WO2014020804A1 - 偏波多重光送信機及び動作制御方法 - Google Patents

偏波多重光送信機及び動作制御方法 Download PDF

Info

Publication number
WO2014020804A1
WO2014020804A1 PCT/JP2013/002937 JP2013002937W WO2014020804A1 WO 2014020804 A1 WO2014020804 A1 WO 2014020804A1 JP 2013002937 W JP2013002937 W JP 2013002937W WO 2014020804 A1 WO2014020804 A1 WO 2014020804A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
clock signal
polarization
phase
Prior art date
Application number
PCT/JP2013/002937
Other languages
English (en)
French (fr)
Inventor
喜久 稲田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201380040749.2A priority Critical patent/CN104509004B/zh
Priority to US14/418,286 priority patent/US9419744B2/en
Priority to EP13825957.7A priority patent/EP2882118B1/en
Priority to JP2014527953A priority patent/JP5850159B2/ja
Publication of WO2014020804A1 publication Critical patent/WO2014020804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/255Self-phase modulation [SPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier

Definitions

  • the present invention relates to a polarization multiplexed optical transmitter and an operation control method, and more particularly to a polarization multiplexed optical transmitter that synthesizes and transmits two optical signals having the same wavelength in a polarization state orthogonal to each other.
  • the transmission capacity per fiber can be doubled by using a polarization multiplexing method that transmits signals using light that is orthogonally polarized. Recently, it has become possible to efficiently separate polarization multiplexed signals by introducing digital signal processing technology into the receiver of an optical transceiver, and polarization multiplexing has been widely used. .
  • a polarization multiplexed signal is affected by a non-linear effect (cross-polarization cross-phase modulation: inter-polarization XPM) from orthogonal polarization signals.
  • inter-polarization XPM cross-polarization cross-phase modulation
  • polarization multiplexed signals at the same wavelength not only propagate through the optical fiber at the same speed, but also produce similar waveform changes when subjected to chromatic dispersion, so the effects of inter-polarization XPM accumulate.
  • signal quality is greatly degraded depending on the transmission distance. Therefore, in order to transmit a polarization multiplexed signal with a good transmission quality over a long distance, a technique for compensating and mitigating waveform distortion generated during transmission is important.
  • Patent Document 1 in a transmitter of an optical signal transmission system using a polarization multiplexing system, an asymmetric chirp is added to two optical signals (polarized wave components), thereby phase-separating the two optical signals. It describes that after modulation, they are combined in a polarization state orthogonal to each other to generate a polarization multiplexed signal.
  • Patent Document 1 can alleviate the influence of XPM between polarized waves, so that the signal quality can be improved.
  • XPM self-phase modulation
  • chromatic dispersion which is one of the nonlinear optical effects in an optical fiber. It is also important.
  • An object of the present invention is to provide a polarization multiplexed optical transmitter and an operation control method capable of solving the above-described problems and further improving signal quality.
  • a polarization multiplexed optical transmitter includes a frequency dividing unit that divides a clock signal having a baud rate frequency, a phase modulation unit that phase-modulates an optical signal using the divided clock signal, and the phase A branching means for branching the modulated optical signal into two; a delaying means for delaying one of the two branched optical signals with respect to the other to generate optical signals whose phases are inverted; and the generated optical signal And polarization multiplexing means for generating a polarization multiplexed signal by combining the signals in the orthogonal polarization state.
  • a polarization multiplexing optical transmitter divides a clock signal having a baud rate frequency and phase-modulates two optical signals having the same wavelength by using the divided clock signal. And phase modulation and delay means for delaying one optical signal with respect to the other to generate optical signals whose phases are inverted with each other, and combining the generated optical signals with polarization states orthogonal to each other and polarization multiplexing Polarization multiplexing means for generating a signal.
  • An operation control method is an operation control method for a polarization multiplexed optical transmitter, wherein a frequency dividing step of dividing a clock signal having a baud rate frequency and an optical signal using the divided clock signal are provided.
  • a polarization multiplexing step for combining the generated optical signals in polarization states orthogonal to each other to generate a polarization multiplexed signal.
  • An operation control method is an operation control method for a polarization multiplexed optical transmitter, wherein a frequency dividing step of dividing a clock signal having a frequency of a baud rate and a wavelength using the divided clock signal are performed. Phase modulation and delay step for phase-modulating the same two optical signals and delaying one optical signal with respect to the other to generate inverted optical signals, and the generated optical signals orthogonal to each other And a polarization multiplexing step for generating a polarization multiplexed signal by combining in a polarization state.
  • FIG. 2 is a diagram for explaining a modulation state transition in a generation process of a polarization multiplexed optical signal in the configuration of FIG. 1.
  • FIG. 2 is a diagram for explaining a modulation state transition in a generation process of a polarization multiplexed optical signal in the configuration of FIG. 1.
  • FIG. 2 is a diagram for explaining a modulation state transition in a generation process of a polarization multiplexed optical signal in the configuration of FIG. 1.
  • FIG. 1 It is a figure which shows the structure of the polarization multiplexing optical transmitter by the 2nd Embodiment of this invention. It is a figure for demonstrating the transition of a modulation state in the production
  • FIG. 1 is a diagram showing the configuration of a polarization multiplexed optical transmitter according to the first embodiment of the present invention.
  • the polarization multiplexed optical transmitter according to the first embodiment of the present invention includes a laser diode (LD) 1 as a signal source, and a frequency dividing circuit 21 for halving the frequency of the clock signal 9.
  • the phase modulator 8 that performs phase modulation using the clock signal divided by the frequency dividing circuit 21, the optical coupler 2 for branching the optical signal, and one of the lights branched by the optical coupler 2 are delayed.
  • a delay circuit 10 PSK (Phase Shift Keying) modulators 3 and 4 for performing data modulation on the light branched by the optical coupler 2, and a polarization beam combiner 5 for multiplexing the light after PSK modulation in an orthogonal polarization state Including.
  • the light output from the LD 1 is phase-modulated by the optical phase modulator 8 driven by the clock signal divided by the frequency dividing circuit 21.
  • the frequency of the clock signal 9 is the same as that of the data modulation (Baud rate), and the clock signal 9 is frequency-divided by 1/2 by the frequency divider circuit 21 and output to the optical phase modulator 8.
  • the phase-modulated light is branched into two by the optical coupler 2, and data modulation is performed on one of them using the data signal 6 by the PSK modulator 3.
  • the other light is delayed by the delay circuit 10 for one Baud rate period (one period of the clock signal 9), and then data modulation is performed by the PSK modulator 4 using the data signal 7. .
  • the delay circuit 10 gives a delay is to invert the phases of the two phase-modulated lights that are the outputs of the optical coupler 2. Therefore, the delay amount of the delay circuit 10 is set to one cycle of Baud rate (one cycle of the clock signal 9).
  • the output lights of the PSK modulators 3 and 4 are polarization multiplexed into orthogonal polarization states by the polarization beam combiner 5 to generate a polarization multiplexed optical modulation signal.
  • the X-polarized and Y-polarized optical signals are PSK modulated signals that have undergone different data modulations corresponding to the data signals 6 and 7, respectively. However, as shown in the state E of FIG. 4 and FIG. When the phase change curves of the light are compared, the phase curves are inverted between the X polarization and the Y polarization.
  • FIG. 5 is a diagram showing an example of the optical output of the polarization multiplexed optical transmitter of FIG.
  • phase modulation with different polarities is superimposed between the X polarization and the Y polarization (the polarity here is the phase modulation waveform (phase curve) on the top). Meaning that it is convex or convex downward), that is, the polarity is inverted between the X polarization and the Y polarization.
  • the polarity of the phase is further inverted between adjacent bits in the same polarization (the unevenness is alternated for each bit). To appear).
  • this polarization multiplexed signal undergoes different waveform changes (dispersion or compression) when subjected to chromatic dispersion in the transmission line fiber. ).
  • the signal (bit) on which phase modulation of one polarity is superimposed receives the dispersion of the time waveform (spreads the time waveform), whereas the signal of the other polarity In the signal (bit) on which the phase modulation is superimposed, the time waveform is compressed (pulse compression).
  • FIG. 6 is a diagram showing a configuration of a polarization multiplexing optical transmitter according to the second embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the second embodiment of the present invention does not include the frequency dividing circuit 21 of FIG. 1, and is phase-modulated by the optical phase modulator 8 at the same frequency as the Baud rate.
  • the delay amount of the delay circuit 10 is a half period of Baud rate (a half period of the clock signal 9).
  • the X-polarized and Y-polarized optical signals are PSK modulated signals subjected to different data modulations corresponding to the data signals 6 and 7, respectively. However, as shown in the state E of FIG. 8 and FIG. When the phase change curves of the light are compared, the phase curves are inverted between the X polarization and the Y polarization.
  • FIG. 9 is a diagram showing an example of the optical output of the polarization multiplexed optical transmitter of FIG.
  • phase modulation with different polarities is superimposed between the X polarization and the Y polarization, that is, the polarity is inverted between the X polarization and the Y polarization.
  • the phase polarity is inverted between adjacent bits in the same polarization as shown in FIG. As shown in FIG. 9, the state of unevenness appearing alternately on each other does not occur.
  • FIG. 10 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the third embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the third embodiment of the present invention changes the arrangement of the delay circuit with respect to the configuration of FIG. In this configuration, the delay circuit 11 is arranged.
  • the delay amount of the delay circuit 11 is one cycle of Baud rate (one cycle of the clock signal 9). It goes without saying that the third embodiment of the present invention having such a configuration can also achieve the same effects as those of the first embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the fourth embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the fourth embodiment of the present invention has a configuration in which the arrangement of the phase modulator is changed from the configuration of FIG.
  • the clock signal 9 is frequency-divided into half the frequency by the frequency divider circuit 21
  • the clock signal is branched into two by the clock distributor 14 and supplied to the phase modulators 12 and 13 arranged at the subsequent stage of the optical coupler 2.
  • a delay circuit 15 is arranged between the clock distributor 14 and the phase modulator 13, and the delay amount of the delay circuit 15 is one cycle of Baud rate (one cycle of the clock signal 9).
  • the phase modulator 12 performs phase modulation on the input light using the clock signal from the clock distributor 14, and the phase modulator 13 converts the input light using the clock signal delayed by the delay circuit 15. In contrast, phase modulation is performed.
  • the fourth embodiment of the present invention having such a configuration can achieve the same effects as those of the first embodiment of the present invention.
  • the PSK modulators 3 and 4 may be disposed between the optical coupler 2 and the phase modulators 12 and 13.
  • FIG. 12 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the fifth embodiment of the present invention, and the same parts as those in FIG. 11 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the fifth embodiment of the present invention changes the arrangement of the delay circuit with respect to the configuration of FIG. 11, and includes the phase modulator 13 and the PSK modulator 4.
  • the delay circuit 10 is arranged between them.
  • the delay amount of the delay circuit 10 is one cycle of Baud rate (one cycle of the clock signal 9). It goes without saying that the fifth embodiment of the present invention having such a configuration can also achieve the same effects as those of the first embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the sixth embodiment of the present invention, and the same parts as those in FIG. 11 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the sixth embodiment of the present invention changes the arrangement of the delay circuit with respect to the configuration of FIG. In this configuration, the delay circuit 11 is arranged.
  • the delay amount of the delay circuit 11 is one cycle of Baud rate (one cycle of the clock signal 9). It is needless to say that the sixth embodiment of the present invention having such a configuration can achieve the same effects as those of the first embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the seventh embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the seventh embodiment of the present invention has a configuration in which amplitude modulation (AM modulation) by a clock signal 9 is further added to the configuration of FIG.
  • a clock distributor 14 and AM modulators 16 and 17 are added.
  • the clock distributor 14 supplies the clock signal 9 to the frequency dividing circuit 21 and the AM modulators 16 and 17.
  • the AM modulator 16 performs amplitude modulation on the input light using the clock signal from the clock distributor 14, and the AM modulator 17 outputs the input light delayed by the delay circuit 10 from the clock distributor 14. Amplitude modulation is performed using the clock signal. It is needless to say that the seventh embodiment of the present invention having such a configuration can achieve the same effects as those of the first embodiment of the present invention.
  • AM modulators 16 and 17 may be arranged between the PSK modulators 3 and 4 and the polarization beam combiner 5.
  • FIG. 15 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the eighth embodiment of the present invention, and the same parts as those in FIG. 11 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the eighth embodiment of the present invention has a configuration in which an AM modulator 18 is added between the LD 1 and the optical coupler 2 with respect to the configuration of FIG. is there.
  • the phase modulators 12 and 13 are arranged between the PSK modulators 3 and 4 and the polarization beam combiner 5, but the optical coupler 2 and the PSK modulator are the same as in FIG. Of course, it may be arranged between 3 and 4.
  • the clock distributor 22 supplies the clock signal 9 to the frequency divider circuit 21 and the AM modulator 18.
  • the AM modulator 18 performs amplitude modulation on the input light using the clock signal 9 from the clock distributor 22. It goes without saying that the eighth embodiment of the present invention having such a configuration can achieve the same effects as those of the first embodiment of the present invention.
  • FIG. 16 is a diagram showing a configuration of a polarization multiplexed optical transmitter according to the ninth embodiment of the present invention, and the same parts as those in FIG. 15 are denoted by the same reference numerals.
  • the polarization multiplexed optical transmitter according to the ninth embodiment of the present invention changes the arrangement of the delay circuit with respect to the configuration of FIG. 15, and the PSK modulator 4, the phase modulator 13, In this configuration, the delay circuit 10 is arranged between the two. It is needless to say that the ninth embodiment of the present invention having such a configuration can achieve the same effects as those of the first embodiment of the present invention.

Abstract

 本発明による偏波多重光送信機は、ボーレートの周波数を有するクロック信号を分周する分周手段(21)と、前記分周されたクロック信号を用いて光信号を位相変調する位相変調手段(8)と、前記位相変調された光信号を2分岐する分岐手段(2)と、前記2分岐された光信号の一方を他方に対して遅延させて互いに位相が反転した光信号を生成する遅延手段(10)と、前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重手段(5)とを含む。これにより、更なる信号品質の改善を図ることができる偏波多重光送信機を得られる。

Description

偏波多重光送信機及び動作制御方法
 本発明は偏波多重光送信機及び動作制御方法に関し、特に波長が同一の2つの光信号を互いに直交する偏波状態で合成して送信する偏波多重光送信機に関する。
 光ファイバ伝送システムにおいて、偏波直交する光を利用して信号を伝送する偏波多重方式を用いると、1ファイバあたりの伝送容量を2倍にすることが可能である。最近では、光トランシーバの受信部にデジタル信号処理技術を導入することで、偏波多重信号を効率よく分離することも可能となっており、偏波多重方式が広く使用されるようになっている。
 しかしながら、偏波多重信号は、直交する偏波信号からの非線形効果(偏波間相互位相変調:偏波間XPM)の影響を受けることが知られている。また、同一波長での偏波多重信号は、光ファイバ中を同じ速さで伝播するだけでなく、波長分散を受けた際に似た波形変化を生じることから、偏波間XPMの影響が累積しやすく、伝送距離に応じて信号品質劣化が大きく生じる課題がある。このため、偏波多重信号を長距離に渡って良好な伝送品質で伝送させるためには、伝送中に生じる波形歪みを補償、緩和する技術が重要である。
 ここで、特許文献1には、偏波多重方式を用いる光信号伝送システムの送信機において、2つの光信号(偏波成分)に非対称なチャープを付加することにより、該2つの光信号を位相変調した後、それらを互いに直交する偏波状態で合成して偏波多重信号を生成することが記載されている。
 特許文献1記載の技術では、偏波多重信号が伝送路ファイバ中の波長分散を受けた際、非対称チャープを付加した偏波成分の一方では時間波形が分散を受ける(時間波形が広がる)のに対して、他方では時間波形が圧縮する(パルス圧縮する)という振る舞いになる。これにより、偏波多重信号が光ファイバ中を伝播する際に、ある時間スロットに着目してみると、互いに直交する偏波間では異なる波形変化(分散か圧縮か)を示すことになり、偏波間で相関の低い波形変化となり、偏波間のXPMの影響を緩和することが可能となる。
国際公開第2010/026894号
 このように、特許文献1記載の技術では、偏波間のXPMの影響を緩和することが可能となるので、信号品質を改善することができる。しかし、偏波多重方式では、偏波間XPMの影響だけでなく、光ファイバ中の非線形光学効果の1つである自己位相変調(SPM)と波長分散の複合効果による波形歪みを補償、緩和する技術も重要である。
 本発明の目的は、上述した課題を解決し、更なる信号品質の改善を図ることができる偏波多重光送信機及び動作制御方法を提供することにある。
 本発明による偏波多重光送信機は、ボーレートの周波数を有するクロック信号を分周する分周手段と、前記分周されたクロック信号を用いて光信号を位相変調する位相変調手段と、前記位相変調された光信号を2分岐する分岐手段と、前記2分岐された光信号の一方を他方に対して遅延させて互いに位相が反転した光信号を生成する遅延手段と、前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重手段とを含む。
 本発明による偏波多重光送信機は、ボーレートの周波数を有するクロック信号を分周する分周手段と、前記分周されたクロック信号を用いて波長が同一の2つの光信号をそれぞれ位相変調すると共に一方の光信号を他方に対して遅延させて互いに位相が反転した光信号を生成する位相変調及び遅延手段と、前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重手段とを含む。
 本発明による動作制御方法は、偏波多重光送信機の動作制御方法であって、ボーレートの周波数を有するクロック信号を分周する分周ステップと、前記分周されたクロック信号を用いて光信号を位相変調する位相変調ステップと、前記位相変調された光信号を2分岐する分岐ステップと、前記2分岐された光信号の一方を他方に対して遅延させて互いに位相が反転した光信号を生成する遅延ステップと、前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重ステップとを含む。
 本発明による動作制御方法は、偏波多重光送信機の動作制御方法であって、ボーレートの周波数を有するクロック信号を分周する分周ステップと、前記分周されたクロック信号を用いて波長が同一の2つの光信号をそれぞれ位相変調すると共に一方の光信号を他方に対して遅延させて互いに位相が反転した光信号を生成する位相変調及び遅延ステップと、前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重ステップとを含む。
 本発明によれば、更なる信号品質の改善を図ることができるという効果が得られる。
本発明の第1の実施の形態による偏波多重光送信機の構成を示す図である。 図1の構成における偏波多重光信号の生成過程における変調状態の遷移を説明するための図である。 図1の構成における偏波多重光信号の生成過程における変調状態の遷移を説明するための図である。 図1の構成における偏波多重光信号の生成過程における変調状態の遷移を説明するための図である。 図1の偏波多重光送信機の光出力の例を示す図である。 本発明の第2の実施の形態による偏波多重光送信機の構成を示す図である。 図6の構成における偏波多重光信号の生成過程における変調状態の遷移を説明するための図である。 図6の構成における偏波多重光信号の生成過程における変調状態の遷移を説明するための図である。 図6の偏波多重光送信機の光出力の例を示す図である。 本発明の第3の実施の形態による偏波多重光送信機の構成を示す図である。 本発明の第4の実施の形態による偏波多重光送信機の構成を示す図である。 本発明の第5の実施の形態による偏波多重光送信機の構成を示す図である。 本発明の第6の実施の形態による偏波多重光送信機の構成を示す図である。 本発明の第7の実施の形態による偏波多重光送信機の構成を示す図である。 本発明の第8の実施の形態による偏波多重光送信機の構成を示す図である。 本発明の第9の実施の形態による偏波多重光送信機の構成を示す図である。
 以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態による偏波多重光送信機の構成を示す図である。図1において、本発明の第1の実施の形態による偏波多重光送信機は、信号源であるレーザダイオード(LD)1と、クロック信号9の周波数を半分にするための分周回路21と、分周回路21により分周されたクロック信号を用いて位相変調を行う位相変調器8と、光信号を分岐するための光カプラ2と、光カプラ2で分岐した一方の光に遅延を加える遅延回路10と、光カプラ2で分岐した光にデータ変調を行うPSK(Phase Shift Keying)変調器3及び4と、PSK変調後の光を直交偏波状態で多重するための偏波ビームコンバイナ5とを含む。
 LD1から出力された光は、分周回路21により分周されたクロック信号により駆動される光位相変調器8により位相変調が施される。ここで、クロック信号9の周波数はデータ変調と同じレート(Baud rate)と同じであり、このクロック信号9が分周回路21により1/2分周されて光位相変調器8に出力される。その後、光カプラ2により位相変調光は2分岐され、その内の一方に対して、データ信号6を用いてPSK変調器3によりデータ変調が行われる。他方の光は、遅延回路10によりBaud rateの1周期分(クロック信号9の1周期分)の時間だけ遅延を与えられた後、データ信号7を用いてPSK変調器4によりデータ変調が行われる。
 ここで、遅延回路10により遅延が与えられる理由は、光カプラ2の出力である2つの位相変調光の位相を反転させるためであり、本構成では位相変調はクロック信号9の半分の周波数で行われるので、遅延回路10の遅延量はBaud rateの1周期分(クロック信号9の1周期分)としている。PSK変調器3及び4の出力光は、偏波ビームコンバイナ5により直交した偏波状態に偏波多重されて、偏波多重光変調信号が生成される。
 本実施形態における偏波多重光変調信号の生成過程における変調状態の遷移を図2~図4を用いて説明する。この例においては、光強度は常に時間方向に一定であるため、光の位相状態に注目して説明する。LD1の出力直後は、光の位相は一定である(状態A)。1/2分周されたクロック信号9及び位相変調器8により、光の位相は、状態Bのような1/2分周されたクロック信号9に同期した位相状態となる。光カプラ2により光を2分岐した直後は、各々の光(X偏波、Y偏波)は、状態Cのように同じ位相状態の光である。
 その後、Y偏波側の光のみ遅延回路10によりBaud rateの1周期分だけ遅延が加えられると、状態DのようにX偏波側の光とは位相が反転した位相変調光となる。その後、各々の位相変調光に対してPSK変調器3及び4によりデータ変調が行われると、状態EのようなPSK光変調信号となる。
 X偏波、Y偏波の光信号はそれぞれデータ信号6及び7に応じた異なるデータ変調を受けたPSK変調信号となるが、図4の状態Eや図5に示すように、同一の時間スロットで光の位相変化カーブを比較すると、X偏波とY偏波で位相カーブが反転している。なお、図5は図1の偏波多重光送信機の光出力の例を示す図である。
 このように、本発明の第1の実施の形態では、X偏波とY偏波間で異なる極性の位相変調が重畳されている(ここでいう極性は、位相変調波形(位相カーブ)が上に凸になっているか、下に凸になっているかを意味する)、すなわち、X偏波とY偏波間で極性が反転している。これに加えて、本発明の第1の実施の形態では、図5に示すように、更に、同一偏波内の隣接するビット間で位相の極性が反転している(ビット毎に凹凸が交互に現れる)。
 位相変調波形(位相カーブ)が上に凸になっているか、下に凸になっているかで、この偏波多重信号が伝送路ファイバ中の波長分散を受けた際に異なる波形変化(分散か圧縮か)を示す。つまり、偏波多重信号が波長分散を受けた際、一方の極性の位相変調が重畳された信号(ビット)は時間波形が分散を受ける(時間波形が広がる)のに対して、他方の極性の位相変調が重畳された信号(ビット)では時間波形が圧縮する(パルス圧縮する)という振る舞いになる。
 これにより、偏波多重信号が光ファイバ中を伝播する際に、ある時間スロットに着目してみると、X/Y偏波間では異なる波形変化(分散か圧縮か)を示すことになり、偏波間で相関の低い波形変化となり、偏波間のXPMの影響を緩和することが可能となる。
 さらに、同一偏波内の隣接するビットスロット間で位相変調の極性を反転させているため、光ファイバ伝播中に、隣接するビット間でも異なる波形変化(分散・圧縮という意味では逆の波形変化)を示すことになる。これにより、光ファイバ中の非線形光学効果の1つである自己位相変調(SPM)と波長分散の複合効果による波形歪みを抑圧することが可能になり、伝送後の信号品質を改善することが可能となる。
 以上の本発明の第1の実施の形態についての理解を助けるために、次に、本発明の第2の実施の形態について説明する。図6は本発明の第2の実施の形態による偏波多重光送信機の構成を示す図であり、図1と同等部分は同一符号にて示している。図6に示すように、本発明の第2の実施の形態による偏波多重光送信機は、図1の分周回路21を備えず、光位相変調器8によりBaud rateと同じ周波数で位相変調を行う点で、本発明の第1の実施の形態と相違する。また、本発明の第2の実施の形態では、遅延回路10の遅延量はBaud rateの半周期分(クロック信号9の半周期分)である。
 本発明の第2の実施の形態における偏波多重光変調信号の生成過程における変調状態の遷移を図7及び図8を用いて説明する。この例においては、光強度は常に時間方向に一定であるため、光の位相状態に注目して説明する。LD1の出力直後は、光の位相は一定である(状態A)。クロック信号9及び位相変調器8により、光の位相は、状態Bのようなクロック信号9に同期した位相状態となる。光カプラ2により光を2分岐した直後は、各々の光(X偏波、Y偏波)は、状態Cのように同じ位相状態の光である。
 その後、Y偏波側の光のみ遅延回路10によりBaud rateの半周期分だけ遅延が加えられると、状態DのようにX偏波側の光とは位相が反転した位相変調光となる。その後、各々の位相変調光に対してPSK変調器3及び4によりデータ変調が行われると、状態EのようなPSK光変調信号となる。
 X偏波、Y偏波の光信号はそれぞれデータ信号6及び7に応じた異なるデータ変調を受けたPSK変調信号となるが、図8の状態Eや図9に示すように、同一の時間スロットで光の位相変化カーブを比較すると、X偏波とY偏波で位相カーブが反転している。なお、図9は図6の偏波多重光送信機の光出力の例を示す図である。
 このように、本発明の第2の実施の形態では、X偏波とY偏波間で異なる極性の位相変調が重畳されている、すなわちX偏波とY偏波間で極性が反転しているので、光ファイバ伝送中に波長分散を受けた場合、偏波間で異なる波形変化状態を実現することが可能であり、これにより、偏波間で波形変化の相関が低い状態を実現することができ、偏波間のXPMの影響を緩和することが可能となる。一方、本発明の第1の実施の形態と異なり、本発明の第2の実施の形態では、図5に示すような同一偏波内の隣接するビット間で位相の極性が反転する(ビット毎に凹凸が交互に現れる)という状態は、図9に示すように発生しない。
 図10は本発明の第3の実施の形態による偏波多重光送信機の構成を示す図であり、図1と同等部分は同一符号にて示している。図10に示すように、本発明の第3の実施の形態による偏波多重光送信機は、図1の構成に対して遅延回路の配置を変更し、データ信号7とPSK変調器4の間に遅延回路11を配置した構成である。なお、遅延回路11の遅延量はBaud rateの1周期分(クロック信号9の1周期分)である。このような構成の本発明の第3の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。
 図11は本発明の第4の実施の形態による偏波多重光送信機の構成を示す図であり、図1と同等部分は同一符号にて示している。図11に示すように、本発明の第4の実施の形態による偏波多重光送信機は、図1の構成に対して位相変調器の配置を変更した構成である。クロック信号9を分周回路21により半分の周波数に分周した後、クロック分配器14によりクロック信号は2分岐され、光カプラ2の後段に配置された位相変調器12及び13に供給される。クロック分配器14と位相変調器13の間には遅延回路15が配置されており、遅延回路15の遅延量はBaud rateの1周期分(クロック信号9の1周期分)である。
 したがって、位相変調器12は、クロック分配器14からのクロック信号を用いて入力光に対して位相変調を行い、位相変調器13は、遅延回路15により遅延されたクロック信号を用いて入力光に対して位相変調を行うことになる。このような構成の本発明の第4の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。なお、図11の構成において、光カプラ2と位相変調器12及び13の間にPSK変調器3及び4を配置するようにしてもよい。
 図12は本発明の第5の実施の形態による偏波多重光送信機の構成を示す図であり、図11と同等部分は同一符号にて示している。図12に示すように、本発明の第5の実施の形態による偏波多重光送信機は、図11の構成に対して遅延回路の配置を変更し、位相変調器13とPSK変調器4の間に遅延回路10を配置した構成である。なお、遅延回路10の遅延量はBaud rateの1周期分(クロック信号9の1周期分)である。このような構成の本発明の第5の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。
 図13は本発明の第6の実施の形態による偏波多重光送信機の構成を示す図であり、図11と同等部分は同一符号にて示している。図13に示すように、本発明の第6の実施の形態による偏波多重光送信機は、図11の構成に対して遅延回路の配置を変更し、データ信号7とPSK変調器4の間に遅延回路11を配置した構成である。なお、遅延回路11の遅延量はBaud rateの1周期分(クロック信号9の1周期分)である。このような構成の本発明の第6の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。
 図14は本発明の第7の実施の形態による偏波多重光送信機の構成を示す図であり、図1と同等部分は同一符号にて示している。図14に示すように、本発明の第7の実施の形態による偏波多重光送信機は、図1の構成に対して、更にクロック信号9による振幅変調(AM変調)を追加する構成であり、クロック分配器14とAM変調器16及び17が追加されている。クロック分配器14は、クロック信号9を分周回路21とAM変調器16及び17に供給する。
 AM変調器16は、クロック分配器14からのクロック信号を用いて入力光に対して振幅変調を行い、AM変調器17は、遅延回路10により遅延された入力光に対してクロック分配器14からのクロック信号を用いて振幅変調を行なう。このような構成の本発明の第7の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。なお、図14の構成において、PSK変調器3及び4と偏波ビームコンバイナ5の間にAM変調器16及び17を配置するようにしてもよい。
 図15は本発明の第8の実施の形態による偏波多重光送信機の構成を示す図であり、図11と同等部分は同一符号にて示している。図15に示すように、本発明の第8の実施の形態による偏波多重光送信機は、図11の構成に対して、LD1と光カプラ2の間にAM変調器18を追加した構成である。なお、図11と異なり、図15では位相変調器12及び13がPSK変調器3及び4と偏波ビームコンバイナ5の間に配置されているが、図11と同様に光カプラ2とPSK変調器3及び4の間に配置するようにしてもよいことは勿論である。
 クロック分配器22は、クロック信号9を分周回路21とAM変調器18に供給する。AM変調器18は、クロック分配器22からのクロック信号9を用いて入力光に対して振幅変調を行う。このような構成の本発明の第8の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。
 図16は本発明の第9の実施の形態による偏波多重光送信機の構成を示す図であり、図15と同等部分は同一符号にて示している。図16に示すように、本発明の第9の実施の形態による偏波多重光送信機は、図15の構成に対して遅延回路の配置を変更し、PSK変調器4と位相変調器13との間に遅延回路10を配置した構成である。このような構成の本発明の第9の実施の形態によっても、本発明の第1の実施の形態と同等の効果を奏することができることは勿論である。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2012年8月1日に出願された日本出願特願2012-170697を基礎とする優先権を主張し、その開示の全てをここに取り込む。
          1  LD
          2  光カプラ
        3,4  PSK変調器
          5  偏波ビームコンバイナ
        6,7  データ信号
    8,12,13  位相変調器
          9  クロック信号
   10,11,15  遅延回路
      14,22  クロック分配器
   16,17,18  AM変調器
         21  分周回路

Claims (10)

  1.  ボーレートの周波数を有するクロック信号を分周する分周手段と、
     前記分周されたクロック信号を用いて光信号を位相変調する位相変調手段と、
     前記位相変調された光信号を2分岐する分岐手段と、
     前記2分岐された光信号の一方を他方に対して遅延させて互いに位相が反転した光信号を生成する遅延手段と、
     前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重手段とを含む偏波多重光送信機。
  2.  前記分周手段は、前記ボーレートの周波数を有するクロック信号を1/2分周し、
     前記遅延手段は、前記ボーレートの周波数を有するクロック信号の1周期分だけ前記一方の光信号を前記他方に対して遅延させる請求項1記載の偏波多重光送信機。
  3.  ボーレートの周波数を有するクロック信号を分周する分周手段と、
     前記分周されたクロック信号を用いて波長が同一の2つの光信号をそれぞれ位相変調すると共に一方の光信号を他方に対して遅延させて互いに位相が反転した光信号を生成する位相変調及び遅延手段と、
     前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重手段とを含む偏波多重光送信機。
  4.  前記位相変調及び遅延手段は、前記分周されたクロック信号を2分岐する分岐手段と、前記2分岐されたクロック信号の一方を他方に対して遅延させる遅延手段とを含み、前記一方のクロック信号を用いて前記一方の光信号を位相変調し、前記他方のクロック信号を用いて前記他方の光信号を位相変調することにより、前記互いに位相が反転した光信号を生成する請求項3記載の偏波多重光送信機。
  5.  前記分周手段は、前記ボーレートの周波数を有するクロック信号を1/2分周し、
     前記位相変調及び遅延手段は、前記ボーレートの周波数を有するクロック信号の1周期分だけ前記一方の光信号を前記他方に対して遅延させる請求項3または4記載の偏波多重光送信機。
  6.  ボーレートの周波数を有するクロック信号を分周する分周ステップと、
     前記分周されたクロック信号を用いて光信号を位相変調する位相変調ステップと、
     前記位相変調された光信号を2分岐する分岐ステップと、
     前記2分岐された光信号の一方を他方に対して遅延させて互いに位相が反転した光信号を生成する遅延ステップと、
     前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重ステップとを含む偏波多重光送信機の動作制御方法。
  7.  前記分周ステップは、前記ボーレートの周波数を有するクロック信号を1/2分周し、
     前記遅延ステップは、前記ボーレートの周波数を有するクロック信号の1周期分だけ前記一方の光信号を前記他方に対して遅延させる請求項6記載の動作制御方法。
  8.  ボーレートの周波数を有するクロック信号を分周する分周ステップと、
     前記分周されたクロック信号を用いて波長が同一の2つの光信号をそれぞれ位相変調すると共に一方の光信号を他方に対して遅延させて互いに位相が反転した光信号を生成する位相変調及び遅延ステップと、
     前記生成された光信号を互いに直交する偏波状態で合成して偏波多重信号を生成する偏波多重ステップとを含む偏波多重光送信機の動作制御方法。
  9.  前記位相変調及び遅延ステップは、前記分周されたクロック信号を2分岐する分岐ステップと、前記2分岐されたクロック信号の一方を他方に対して遅延させる遅延ステップとを含み、前記一方のクロック信号を用いて前記一方の光信号を位相変調し、前記他方のクロック信号を用いて前記他方の光信号を位相変調することにより、前記互いに位相が反転した光信号を生成する請求項8記載の動作制御方法。
  10.  前記分周ステップは、前記ボーレートの周波数を有するクロック信号を1/2分周し、
     前記位相変調及び遅延ステップは、前記ボーレートの周波数を有するクロック信号の1周期分だけ前記一方の光信号を前記他方に対して遅延させる請求項8または9記載の動作制御方法。
PCT/JP2013/002937 2012-08-01 2013-05-07 偏波多重光送信機及び動作制御方法 WO2014020804A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380040749.2A CN104509004B (zh) 2012-08-01 2013-05-07 偏振复用光发射机和操作控制方法
US14/418,286 US9419744B2 (en) 2012-08-01 2013-05-07 Polarization multiplexing optical transmitter and operation control method
EP13825957.7A EP2882118B1 (en) 2012-08-01 2013-05-07 Polarization multiplexing optical transmitter and method for controlling operation
JP2014527953A JP5850159B2 (ja) 2012-08-01 2013-05-07 偏波多重光送信機及び動作制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170697 2012-08-01
JP2012170697 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014020804A1 true WO2014020804A1 (ja) 2014-02-06

Family

ID=50027522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002937 WO2014020804A1 (ja) 2012-08-01 2013-05-07 偏波多重光送信機及び動作制御方法

Country Status (5)

Country Link
US (1) US9419744B2 (ja)
EP (1) EP2882118B1 (ja)
JP (1) JP5850159B2 (ja)
CN (1) CN104509004B (ja)
WO (1) WO2014020804A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200379A (ja) * 2018-05-18 2019-11-21 富士通株式会社 波長変換装置、伝送装置、及び伝送システム
JP7306652B2 (ja) 2019-10-04 2023-07-11 Kddi株式会社 光送信装置及び光通信システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201605120D0 (en) * 2016-03-24 2016-05-11 Univ Aston System and method for the transmission of optic signals
EP3242419A1 (en) * 2016-05-04 2017-11-08 Xieon Networks S.à r.l. Phase modulation device, receiver, transmitter and a phase modulating method
CN108303704B (zh) * 2018-01-10 2020-01-07 南京航空航天大学 一种基于偏振调制的激光测量方法及激光雷达
US11221644B2 (en) * 2018-05-21 2022-01-11 Samsung Electronics Co., Ltd. System for transceiving data based on clock transition time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026894A (ja) 2008-07-23 2010-02-04 Sony Corp 情報処理装置、情報処理方法、およびプログラム
WO2010026894A1 (ja) * 2008-09-03 2010-03-11 日本電気株式会社 光信号伝送システム、送信器、受信器、光信号伝送方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173591B2 (ja) * 1998-06-09 2001-06-04 日本電気株式会社 光送信器と光伝送システムおよび信号光変調方法
US20030108265A1 (en) 2001-12-11 2003-06-12 Hemonth Rao Polarization multiplexed optical clock
JP4699422B2 (ja) 2007-05-11 2011-06-08 日本電信電話株式会社 光信号発生器および光通信システム
JP2009027525A (ja) 2007-07-20 2009-02-05 Nec Corp 光伝送システムおよび光伝送方法
JP5476697B2 (ja) * 2008-09-26 2014-04-23 富士通株式会社 光信号送信装置
JP2010148007A (ja) 2008-12-22 2010-07-01 Nippon Telegr & Teleph Corp <Ntt> 光通信システムおよび変調光信号の生成方法
EP2420011B1 (en) 2009-04-16 2015-06-10 Nec Corporation Method of and system for detecting skew between parallel signals
CN102742187B (zh) 2009-12-15 2018-03-16 骁阳网络有限公司 减少的偏振相关损耗情况下传输光传输信号的方法和设备
US9054808B2 (en) * 2010-10-08 2015-06-09 Infinera Corporation Controlled depolarization using chirp for mitigation of nonlinear polarization scattering
US8873953B2 (en) * 2011-06-17 2014-10-28 Nec Laboratories America, Inc. Multiple-symbol polarization switching for differential-detection modulation formats
US20120321311A1 (en) * 2011-06-17 2012-12-20 Nec Laboratories America, Inc. Coherent Interleaved Polarization-Multiplexing Optical Communications with Single IQ Modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026894A (ja) 2008-07-23 2010-02-04 Sony Corp 情報処理装置、情報処理方法、およびプログラム
WO2010026894A1 (ja) * 2008-09-03 2010-03-11 日本電気株式会社 光信号伝送システム、送信器、受信器、光信号伝送方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ILYA LYUBOMIRSKY ET AL.: "Signal chirp design for suppression of nonlinear polarization scattering in DP-QPSK transmission", OPTICAL FIBER COMMUNICATION CONFERENCE 2011, 10 March 2011 (2011-03-10), pages 1 - 3, XP031946355 *
See also references of EP2882118A4 *
TOSHIHARU ITO ET AL.: "Improvement of PMD tolerance for 110Gb/s pol-mux RZ-DQPSK signal with optical pol-dmux using optical PMD compensation and asymmetric symbol-synchronous chirp", OPTICAL FIBER COMMUNICATION CONFERENCE 2009, 26 March 2009 (2009-03-26), pages 1 - 3, XP031467854 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200379A (ja) * 2018-05-18 2019-11-21 富士通株式会社 波長変換装置、伝送装置、及び伝送システム
JP7099045B2 (ja) 2018-05-18 2022-07-12 富士通株式会社 波長変換装置、伝送装置、及び伝送システム
JP7306652B2 (ja) 2019-10-04 2023-07-11 Kddi株式会社 光送信装置及び光通信システム

Also Published As

Publication number Publication date
EP2882118B1 (en) 2019-08-07
US9419744B2 (en) 2016-08-16
US20150229433A1 (en) 2015-08-13
EP2882118A4 (en) 2016-04-13
EP2882118A1 (en) 2015-06-10
CN104509004B (zh) 2017-08-08
CN104509004A (zh) 2015-04-08
JP5850159B2 (ja) 2016-02-03
JPWO2014020804A1 (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5850159B2 (ja) 偏波多重光送信機及び動作制御方法
US8086109B2 (en) Polarization multiplexed optical transmitting and receiving apparatus
US6459518B1 (en) Optical transmitting apparatus
US8768168B2 (en) Optical signal transmission systems, transmitters, receivers, and optical signal transmission method
JP2003087201A (ja) 光送信器および光伝送システム
JP2012511875A (ja) 偏光された送信信号を使用した光通信
JP4813963B2 (ja) 波長分割多重伝送における光送信器、光中継器、光伝送システムおよび光送信方法
JP2008066849A (ja) 光送信機およびその駆動方法
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
US10338316B2 (en) Polarization dispersion adder and optical receiver
JP5068240B2 (ja) 光伝送方式、送信器及び受信器
WO2007148377A1 (ja) 光信号処理装置
CN101170363B (zh) 一种光差分偏振位移键控系统及其信号发送装置与方法
JP2005039493A (ja) 光受信方法、光受信装置及びこれを用いた光伝送システム
WO2010035662A1 (ja) 光送信装置、光受信装置および光通信システム
US10429721B2 (en) Wavelength conversion device, control-light generation device, wavelength conversion method, and control-light generation method
JP2011002640A (ja) 光変調装置および光送信器、並びに、光変調装置の制御方法
JP2005020277A (ja) 光通信方法、光送信器及び光受信器
JP5691426B2 (ja) 光送信器および偏波ビットインターリーブ信号生成方法
JPWO2016174719A1 (ja) ダミー光生成装置、光伝送装置およびダミー光生成方法
WO2014156203A1 (ja) 光通信システム
JP2005006174A (ja) 光時分割多重送信装置及び受信装置
WO2014057598A1 (ja) 光送信システム、光位相変調器、及び光変調方法
JP5374709B2 (ja) 光送信器
JP2012137583A (ja) 偏波多重光変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013825957

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014527953

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE