit 10 is immediately activated when a charge / discharge operation is performed. In addition, the operator's electric shock and the like can be suppressed.
  • charging / discharging devices 100, 100-1, 100-2 of the first and second embodiments is not limited to electric vehicle 4, and can be applied to a storage battery other than the storage battery of electric vehicle 4.
  • the present invention can also be applied to a power storage device dedicated to the home load 2.
  • the charging / discharging apparatus concerning embodiment of this invention shows an example of the content of this invention, and it is possible to combine with another another well-known technique, and does not deviate from the summary of this invention. Of course, it is possible to change the configuration such as omitting a part of the range.
  • the present invention is mainly applicable to a charge / discharge device, and is particularly useful as an invention capable of further improving the reliability.

Abstract

 蓄電池と充放電装置100とを電気的に接続する充放電コネクタ3と、一端が前記充放電コネクタに接続され、他端が前記充放電装置に接続されたケーブルと、電力変換部10と、電力変換部10の動作を制御する制御部11と、AND回路21にコンパレータ20からの出力と制御部11からのON信号とが入力されたとき、少なくとも制御部11および電力変換部10の何れかに、電力変換部10の動作を停止させる異常検出信号30aを出力する異常検出部12とを備える。

Description

充放電装置
 本発明は充放電装置に関する。
 近年、電気自動車の普及に伴い、電気自動車に搭載された蓄電池への充電を行うと共に、蓄電池に蓄えられた電力を宅内負荷(エアコン、冷蔵庫など)に供給する充放電装置が注目されている(例えば下記特許文献1)。
 充放電装置に接続された充放電ケーブルには電気自動車のコネクタ接続口に脱着可能な充放電コネクタ(以下「コネクタ」と称する)が設けられ、電気自動車に搭載された蓄電池は、このコネクタを介して充放電装置と電気的に接続される。ただし、蓄電池の電圧は数百ボルトにも達するため、通電中にコネクタの電極などに人が触れた場合に感電を引き起こす虞がある。そこで、充放電装置と電気自動車内の車両コントローラとの間では、コネクタ接続口にコネクタが接続された際に所定の通信が行われ、安全の確認がされた後に充放電が行われる。さらにコネクタには機械的なロック機構(コネクタ抜け防止機構)が設けられており、例えば充放電装置において充放電開始の操作が行われたとき、充放電装置からのロックアクチュエータ駆動信号(ロック機構を動作させる信号)がコネクタに伝送されることでコネクタに設けられたロック機構が働き、コネクタ接続口とコネクタとの機械的な接続状態が保持される。
特開2012-34506号公報
 ただし、蓄電池と充放電装置との間で充放電が行われている最中に電気自動車が走行を開始したような場合、コネクタが外れ或いは充放電ケーブルが切れた状態となり、蓄電池と充放電装置との電気的接続が解除される可能性がある。なお、以下の説明では蓄電池と充放電装置との電気的接続が解除された状態を「断線等」と称する。断線等が生じた場合、速やかに充放電を停止して操作者の安全を確保する必要があるため、上記特許文献1に代表される従来技術は、充放電装置内の電力変換部(インバータやコンバータ)の制御部に対して異常検出信号を送信することで、電力変換部の動作をハードウェア的に停止させる異常検出部を有する。この異常検出部には、断線等を検出する断線検出要素だけでなく、充放電装置において発生した断線等以外の要因(過電流、過電圧等など)に起因する異常を検出する異常検出要素などが含まれている。また、電力変換部には、異常が検出された場合に電力変換部の動作を停止させる保護機能が設けられており、異常検出信号が入力されてから保護機能がクリアされるまで、電力変換部の動作は停止される。しかしながら、電力変換部は、異常検出信号が断線等に起因するものであるのかそれ以外の要因に起因するものであるかを区別することができない。そのため、実際には例えば過電流などの異常が発生しているにも拘わらず、制御部からのクリア信号によって電力変換部の保護機能がクリアされた場合、過電流によって電力変換部が壊れてしまう可能性がある。
 一方、コネクタには、コネクタのロック機構を動作させるソレノイドが設けられ、充放電装置には、このソレノイドへの給電を行うスイッチが設けられている。例えば充放電が開始されるときには制御部からのON信号によりスイッチがON(CLOSE)となり、ソレノイドへの給電が行われ、充放電が停止されているときには制御部からのOFF信号によりスイッチがOFF(OPEN)となり、ソレノイドへの給電が停止される。従って、コネクタが電気自動車に接続され、かつ、充放電が停止されているような場合、コネクタのソレノイドにはソレノイド駆動電源が供給されないため、コネクタに設けられたラッチが動作することはない。ここで、コネクタには、ラッチと連動する連動スイッチが設けられており、連動スイッチは、一端がソレノイドに接続され他端が断線検出要素の入力端に接続されており、ソレノイドに電源が供給されていないときにはOFF(OPEN)となる。そのため、充放電が停止されているような場合、ラッチが働かないため、連動スイッチもOPEN(CLOSE)となり、断線検出要素の入力端には基準電圧よりも低い電圧が印加される。従って、断線検出要素では、断線等が発生していると判断され、制御部および電力変換部に対して異常検出信号が出力される。このようにコネクタが電気自動車に接続され、かつ、電気自動車との充放電が停止しているにも拘わらず、電力変換部には異常検出信号が出力され、異常検出信号を受信した電力変換部では保護機能が働き、保護機能がクリアされるまで起動することができない。
 このように、上記特許文献1に代表される従来技術は、過電流などの異常が発生した場合における電力変換部の破損の防止と、充放電が行われていなときにおける電力変換部の保護機能の不要な動作の防止とを両立させることができず、更なる信頼性の向上を図るというニーズに対応することができないという課題があった。
 本発明は、上記に鑑みてなされたものであって、更なる信頼性の向上を図ることが可能な充放電装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、系統電源と蓄電池との間に介在し前記蓄電池の充放電を行う充放電装置であって、前記蓄電池と前記充放電装置とを電気的に接続する充放電コネクタと、一端が前記充放電コネクタに接続され、他端が前記充放電装置に接続された充放電ケーブルと、交流電力が入力された場合にはAC/DC変換器として動作し、前記蓄電池からの直流電力が入力された場合にはDC/AC変換器として動作する電力変換部と、前記電力変換部の動作を制御する制御部と、前記蓄電池と前記充放電装置との電気的接続が解除されたことを検出し、かつ、前記電力変換部の動作開始を表す信号が前記制御部から出力されたとき、少なくとも前記制御部および前記電力変換部の何れかに前記電力変換部の動作を停止させる異常検出信号を出力する異常検出部と、を備えたことを特徴とする。
 この発明によれば、断線等が生じたときのみ電力変換部の保護機能を停止させる機能を設けることによって、過電流などの異常が発生した場合における電力変換部の破損の防止と、充放電が行われていなときにおける電力変換部の保護機能の不要な動作の防止とを両立させるようにしたので、更なる信頼性の向上を図ることができる、という効果を奏する。
図1は、本発明の実施の形態に係る充放電装置、電気自動車、系統電源、および宅内負荷の接続関係を模式的に表す図である。 図2は、充放電装置と充放電ケーブルとの接続関係を表す図である。 図3は、充放電コネクタの構造を表す図である。 図4は、本発明の実施の形態1に係る異常検出部の構成を示す図である。 図5は、図2に示される電力変換部および制御部の詳細を表す図である。 図6は、保護部の動作を説明するための図である。 図7は、従来の充放電装置の動作を説明するための第1の図である。 図8は、従来の充放電装置の動作を説明するための第2の図である。 図9は、従来の断線検出要素と本発明の実施の形態1の断線検出要素の動作を対比して説明するための図である。 図10は、本発明の実施の形態1に係る充放電装置の変形例を示す図である。 図11は、本発明の実施の形態2に係る充放電装置の構成を示す図である。 図12は、従来の充放電装置の構成を示す図である。 図13は、従来の充放電装置の動作を説明するための第1のフローチャートである。 図14は、従来の充放電装置の動作を説明するための第2のフローチャートである。 図15は、本発明の実施の形態2にかかる充放電装置の動作を説明するための第1のフローチャートである。 図16は、本発明の実施の形態2にかかる充放電装置の動作を説明するための第2のフローチャートである。
 以下に、本発明に係る充放電装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態に係る充放電装置100、電気自動車(以下「自動車」)4、系統電源1、および宅内負荷2の接続関係を模式的に表す図であり、図2は、充放電装置100と充放電ケーブル(以下「ケーブル」)15との接続関係を表す図であり、図3は、充放電コネクタ(以下「コネクタ」)3の構造を表す図である。
 図1において、自動車4には、図示しない走行用の蓄電池や車両コントローラなどが搭載されている。系統電源1は、開閉器8を介して宅内負荷2と電気的に接続されると共に、充放電装置100と電気的に接続される。充放電装置100にはケーブル15の一端が接続され、ケーブル15の他端には自動車4の筐体に設けられたコネクタ接続口(図示せず)に脱着可能なコネクタ3が設けられている。
 自動車4内の蓄電池には、リチウムイオン電池が一般的に用いられるが、電池セル1個当たりの電圧が3~4V程度であるため、複数の電池セルが直列に接続され、蓄電池両端の電圧は高圧化される。自動車4では、例えば3.7V/セルの電池セルが96個直列に接続され、この場合の蓄電池両端の電圧は355.2Vに達する。なお、蓄電池の電池セル数は、車種に応じて走行距離などが異なるため、車種毎に異なり、また1セルあたりの電池もメーカごとに異なるため、蓄電池の電圧は200~400Vとなる。このように高圧化された蓄電池は自動車4の筐体と絶縁された状態で搭載され、蓄電池の両端が筐体のアースに接続されていないフローティング状態となっている。
 車両コントローラは、蓄電池に関する情報(例えば、電池電圧、充放電電流、電池容量、SOC(充電状態:State of Charge)、温度など)を計測して充放電動作の監視を行い、蓄電池の充電許容量および放電許容量を超えないよう充放電装置100との間で情報の通信を行うと共に、充放電装置100への動作指令を出力する。また、車両コントローラは、必要に応じて充放電装置100へ蓄電池に関する情報を伝達し、充放電装置100からの情報も要求する。
 なお、車両コントローラの電源としては自動車4に内蔵されている補機用バッテリーが使用され、補機用バッテリーは高圧の蓄電池から充電される。補機用バッテリーには一般的に端子電圧が12Vや24Vなどのバッテリーが用いられるが、これに限定されるものではない。また補機用バッテリーは、自動車4を走行させる高圧の蓄電池とは絶縁され、車両筐体に接地されている。なお、筐体と大地との間にはタイヤが介在するため、自動車4は、タイヤを介して接地され完全なアースがとれているとは言えないが、タイヤのインピーダンスが雷などの超高圧電位に対して相対的に低い値となるため雷の電流はタイヤを介して地面に放流される。また、エンジン車ではエンジンが発電機と接続されているため、補機用バッテリーはエンジン動作中にこの発電機によって充電されるものの、電気自動車には発電機が無いため、補機用バッテリーは高圧の蓄電池によって充電される。このとき蓄電池と補機用バッテリーの間には絶縁型降圧充電回路が挿入される。
 図2において、充放電装置100は、電力変換部10、制御部11、および異常検出部12を有して構成されている。電力変換部10にはケーブル15内の電源線13が接続され、電源線13によって充放電装置100と自動車4の蓄電池との間でおける充放電が行われる。制御部11にはケーブル15内の信号線群14が接続され、信号線群14によって制御部11と車両コントローラとの間で所定の通信が行われる。
 異常検出部12は、断線等(コネクタ抜け或いはケーブル15の断線など)を検出して断線等が生じていることを表す異常検出信号30aを出力する機能と、例えば過電流や過電圧などの異常(断線等以外の異常)を検出して断線等以外の異常が生じていることを表す異常検出信号31aを出力する機能とを有する。異常検出部12の詳細に関しては後述する。
 図3には、コネクタ3に設けられた端子群の一例が示され、コネクタ3には、例えば、電源線13が接続される「給電(-)」端子および「給電(+)」端子、信号線群14が接続される「CAN-H」端子、「CAN-L」端子、「充電許可禁止」端子、「ロックアクチュエータ駆動信号」端子、その他のI/O信号を送受信するための端子などが設けられている。
 「CAN-H」端子と「CAN-L」端子は、制御部11が自動車4との間で必要なCAN(Controller Area Network)通信を行うための端子であり、CAN通信により、例えば自動車4側の車両コントーラでは蓄電池の状態に応じて最適な充電電流が指定され、充放電装置100では車両コントローラから送信される情報に従って直流電流の供給が行われる。また、コネクタ3には、機械的なコネクタ抜け防止機能であるロック機構5が設けられている。例えばロック機構5が働くことにより自動車4側のコネクタ接続口とコネクタ3との機械的な接続状態が保持される。ロック機構5の動作に関しては後述する。
 図4は、本発明の実施の形態1に係る異常検出部12の構成を示す図である。異常検出部12は、断線検出要素30および異常検出要素31を有して構成されている。断線検出要素30は、制御部11からのON/OFF信号11dにより制御されるソレノイド駆動電源用のスイッチS1と、コンパレータ20と、AND回路21と、複数の抵抗器Rとを有している。
 スイッチS1は、一端が回路電源7に接続され、他端がコネクタ3内のソレノイド3aとダイオード3bとの接続端に接続されている。スイッチS1には制御部11からのON/OFF信号11dが入力される。例えば自動車4との充放電が開始される場合、スイッチS1をCLOSEにさせるON信号(ON/OFF信号11d)が制御部11から出力される。このON信号によりスイッチS1がONとなり、回路電源7が信号線群14を通じてコネクタ3に供給される。以下の説明では、コネクタ3に供給される電源をロックアクチュエータ駆動信号6と称する。
 コンパレータ20の一方の入力端(マイナス側入力端)には、分圧された入力電圧が印加され、コンパレータ20の他方の入力端(プラス側入力端)には、基準電圧が印加される。コンパレータ20の出力端は、AND回路21の一方の入力端に接続されている。コンパレータ20では、マイナス側入力端の電圧がプラス側入力端の電圧と比較され、マイナス側入力端の電圧がプラス側入力端の電圧よりも低いとき、コンパレータ20の出力端がHighとなる。例えば、コネクタ3内のスイッチS2がOPENとなり、コネクタ抜けが生じた場合、マイナス側入力端はGND電位となり、マイナス側入力端の電圧がプラス側入力端の電圧よりも低くなる。そのため、コンパレータ20の出力端がHighとなり、これが出力信号としてAND回路21に入力される。
 AND回路21には、コンパレータ20の出力信号と制御部11からのON/OFF信号11dとが入力され、これらの信号のAND条件が成立したとき、AND回路21は、断線等が生じていることを表す異常検出信号30aを出力する。異常検出要素31は、断線以外の異常を検出したとき、断線等以外の異常が生じていることを表す異常検出信号31aを出力する。
 コネクタ3は、ダイオード3bと、一端がダイオード3bのカソードに接続された抵抗器3cと、一端がダイオード3bのアノードに接続され他端が抵抗器3cの他端に接続されたソレノイド3aと、スイッチS2とを有している。スイッチS2は、前述したロック機構5と連動するスイッチであり、一端がソレノイド3aと抵抗器3cとの接続端に接続され、他端が信号線群14および抵抗器Rを介してコンパレータ20のマイナス側入力端に接続されている。
 以下、動作を説明する。例えばコネクタ抜けが生じていない状態で電気自動車との充放電が開始される場合の動作を説明する。例えば充放電装置100において充放電開始の操作が行われたとき、制御部11からはスイッチS1をCLOSEにさせるON信号が出力され、スイッチS1にはこの信号が入力される。この信号によりスイッチS1はONとなり、ロックアクチュエータ駆動信号6がソレノイド3aに供給される。
 このことによりロック機構5が働き、自動車4側のコネクタ接続口とコネクタ3との機械的な接続状態が保持され、充放電中におけるコネクタ抜けに起因する感電が防止される。また、ロック機構5に連動してスイッチS2がONになり、コンパレータ20のマイナス側入力端にはプラス側入力端に印加される電圧より高い電圧が印加され、コンパレータ20の出力はLowとなる。従って、AND回路21のAND条件が成立しないため、異常検出信号30aは出力されない。
 次に、自動車4との充放電が開始された後にコネクタ抜けが生じた場合の動作を説明する。自動車4との充放電が開始された後にコネクタ抜けが生じた場合、ソレノイド3aおよびコンパレータ20にはロックアクチュエータ駆動信号6が供給されなくなる。このとき、ソレノイド3aの抵抗成分とコンパレータ20のマイナス側入力端の抵抗器Rとの分圧比により、コンパレータ20のマイナス側入力端に印加される電圧はプラス側入力端に印加される電圧より低くなり、コンパレータ20の出力はLowからHighに変化する。AND回路21には制御部11からのON信号も入力されているため、AND回路21のAND条件が成立し、AND回路21からは異常検出信号30aが出力される。
 この異常検出信号30aは、例えば制御部11および電力変換部10に入力され、異常検出信号30aが入力された制御部11は、電力変換部10に対する動作信号11aの出力を停止する。同様に、異常検出信号30aが入力された電力変換部10は、後述する保護部19から各電力変換部(16、17)への駆動信号18aの出力を停止する。この動作により、電力変換部10の動作が停止され、充放電中にコネクタ抜けが生じた際の感電が防止される。
 なお、図4では、AND回路21からの異常検出信号30aが制御部11と電力変換部10の双方に入力されているが、これに限定されるものではない。電力変換部10はハードウェアを構成されているが制御部11はソフトウェアで構成されているため、制御部11では離散的な制御が行われる。そのため、制御部11では、異常検出信号30aが入力されてから動作信号11aを停止させるまでにタイムラグが生じるが、電力変換部10では、そのようなタイムラグが生じることがない。
 従って、異常検出信号30aを電力変換部10のみに入力するように構成した場合、充放電装置100の構成を簡素化することができると共に、電力変換部10の動作を即座に停止させることができる。また、異常検出信号30aを制御部11のみに入力するように構成した場合、制御部11における若干のタイムラグが生じるものの充放電装置100の製造コストの低減化を図ることができる。また、異常検出信号30aを制御部11および電力変換部10に入力するように構成した場合、電力変換部10の動作を即座に停止させることができると共に信頼性を高めることが可能である。
 図5は、図2に示される電力変換部10および制御部11の詳細を表す図である。電力変換部10は、第2の電力変換部16、第1の電力変換部17、複数の保護部19、および複数の駆動部18を有して構成されている。
 図5には、一例として、第1の電力変換部17のスイッチング素子を制御するための1つの駆動部18と、第2の電力変換部16の一次側のスイッチング素子と二次側のスイッチング素子を個々に制御する2つの駆動部18が示されている。また、各駆動部18の出力側にはそれぞれ保護部19が設けられている。
 なお、図5では説明を簡単化するため、異常検出信号30a、31aが制御部11に入力され、動作信号11a、保護クリア信号11b、および開閉信号11cが制御部11から出力されているが、制御部11に入力される信号と制御部11から出力されている信号は、これらに限定されるものではなく、制御部11には、例えば図3に示される「充電許可禁止」端子からの信号や、「充電開始停止」端子からの信号なども入力される。
 第1の電力変換部17は、AC/DC変換器またはDC/AC変換器として動作する。第1の電力変換部17がAC/DC変換器として動作するとき、開閉器8を介して系統電源1から供給される交流電力が直流電力に変換されて第2の電力変換部16に出力される。また、第1の電力変換部17がDC/AC変換器として動作するとき、第2の電力変換部16からの直流電力が交流電力に変換されて開閉器8に出力される。
 第2の電力変換部16は、DC/DC変換器として動作し、第1の電力変換部17からの直流電力が自動車4へ供給可能な電圧に変換され、自動車4からの直流電力が第1の電力変換部17に入力可能な電圧に変換される。
 各駆動部18では、制御部11からの動作信号11aにより、第1の電力変換部17および第2の電力変換部16のスイッチング素子を制御する駆動信号18a(PWMゲートパルス)が生成される。
 各保護部19は、異常検出部12からの異常検出信号30aまたは異常検出信号31aが入力されていないとき、駆動部18からの駆動信号18aを各電力変換部(16、17)へ出力し、異常検出信号30aまたは異常検出信号31aが入力されたとき、各電力変換部(16、17)に対する駆動信号18aの出力を停止し、制御部11からの保護クリア信号11bが入力されるまでその状態を維持する。なお、図5では、保護部19に過電流や過電流等が発生したことを表す信号16aが入力されているが、この信号16aは、異常検出部12の異常検出要素31に取り込むように構成してもよい。
 なお、図5に示される第1の電力変換部17は、4素子構成の単相インバータで構成されているが、6素子構成の三相インバータでも構わない。単相インバータの場合、単相2線出力となるが、三相インバータであれば単相3線出力もでき、三相電源にも応用可能である。また、図5に示される第2の電力変換部16は、2つの単相インバータで構成されているが、第2の電力変換部16の構成は、これに限定されるものではない。例えば、2つの三相インバータで第2の電力変換部16を構成してもよく、このように構成する場合、絶縁トランスとしてはY-Y結線、Y-Δ結線、あるいはΔ-Δ結線のものが使用される。また、第2の電力変換部16を単相インバータと三相インバータとを組み合わせて構成する場合、絶縁トランスにはスコット結線のものが用いられる。
 また、図5に示される第2の電力変換部16では、絶縁トランスの一次側と二次側との間で電位が異なるため、電力変換部10には、単一の制御部11からの動作信号11aを絶縁する目的で複数の駆動部18が用いられているが、同等効果をもたらす構成であれば、図5に示される構成に限定されるものではない。
 また、図5では、絶縁トランスが2つの単相インバータの間に設けられているが、絶縁トランスを第1の電力変換部17の交流側に設けるように構成してもよい。このように構成した場合、絶縁トランスには電源周波数が入力されるため絶縁トランスが大型化するものの、第2の電力変換部16が不要となるため、電力変換部10で使用されるスイッチング素子の数が少なくなり、スイッチング損失の低減と信頼性の向上を図ることができる。また、2つの単相インバータが同一電位になるため、動作信号11aを絶縁するための駆動部18などの削減でき、絶縁による信号伝達の遅れやバラツキを低減することでき、制御性の向上と駆動信号18aの周波数(キャリア周波数)の向上を図ることができる。
 図6は、保護部19の動作を説明するための図である。異常検出信号30aまたは異常検出信号31aが保護部19に入力されていない場合、図6の左側に示されるように保護部19はOFFの状態である。このとき、各電力変換部(16、17)には、駆動信号18aが入力される。異常検出信号30aまたは異常検出信号31aが保護部19に入力された場合、図6の中央に示されるように保護部19はONの状態となる。このとき各電力変換部(16、17)には駆動信号18aが入力されない状態となる。その後、制御部11からの保護クリア信号11bによって保護部19の保護がクリアされたとき、図6の右側に示されるように保護部19はOFF状態となる。従って各電力変換部(16、17)には、再び駆動信号18aが入力される。
 図7は、従来の充放電装置100’の動作を説明するための第1の図であり、図8は、従来の充放電装置100’の動作を説明するための第2の図である。以下、図1~6と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。図7に示される充放電装置100’には、図4に示される断線検出要素30の代わりに断線検出要素30’が設けられている。断線検出要素30’には、図4に示されるAND回路21が設けられておらず、コンパレータ20の出力が異常検出信号30a’として制御部11および電力変換部10に入力される。
 図8に示される表は、充放電装置100’に設けられたスイッチS1およびスイッチS2と、コネクタ抜けの有無と、異常検出信号30a’の出力の有無との関係が示されている。表の(1)において、充放電が行われていないときはスイッチS1がOFFとなり、ソレノイド3aにはロックアクチュエータ駆動信号6が供給されない。そのため、ロック機構5が働かずスイッチS2もOFFとなる。従って、コンパレータ20のマイナス側入力端に印加される電圧はプラス側入力端に印加される電圧より低いため、コンパレータ20の出力はHighとなり、コンパレータ20からは異常検出信号30a’が出力される。
 このように、従来の充放電装置100’では、充放電が行われていない場合にはロックアクチュエータ駆動信号6がソレノイド3aに供給されないため、コネクタ3が接続されているにも係わらず異常検出信号30a’が出力される。従って、異常検出信号30a’によって電力変換部10の保護部19が働き、充放電を開始する操作が行われた場合でも、保護クリア信号11bが出力されるまで各電力変換部(16、17)を起動することができない。
 一方、電力変換部10および制御部11では、異常検出部12’からの信号がコネクタ抜けに起因するものであるのか、その他の要因(過電流など)に起因するものであるのかを判別することができない。そのため、過電流などによって保護部19が働いているにも係わらず、制御部11において異常検出部12’からの信号が断線を表す異常検出信号30a’と判断されて保護クリア信号11bが出力された場合には、電力変換部が壊れてしまう可能性がある。
 本実施の形態1に係る充放電装置100は、コンパレータ20の出力信号と制御部11からのON/OFF信号11dとのAND条件が成立したときのみ異常検出信号30aを出力するように構成されている。そのため、非充放電時、すなわちスイッチS1がOFFのときには、異常検出信号30aが出力されることがない。従って、異常検出信号31aが出力されている場合を除いて、非充放電時には電力変換部10の保護部19が働くことがなく、充放電を開始する操作が行われたときには速やか各電力変換部(16、17)を起動させることができる。
 表の(2)は、(1)のケースでコネクタ抜けが生じたときにおけるスイッチS1、スイッチS2、および異常検出信号30a’の状態を表しており、コネクタ抜けが発生した場合には異常検出信号30a’が出力される。
 表の(3)は、非充放電時であるにも係わらず、例えばスイッチS2がONからOFFに戻らずにコンパレータ20から異常検出信号30a’が出力され続けているような状態を表している。この場合も(1)と同様に、ソレノイド3aにはロックアクチュエータ駆動信号6が供給されないため、断線と判断されて異常検出信号30a’が出力される。
 表の(4)は、(3)のケースでコネクタ抜けが生じたときにおけるスイッチS1、スイッチS2、および異常検出信号30a’の状態を表しているが、コネクタ抜けが生じた場合、(2)と同様に異常検出信号30a’が出力される。
 表の(5)~(6)は、充放電時における従来の充放電装置100’の動作を表しており、例えば(7)では、充放電時においてスイッチS2がON、かつ、コネクタ抜けが生じていないとき、異常検出信号30a’の出力が停止される。以下、(5)、(6)、(8)の動作に関しては説明を割愛する。
 図9は、従来の断線検出要素30’と本発明の実施の形態1の断線検出要素30の動作を対比して説明するための図である。図9(a)には従来の断線検出要素30’から出力される異常検出信号30a’とスイッチS1とコネクタ3との関係が示され、図9(b)には断線検出要素30から出力される異常検出信号30aとスイッチS1とコネクタ3との関係が示されている。
 図9(a)において、従来の断線検出要素30’では、コネクタ3が未接続、かつ、スイッチS1がOFFのとき異常検出信号30a’が出力され、その後、スイッチS1がOFFからONに変化したとき、異常検出信号30a’の出力が停止される。一方、図9(b)において、本実施の形態1の断線検出要素30では、コネクタ3が未接続、かつ、スイッチS1がOFFのとき、異常検出信号30aの出力が停止される。そして、スイッチS1がOFFからONに変化し、かつ、コネクタ抜けなどが生じたときに異常検出信号30aが出力される。
 図10は、本発明の実施の形態1に係る充放電装置100-1の変形例を示す図である。図4の充放電装置100との相違点は、異常検出部12の代わりに異常検出部12-1が用いられている点であり、異常検出部12-1は、断線検出要素30(第1の異常検出要素)および異常検出要素31(第2の異常検出要素)の他にもOR回路22を有している。OR回路22には、AND回路21からの異常検出信号30aと異常検出要素31からの異常検出信号31aとが入力され、OR回路22は、異常検出信号30aまたは異常検出信号31aを、制御部11および電力変換部10に出力する。具体的には、異常検出部12-1は、蓄電池と充放電装置100-1との電気的接続が解除されたことを検出し、かつ、電力変換部10の動作開始を表す信号(ON/OFF信号11d)が制御部11から出力されたとき、電力変換部10の動作を停止させる第1の異常検出信号(30a)を出力する第1の異常検出要素(30)と、第1の異常検出要素(30)で検出される異常以外の異常(過電流など)を検出したとき、電力変換部10の動作を停止させる第2の異常検出信号(31a)を出力する第2の異常検出要素(31)と、第1の異常検出要素(30)からの第1の異常検出信号(30a)または第2の異常検出要素(31)からの第2の異常検出信号(31a)を出力するOR回路22と、を備える。
 本実施の形態1では、AND回路21でAND条件が成立したときのみ異常検出信号30aが出力されるため、コネクタ抜けが検出されたときのみ異常検出信号30aがOR回路22に入力される。異常検出信号30a、31aが伝送される信号線を、2本から1本に減らした場合でも、OR回路22から出力された異常検出信号30aまたは異常検出信号31aは、この信号線を介して制御部11および電力変換部10へ送信することができる。また、異常検出信号30a、31aの信号線を2本から1本に減らすことで、図4に示される充放電装置100に比べて回路構成が簡素化され、コスト低減と信頼性の向上とを図ることができる。
 なお、図10に示される充放電装置100-1は、図4に示される充放電装置100と同様に、OR回路22からの出力を電力変換部10のみに入力するように構成してもよいし、OR回路22からの出力を制御部11のみに入力するように構成してもよし、OR回路22からの出力を制御部11および電力変換部10に入力するように構成してもよい。すなわち、OR回路22からの出力を電力変換部10のみに入力するように構成した場合、充放電装置100の構成を簡素化することができると共に、電力変換部10の動作を即座に停止させることができる。また、OR回路22からの出力を制御部11のみに入力するように構成した場合、充放電装置100の製造コストの低減化を図ることができる。また、OR回路22からの出力を制御部11および電力変換部10に入力するように構成した場合、電力変換部10の動作を即座に停止させることができると共に信頼性を高めることが可能である。
 以上に説明したように、実施の形態1に係る充放電装置100は、系統電源1と蓄電池(例えば自動車4に搭載されたもの)との間に介在し蓄電池の充放電を行う充放電装置100であって、蓄電池と充放電装置100とを電気的に接続するコネクタ3と、一端がコネクタ3に接続され、他端が充放電装置100に接続されたケーブル15と、第1の入出力端(図5参照)側から交流電力が入力された場合にはAC/DC変換器として動作して第1の入出力端とは異なる第2の入出力端(図5参照)側に所望の直流電力を出力し、蓄電池からの直流電力が第2の入出力端側から入力された場合にはDC/AC変換器として動作して第1の入出力端側から所望の交流電力を出力する電力変換部10と、電力変換部10の動作を制御する制御部11と、蓄電池と充放電装置100との電気的接続が解除されたことを検出し、かつ、電力変換部10の動作開始を表す信号(ON/OFF信号11d)が制御部11から出力されたとき(すなわちAND回路21にコンパレータ20からの出力と制御部11からのON信号とが入力されたとき)、少なくとも制御部11および電力変換部10の何れかに電力変換部10の動作を停止させる異常検出信号30aを出力する異常検出部12と、を備えるように構成されている。この構成により、コネクタ抜けあるいはケーブル15の断線が発生したときのみエラーが検出されるため、コネクタ3が外れ或いはケーブル15が切れた状態のときのみ電力変換部10の保護機能を停止させることができる。従って、コネクタ抜けおよび断線以外の異常が発生した場合における電力変換部10の破損の防止と、電力変換部10の保護機能の不要動作の防止とを、両立させることができる。その結果、充放電装置100の破損や人の感電などを防止できるなど、信頼性の向上を図ることができる。
実施の形態2.
 図5に示される第2の電力変換部16は2つの単相インバータで構成されているため、充放電装置100では各電力変換部(16、17)を駆動するために3つの駆動信号18aが必要である。一方、制御部11を構成する一般的なマイコンは2出力程度が一般的である。そのため各電力変換部(16、17)を駆動するためには、2つ以上のマイコンが必要となる。さらに、2つのマイコン間には相互に情報を送受信するための通信用の信号線が必要になる。実施の形態2は、2つのマイコンが設けられた充放電装置100-2の構成例であり、以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図11は、本発明の実施の形態2に係る充放電装置100-2の構成を示す図である。図4の充放電装置100との相違点は、制御部11の代わりに2つの制御部(第1の制御部11-1、第2の制御部11-2)が用いられている点と、第1の制御部11-1と第2の制御部11-2が相互に通信可能に構成されている点と、断線検出要素30からの異常検出信号30aと異常検出要素31からの異常検出信号31aが各制御部にそれぞれ入力可能に構成されている点と、第1の制御部11-1からの動作信号11a-1と第2の制御部11-2からの動作信号11a-2とが電力変換部10に入力されている点である。例えば、第1の制御部11-1は、図5に示される第1の電力変換部17を制御可能に設けられ、第2の制御部11-2は、図5に示される第2の電力変換部16を制御可能に設けられている。
 図12は、従来の充放電装置100-2’の構成を示す図であり、図11との相違点は、異常検出部12-2の代わりに異常検出部12-2’が用いられ、異常検出部12-2’には、図7に示される異常検出部12’と同様に断線検出要素30’および異常検出要素31が用いられ、断線検出要素30’には、図11に示されるAND回路21が用いられていない。
 図13は、従来の充放電装置100-2’の動作を説明するための第1のフローチャートである。図13には、従来の充放電装置100-2’における第1の制御部11-1と第2の制御部11-2とで実行される処理が模式的に記されている。例えば充電開始の操作が行われた場合、第1の制御部11-1は、通信線を通じて充電開始の指令(起動指令)を第2の制御部11-2に通知し、さらに第1の制御部11-1は、第2の制御部11-2に対してON伺い(スイッチS1をONにしてよいか否かの問い合わせ)を行う。ON伺いを受信した第2の制御部11-2は、第1の制御部11-1に対してスイッチS1のON許可を通知し、ON許可を受信した第1の制御部11-1は、スイッチS1をONにする。
 このように従来の充放電装置100-2’では、「ON伺い」が第2の制御部11-2に通知されたとき、第2の制御部11-2がスイッチS1の状態を把握することができ、第2の制御部11-2は、そのあとに異常検出信号30aを受信した場合、断線等が生じていることを把握することができる。
 ただし、図13に示される処理では、第1の制御部11-1と第2の制御部11-2との間で何回かの通信を行う必要があるため、充放電操作が行われてからスイッチS1がONされるまでの時間が長くなり、電力変換部10の起動が遅くなる。なお、スイッチS1がONにされた後に、充電停止の操作が行われた場合、第1の制御部11-1は第2の制御部11-2に対してスイッチS1をOFFにしてよいか否かの問い合わせ(OFF伺い)が行われるが、以下説明を割愛する。
 図14は、従来の充放電装置100-2’の動作を説明するための第2のフローチャートである。図14のフローチャートは、スイッチS1のON許可を通知した第2の制御部11-2が、何らかの要因によりCPUリセットされた場合の動作を示している。この場合、第2の制御部11-2では再びスイッチS1のON伺いを受信したか否かの処理が行われる。
 ただし、この場合、スイッチS1からの「ON伺い」が第2の制御部11-2に通知されないため、第1の制御部11-1と第2の制御部11-2との間の通信が所定時間経過後にタイムアウトとなり、この通信のタイムアウトによって停止処理が行われる。従って、停止処理が行われるまでの間でも電力変換部10の動作は継続しているため、その間に過電流などの異常が発生した場合でも即座に電力変換部10の動作を停止させることができず、仮にこの間にコネクタ抜けが生じた場合、操作者が感電する虞がある。
 図15は、本発明の実施の形態2にかかる充放電装置100-2の動作を説明するための第1のフローチャートであり、図13のフローチャーに対応したものである。実施の形態2にかかる充放電装置100-2では、コンパレータ20の出力信号と第1の制御部11-1からのON/OFF信号11dとのAND条件が成立したとき、異常検出信号30aが各制御部に出力される。そのため、第1の制御部11-1は、第2の制御部11-2に対してスイッチS1のON伺いを通知する必要がなく、スイッチS1を動作させることができる。従って、充放電操作が行われてからスイッチS1がONされるまでの時間を短縮することができ、即座に電力変換部10の起動させることができる。
 図16は、本発明の実施の形態2にかかる充放電装置100-2の動作を説明するための第2のフローチャートであり、図14のフローチャーに対応したものである。実施の形態2にかかる充放電装置100-2では、コンパレータ20の出力信号と制御部11からのON/OFF信号11dとのAND条件が成立したとき、異常検出信号30aが各制御部に出力される。そのため、第1の制御部11-1は、第2の制御部11-2に対してスイッチS1のON伺いを通知する必要がなく、第2の制御部11-2は、異常検出信号30aに基づいて速やかに電力変換部の停止処理を行うことができ、操作者の感電などを抑制することができる。
 なお、実施の形態2では、第1の制御部11-1からのON/OFF信号11dがスイッチS1とAND回路21に入力されるように構成されているが、第2の制御部11-2からON/OFF信号11dが出力されるように構成してもよい。
 また、実施の形態2では、AND回路21の出力は、第1の制御部11-1、第2の制御部11-2、および電力変換部10の全てに入力されているが、これに限定されるものではない。例えば、異常検出信号30aを電力変換部10のみに入力するように構成した場合、充放電装置100-2の構成を簡素化することができると共に、電力変換部10の動作を即座に停止させることができる。また、異常検出信号30aを各制御部(11-1、11-2)のみに入力するように構成した場合、充放電装置100-2の製造コストの低減化を図ることができる。また、異常検出信号30aを各制御部(11-1、11-2)および電力変換部10に入力するように構成した場合、電力変換部10の動作を即座に停止させることができると共に信頼性を高めることが可能である。
 また、実施の形態2の充放電装置100-2には、図10に示したOR回路22を用いることも可能である。例えば、AND回路21からの異常検出信号30aと異常検出要素31からの異常検出信号31aとをOR回路22に入力し、このOR回路22の出力を、少なくとも第1の制御部11-1、第2の制御部11-2、および電力変換部10の何れかに入力するように構成してもよい。このように構成した場合でも実施の形態1と同様に、充放電装置100-2の大型化やコストアップを抑制することができる。
 以上に説明したように、実施の形態2に係る充放電装置100-2は、コネクタ3と、ケーブル15と、第1の入出力端側から交流電力が入力された場合にはAC/DC変換器として動作して前記第1の入出力端とは異なる第2の入出力端側に所望の直流電力を出力し、前記蓄電池からの直流電力が前記第2の入出力端側から入力された場合にはDC/AC変換器として動作して前記第1の入出力端側から所望の交流電力を出力する第1の電力変換部17と、第1の電力変換部17からの直流電力を所望の値の直流電力に変換して前記第2の入出力端側に出力し、前記第2の入出力端側から入力された直流電力を所望の値の直流電力に変換して前記第1の電力変換部17に出力する第2の電力変換部16と、第1の電力変換部17の動作を制御する第1の制御部11-1と、第2の電力変換部16の動作を制御する第2の制御部11-2と、蓄電池と充放電装置100-2との電気的接続が解除されたことを検出し、かつ、各電力変換部(16、17)の動作開始を表す信号が何れかの制御部(11-1、11-2)から出力されたとき、各制御部(11-1、11-2)および各電力変換部(16、17)の少なくとも何れかに、各電力変換部の動作を停止させる異常検出信号30aを出力する異常検出部12-2と、を備えるように構成されている。この構成により、実施の形態1と同様の効果を得ることができる共に、電力変換部10が2つのマイコンで制御される場合でも、充放電操作が行われたとき即座に電力変換部10を起動させることができると共に、操作者の感電などを抑制することができる。
 また、実施の形態1、2の充放電装置100、100-1、100-2の用途は、電気自動車4に限定されるものではなく、電気自動車4の蓄電池以外の蓄電池にも適用可能であり、例えば、宅内負荷2専用の電力蓄電装置などにも適用可能である。
 また、本発明の実施の形態にかかる充放電装置は、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略するなど、変更して構成することも可能であることは無論である。
 以上のように、本発明は、主に充放電装置に適用可能であり、特に、更なる信頼性の向上を図ることができる発明として有用である。
 1 系統電源、2 宅内負荷、3 充放電コネクタ、3a ソレノイド、3b ダイオード、3c 抵抗器、4 電気自動車、5 ロック機構、6 ロックアクチュエータ駆動信号、7 回路電源、8 開閉器、10 電力変換部、11 制御部、11-1 第1の制御部、11-2 第2の制御部、11a,11a-1,11a-2 動作信号、11b 保護クリア信号、11c 開閉信号、11d ON/OFF信号、12,12’,12-1,12-2,12-2’ 異常検出部、13 電源線、14 信号線群、15 充放電ケーブル、16 第2の電力変換部、16a 信号、17 第1の電力変換部、18 駆動部、18a 駆動信号、19 保護部、20 コンパレータ、21 AND回路、22 OR回路、30,30’ 断線検出要素(第1の異常検出要素)、30a,30a’ ,31a 異常検出信号、31 異常検出要素(第2の異常検出要素)、100,100’,100-1,100-2,100-2’ 充放電装置。

Claims (10)

  1.  系統電源と蓄電池との間に介在し前記蓄電池の充放電を行う充放電装置であって、
     前記蓄電池と前記充放電装置とを電気的に接続する充放電コネクタと、
     一端が前記充放電コネクタに接続され、他端が前記充放電装置に接続された充放電ケーブルと、
     交流電力が入力された場合にはAC/DC変換器として動作し、前記蓄電池からの直流電力が入力された場合にはDC/AC変換器として動作する電力変換部と、
     前記電力変換部の動作を制御する制御部と、
     前記蓄電池と前記充放電装置との電気的接続が解除されたことを検出し、かつ、前記電力変換部の動作開始を表す信号が前記制御部から出力されたとき、前記制御部および前記電力変換部の少なくとも何れかに前記電力変換部の動作を停止させる異常検出信号を出力する異常検出部と、
     を備えたことを特徴とする充放電装置。
  2.  前記異常検出部は、前記制御部のみに前記異常検出信号を出力することを特徴とする請求項1に記載の充放電装置。
  3.  前記異常検出部は、前記電力変換部のみに前記異常検出信号を出力することを特徴とする請求項1に記載の充放電装置。
  4.  前記異常検出部は、前記制御部および前記電力変換部に前記異常検出信号を出力することを特徴とする請求項1に記載の充放電装置。
  5.  前記異常検出部は、
     前記蓄電池と前記充放電装置との電気的接続が解除されたことを検出し、かつ、前記電力変換部の動作開始を表す信号が前記制御部から出力されたとき、前記電力変換部の動作を停止させる第1の異常検出信号を出力する第1の異常検出要素と、
     前記第1の異常検出要素で検出される異常以外の異常を検出したとき、前記電力変換部の動作を停止させる第2の異常検出信号を出力する第2の異常検出要素と、
     前記第1の異常検出要素からの第1の異常検出信号または前記第2の異常検出要素からの第2の異常検出信号を、前記異常検出信号として出力するOR回路と、
     を備えたことを特徴とする請求項1~4の何れか1つに記載の充放電装置。
  6.  系統電源と蓄電池との間に介在し前記蓄電池の充放電を行う充放電装置であって、
     前記蓄電池と前記充放電装置とを電気的に接続する充放電コネクタと、
     一端が前記充放電コネクタに接続され、他端が前記充放電装置に接続された充放電ケーブルと、
     交流電力が入力された場合にはAC/DC変換器として動作し、直流電力が入力された場合にはDC/AC変換器として動作する第1の電力変換部と、
     第1の電力変換部からの直流電力を所望の値の直流電力に変換し、前記蓄電池からの直流電力を所望の値の直流電力に変換する第2の電力変換部と、
     前記第1の電力変換部の動作を制御する第1の制御部と、
     前記第2の電力変換部の動作を制御する第2の制御部と、
     前記蓄電池と前記充放電装置との電気的接続が解除されたことを検出し、かつ、前記電力変換部の動作開始を表す信号が何れかの前記各制御部から出力されたとき、少なくとも前記各制御部および前記各電力変換部の何れかに、前記各電力変換部の動作を停止させる異常検出信号を出力する異常検出部と、
     を備えたことを特徴とする充放電装置。
  7.  前記異常検出部は、前記各制御部のみに前記異常検出信号を出力することを特徴とする請求項6に記載の充放電装置。
  8.  前記異常検出部は、前記各電力変換部のみに前記異常検出信号を出力することを特徴とする請求項6に記載の充放電装置。
  9.  前記異常検出部は、前記各制御部および前記各電力変換部に前記異常検出信号を出力することを特徴とする請求項6に記載の充放電装置。
  10.  前記異常検出部は、
     前記蓄電池と前記充放電装置との電気的接続が解除されたことを検出し、かつ、前記電力変換部の動作開始を表す信号が何れかの前記各制御部から出力されたとき、前記各電力変換部の動作を停止させる第1の異常検出信号を出力する第1の異常検出要素と、
     前記第1の異常検出要素で検出される異常以外の異常を検出したとき、前記各電力変換部の動作を停止させる第2の異常検出信号を出力する第2の異常検出要素と、
     前記第1の異常検出要素からの第1の異常検出信号または前記第2の異常検出要素からの第2の異常検出信号を、前記異常検出信号として出力するOR回路と、
     を備えたことを特徴とする請求項6~9の何れか1つに記載の充放電装置。
PCT/JP2013/053430 2012-07-30 2013-02-13 充放電装置 WO2014020926A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13825954.4A EP2882066B1 (en) 2012-07-30 2013-02-13 Charging/discharging device
US14/416,106 US9685800B2 (en) 2012-07-30 2013-02-13 Charging/discharging system
KR1020157001391A KR101616233B1 (ko) 2012-07-30 2013-02-13 충 방전 장치
CN201380040391.3A CN104508938B (zh) 2012-07-30 2013-02-13 充放电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012168689A JP5662390B2 (ja) 2012-07-30 2012-07-30 充放電装置
JP2012-168689 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014020926A1 true WO2014020926A1 (ja) 2014-02-06

Family

ID=50027627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053430 WO2014020926A1 (ja) 2012-07-30 2013-02-13 充放電装置

Country Status (6)

Country Link
US (1) US9685800B2 (ja)
EP (1) EP2882066B1 (ja)
JP (1) JP5662390B2 (ja)
KR (1) KR101616233B1 (ja)
CN (1) CN104508938B (ja)
WO (1) WO2014020926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151364A4 (en) * 2014-05-30 2018-01-24 Fuji Electric Co., Ltd. Charger

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661075B2 (ja) * 2012-07-30 2015-01-28 三菱電機株式会社 充放電装置
KR101500141B1 (ko) * 2013-09-12 2015-03-09 현대자동차주식회사 3상 케이블 단선 진단 방법 및 장치
CN105556784A (zh) * 2013-09-19 2016-05-04 东芝三菱电机产业系统株式会社 蓄电池系统
JP6305189B2 (ja) * 2014-04-24 2018-04-04 三菱電機株式会社 電気自動車充放電装置
WO2015181987A1 (ja) 2014-05-30 2015-12-03 富士電機株式会社 充電器
DE112014005231B4 (de) 2014-05-30 2022-04-07 Fuji Electric Co., Ltd. Ladegerät
JP6233258B2 (ja) * 2014-09-18 2017-11-22 株式会社豊田自動織機 受電システム及びマスタ受電装置
WO2016154820A1 (zh) * 2015-03-27 2016-10-06 广东欧珀移动通信有限公司 控制充电的方法、装置和充电线缆
CN105934868A (zh) 2015-03-27 2016-09-07 广东欧珀移动通信有限公司 电力管理的方法、装置和电子设备
CN104966855B (zh) * 2015-06-26 2017-09-15 北京百度网讯科技有限公司 用于电池的放电装置及放电方法
JP6471653B2 (ja) * 2015-08-31 2019-02-20 住友電気工業株式会社 異常検知回路及び充電装置
CN108292840B (zh) * 2015-11-17 2019-06-14 株式会社自动网络技术研究所 充放电装置
FR3052307B1 (fr) * 2016-06-07 2019-07-12 Thales Demarreur generateur sans balais
JP6324570B1 (ja) * 2017-03-13 2018-05-16 三菱電機株式会社 電動車両の制御装置および漏電検出状態判断方法
DE102017205481A1 (de) * 2017-03-31 2018-10-04 Robert Bosch Gmbh Gleichspannungskonverter, Spannungsversorgungseinrichtung und Diagnoseverfahren für einen Gleichspannungskonverter
KR102369338B1 (ko) * 2017-06-07 2022-03-03 현대자동차주식회사 배터리 연결 상태 진단 시스템 및 방법
EP3587164B1 (de) * 2018-06-22 2023-12-20 eLoaded GmbH System mit zentraleinheit und mehreren gleichspannungsladesäulen zum laden von elektrofahrzuegen
CN109130909B (zh) * 2018-07-27 2023-11-10 广州万城万充新能源科技有限公司 一种电动汽车传导充电的智能连接装置
CN109050327B (zh) * 2018-09-07 2023-05-02 安徽合力股份有限公司 一种大吨位电动叉车充电控制系统以及控制方法
US11336662B2 (en) * 2018-11-21 2022-05-17 Abb Schweiz Ag Technologies for detecting abnormal activities in an electric vehicle charging station
JP7103209B2 (ja) * 2018-12-27 2022-07-20 トヨタ自動車株式会社 異常検出システム及びそれを備える車両、並びに異常検出方法
JP6559391B1 (ja) * 2019-01-25 2019-08-14 三菱電機株式会社 電力変換システムおよびケーブル中継器
JP7227043B2 (ja) * 2019-03-20 2023-02-21 ファナック株式会社 Sramモジュールの破損検出装置
JP7193403B2 (ja) 2019-03-29 2022-12-20 株式会社マキタ 電源供給装置、電動作業機システム
US20210028632A1 (en) * 2019-07-25 2021-01-28 Samsung Sdi Co., Ltd. Battery system
CN110611351B (zh) * 2019-09-24 2020-11-06 常州太平通讯科技有限公司 自然冷却的一体化基站电源系统
CN113442775B (zh) * 2021-07-23 2023-05-12 长春捷翼汽车科技股份有限公司 充放电控制方法、充电设备及存储介质
JP2023026864A (ja) * 2021-08-16 2023-03-01 トヨタ自動車株式会社 車両制御装置、車両、電力供給システム、プログラム、放電コネクタ、電力設備および電力供給方法
FR3127729A1 (fr) * 2021-10-04 2023-04-07 Vitesco Technologies Système électrique pour véhicule automobile
DE102021134295A1 (de) * 2021-12-22 2023-06-22 Bury Sp.Z.O.O. System zum Aufladen einer Antriebsbatterie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315193A (ja) * 2001-04-10 2002-10-25 Mitsubishi Heavy Ind Ltd 電力制御システム
JP2011130647A (ja) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd 電気自動車給電システム
JP2012034506A (ja) 2010-07-30 2012-02-16 Nippon Signal Co Ltd:The 車両用充電システム
WO2012070432A1 (ja) * 2010-11-25 2012-05-31 本田技研工業株式会社 電動車両の充電制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166114A (ja) * 1998-11-30 2000-06-16 Suzuki Motor Corp 充電装置
JP4770798B2 (ja) * 2007-06-15 2011-09-14 株式会社豊田自動織機 電源装置
JP5259220B2 (ja) 2008-03-25 2013-08-07 富士重工業株式会社 電気自動車
EP2332246A1 (en) * 2008-09-11 2011-06-15 Eetrex Incorporated Bi-directional inverter-charger
JP5301948B2 (ja) * 2008-10-29 2013-09-25 富士通テン株式会社 制御装置
WO2010137144A1 (ja) * 2009-05-28 2010-12-02 トヨタ自動車株式会社 充電システム
WO2010150360A1 (ja) 2009-06-24 2010-12-29 トヨタ自動車株式会社 電動車両の充電制御装置
JP2011035975A (ja) * 2009-07-30 2011-02-17 Toyota Motor Corp 車両および車両の制御方法
JP5229184B2 (ja) 2009-10-13 2013-07-03 トヨタ自動車株式会社 車両用照明装置
JP2011200012A (ja) * 2010-03-19 2011-10-06 Tabuchi Electric Co Ltd 二次電池充放電システムおよびこれを備えた移動体
JP2012039749A (ja) * 2010-08-06 2012-02-23 Auto Network Gijutsu Kenkyusho:Kk 車両用給電ケーブル装置
JP5480066B2 (ja) * 2010-08-23 2014-04-23 株式会社東海理化電機製作所 プラグロック装置
JP2012130127A (ja) * 2010-12-14 2012-07-05 Takaoka Electric Mfg Co Ltd 電気移動体用充電装置
US9352652B2 (en) * 2012-06-29 2016-05-31 Schneider Electric USA, Inc. Coupler for electric vehicle charging station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315193A (ja) * 2001-04-10 2002-10-25 Mitsubishi Heavy Ind Ltd 電力制御システム
JP2011130647A (ja) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd 電気自動車給電システム
JP2012034506A (ja) 2010-07-30 2012-02-16 Nippon Signal Co Ltd:The 車両用充電システム
WO2012070432A1 (ja) * 2010-11-25 2012-05-31 本田技研工業株式会社 電動車両の充電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2882066A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151364A4 (en) * 2014-05-30 2018-01-24 Fuji Electric Co., Ltd. Charger

Also Published As

Publication number Publication date
KR101616233B1 (ko) 2016-04-27
US9685800B2 (en) 2017-06-20
CN104508938A (zh) 2015-04-08
CN104508938B (zh) 2017-07-28
JP2014027854A (ja) 2014-02-06
KR20150023040A (ko) 2015-03-04
US20150288201A1 (en) 2015-10-08
EP2882066A4 (en) 2016-05-25
EP2882066A1 (en) 2015-06-10
JP5662390B2 (ja) 2015-01-28
EP2882066B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP5662390B2 (ja) 充放電装置
JP5177274B1 (ja) 充放電コネクタ及び当該充放電コネクタを介して充放電可能な車両
US9371005B2 (en) Battery management apparatus for an electric vehicle, and method for managing same
AU2013379082B2 (en) Railroad vehicle propulsion control device
WO2013129231A1 (ja) 電源装置
WO2014174808A1 (ja) 電力供給システム
US10252618B2 (en) Backup electrical supply for main capacitor discharge
EP3230117B1 (en) Method and arrangement for charging of vehicle accumulators
US10933762B2 (en) DC/DC conversion unit
WO2015071721A1 (en) Charging and discharging system and vehicle used therein
CN110549890A (zh) Dc/dc转换单元
WO2013076952A1 (ja) 電力変換装置
JP6062162B2 (ja) 充放電装置
US20130162031A1 (en) Operating Structure for an Electrically Operated Vehicle
JP5808474B2 (ja) 充放電システム
KR20140044018A (ko) 차량 배터리의 충전을 위한 통신 인터페이스 시스템 및 이를 이용한 차량 배터리의 충전방법, 차량 배터리의 충전을 위한 통신 인터페이스 시스템을 구비한 전기자동차
KR20140134070A (ko) 차량 배터리의 충전을 위한 통신 인터페이스 시스템 및 이를 이용한 차량 배터리의 충전방법, 차량 배터리의 충전을 위한 통신 인터페이스 시스템을 포함하는 전기자동차
JP7281587B1 (ja) 電気自動車間充放電装置
CN106416073A (zh) 电路装置
KR102464487B1 (ko) 차량 배터리의 충전을 위한 통신 인터페이스 시스템 및 이를 이용한 차량 배터리의 충전방법, 차량 배터리의 충전을 위한 통신 인터페이스 시스템을 포함하는 전기자동차
WO2024010070A1 (ja) 電気自動車間充放電装置
KR102464489B1 (ko) 차량 배터리의 충전을 위한 통신 인터페이스 시스템 및 이를 이용한 차량 배터리의 충전방법, 차량 배터리의 충전을 위한 통신 인터페이스 시스템을 포함하는 전기자동차
KR102464488B1 (ko) 차량 배터리의 충전을 위한 통신 인터페이스 시스템 및 이를 이용한 차량 배터리의 충전방법, 차량 배터리의 충전을 위한 통신 인터페이스 시스템을 포함하는 전기자동차
KR20200128639A (ko) 차량 배터리의 충전을 위한 통신 인터페이스 시스템 및 이를 이용한 차량 배터리의 충전방법, 차량 배터리의 충전을 위한 통신 인터페이스 시스템을 포함하는 전기자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001391

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416106

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013825954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013825954

Country of ref document: EP