WO2014017889A1 - 경화성 조성물 - Google Patents

경화성 조성물 Download PDF

Info

Publication number
WO2014017889A1
WO2014017889A1 PCT/KR2013/006800 KR2013006800W WO2014017889A1 WO 2014017889 A1 WO2014017889 A1 WO 2014017889A1 KR 2013006800 W KR2013006800 W KR 2013006800W WO 2014017889 A1 WO2014017889 A1 WO 2014017889A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
sio
group
polyorganosiloxane
curable composition
Prior art date
Application number
PCT/KR2013/006800
Other languages
English (en)
French (fr)
Inventor
고민진
최범규
정재호
강대호
김민균
조병규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP13823902.5A priority Critical patent/EP2878639A4/en
Priority to JP2015524195A priority patent/JP6066385B2/ja
Priority to CN201380039718.5A priority patent/CN104508046B/zh
Publication of WO2014017889A1 publication Critical patent/WO2014017889A1/ko
Priority to US14/606,443 priority patent/US9624345B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present application relates to a curable composition and its use.
  • LEDs for example, blue or ultraviolet LEDs having an emission wavelength of about 250 nm to 550 nm, high-brightness products using GaN-based compound semiconductors such as GaN, GaAlN, InGaN and InAlGaN have been obtained.
  • the technique of combining red and green LEDs with blue LEDs has made it possible to form high quality full color images.
  • a technique for producing a white LED by combining a blue LED or an ultraviolet LED with a phosphor is known.
  • Such LEDs are expanding in demand for light sources and lighting of display devices such as liquid crystal displays (LCDs).
  • LCDs liquid crystal displays
  • Patent Documents 1 to 3 propose techniques for improving the above problems.
  • the sealing material disclosed by the said document does not have enough heat resistance and light resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-274571
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-196151
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-226551
  • the present application provides a curable composition and its use.
  • Exemplary curable compositions can include components that can be cured by hydrosilylation, for example by reaction of an aliphatic unsaturated bond with a hydrogen atom.
  • the curable composition may include a polymerization reactant including a polyorganosiloxane (hereinafter referred to as polyorganosiloxane (A)) containing a functional group containing an aliphatic unsaturated bond.
  • A polyorganosiloxane
  • M unit refers to a so-called monofunctional siloxane unit that may be represented by a formula (R 3 SiO 1/2 ) in the industry
  • D unit refers to a formula (R 2 SiO 2 in the industry).
  • / 2 means so-called difunctional siloxane units that may be represented by the term
  • T unit means so-called trifunctional siloxane units that may be represented by the formula (RSiO 3/2 ) in the industry
  • Q unit may refer to a so-called tetrafunctional siloxane unit that may be represented by the formula (SiO 4/2 ).
  • R is a functional group bonded to the silicon atom (Si), and may be, for example, a hydrogen atom, a hydroxyl group, an epoxy group, an alkoxy group or a monovalent hydrocarbon group.
  • the polyorganosiloxane (A) may have a linear structure or a partially crosslinked structure, for example.
  • the term "linear structure” may mean a structure of a polyorganosiloxane composed of M units and D units.
  • the term “partially crosslinked structure” can mean the structure of the polyorganosiloxane in which T or Q units, for example, T units are partially introduced while the linear structure derived from the D unit is sufficiently long.
  • the polyorganosiloxane having a partially crosslinked structure may be a polyorganosiloxane having a ratio of D units (D / (D + T + Q)) to 0.7 of all D, T, and Q units included in the polyorganosiloxane. Can mean.
  • the polyorganosiloxane (A) of the partially crosslinked structure may include D units and T units that are linked while sharing one oxygen atom.
  • the linked unit may be represented by, for example, the following Formula 1.
  • R a and R b are each independently an alkyl group, an alkenyl group, or an aryl group, and R c is an alkyl group or an aryl group.
  • R c and R b may be, for example, an alkyl group or a aryl group at the same time.
  • the polyvalent siloxane (A) of the partially crosslinked structure may include one or more units of the formula (1).
  • the unit of formula (1) is a unit in which the silicon atom of the D unit and the silicon atom of the T unit are directly bonded via an oxygen atom among the siloxane units forming the polyorganosiloxane (A).
  • the polyorganosiloxane containing the unit of the formula (1) can be produced by, for example, polymerizing, for example, ring-opening, a mixture containing a cyclic siloxane compound as described below. Applying the above method, it is possible to prepare a polyorganosiloxane including a unit of formula (1) while minimizing a silicon atom bonded to an alkoxy group and a silicon atom bonded to a hydroxy group in the structure.
  • the polyorganosiloxane (A) may include one or more functional groups including aliphatic unsaturated bonds, for example, alkenyl groups.
  • the ratio (Ak / Si) of the number of moles (Ak) of the functional group containing the aliphatic unsaturated bond to the number of moles (Si) of the total silicon atoms in the polyorganosiloxane (A) is 0.01 to 0.2 or 0.02 to 0.15 Can be.
  • the molar ratio (Ak / Si) to 0.01 or 0.02 or more, the reactivity can be properly maintained, and the phenomenon that the unreacted component is leaked out to the surface of the cured product can be prevented.
  • the molar ratio (Ak / Si) to 0.2 or 0.15 or less, it is possible to maintain excellent crack resistance of the cured product.
  • the polyorganosiloxane (A) may contain one or more aryl groups, for example, an aryl group bonded to a silicon atom.
  • the aryl group may be bonded to a silicon atom of D unit, and in the case of a partially crosslinked structure, the aryl group may be a silicon atom of D unit and / or T unit. It may be coupled to.
  • the ratio of the number of moles (B) of the aryl group to the number of moles (A) of all functional groups bonded to silicon in the polyorganosiloxane (A) may be about 30% to 60% as a percentage (100 ⁇ B / A). .
  • the ratio of the number of moles (D-Ar) of the aryl groups contained in the D unit to the number of moles (D-Si) of the silicon atoms of all the D units included in the polyorganosiloxane (A) (D-Ar / D-Si) ) May be, for example, 0.3 or more and less than 0.65.
  • the composition exhibits excellent processability and workability before curing, and after curing, the composition can maintain excellent moisture resistance, light transmittance, refractive index, light extraction efficiency and hardness characteristics.
  • the ratio (100 x B / A) can be maintained at 30% or more to ensure adequate mechanical strength and gas permeability of the cured product, and can be maintained at 60% or less to maintain excellent crack resistance of the cured product.
  • the polyorganosiloxane (A) may include a unit of Formula 2 and a unit of Formula 3 as the D unit.
  • R 1 and R 2 are each independently an epoxy group or a monovalent hydrocarbon group, and R 3 is an aryl group. In one example, R 1 and R 2 may be each independently an alkyl group.
  • the term "monohydric hydrocarbon group” may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound.
  • the monovalent hydrocarbon group may contain 1 to 25 carbon atoms.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be optionally substituted with one or more substituents.
  • alkenyl group may refer to an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms.
  • the alkenyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • alkynyl group may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkynyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • aryl group refers to a compound or derivative thereof including a structure in which a benzene ring or a structure in which two or more benzene rings are condensed or bonded while sharing one or two or more carbon atoms, unless otherwise specified. It may mean a monovalent residue.
  • the range of the aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group examples include phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group.
  • epoxy group may refer to a cyclic ether having three ring constituent atoms or a monovalent moiety derived from a compound containing the cyclic ether, unless otherwise specified.
  • examples of the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
  • the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group.
  • an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
  • Examples of the substituent that may be optionally substituted with an epoxy group or a monovalent hydrocarbon group include epoxy groups such as halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, acryloyl group and methacrylo.
  • Diary, isocyanate group, thiol group or monovalent hydrocarbon group and the like can be exemplified, but is not limited thereto.
  • the ratio (A / B) of the number of moles (A) of the siloxane units of formula (2) to the number of moles (B) of the siloxane units of formula (3) in the polyorganosiloxane (A) is, for example, 0.1 to 2.0, 0.1 to 1.5, 0.2 To 1.5 or 0.2 to 1.
  • the siloxane units (D2) of formula (3) are included so that the ratio (100 x D2 / D) to the total D units (D) contained in the polyorganosiloxane (A) is at least 60%, greater than 65% or at least 70%. There may be. Within this range of ratio, the mechanical strength is excellent, there is no surface stickiness, and moisture and gas permeability are adjusted, so that stable durability can be ensured for a long time.
  • the siloxane unit (D2) of formula (3) is a ratio (D2 / ArD) to the D unit (ArD) including an aryl group bonded to a silicon atom among all the D units included in the polyorganosiloxane (A). ) May be greater than or equal to 70% or greater than or equal to 80%. Within this ratio range, the composition exhibits excellent workability and workability before curing, and after curing, the composition can maintain excellent mechanical strength, gas permeability, moisture resistance, light transmittance, refractive index, light extraction efficiency, hardness, and the like.
  • the polyorganosiloxane (A) may have an average composition formula of the following formula (4).
  • R 4 is each independently an epoxy group or a monovalent hydrocarbon group, at least one of R 4 is an alkenyl group, at least one of R 4 is an aryl group, a is a positive number, and b is a positive number C is 0 or a positive number, d is 0 or a positive number and b / (b + c + d) is 0.65 to 1 or 0.7 to 1.
  • the polyorganosiloxane is represented by a specific average composition formula, which means that the polyorganosiloxane is a single component represented by the average composition formula, as well as a mixture of two or more components and an average of the composition of the components in the mixture. It also includes the case shown by the average composition formula.
  • At least one of R 4 is an alkenyl group, and at least one of R 4 is an aryl group.
  • the alkenyl group and the aryl group may be included, for example, to satisfy the molar ratios described above.
  • a, b, c and d represent the molar ratio of each siloxane unit of the polyorganosiloxane (A).
  • a is 0.01 to 0.15
  • b is 0.65 to 0.97
  • c is 0 to 0.30 or 0.01 to 0.30
  • d may be 0 to 0.2.
  • b / (b + c + d) may be 0.65 to 1 or 0.7 to 1.
  • b / (b + c + d) may be 0.65 to 0.97 or 0.7 to 0.97.
  • the polyorganosiloxane (A) may have an average composition formula of the following Formula 5.
  • R 5 is a monovalent hydrocarbon group
  • R 6 is an alkyl group having 1 to 4 carbon atoms
  • R 7 and R 8 are each independently an alkyl group, an alkenyl group or an aryl group, or an alkyl group
  • R 9 is An aryl group
  • e is a positive number
  • f is zero or a positive number
  • g is zero or a positive number
  • h is zero or a positive number
  • (f + g) / (f + g + h ) Is 0.65 to 1 or 0.7 to 1.
  • R 5 and R 7 to R 9 at least one is an alkenyl group
  • R 5 and R 7 to at least one of R 9 may be an aryl group.
  • the alkenyl group and the aryl group may be included, for example, to satisfy the molar ratios described above.
  • e, f, g and h represent the molar ratio of each siloxane unit of the polyorganosiloxane (A).
  • e is 0.01 to 0.15
  • f is 0 to 0.97, 0.3 to 0.97 or 0.65 to 0.97
  • g is 0 to 0.97, 0.3 to 0.97 or 0.65 to 0.97
  • h can be 0 to 0.30 or 0.01 to 0.30.
  • (f + g) / (f + g + h) may be 0.65 to 1 or 0.7 to 1.
  • (f + g) / (f + g + h) may be 0.65 to 0.97 or 0.7 to 0.97.
  • both f and g in the average compositional formula of Formula 5 may not be zero.
  • f / g may be in the range of 0.1 to 2.0, 0.1 to 1.5, 0.2 to 1.5 or 0.2 to 1 when both f and g are not zero.
  • the polymerization reactant comprising the polyorganosiloxane (A) may be, for example, a ring-opening polymerization reactant of a mixture comprising a cyclic polyorganosiloxane.
  • the polymerization reactant may include, for example, a cyclic compound having a weight average molecular weight (Mw) of 800 or less, 750 or less, or 700 or less, for example, a cyclic polyorganosiloxane.
  • Mw weight average molecular weight
  • the cyclic compound may be a component produced in the ring-opening polymerization reaction to be described later, and the cyclic compound may remain in a desired ratio through conditions of the ring-opening polymerization or treatment of the polymer after the ring-opening polymerization.
  • the cyclic compound may include, for example, a compound represented by the following Formula 6.
  • R a and R b are each independently an epoxy group or a monovalent hydrocarbon group, and R c is an aryl group.
  • R a and R b may each independently be an alkyl group.
  • m may be 0 to 10, 0 to 8, 0 to 6, 1 to 10, 1 to 8, or 1 to 6
  • n may be 0 to 10, 0 to 8, 0 to 6, 1 to 10, 1-8 or 1-6.
  • the sum of m and n (m + n) may be 2 to 20, 2 to 16, 2 to 14, or 2 to 12.
  • the polymerization reactant may include the cyclic compound in a weight ratio of 10 wt% or less, 8 wt% or less, 7 wt% or less, 5 wt% or less, or 3 wt% or less.
  • the proportion of the cyclic compound may be, for example, greater than 0 wt% or at least 1 wt%. By adjusting the ratio, it may be possible to provide a cured product having excellent long-term reliability and crack resistance.
  • the term "weight average molecular weight” may refer to a conversion value for standard polystyrene measured by Gel Permeation Chromatograph (GPC). Unless otherwise specified, the term "molecular weight” in the present specification may mean a weight average molecular weight.
  • the polyorganosiloxane (A) or the polymerization reaction product comprising them are, 1 H NMR contain the area of the peak derived from the alkoxy group bonded to the spectrum of silicon atoms in the obtained bonded to silicon aliphatic unsaturated bond with a functional group, e.g. It may be 0.01 or less, 0.005 or less or 0 with respect to the area of the peak derived from an alkenyl group, such as a vinyl group. While exhibiting suitable viscosity properties in the above range, other physical properties can be maintained excellently.
  • the polyorganosiloxane (A) or the polymerization reactant including the same may have an acid value of 0.02 or less, 0.01 or less, or 0 obtained by KOH titration. While exhibiting suitable viscosity properties in the above range, other physical properties can be maintained excellently.
  • the polyorganosiloxane (A) or the polymerization reactant including the same may have a viscosity at 25 ° C. of at least 500 cP, at least 1,000 cP, or at least 5,000 cP. In this range, workability and hardness characteristics can be properly maintained.
  • the upper limit of the viscosity is not particularly limited, but for example, the viscosity may be 100,000 cP or less, 90,000 cP or less, 80,000 cP or less, 70,000 cP or less, or 65,000 cP or less.
  • the polyorganosiloxane (A) or the polymerization reactant including the same may have a molecular weight of 800 to 50,000 or 1,000 to 30,000. In this range, moldability, hardness, strength characteristics, and the like can be properly maintained.
  • the polymerization reactant comprising the polyorganosiloxane (A) may be, for example, a ring-opening polymerization reactant of a mixture comprising a cyclic polyorganosiloxane.
  • the mixture may further include, for example, a polyorganosiloxane having a cage structure or a partial cage structure or a polyorganosiloxane comprising a T unit. .
  • cyclic polyorganosiloxane compound As a cyclic polyorganosiloxane compound, the compound represented by following formula (7) can be used, for example.
  • R d and R e are each independently an epoxy group or a monovalent hydrocarbon group, and o is 3 to 6.
  • the cyclic polyorganosiloxane may also include a compound of formula 8 and a compound of formula 9 below.
  • R f and R g are epoxy groups or alkyl groups
  • R h and R i are epoxy groups or aryl groups
  • p is a number from 3 to 6
  • q is a number from 3 to 6.
  • the specific types of R f to R i , the specific values of o, p and q, and the proportion of each component in the mixture may be determined by the structure of the desired polyorganosiloxane (A). .
  • the mixture may include, for example, a compound having an average composition formula of the following formula (10); Or a compound having an average composition formula of Formula 11 below.
  • R j , R k and R m are each independently an epoxy group or a monovalent hydrocarbon group
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • p is 1 to 3
  • q is 1 to 10.
  • the specific types of R j to R m , the specific values of p and q, and the ratio of each component in the mixture may be determined by the structure of the desired polyorganosiloxane (A).
  • a polyorganosiloxane having a desired partially crosslinked structure can be synthesized at a sufficient molecular weight.
  • a target having excellent physical properties by minimizing a functional group such as an alkoxy group or a hydroxyl group bonded to a silicon atom in the polyorganosiloxane or a polymerization reaction including the same.
  • the mixture may further include a compound represented by Formula 12 below.
  • R n and R o are an epoxy group or a monovalent hydrocarbon group.
  • the specific type of the monovalent hydrocarbon group or the blending ratio in the mixture may be determined according to the desired polyorganosiloxane (A).
  • reaction of each component in the mixture can be carried out in the presence of a suitable catalyst.
  • the mixture may further comprise a catalyst.
  • a base catalyst As a catalyst which can be contained in a mixture, a base catalyst is mentioned, for example.
  • Suitable base catalysts include metal hydroxides such as KOH, NaOH or CsOH; Metal silanolate or tetramethylammonium hydroxide containing an alkali metal compound and siloxane, tetraethylammonium hydroxide or tetrapropylammonium hydroxide, and the like. Quaternary ammonium compounds and the like can be exemplified, but are not limited thereto.
  • the proportion of the catalyst in the mixture may be appropriately selected in consideration of the desired reactivity and the like, for example, 0.01 to 30 parts by weight or 0.03 to 5 parts by weight based on 100 parts by weight of the total weight of the reactants in the mixture. May be included as a percentage of wealth.
  • unit parts by weight means a ratio of weights between components.
  • the reaction of the mixture can be carried out in solvent-free conditions without using a solvent, or in the presence of a suitable solvent.
  • a solvent any reactant in the mixture, i.e., disiloxane or polysiloxane, and the like can be mixed with the catalyst appropriately, and any kind can be used as long as it does not interfere with the reactivity.
  • the solvent examples include aliphatic hydrocarbon solvents such as n-pentane, i-pentane, n-hexane, i-hexane, 2,2,4-trimethylpentane, cyclohexane or methylcyclohexane; Aromatic solvents such as benzene, toluene, xylene, trimethylbenzene, ethyl benzene or methylethyl benzene, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, cyclohexanone, Ketone solvents such as methylcyclohexanone or acetylacetone; Tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl ether, n-propyl ether, isopropyl ether, diglyme,
  • the reaction of the mixture for example the ring-opening polymerization reaction, can be carried out, for example, with the addition of a catalyst, for example at a reaction temperature in the range of 0 ° C to 150 ° C or 30 ° C to 130 ° C.
  • the reaction time can be adjusted, for example, within the range of 1 hour to 3 days.
  • the curable composition may further include a crosslinked polyorganosiloxane (hereinafter, polyorganosiloxane (B)).
  • polyorganosiloxane essentially includes T or Q units as the siloxane units, but the polyorgano has a ratio of D units (D / (D + T + Q)) to D, T and Q units of less than 0.65. Siloxane.
  • the crosslinked polyorganosiloxane may have, for example, an average composition formula of the following formula (13).
  • each R 11 is independently an epoxy group or a monovalent hydrocarbon group, at least one of R 11 is an alkenyl group, at least one of R 11 is an aryl group, a is a positive number, b is 0 or a positive Number, c is a positive number, d is 0 or a positive number, b / (b + c + d) is less than 0.65, 0.4 or less, or 0.3 or less, and c / (c + d) is 0.8 or more .
  • At least one or two or more of R 11 in Formula 13 may be an alkenyl group.
  • the alkenyl group is an amount such that the molar ratio (Ak / Si) of the alkenyl group (Ak) to the total silicon atoms (Si) contained in the polyorganosiloxane (B) is 0.05 to 0.4 or 0.05 to 0.35. May exist.
  • the molar ratio (Ak / Si) to 0.05 or more, the reactivity can be properly maintained, and the phenomenon that the unreacted component is leaked out onto the surface of the cured product can be prevented.
  • the molar ratio (Ak / Si) to 0.4 or 0.35 or less, it is possible to maintain excellent hardness properties, crack resistance and thermal shock resistance of the cured product.
  • At least one of R 11 may be an aryl group.
  • the aryl group may be present in an amount such that the molar ratio (Ar / Si) of the aryl group (Ar) to the total silicon atoms (Si) included in the polyorganosiloxane (B) is 0.5 to 1.5 or 0.5 to 1.2.
  • the refractive index and hardness characteristics of the cured product can be maximized, and by adjusting to 1.5 or 1.2 or less, the viscosity and the thermal shock resistance of the composition can be properly maintained.
  • a, b, c and d represent the molar ratio of each siloxane unit, for example, when the sum is 1, a is 0.05 to 0.5, b is 0 to 0.3, c Is 0.6 to 0.95 and d is 0 to 0.2.
  • (A + b) / (a + b + c + d) is 0.2 to 0.7, b / (b + c + d) is less than 0.65 in order to maximize the strength, crack resistance and thermal shock resistance of the cured product. It is 0.4 or less or 0.3 and c / (c + d) can be adjusted to 0.8 or more range.
  • the lower limit of b / (b + c + d) is not particularly limited, and for example, b / (b + c + d) may exceed zero.
  • the upper limit of c / (c + d) in the above is not particularly limited, for example, may be 1.0.
  • the polyorganosiloxane (B) may have a viscosity at 25 ° C. of 5,000 cP or more or 1,000,000 cP or more, whereby the workability before curing and hardness characteristics after curing can be appropriately maintained.
  • the polyorganosiloxane (B) may have a molecular weight of, for example, 800 to 20,000 or 800 to 10,000.
  • a molecular weight of, for example, 800 to 20,000 or 800 to 10,000.
  • the polyorganosiloxane (B) may, for example, apply a method for preparing polysiloxanes commonly known in the art, or apply a method similar to the polyorganosiloxane (A).
  • the polyorganosiloxane (B) has, for example, a weight ratio (A / (A + B)) of the polyorganosiloxane (A) in a mixture of the polyorganosiloxane (A) and the polyorganosiloxane (B) in the range of 10 to 50. It may be included to a degree. In such a ratio, the strength and thermal shock resistance of the cured product can be maintained excellent, and the surface stickiness can be prevented.
  • Curable composition can further contain the silicon compound (silicon compound (C)) containing the hydrogen atom couple
  • the silicon compound (C) may have one or more hydrogen atoms or two or more hydrogen atoms.
  • Silicon compound (C) can act as a crosslinking agent which reacts with the aliphatic unsaturated bond containing functional group of polyorganosiloxane, and crosslinks a composition.
  • the hydrogen atom of the silicon compound (C) and the alkenyl group of the polyorganosiloxane (A) or (B) may be added to react, so that crosslinking and curing may proceed.
  • the silicon compound (C) various kinds can be used as long as the molecule contains a hydrogen atom (Si-H) bonded to a silicon atom.
  • the silicon compound (C) may be, for example, a linear, branched, cyclic or crosslinked polyorganosiloxane.
  • the silicon compound (C) may be a compound having 2 to 1000 silicon atoms, preferably 3 to 300 silicon atoms.
  • the silicon compound (C) may be, for example, a compound of Formula 14 or a compound having an average composition formula of Formula 15.
  • R 12 in Formulas 14 and 15 are each independently hydrogen or a monovalent hydrocarbon group, at least two of R 12 are hydrogen atoms, at least one of R 12 is an aryl group, n is 1 to 100, and R 13 is Each independently is hydrogen or a monovalent hydrocarbon group, at least two of R 13 are hydrogen atoms, at least one of R 13 is an aryl group, a is a positive number, b is 0 or a positive number, c is Is a positive number and d is zero or a positive number. For example, when the sum (a + b + c + d) is converted to 1, a is 0.1 to 0.8, b is 0 to 0.5, c is 0.1 to 0.8, and d is 0 to 0.2 days. Can be.
  • the compound of the formula (14) is a linear siloxane compound having at least two hydrogen atoms bonded to silicon atoms.
  • n may be 1 to 100, 1 to 50, 1 to 25, 1 to 10, or 1 to 5.
  • the compound represented by the average composition formula of Formula 15 may be a polysiloxane having a crosslinked structure.
  • the molar ratio (H / Si) of the silicon atom bonded hydrogen atoms (H) to the total silicon atoms (Si) included in the silicon compound (C) may be 0.2 to 0.8 or 0.3 to 0.75.
  • the molar ratio may be adjusted to 0.2 or 0.3 or more to maintain excellent curability of the composition, and to 0.8 or 0.75 or less to maintain excellent crack resistance and thermal shock resistance.
  • the silicon compound (C) may include at least one aryl group, such that at least one of R 12 in Formula 14, or at least one of R 13 in Formula 15 is an aryl group, for example, 6 to 21 carbon atoms It may be an aryl group of 6 to 18 or 6 to 12 carbon atoms, or may be a phenyl group. Thereby, refractive index, hardness characteristic, etc. of hardened
  • the aryl group may be present in an amount such that the molar ratio (Ar / Si) of the aryl group (Ar) to the total silicon atoms (Si) contained in the compound (C) is 0.5 to 1.5 or 0.5 to 1.3.
  • the refractive index and hardness characteristics of the cured product can be maximized, and also adjusted to 1.5 or 1.3 or less, so that the viscosity and crack resistance of the composition can be properly maintained.
  • Compound (C) may have a viscosity at 25 ° C. of 0.1 cP to 100,000 cP, 0.1 cP to 10,000 cP, 0.1 cP to 1,000 cP or 0.1 cP to 300 cP. If it has the said viscosity, the processability of a composition, the hardness characteristic of hardened
  • compound (C) may have a molecular weight of, for example, less than 2,000, less than 1,000 or less than 800. If the molecular weight of a compound (C) is 1,000 or more, there exists a possibility that the intensity
  • the lower limit of the molecular weight of the compound (C) is not particularly limited, and may be 250, for example. In the case of compound (C), the molecular weight may mean a weight average molecular weight or may mean a conventional molecular weight of the compound.
  • the method for producing the compound (C) is not particularly limited, and can be prepared, for example, by applying a method commonly known in the production of polyorganosiloxane, or by applying a method according to the polyorganosiloxane (A). .
  • the content of the compound (C) is an aliphatic unsaturated bond-containing functional group contained in the curable composition, for example, an aliphatic unsaturated bond-containing functional group such as an alkenyl group contained in the polyorganosiloxane (A) and / or (B).
  • the molar ratio (H / Ak) of the hydrogen atom (H) bonded to the silicon atom contained in the compound (C) relative to the entirety) may be selected from 0.5 to 2.0 or 0.7 to 1.5.
  • H / Ak By blending in such a molar ratio (H / Ak), it exhibits excellent workability and workability prior to curing, and is cured to show excellent crack resistance, hardness characteristics, thermal shock resistance and adhesion, and provides turbidity and surface stickiness under harsh conditions.
  • a composition that does not cause can be provided.
  • the curable composition may further include a polyorganosiloxane (hereinafter polyorganosiloxane (D)) containing a functional group having an aliphatic unsaturated bond, for example, an alkenyl group and an epoxy group.
  • D polyorganosiloxane
  • the polyorganosiloxane (D) can be used, for example, as an adhesion imparting agent for improving adhesion.
  • the polyorganosiloxane (D) may be represented by an average composition formula of the following formula (16).
  • each R 14 independently represents an epoxy group or a monovalent hydrocarbon group, at least one of R 14 is an alkenyl group, at least one of R 14 is an epoxy group, a is 0 or a positive number, b is 0 or Positive number, c is zero or positive number, d is zero or positive number, (c + d) / (a + b + c + d) is 0.2-0.7, c / (d + d ) May be greater than or equal to 0.8. For example, when the sum (a + b + c + d) is converted to 1, a is 0 to 0.7, b is 0 to 0.5, c is 0 to 0.8, and d is 0 to 0.2. have.
  • At least one or two or more of R 14 in Formula 16 may be an alkenyl group.
  • the alkenyl group is an amount such that the molar ratio (Ak / Si) of the alkenyl group (Ak) to the total silicon atoms (Si) included in the polyorganosiloxane (D) is 0.05 to 0.35 or 0.05 to 0.3. May exist. It is possible to provide a cured product exhibiting excellent reactivity with other compounds at such molar ratios (Ak / Si), forming a covalent bond with a silicone resin after curing, and having excellent adhesive strength and excellent physical properties such as impact resistance.
  • At least one of R 14 in Formula 16 may also be an epoxy group.
  • the epoxy group may be present in an amount such that the molar ratio (Ep / Si) of the epoxy group (Ep) to the total silicon atoms (Si) contained in the polyorganosiloxane (D) is 0.1 or more or 0.2 or more.
  • Ep / Si the molar ratio of the epoxy group (Ep) to the total silicon atoms (Si) contained in the polyorganosiloxane (D) is 0.1 or more or 0.2 or more.
  • the upper limit of the molar ratio (Ep / Si) is not particularly limited, and may be, for example, 1.0.
  • a, b, c and d represent the molar ratio of each siloxane unit, and when the sum is converted into 1, a is 0 to 0.7, b is 0 to 0.5, and c is 0 to 0.8 And d may be 0 to 0.2. C and d may not be 0 at the same time.
  • (C + d) / (a + b + c + d) is 0.3 to 0.7 in order to maximize the strength, crack resistance and thermal shock resistance of the cured product and to provide a cured product having excellent adhesion to the substrate, and c / ( c + d) can be adjusted to a range of 0.8 or more.
  • the upper limit of c / (c + d) in the above is not particularly limited, and may be, for example, 1.0.
  • the polyorganosiloxane (D) may have a viscosity at 25 ° C. of 100 cP or more or 100000 cP or more, whereby the workability before curing and hardness characteristics after curing can be appropriately maintained.
  • the polyorganosiloxane (D) may have, for example, a molecular weight of 1,000 or more or 1,500 or more. By adjusting the molecular weight to 1,000 or 1,500 or more, it is possible to provide a cured product having excellent workability and workability before curing, and excellent in crack resistance, thermal shock resistance and adhesion properties with a substrate after curing.
  • the upper limit of the molecular weight is not particularly limited, and may be, for example, 20,000.
  • the method for producing the polyorganosiloxane (D) is not particularly limited, and for example, a method for preparing a polyorganosiloxane, which is commonly known, or a method similar to the preparation of the polyorganosiloxane (A) may be applied. can do.
  • the polyorganosiloxane (D) is, for example, another compound included in the curable composition, for example, the total weight of the polyorganosiloxane (A), the polyorganosiloxane (B), and / or the silicon compound (C) 100 It may be included in the composition in a ratio of 0.2 to 10 parts by weight or 0.5 to 5 parts by weight relative to parts by weight. It is possible to maintain excellent adhesion and transparency within the range of this ratio.
  • the curable composition may further include a hydrosilylation catalyst.
  • Hydrosilylation catalysts can be used to accelerate the hydrogensilylation reaction.
  • any conventional component known in the art can be used. Examples of such a catalyst include platinum, palladium or rhodium-based catalysts.
  • a platinum-based catalyst can be used, and examples of such catalysts include chloroplatinic acid, platinum tetrachloride, olefin complexes of platinum, alkenyl siloxane complexes of platinum, carbonyl complexes of platinum, and the like. May be, but is not limited thereto.
  • the content of the hydrosilylation catalyst is not particularly limited as long as it is contained in a so-called catalytic amount, that is, an amount that can act as a catalyst. Typically, it may be used in an amount of 0.1 ppm to 100 ppm or 0.2 ppm to 10 ppm based on the atomic weight of platinum, palladium or rhodium.
  • the curable composition may further include an adhesive imparting agent together or alone with the polyorganosiloxane (D) in view of further improvement of the adhesion to various substrates.
  • Adhesion imparting agent is a component capable of improving self-adhesion to the composition or cured product, and in particular, may improve self-adhesion to metals and organic resins.
  • an adhesive imparting agent 1 or more types chosen from the group which consists of alkenyl groups, such as a vinyl group, a (meth) acryloyloxy group, a hydrosilyl group (SiH group), an epoxy group, an alkoxy group, an alkoxy silyl group, a carbonyl group, and a phenyl group Or silanes having two or more functional groups; Or organic silicon compounds such as cyclic or linear siloxanes having 2 to 30 or 4 to 20 silicon atoms, and the like, but are not limited thereto.
  • one kind or two or more kinds of the above-mentioned adhesion imparting agents may be further mixed and used.
  • the total weight of other compounds included in the curable composition for example, the polyorganosiloxane (A), polyorganosiloxane (B) and / or silicon compound (C) It may be included in a ratio of 0.1 parts by weight to 20 parts by weight with respect to 100 parts by weight, but the content may be appropriately changed in consideration of the desired adhesive improvement effect.
  • the polyorganosiloxane (A), polyorganosiloxane (B) and / or silicon compound (C) It may be included in a ratio of 0.1 parts by weight to 20 parts by weight with respect to 100 parts by weight, but the content may be appropriately changed in consideration of the desired adhesive improvement effect.
  • the curable composition is 2-methyl-3-butyn-2-ol, 2-phenyl-3-1-butyn-2ol, 3-methyl-3-pentene-1-yne, 3,5-dimethyl as necessary.
  • Reaction inhibitors such as 3-hexene-1-yne, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane or ethynylcyclohexane;
  • Inorganic fillers such as silica, alumina, zirconia or titania; Carbon functional silanes having an epoxy group and / or an alkoxysilyl group, partial hydrolysis condensates or siloxane compounds thereof; Thixotropy-imparting agents, such as fumed silica which can be used together with polyether etc .;
  • Conductivity imparting agents such as metal powders such as silver, copper or aluminum, and various carbon materials;
  • the curable composition may further comprise a phosphor.
  • the kind of phosphor that can be used is not particularly limited, and for example, a conventional kind of phosphor applied to an LED package may be used to implement white light.
  • the present application also relates to a semiconductor device, for example, an optical semiconductor device.
  • An exemplary semiconductor device may be encapsulated with an encapsulant including a cured product of the curable composition.
  • Examples of the semiconductor element encapsulated with the encapsulant include a diode, a transistor, a thyristor, a photocoupler, a CCD, a solid state image pickup element, an integrated IC, a hybrid IC, an LSI, a VLSI, a light emitting diode (LED), and the like.
  • the semiconductor device may be a light emitting diode.
  • a light emitting diode formed by stacking a semiconductor material on a substrate may be exemplified.
  • the semiconductor material may include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN, or SiC, but are not limited thereto.
  • the substrate sapphire, spinel, SiC, Si, ZnO, or GaN single crystal may be exemplified.
  • a buffer layer may be formed between the substrate and the semiconductor material as necessary.
  • GaN or AlN may be used.
  • the method of laminating the semiconductor material on the substrate is not particularly limited, and for example, the MOCVD method, the HDVPE method, or the liquid phase growth method can be used.
  • the structure of the light emitting diode may be, for example, a monojunction having a MIS junction, a PN junction, a PIN junction, a heterojunction, a double heterojunction, or the like.
  • the light emitting diode may be formed in a single or multiple quantum well structure.
  • the light emission wavelength of the light emitting diode may be, for example, 250 nm to 550 nm, 300 nm to 500 nm, or 330 nm to 470 nm.
  • the emission wavelength may mean a main emission peak wavelength.
  • the light emitting diode may be encapsulated using the composition.
  • the encapsulation of the light emitting diode may be performed only with the composition, and in some cases, another encapsulant may be used in combination with the composition.
  • another encapsulant may be used in combination with the composition.
  • an epoxy resin, a silicone resin, an acrylic resin, a urea resin, an imide resin, glass, etc. are mentioned.
  • the composition is pre-injected into a mold form die, a lead frame having a light emitting diode fixed thereto is immersed therein, and a method of curing the composition and a light emitting diode is inserted.
  • the method of injecting and curing the composition in one form can be used.
  • injection by a dispenser, transfer molding or injection molding may be exemplified.
  • the composition is added dropwise onto a light emitting diode, applied by stencil printing, screen printing or a mask, and cured, the composition is injected into a cup or the like having a light emitting diode disposed at the bottom by a dispenser or the like. Curing method and the like can be used.
  • the curable composition may be used as a die-bonding material for fixing the light emitting diode to a lead terminal or a package, a passivation film or a package substrate on the light emitting diode.
  • the curing method is not particularly limited, and for example, it is carried out by holding the composition for 10 minutes to 5 hours at a temperature of 60 °C to 200 °C, or two steps at an appropriate temperature and time A step hardening process can also be advanced through the above process.
  • the shape of the sealing material is not particularly limited, and can be formed, for example, in the form of a shell lens, a plate or a thin film.
  • a method for improving the performance for example, a method of providing a light reflection layer or a light collecting layer on the back surface of a light emitting diode, a method of forming a complementary coloring part at the bottom, and providing a layer on the light emitting diode that absorbs light having a wavelength shorter than the main emission peak
  • the method etc. are mentioned.
  • the optical semiconductor for example, a light emitting diode
  • a light emitting diode may be, for example, a backlight of a liquid crystal display (LCD), an illumination, various sensors, a light source such as a printer, a copier, a vehicle instrument light source, a signal lamp, an indicator light, It can be effectively applied to a display device, a light source of an area light emitting body, a display, a decoration or various lights.
  • LCD liquid crystal display
  • Exemplary curable compositions exhibit excellent processability and workability.
  • the curable composition when cured, is excellent in light extraction efficiency, hardness, thermal shock resistance, moisture resistance, gas permeability and adhesion.
  • the curable composition may provide a cured product that exhibits stable durability reliability for a long time even under severe conditions and does not cause cloudiness and stickiness on the surface.
  • the composition when cured, may exhibit excellent light extraction efficiency, crack resistance, hardness, thermal shock resistance and adhesion.
  • curable composition will be described in more detail with reference to Examples and Comparative Examples, but the scope of the curable composition is not limited by the following examples.
  • the sign Vi represents a vinyl group
  • the sign Ph represents a phenyl group
  • the sign Me represents a methyl group
  • the sign Ep represents a 3-glycidoxypropyl group.
  • Device properties are evaluated using a 5450 LED package made of polyphthalamide (PPA).
  • PPA polyphthalamide
  • the curable composition is dispensed into a polyphthalamide cup, held at 70 ° C. for 30 minutes, and then maintained at 150 ° C. for 1 hour to cure to produce a surface mounted LED. Thereafter, the test is conducted according to the method given below.
  • the LED was placed in a 200 L glass jar, and additionally 0.2 g of sulfur powder was added thereto, held at 70 ° C. for 40 hours, and then the luminous flux was measured to measure the rate of reduction of the luminous flux relative to the initial luminous flux and evaluated according to the following criteria.
  • the luminance reduction rate is greater than 15% compared to the initial stage, and less than 20%
  • the LEDs are operated for 500 hours with 30 mA of current maintained at 85 ° C and 85% relative humidity. Subsequently, the luminance reduction rate after the operation compared to the initial luminance before the operation is measured and evaluated based on the following criteria.
  • the luminance reduction rate is greater than 5% compared to the initial stage, and is 7% or less
  • the polyorganosiloxane of the formula (A) is a tetramethylammonium hydroxide which is a catalyst in a mixture of octamethylcyclotetrasiloxane and octaphenylcyclotetrasiloxane with divinyltetramethyldisiloxane.
  • a catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) is added to the composition in an amount of 10 ppm of Pt (0), and the mixture is uniformly mixed to form a curable composition.
  • a catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • the polyorganosiloxane of the formula (A) is a tetramethylammonium hydroxide which is a catalyst in a mixture of octamethylcyclotetrasiloxane and octaphenylcyclotetrasiloxane with divinyltetramethyldisiloxane.
  • a catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) is added to the composition in an amount of 10 ppm of Pt (0), and the mixture is uniformly mixed to form a curable composition.
  • a catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • a catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) is added to the composition in an amount of 10 ppm of Pt (0), and the mixture is uniformly mixed to form a curable composition.
  • a catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • a catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) is added to the composition in an amount of 10 ppm of Pt (0), and the mixture is uniformly mixed to form a curable composition.
  • a catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • a catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) is added to the composition in an amount of 10 ppm of Pt (0), and the mixture is uniformly mixed to form a curable composition.
  • a catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

본 출원은, 경화성 조성물 및 그 용도에 관한 것이다. 예시적인 경화성 조성물은, 가공성과 작업성이 우수하다. 또한, 경화성 조성물은, 경화되면 우수한 광추출 효율, 경도, 내열 충격성, 내습성, 가스 투과성 및 접착성 등을 나타낸다. 또한, 경화성 조성물은, 가혹 조건에서도 장시간 동안 안정적인 내구 신뢰성을 나타내고, 백탁 및 표면에서의 끈적임 등이 유발되지 않는 경화물을 제공할 수 있다.

Description

경화성 조성물
본 출원은, 경화성 조성물 및 그 용도에 관한 것이다.
LED(Light Emitting Diode), 예를 들어 발광 파장이 약 250 nm 내지 550 nm인 청색 또는 자외선 LED로서, GaN, GaAlN, InGaN 및 InAlGaN과 같은 GaN 계열의 화합물 반도체를 이용한 고휘도 제품이 얻어지고 있다. 또한, 적색 및 녹색 LED를 청색 LED와 조합시키는 기법으로 고화질의 풀 컬러 화상의 형성도 가능해지고 있다. 예를 들면, 청색 LED 또는 자외선 LED를 형광체와 조합하여, 백색 LED를 제조하는 기술이 알려져 있다.
이러한 LED는 LCD(Liquid Crystal Display) 등의 표시 장치의 광원이나 조명용 등으로 수요가 확대되고 있다.
LED 봉지재로서, 접착성이 높고 역학적인 내구성이 우수한 에폭시 수지가 폭넓게 이용되고 있다. 그러나, 에폭시 수지는 청색 내지 자외선 영역의 광에 대한 투과율이 낮고, 또한 내열성과 내광성이 떨어지는 문제점이 있다. 이에 따라, 예를 들면, 특허문헌 1 내지 3 등에서는, 상기와 같은 문제점의 개량하기 위한 기술을 제안하고 있다. 그러나, 상기 문헌에서 개시하는 봉지재는, 내열성 및 내광성이 충분하지 못하다.
[선행기술문헌]
특허문헌 1: 일본특허공개 평11-274571호
특허문헌 2: 일본특허공개 제2001-196151호
특허문헌 3: 일본특허공개 제2002-226551호
본 출원은 경화성 조성물 및 그 용도를 제공한다.
예시적인 경화성 조성물은, 수소규소화 반응(hydrosilylation), 예를 들면, 지방족 불포화 결합과 수소 원자의 반응에 의해 경화될 수 있는 성분들을 포함할 수 있다. 예를 들면, 경화성 조성물은, 지방족 불포화 결합을 포함하는 관능기를 포함하는 폴리오가노실록산(이하, 폴리오가노실록산(A))을 포함하는 중합 반응물을 포함할 수 있다.
본 명세서에서 용어 「M 단위」는, 업계에서 식 (R3SiO1/2)로 표시되는 경우가 있는 소위 일관능성 실록산 단위를 의미하고, 용어 「D 단위」는 업계에서 식 (R2SiO2/2)로 표시되는 경우가 있는 소위 이관능성 실록산 단위를 의미하며, 용어 「T 단위」는 업계에서 식 (RSiO3/2)로 표시되는 경우가 있는 소위 삼관능성 실록산 단위를 의미하고, 용어 「Q 단위」는 식 (SiO4/2)로 표시되는 경우가 있는 소위 사관능성 실록산 단위를 의미할 수 있다. 상기에서 R은 규소 원자(Si)에 결합되어 있는 관능기이고, 예를 들면, 수소 원자, 히드록시기, 에폭시기, 알콕시기 또는 1가 탄화수소기일 수 있다.
폴리오가노실록산(A)는, 예를 들면, 선형 구조 또는 부분 가교 구조를 가질 수 있다. 용어 「선형 구조」는, M 단위와 D 단위로 이루어지는 폴리오가노실록산의 구조를 의미할 수 있다. 또한, 용어 「부분 가교 구조」는, D 단위로부터 유래하는 선형 구조가 충분히 길면서, T 또는 Q 단위, 예를 들면, T 단위가 부분적으로 도입되어 있는 폴리오가노실록산의 구조를 의미할 수 있다. 하나의 예시에서 부분 가교 구조의 폴리오가노실록산은, 폴리오가노실록산에 포함되는 전체 D, T 및 Q 단위에 대한 D 단위의 비율(D/(D+T+Q))이 0.7 이상인 폴리오가노실록산을 의미할 수 있다.
하나의 예시에서, 부분 가교 구조의 폴리오가노실록산(A)은, 하나의 산소 원자를 공유하면서 연결되어 있는 D 단위 및 T 단위를 포함할 수 있다. 상기 연결된 단위는, 예를 들면, 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2013006800-appb-I000001
화학식 1에서 Ra 및 Rb는 각각 독립적으로 알킬기, 알케닐기 또는 아릴기이고, Rc는 알킬기 또는 아릴기다.
화학식 1에서 Rc 및 Rb는 예를 들면, 동시에 알킬기이거나, 혹은 동시에 아릴기일 수 있다.
부분 가교 구조의 폴리오가실록산(A)은, 화학식 1의 단위를 하나 이상 포함할 수 있다. 화학식 1의 단위는, 폴리오가노실록산(A)을 형성하는 실록산 단위 중에서 D 단위의 규소 원자와 T 단위의 규소 원자가 산소 원자를 매개로 직접 결합되어 있는 형태의 단위이다. 화학식 1의 단위를 포함하는 폴리오가노실록산은, 예를 들면, 후술하는 바와 같이 고리형 실록산 화합물을 포함하는 혼합물을 중합, 예를 들면, 개환 중합시켜서 제조할 수 있다. 상기 방식을 적용하면, 화학식 1의 단위를 포함하면서도, 구조 중에서 알콕시기가 결합된 규소 원자 및 히드록시기가 결합된 규소 원자 등이 최소화된 폴리오가노실록산의 제조가 가능하다.
폴리오가노실록산(A)은, 지방족 불포화 결합을 포함하는 관능기, 예를 들면, 알케닐기를 하나 이상 포함할 수 있다. 예를 들면, 상기 폴리오가노실록산(A)에서 전체 규소 원자의 몰수(Si)에 대한 상기 지방족 불포화 결합을 포함하는 관능기의 몰수(Ak)의 비율(Ak/Si)은 0.01 내지 0.2 또는 0.02 내지 0.15일 수 있다. 몰비(Ak/Si)를 0.01 또는 0.02 이상으로 조절하여, 반응성을 적절하게 유지하고, 미반응 성분이 경화물의 표면으로 배어나오는 현상을 방지할 수 있다. 또한, 몰비(Ak/Si)를 0.2 또는 0.15 이하로 조절하여, 경화물의 균열 내성을 우수하게 유지할 수 있다.
폴리오가노실록산(A)은, 아릴기, 예를 들면, 규소 원자에 결합되어 있는 아릴기를 하나 이상 포함할 수 있다. 예를 들어, 폴리오가노실록산(A)이 선형 구조인 경우에 상기 아릴기는 D 단위의 규소 원자에 결합되어 있을 수 있고, 부분 가교 구조인 경우에 상기 아릴기는 D 단위 및/또는 T 단위의 규소 원자에 결합되어 있을 수 있다. 또한, 폴리오가노실록산(A)에서 규소에 결합되어 있는 전체 관능기의 몰수(A) 대비 상기 아릴기의 몰수(B)의 비율은 백분율(100×B/A)로 30% 내지 60% 정도일 수 있다. 또한, 폴리오르가노실록산(A)에 포함되는 전체 D 단위의 규소 원자의 몰수(D-Si) 대비 D 단위에 포함되는 아릴기의 몰수(D-Ar)의 비율(D-Ar/D-Si)은, 예를 들면, 0.3 이상이고, 또한 0.65 미만일 수 있다. 이러한 비율의 범위 내에서 조성물은, 경화 전에 우수한 가공성 및 작업성을 나타내고, 경화 후에는 내습성, 광투과율, 굴절률, 광추출 효율 및 경도 특성 등을 우수하게 유지할 수 있다. 특히 상기 비율(100×B/A)을 30% 이상으로 유지하여, 경화물의 기계적 강도 및 가스 투과성을 적절하게 확보할 수 있고, 60% 이하로 하여 경화물의 균열 내성을 우수하게 유지할 수 있다.
폴리오가노실록산(A)은 D 단위로서 하기 화학식 2의 단위와 하기 화학식 3의 단위를 포함할 수 있다.
[화학식 2]
(R1R2SiO2/2)
[화학식 3]
(R3 2SiO2/2)
화학식 2 및 2에서 R1 및 R2는 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, R3는 아릴기이다. 하나의 예시에서 상기 R1 및 R2는 각각 독립적으로 알킬기일 수 있다.
본 명세서에서 용어 「1가 탄화수소기」는, 특별히 달리 규정하지 않는 한, 탄소와 수소로 이루어진 화합물 또는 그러한 화합물의 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 예를 들면, 상기 1가 탄화수소기는, 1개 내지 25개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기, 알키닐기 또는 아릴기 등이 예시될 수 있다.
본 명세서에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「알키닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 상기 알키닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 「아릴기」는, 특별히 달리 규정하지 않는 한, 벤젠 고리 또는 2개 이상의 벤젠 고리가 하나 또는 2개 이상의 탄소 원자를 공유하면서 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다.
용어 「에폭시기」는, 특별히 달리 규정하지 않는 한, 3개의 고리 구성 원자를 가지는 고리형 에테르(cyclic ether) 또는 상기 고리형 에테르를 포함하는 화합물로부터 유도된 1가 잔기를 의미할 수 있다. 에폭시기로는 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 상기에서 지환식 에폭시기는, 지방족 탄화수소 고리 구조를 포함하고, 상기 지방족 탄화수소 고리를 형성하고 있는 2개의 탄소 원자가 또한 에폭시기를 형성하고 있는 구조를 포함하는 화합물로부터 유래되는 1가 잔기를 의미할 수 있다. 지환식 에폭시기로는, 6개 내지 12개의 탄소 원자를 가지는 지환식 에폭시기가 예시될 수 있고, 예를 들면, 3,4-에폭시시클로헥실에틸기 등이 예시될 수 있다.
에폭시기 또는 1가 탄화수소기에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 1가 탄화수소기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
폴리오가노실록산(A)에서 화학식 2의 실록산 단위의 몰수(A) 및 화학식 3의 실록산 단위의 몰수(B)의 비율(A/B)은, 예를 들면, 0.1 내지 2.0, 0.1 내지 1.5, 0.2 내지 1.5 또는 0.2 내지 1의 범위 내에 있을 수 있다. 실록산 단위의 비율을 이와 같이 조절하여 적용 용도에 따라서 적합한 물성이 확보되는 경화성 조성물, 예를 들면, 기계적 강도가 우수하고, 표면 끈적임이 없으며, 수분 및 가스 투과성이 조절되어, 장시간 동안 우수한 광투과율을 나타내고, 안정적인 내구성이 확보되는 소자를 제공할 수 있는 경화성 조성물이 제공될 수 있다.
화학식 3의 실록산 단위(D2)는 폴리오가노실록산(A)에 포함되는 전체 D 단위(D)에 대한 비율(100×D2/D)이 60% 이상, 65% 초과 또는 70% 이상이 되도록 포함되어 있을 수 있다. 이러한 비율의 범위 내에서 기계적 강도가 우수하고, 표면 끈적임이 없으며, 수분 및 가스 투과성이 조절되어, 장시간 동안 안정적인 내구성이 확보될 수 있다.
폴리오가노실록산(A)에서 화학식 3의 실록산 단위(D2)는 폴리오가노실록산(A)에 포함되는 전체 D 단위 중에서 규소 원자에 결합된 아릴기를 포함하는 D 단위(ArD)에 대한 비율(D2/ArD)이 70% 이상 또는 80% 이상이 되도록 포함될 수 있다. 이러한 비율의 범위 내에서 조성물은, 경화 전에 우수한 가공성 및 작업성을 나타내고, 경화 후에는 기계적 강도, 가스 투과성, 내습성, 광투과율, 굴절률, 광추출 효율 및 경도 특성 등을 우수하게 유지할 수 있다.
하나의 예시에서 폴리오가노실록산(A)은 하기 화학식 4의 평균 조성식을 가질 수 있다.
[화학식 4]
(R4 3SiO1/2)a(R4 2SiO2/2)b(R4SiO3/2)c(SiO4/2)d
화학식 4에서 R4는, 각각 독립적으로 에폭시기 또는 1가 탄화수소기이되, R4 중 적어도 하나는 알케닐기이고, R4 중 적어도 하나는 아릴기이며, a는 양의 수이고, b는 양의 수이며, c는 0 또는 양의 수이고, d는 0 또는 양의 수이며, b/(b+c+d)는 0.65 내지 1 또는 0.7 내지 1이다.
본 명세서에서 폴리오가노실록산이 특정 평균 조성식으로 표시된다는 것은, 그 폴리오가노실록산이 그 평균 조성식으로 표시되는 단일의 성분인 경우는 물론 2개 이상의 성분의 혼합물이면서 상기 혼합물 내의 성분의 조성의 평균을 취하면, 그 평균 조성식으로 나타나는 경우도 포함한다.
화학식 1에서 R4 중 적어도 하나는 알케닐기이고, R4 중 적어도 하나는 아릴기이다. 상기 알케닐기 및 아릴기는, 예를 들면, 이미 기술한 몰 비율 등이 만족되도록 포함되어 있을 수 있다.
화학식 1의 평균 조성식에서 a, b, c 및 d는 폴리오가노실록산(A)의 각 실록산 단위의 몰 비율을 나타낸다. 예를 들어, 상기 몰 비율의 총합(a+b+c+d)을 1로 환산하는 경우, a는 0.01 내지 0.15이고, b는 0.65 내지 0.97이며, c는 0 내지 0.30 또는 0.01 내지 0.30이고, d는 0 내지 0.2일 수 있다. 또한, b/(b+c+d)는 0.65 내지 1 또는 0.7 내지 1일 수 있다. 부분 가교 구조인 경우에, b/(b+c+d)는 0.65 내지 0.97 또는 0.7 내지 0.97 일 수 있다. 실록산 단위의 비율을 이와 같이 조절하여 적용 용도에 따라서 적합한 물성을 확보할 수 있다.
다른 예시에서 폴리오가노실록산(A)은, 하기 화학식 5의 평균 조성식을 가질 수 있다.
[화학식 5]
(R5R6 2SiO1/2)e(R7R8SiO2/2)f(R9 2SiO2/2)g(R10SiO3/2)h
화학식 5에서 R5는, 1가 탄화수소기이고, R6는 탄소수 1 내지 4의 알킬기이며, R7 및 R8은, 각각 독립적으로 알킬기, 알케닐기 또는 아릴기이거나, 또는 알킬기이고, R9는 아릴기이며, e는 양의 수이고, f는 0 또는 양의 수이며, g는 0 또는 양의 수이고, h는 0 또는 양의 수이며, (f+g)/(f+g+h)는 0.65 내지 1 또는 0.7 내지 1이다.
화학식 5의 평균 조성식에서 R5 및 R7 내지 R9 중 적어도 하나는 알케닐기이고, R5 및 R7 내지 R9 중 적어도 하나는 아릴기일 수 있다. 상기 알케닐기 및 아릴기는, 예를 들면, 이미 기술한 몰 비율 등이 만족되도록 포함되어 있을 수 있다.
화학식 5의 평균 조성식에서 e, f, g 및 h는 폴리오가노실록산(A)의 각 실록산 단위의 몰 비율을 나타낸다. 예를 들어, 그 총합(e+f+g+h)을 1로 환산하는 경우, e는 0.01 내지 0.15이고, f는 0 내지 0.97, 0.3 내지 0.97 또는 0.65 내지 0.97이며, g는 0 내지 0.97, 0.3 내지 0.97 또는 0.65 내지 0.97이고, h는 0 내지 0.30 또는 0.01 내지 0.30일 수 있다. 또한, (f+g)/(f+g+h)는 0.65 내지 1 또는 0.7 내지 1일 수 있다. 부분 가교 구조인 경우에, (f+g)/(f+g+h)는 0.65 내지 0.97 또는 0.7 내지 0.97 일 수 있다. 실록산 단위의 비율을 이와 같이 조절하여 적용 용도에 따라서 적합한 물성을 확보할 수 있다.
하나의 예시에서 화학식 5의 평균 조성식에서 f 및 g는 모두 0이 아닐 수 있다. f 및 g가 모두 0이 아닌 경우에 f/g은 0.1 내지 2.0, 0.1 내지 1.5, 0.2 내지 1.5 또는 0.2 내지 1의 범위 내에 있을 수 있다.
폴리오가노실록산(A)를 포함하는 중합 반응물은, 예를 들면, 고리형 폴리오가노실록산을 포함하는 혼합물의 개환 중합 반응물일 수 있다. 상기 중합 반응물은, 예를 들면, 중량평균분자량(Mw)이 800 이하, 750 이하 또는 700 이하인 고리형 화합물, 예를 들면, 고리형 폴리오가노실록산을 포함할 수 있다. 상기 고리형 화합물은 후술하는 개환 중합 반응 과정에서 생성되는 성분으로 개환 중합의 조건이나 개환 중합 후에 중합물의 처리 등을 통해 상기 고리형 화합물을 원하는 비율로 잔존시킬 수 있다. 상기 고리형 화합물은, 예를 들면, 적어도 하기 화학식 6으로 표시되는 화합물을 포함할 수 있다.
[화학식 6]
Figure PCTKR2013006800-appb-I000002
화학식 6에서 Ra 및 Rb는 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, Rc는 아릴기이다. 하나의 예시에서 상기 Ra 및 Rb는 각각 독립적으로 알킬기일 수 있다. 또한, 화학식 6에서 m은 0 내지 10, 0 내지 8, 0 내지 6, 1 내지 10, 1 내지 8 또는 1 내지 6일 수 있고, n은 0 내지 10, 0 내지 8, 0 내지 6, 1 내지 10, 1 내지 8 또는 1 내지 6일 수 있다. 또한, 상기에서 m과 n의 합(m+n)은 2 내지 20, 2 내지 16, 2 내지 14 또는 2 내지 12일 수 있다.
상기와 같은 형태의 고리형 화합물을 포함하는 저분자량 고리형 성분을 통해 장기 신뢰성 및 균열 내성 등의 특성을 보다 개선할 수 있다.
상기 중합 반응물은 상기 고리형 화합물을 중량 비율로 10 중량% 이하, 8 중량% 이하, 7 중량% 이하, 5 중량% 이하 또는 3 중량% 이하로 포함할 수 있다. 상기 고리형 화합물의 비율은, 예를 들면, 0 중량% 초과 또는 1 중량% 이상일 수 있다. 상기 비율로의 조절을 통해 장기 신뢰성 및 균열 내성이 우수한 경화물의 제공이 가능할 수 있다. 용어 「중량평균분자량」은 GPC(Gel Permeation Chromatograph)로 측정된 표준 폴리스티렌에 대한 환산 수치를 의미할 수 있다. 특별히 달리 규정하지 않는 한, 본 명세서에서 용어 「분자량」은 중량평균분자량을 의미할 수 있다.
폴리오가노실록산(A) 또는 그를 포함하는 상기 중합 반응물은, 1H NMR로 구해지는 스펙트럼에서 규소 원자에 결합된 알콕시기로부터 유래하는 피크의 면적이 규소에 결합된 지방족 불포화 결합 함유 관능기, 예를 들면, 비닐기와 같은 알케닐기로부터 유래하는 피크의 면적에 대해 0.01 이하, 0.005 이하 또는 0일 수 있다. 상기 범위에서 적절한 점도 특성을 나타내면서, 다른 물성도 우수하게 유지될 수 있다.
또한, 하나의 예시에서 폴리오가노실록산(A) 또는 그를 포함하는 상기 중합 반응물은 KOH 적정에 의해 구해지는 산가(acid value)가 0.02 이하, 0.01 이하 또는 0일 수 있다. 상기 범위에서 적절한 점도 특성을 나타내면서, 다른 물성도 우수하게 유지될 수 있다.
하나의 예시에서 폴리오가노실록산(A) 또는 그를 포함하는 중합 반응물은, 25℃에서의 점도가 500 cP 이상, 1,000 cP 이상 또는 5,000 cP 이상일 수 있다. 이러한 범위에서 가공성 및 경도 특성 등이 적절하게 유지될 수 있다. 상기 점도의 상한은 특별히 제한되는 것은 아니지만, 예를 들면, 상기 점도는, 100,000 cP 이하, 90,000 cP 이하, 80,000 cP 이하, 70,000 cP 이하 또는 65,000 cP 이하일 수 있다.
폴리오가노실록산(A) 또는 그를 포함하는 중합 반응물은, 분자량이 800 내지 50,000 또는 1,000 내지 30,000일 수 있다. 이러한 범위에서 성형성, 경도 및 강도 특성 등이 적절하게 유지될 수 있다.
폴리오가노실록산(A)을 포함하는 중합 반응물은, 예를 들면, 고리형 폴리오가노실록산을 포함하는 혼합물의 개환 중합 반응물일 수 있다.
폴리오가노실록산(A)이 부분 가교 구조인 경우에는, 상기 혼합물은, 예를 들면, 케이지 구조 또는 부분 케이지 구조를 가지는 폴리오가노실록산이나 또는 T 단위를 포함하는 폴리오가노실록산을 추가로 포함할 수 있다.
고리형 폴리오가노실록산 화합물로는, 예를 들면, 하기 화학식 7으로 표시되는 화합물을 사용할 수 있다.
[화학식 7]
Figure PCTKR2013006800-appb-I000003
화학식 7에서 Rd 및 Re는 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, o는 3 내지 6이다.
고리형 폴리오가노실록산은, 또한 하기 화학식 8의 화합물 및 하기 화학식 9의 화합물을 포함할 수도 있다.
[화학식 8]
Figure PCTKR2013006800-appb-I000004
[화학식 9]
Figure PCTKR2013006800-appb-I000005
화학식 8 및 9에서 Rf 및 Rg는 에폭시기 또는 알킬기이고, Rh 및 Ri는 에폭시기 또는 아릴기이며, p는 3 내지 6의 수이고, q는 3 내지 6의 수이다.
화학식 7 내지 9에서, Rf 내지 Ri의 구체적인 종류나 o, p 및 q의 구체적인 수치, 그리고 혼합물 내에서의 각 성분의 비율은 목적하는 폴리오가노실록산(A)의 구조에 의해서 정해질 수 있다.
폴리오가노실록산(A)이 부분 가교 구조인 경우에 상기 혼합물은, 예를 들면, 하기 화학식 10의 평균 조성식을 가지는 화합물; 또는 하기 화학식 11의 평균 조성식을 가지는 화합물을 추가로 포함할 수 있다.
[화학식 10]
[RjSiO3/2]
[화학식 11]
[RkRl 2SiO1/2] p[RmSiO3/2]q
화학식 10 및 11에서 Rj, Rk 및 Rm은 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, Rl은 탄소수 1 내지 4의 알킬기이며, p는 1 내지 3이고, q는 1 내지 10이다.
화학식 10 및 11에서, Rj 내지 Rm의 구체적인 종류나 p 및 q의 구체적인 수치, 그리고 혼합물 내에서의 각 성분의 비율은 목적하는 폴리오가노실록산(A)의 구조에 의해서 정해질 수 있다.
고리형 폴리오가노실록산을 케이지 구조 및/또는 부분 케이지 구조를 가지거나 또는 T 단위를 포함하는 폴리오가노실록산과 반응시키면, 목적하는 부분 가교 구조를 가지는 폴리오가노실록산을 충분한 분자량으로 합성할 수 있다. 또한, 상기 방식에 의하면 폴리오가노실록산 또는 그를 포함하는 중합 반응물 내에서 규소 원자에 결합하고 있는 알콕시기나 히드록시기와 같은 관능기를 최소화하여, 우수한 물성을 가지는 목적물을 제조할 수 있다.
하나의 예시에서 상기 혼합물은 하기 화학식 12로 표시되는 화합물을 추가로 포함할 수 있다.
[화학식 12]
(RnRo 2Si)2O
화학식 12에서, Rn 및 Ro는 에폭시기 또는 1가 탄화수소기이다.
화학식 12에서 1가 탄화수소기의 구체적인 종류나 혼합물 내에서의 배합 비율은 목적하는 폴리오가노실록산(A)에 따라서 정해질 수 있다.
상기 혼합물 내의 각 성분의 반응은, 적절한 촉매의 존재 하에서 수행될 수 있다. 따라서, 상기 혼합물은 촉매를 추가로 포함할 수 있다.
혼합물의 포함될 수 있는 촉매로는, 예를 들면, 염기 촉매를 들 수 있다. 적절한 염기 촉매로는, KOH, NaOH 또는 CsOH 등과 같은 금속 수산화물; 알칼리 금속 화합물과 실록산을 포함하는 금속 실라롤레이트(metal silanolate) 또는 테트라메틸암모늄 히드록시드(tetramethylammonium hydroxide), 테트라에틸암모늄 히드록시드(tetraethylammonium hydroxide) 또는 테트라프로필암모늄 히드록시드(tetrapropylammonium hydroxide) 등과 같은 4급 암모늄 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
혼합물 내에서 상기 촉매의 비율은 목적하는 반응성 등을 고려하여 적절히 선택될 수 있고, 예를 들면, 혼합물 내의 반응물의 합계 중량 100 중량부에 대하여 0.01 중량부 내지 30 중량부 또는 0.03 중량부 내지 5 중량부의 비율로 포함될 수 있다. 본 명세서에서 특별히 달리 규정하지 않는 한, 단위 중량부는 각 성분간의 중량의 비율을 의미한다.
하나의 예시에서, 상기 혼합물의 반응은, 용매를 사용하지 않는 무용매 조건에서 수행되거나, 또는 적절한 용매의 존재 하에 수행될 수 있다. 용매로는, 상기 혼합물 내의 반응물, 즉 디실록산 또는 폴리실록산 등과 촉매가 적절히 혼합될 수 있고, 반응성에 큰 지장을 주지 않는 것이라면 어떠한 종류도 사용될 수 있다. 용매로는, n-펜탄, i-펜탄, n-헥산, i-헥산, 2,2,4-트리메틸펜탄, 시클로헥산 또는 메틸시클로헥산 등의 지방족 탄화수소계 용매; 벤젠, 톨루엔, 크실렌, 트리메틸벤젠, 에틸 벤젠 또는 메틸에틸 벤젠 등의 방향족계 용매, 메틸에틸케톤, 메틸이소부틸케톤, 디에틸케톤, 메틸 n-프로필 케톤, 메틸 n-부틸 케톤, 시클로헥사논, 메틸시클로헥사논 또는 아세틸아세톤 등의 케톤계 용매; 테트라히드로푸란, 2-메틸 테트라히드로푸란, 에틸 에테르, n-프로필 에테르, 이소프로필 에테르, 디글라임, 디옥신, 디메틸 디옥신, 에틸렌글리콜 모노 메틸 에테르, 에틸렌글리콜 디메틸 에테르, 에틸렌글리콜디에틸 에테르, 프로필렌글리콜 모노 메틸 에테르 또는 프로필렌글리콜 디메틸 에테르 등의 에테르계 용매; 디에틸 카보네이트, 메틸 아세테이트, 에틸 아세테이트, 에틸 락테이트, 에틸렌글리콜 모노 메틸 에테르 아세테이트, 프로필렌글리콜 모노 메틸 에테르 아세테이트 또는 에틸렌글리콜 디아세테이트 등의 에스테르계 용매; N-메틸 피롤리돈, 포름아미드, N-메틸 포름아미드, N-에틸 포름아미드, N,N-디메틸 아세트아미드 또는 N,N-디에틸아세트아미드 등의 아미드계 용매가 예시될 수 있으나, 이에 제한되는 것은 아니다.
혼합물의 반응, 예를 들면, 개환 중합 반응은, 예를 들면, 촉매를 첨가하고 수행하며, 예를 들면, 0℃ 내지 150℃ 또는 30℃ 내지 130℃의 범위 내의 반응 온도에서 수행될 수 있다. 또한, 상기 반응 시간은 예를 들면, 1시간 내지 3일의 범위 내에서 조절될 수 있다.
경화성 조성물은, 가교형 폴리오가노실록산(이하, 폴리오가노실록산(B))을 추가로 포함할 수 있다. 용어 가교형 폴리오가노실록산은, 실록산 단위로서 T 단위 또는 Q 단위를 필수적으로 포함하되, D, T 및 Q 단위에 대한 D 단위의 비율(D/(D+T+Q))이 0.65 미만인 폴리오가노실록산을 의미할 수 있다.
가교형 폴리오가노실록산은, 예를 들면, 하기 화학식 13의 평균 조성식을 가질 수 있다.
[화학식 13]
(R11 3SiO1/2)a(R11 2SiO2/2)b(R11SiO3/2)c(SiO4/2)d
화학식 13에서 R11은 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, R11 중 적어도 하나는 알케닐기이며, R11 중 적어도 하나는 아릴기이고, a는 양의 수이고, b는 0 또는 양의 수이며, c는 양의 수이고, d는 0 또는 양의 수이며, b/(b+c+d)는 0.65 미만, 0.4 이하 또는 0.3 이하이며, c/(c+d)는 0.8 이상이다.
화학식 13에서 R11 중 적어도 하나 또는 2개 이상은 알케닐기일 수 있다. 하나의 예시에서 알케닐기는, 폴리오가노실록산(B)에 포함되는 전체 규소 원자(Si)에 대한 상기 알케닐기(Ak)의 몰비(Ak/Si)가 0.05 내지 0.4 또는 0.05 내지 0.35가 되도록 하는 양으로 존재할 수 있다. 몰비(Ak/Si)를 0.05 이상으로 조절하여, 반응성을 적절하게 유지하고, 미반응 성분이 경화물의 표면으로 배어나오는 현상을 방지할 수 있다. 또한, 몰비(Ak/Si)를 0.4 또는 0.35 이하로 조절하여, 경화물의 경도 특성, 균열 내성 및 내열충격성 등을 우수하게 유지할 수 있다.
또한, 화학식 13에서 R11 중 하나 이상은 아릴기일 수 있다. 이에 따라 경화물의 굴절률 및 경도 특성 등을 효과적으로 제어할 수 있다. 아릴기는, 폴리오가노실록산(B)에 포함되는 전체 규소 원자(Si)에 대한, 상기 아릴기(Ar)의 몰비(Ar/Si)가 0.5 내지 1.5 또는 0.5 내지 1.2가 되는 양으로 존재할 수 있다. 몰비(Ar/Si)를 0.5 이상으로 조절하여, 경화물의 굴절률 및 경도 특성을 극대화할 수 있고, 또한 1.5 또는 1.2 이하로 조절하여, 조성물의 점도 및 내열 충격성 등도 적절하게 유지할 수 있다.
화학식 13의 평균 조성식에서 a, b, c 및 d는 각 실록산 단위의 몰 비율을 나타내고, 예를 들어, 그 총합을 1로 환산하면, a는 0.05 내지 0.5 이며, b는 0 내지 0.3이고, c는 0.6 내지 0.95이며, d는 0 내지 0.2이다. 경화물의 강도, 균열 내성 및 내열충격성을 극대화하기 위하여, 상기에서 (a+b)/(a+b+c+d)는 0.2 내지 0.7이며, b/(b+c+d)는 0.65 미만, 0.4 이하 또는 0.3 이하이고, c/(c+d)는 0.8 이상의 범위로 조절할 수 있다. 상기에서 b/(b+c+d)의 하한은 특별히 제한되지 않으며, 예를 들면, 상기 b/(b+c+d)는 0을 초과할 수 있다. 또한, 상기에서 c/(c+d)의 상한은 특별히 제한되지 않으며, 예를 들면, 1.0일 수 있다
폴리오가노실록산(B)은, 25℃에서의 점도가 5,000 cP 이상 또는 1,000,000 cP 이상일 수 있고, 이에 따라 경화 전의 가공성과 경화 후의 경도 특성 등의 적절하게 유지할 수 있다.
또한, 폴리오가노실록산(B)은, 예를 들면, 800 내지 20,000 또는 800 내지 10,000의 분자량을 가질 수 있다. 분자량을 800 이상으로 조절하여, 경화 전의 성형성이나, 경화 후의 강도를 효과적으로 유지될 수 있고, 분자량을 20,000 또는 10,000 이하로 조절하여, 점도 등을 적절한 수준으로 유지할 수 있다.
폴리오가노실록산(B)은, 예를 들면, 당업계에서 통상적으로 공지되어 있는 폴리실록산의 제조 방법을 적용하거나, 또는 폴리오가노실록산(A)와 유사한 방식을 적용할 수 있다.
폴리오가노실록산(B)은, 예를 들면, 폴리오가노실록산(A) 및 폴리오가노실록산(B)의 혼합물에서 폴리오가노실록산(A)의 중량 비율(A/(A+B))이 10 내지 50 정도가 되도록 포함될 수 있다. 이러한 비율에서 경화물의 강도 및 내열 충격성을 우수하게 유지하고, 표면 끈적임도 방지할 수 있다.
경화성 조성물은, 또한 규소 원자에 결합하고 있는 수소 원자를 포함하는 규소 화합물(규소 화합물(C))을 추가로 포함할 수 있다. 규소 화합물(C)은, 수소 원자를 1개 이상 또는 2개 이상 가질 수 있다.
규소 화합물(C)은, 폴리오가노실록산의 지방족 불포화 결합 함유 관능기와 반응하여 조성물을 가교시키는 가교제로서 작용할 수 있다. 예를 들면, 규소 화합물(C)의 수소 원자 및 폴리오가노실록산(A) 또는 (B)의 알케닐기가 부가 반응하여, 가교 및 경화가 진행될 수 있다.
규소 화합물(C)로는, 분자 중에 규소 원자에 결합한 수소 원자(Si-H)를 포함하는 것이라면, 다양한 종류가 사용될 수 있다. 규소 화합물(C)은, 예를 들면, 선형, 분지형, 고리형 또는 가교형의 폴리오가노실록산일 수 있다. 규소 화합물(C)은 규소 원자가 2개 내지 1000개, 바람직하게는 3내지 300개인 화합물일 수 있다.
규소 화합물(C)은, 예를 들면, 하기 화학식 14의 화합물 또는 하기 화학식 15의 평균 조성식을 가지는 화합물일 수 있다.
[화학식 14]
R12 3SiO(R12 2SiO)nSiR12 3
[화학식 15]
(R13 3SiO1/2)a(R13 2SiO2/2)b(R13SiO3/2)c(SiO2)d
화학식 14 및 15에서 R12는 각각 독립적으로 수소 또는 1가의 탄화수소기이고, R12 중 적어도 2개는 수소 원자이며, R12 중 적어도 하나는 아릴기이고, n은 1 내지 100이며, R13은 각각 독립적으로 수소 또는 1가의 탄화수소기이고, R13 중 적어도 2개는 수소 원자이며, R13 중 적어도 하나는 아릴기이고, a는 양의 수이고, b는 0 또는 양의 수이며, c는 양의 수이고, d는 0 또는 양의 수이다. 예를 들어, 상기의 총합(a+b+c+d)을 1로 환산하였을 때, a는 0.1 내지 0.8이고, b는 0 내지 0.5이며, c는 0.1 내지 0.8 이고, d는 0 내지 0.2일 수 있다.
화학식 14의 화합물은, 규소 원자에 결합된 수소 원자를 적어도 2개 가지는 선형 실록산 화합물이다. 화학식 14에서, n은 1 내지 100, 1 내지 50, 1 내지 25, 1 내지 10 또는 1 내지 5일 수 있다.
화학식 15의 평균 조성식으로 표시되는 화합물은, 가교 구조의 폴리실록산일 수 있다.
하나의 예시에서 규소 화합물(C)에 포함되는 전체 규소 원자(Si)에 대한 규소 원자 결합 수소 원자(H)의 몰비(H/Si)는 0.2 내지 0.8 또는 0.3 내지 0.75일 수 있다. 상기 몰비를 0.2 또는 0.3 이상으로 조절하여, 조성물의 경화성을 우수하게 유지하고, 또한, 0.8 또는 0.75 이하로 조절하여, 균열 내성 및 내열충격성 등을 우수하게 유지할 수 있다.
규소 화합물(C)은 적어도 하나의 아릴기를 포함할 수 있고, 이에 따라 화학식 14에서 R12 중 적어도 하나, 또는 화학식 15에서 R13 중 적어도 하나는 아릴기, 예를 들면, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기이거나, 페닐기일 수 있다. 이에 따라 경화물의 굴절률 및 경도 특성 등을 효과적으로 제어할 수 있다. 아릴기는, 화합물(C)에 포함되는 전체 규소 원자(Si)에 대한, 상기 아릴기(Ar)의 몰비(Ar/Si)가 0.5 내지 1.5 또는 0.5 내지 1.3이 되는 양으로 존재할 수 있다. 몰비(Ar/Si)를 0.5 이상으로 조절하여, 경화물의 굴절률 및 경도 특성을 극대화할 수 있고, 또한 1.5 또는 1.3 이하로 조절하여, 조성물의 점도 및 내크랙 특성을 적절하게 유지할 수 있다.
화합물(C)은, 25℃에서의 점도가 0.1 cP 내지 100,000 cP, 0.1 cP 내지 10,000 cP, 0.1 cP 내지 1,000 cP 또는 0.1 cP 내지 300 cP일 수 있다. 상기 점도를 가지면, 조성물의 가공성 및 경화물의 경도 특성 등의 우수하게 유지할 수 있다.
또한, 화합물(C)은, 예를 들면, 2,000 미만, 1,000 미만 또는 800 미만의 분자량을 가질 수 있다. 화합물(C)의 분자량이 1,000 이상이면, 경화물의 강도가 떨어질 우려가 있다. 화합물(C)의 분자량의 하한은 특별히 제한되지 않으며, 예를 들면, 250일 수 있다. 화합물(C)의 경우, 분자량은 중량평균분자량이거나, 혹은 화합물의 통상적인 분자량을 의미할 수 있다.
화합물(C)을 제조하는 방법은 특별히 제한되지 않고, 예를 들면, 폴리오가노실록산의 제조에 통상적으로 공지된 방식을 적용하거나, 혹은 폴리오가노실록산(A)에 준하는 방식을 적용하여 제조할 수 있다.
화합물(C)의 함량은, 경화성 조성물에 포함되는 전체 지방족 불포화 결합 함유 관능기, 예를 들면, 폴리오가노실록산(A) 및/또는 (B)에 포함되는 알케닐기와 같은 지방적 불포화 결합 함유 관능기(Ak) 전체에 대한 화합물(C)에 포함되는 규소 원자에 결합한 수소 원자(H)의 몰비(H/Ak)가 0.5 내지 2.0 또는 0.7 내지 1.5가 되는 범위에서 선택될 수 있다. 이러한 몰비(H/Ak)로 배합함으로써, 경화 전에 우수한 가공성과 작업성을 나타내고, 경화되어 뛰어난 균열 내성, 경도 특성, 내열 충격성 및 접착성을 나타내며, 가혹 조건에서의 백탁이나, 표면의 끈적임 등을 유발하지 않는 조성물을 제공할 수 있다.
경화성 조성물은, 또한, 지방족 불포화 결합을 가지는 관능기, 예를 들면, 알케닐기와 에폭시기를 포함하는 폴리오가노실록산(이하, 폴리오가노실록산(D))을 추가로 포함할 수 있다.
폴리오가노실록산(D)은, 예를 들면, 접착력을 향상시키기 위한 접착 부여제로서 사용될 수 있다.
하나의 예시로서, 폴리오가노실록산(D)은, 하기 화학식 16의 평균 조성식으로 표시될 수 있다.
[화학식 16]
(R14 3SiO1/2)a(R14 2SiO2/2)b(R14SiO3/2)c(SiO4/2)d
화학식 16에서, R14은 각각 독립적으로 에폭시기 또는 1가 탄화수소기이되, R14 중 적어도 하나는 알케닐기이고, R14 중 적어도 하나는 에폭시기이며, a는 0 또는 양의 수이고, b는 0 또는 양의 수이며, c는 0 또는 양의 수이고, d는 0 또는 양의 수이며, (c+d)/(a+b+c+d)는 0.2 내지 0.7이고, c/(d+d)는 0.8 이상일 수 있다. 예를 들어, 상기의 총합(a+b+c+d)을 1로 환산한 때에 a는 0 내지 0.7이며, b는 0 내지 0.5이고, c는 0 내지 0.8이며, d는 0 내지 0.2일 수 있다.
화학식 16에서 R14 중 적어도 하나 또는 2개 이상은 알케닐기일 수 있다. 하나의 예시에서 알케닐기는, 폴리오가노실록산(D)에 포함되는 전체 규소 원자(Si)에 대한 알케닐기(Ak)의 몰비(Ak/Si)가 0.05 내지 0.35 또는 0.05 내지 0.3이 되도록 하는 양으로 존재할 수 있다. 이러한 몰비(Ak/Si)에서 다른 화합물과 우수한 반응성을 나타내고, 경화 후 실리콘 수지와 공유 결합을 형성하여 접착 강도가 우수하고, 내충격성 등의 물성이 우수한 경화물을 제공할 수 있다.
화학식 16에서 R14 중 적어도 하나는 또한 에폭시기일 수 있다. 이에 의해서 경화물의 강도 및 내스크래치성이 적절하게 유지되고, 우수한 접착성이 발휘될 수 있다. 에폭시기는, 예를 들면, 폴리오가노실록산(D)에 포함되는 전체 규소 원자(Si)에 대한 상기 에폭시기(Ep)의 몰비(Ep/Si)가 0.1 이상 또는 0.2 이상이 되는 양으로 존재할 수 있다. 이러한 몰비(Ep/Si)에서 경화물의 가교 구조를 적절하게 유지하고, 내열성 및 접착성 등의 특성도 우수하게 유지할 수 있다. 상기 몰비(Ep/Si)의 상한은 특별히 제한되지 않으며, 예를 들면, 1.0일 수 있다.
화학식 16의 평균 조성식에서 a, b, c 및 d는 각 실록산 단위의 몰 비율을 나타내고, 그 총합을 1로 환산하면, a는 0 내지 0.7이며, b은 0 내지 0.5이고, c는 0 내지 0.8이며, d는 0 내지 0.2일 수 있다. 상기에서 c 및 d는 동시에 0이 아닐 수 있다. 경화물의 강도, 균열 내성 및 내열충격성을 극대화하고, 기재와의 접착력이 우수한 경화물을 제공하기 위하여, (c+d)/(a+b+c+d)는 0.3 내지 0.7이며, c/(c+d)는 0.8 이상의 범위로 조절할 수 있다. 상기에서 c/(c+d)의 상한은 특별히 제한되지 않으며, 예를 들면, 1.0일 수 있다.
폴리오가노실록산(D)은, 25℃에서의 점도가 100 cP 이상 또는 100000 cP 이상일 수 있고, 이에 따라 경화 전의 가공성과 경화 후의 경도 특성 등의 적절하게 유지할 수 있다.
폴리오가노실록산(D)은, 예를 들면, 1,000 이상 또는 1,500 이상의 분자량을 가질 수 있다. 분자량을 1,000 또는 1,500 이상으로 조절하여, 경화 전 우수한 가공성 및 작업성을 가지고, 경화 후에 내크랙성, 내열충격성 및 기재와의 접착 특성이 우수한 경화물을 제공할 수 있다. 상기 분자량의 상한은 특별히 제한되지 않으며, 예를 들면, 20,000일 수 있다.
폴리오가노실록산(D)을 제조하는 방법은 특별히 제한되지 않고, 예를 들면, 통상적으로 공지되어 있는 폴리오가노실록산의 제조 방법을 적용하거나, 또는 상기 폴리오가노실록산(A)의 제조와 유사한 방식을 적용할 수 있다.
폴리오가노실록산(D)은, 예를 들면, 경화성 조성물에 포함되는 다른 화합물, 예를 들면, 상기 폴리오가노실록산(A), 폴리오가노실록산(B) 및/또는 규소 화합물(C)의 합계 중량 100 중량부에 대하여, 0.2 내지 10 중량부 또는 0.5 내지 5 중량부의 비율로 조성물에 포함될 수 있다. 이러한 비율의 범위 내에서 접착성 및 투명도를 우수하게 유지할 수 있다.
경화성 조성물은, 히드로실릴화 촉매를 추가로 포함할 수 있다. 히드로실릴화 촉매는, 수소규소화 반응을 촉진시키기 위해 사용될 수 있다. 히드로실릴화 촉매로는, 이 분야에서 공지된 통상의 성분을 모두 사용할 수 있다. 이와 같은 촉매의 예로는, 백금, 팔라듐 또는 로듐계 촉매 등을 들 수 있다. 본 출원에서는, 촉매 효율 등을 고려하여, 백금계 촉매를 사용할 수 있고, 이러한 촉매의 예로는 염화 백금산, 사염화 백금, 백금의 올레핀 착체, 백금의 알케닐 실록산 착체 또는 백금의 카보닐 착체 등을 들 수 있으나, 이에 제한되는 것은 아니다.
히드로실릴화 촉매의 함량은, 소위 촉매량, 즉 촉매로서 작용할 수 있는 양으로 포함되는 한 특별히 제한되지 않는다. 통상적으로, 백금, 팔라듐 또는 로듐의 원자량을 기준으로 0.1 ppm 내지 100 ppm 또는 0.2 ppm 내지 10 ppm의 양으로 사용할 수 있다.
경화성 조성물은 또한, 각종 기재에 대한 접착성의 추가적인 향상의 관점에서, 폴리오가노실록산(D)과 함께 또는 단독으로 접착성 부여제를 추가로 포함할 수 있다. 접착성 부여제는 조성물 또는 경화물에 자기 접착성을 개선할 수 있는 성분으로서, 특히 금속 및 유기 수지에 대한 자기 접착성을 개선할 수 있다.
접착성 부여제로는, 비닐기 등의 알케닐기, (메타)아크릴로일옥시기, 히드로실릴기(SiH기), 에폭시기, 알콕시기, 알콕시실릴기, 카르보닐기 및 페닐기로 이루어진 군으로부터 선택되는 1종 이상 또는 2종 이상의 관능기를 가지는 실란; 또는 2 내지 30 또는 4 내지 20개의 규소 원자를 가지는 환상 또는 직쇄상 실록산 등의 유기 규소 화합물 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 본 출원에서는 상기와 같은 접착성 부여제의 일종 또는 이종 이상을 추가로 혼합하여 사용할 수 있다.
접착성 부여제가 조성물에 포함될 경우, 예를 들면, 경화성 조성물에 포함되는 다른 화합물, 예를 들면, 상기 폴리오가노실록산(A), 폴리오가노실록산(B) 및/또는 규소 화합물(C)의 합계 중량 100 중량부에 대하여, 0.1 중량부 내지 20 중량부의 비율로 포함될 수 있으나, 상기 함량은 목적하는 접착성 개선 효과 등을 고려하여 적절히 변경될 수 있다.
경화성 조성물은, 필요에 따라서, 2-메틸-3-부틴-2-올, 2-페닐-3-1-부틴-2올, 3-메틸-3-펜텐-1-인, 3,5-디메틸-3-헥센-1-인, 1,3,5,7-테트라메틸-1,3,5,7-테트라헥세닐시클로테트라실록산 또는 에티닐시클로헥산 등의 반응 억제제; 실리카, 알루미나, 지르코니아 또는 티타니아 등의 무기 충전제; 에폭시기 및/또는 알콕시실릴기를 가지는 탄소 관능성 실란, 그의 부분 가수분해 축합물 또는 실록산 화합물; 폴리에테르 등과 병용될 수 있는 연무상 실리카 등의 요변성 부여제; 은, 구리 또는 알루미늄 등의 금속 분말이나, 각종 카본 소재 등과 같은 도전성 부여제; 안료 또는 염료 등의 색조 조정제 등의 첨가제를 일종 또는 이종 이상을 추가로 포함할 수 있다.
경화성 조성물은 형광체를 추가로 포함할 수 있다. 이 경우 사용될 수 있는 형광체의 종류는 특별히 제한되지 않으며, 예를 들면, 백색광을 구현하기 위하여 LED 패키지에 적용되는 통상적인 종류의 형광체가 사용될 수 있다.
본 출원은, 또한 반도체 소자, 예를 들면, 광반도체 소자에 관한 것이다. 예시적인 반도체 소자는, 상기 경화성 조성물의 경화물을 포함하는 봉지재에 의해 봉지된 것일 수 있다.
봉지재로 봉지되는 반도체 소자로는, 다이오드, 트랜지스터, 사이리스터, 포토커플러, CCD, 고체상 화상 픽업 소자, 일체식 IC, 혼성 IC, LSI, VLSI 및 LED(Light Emitting Diode) 등이 예시될 수 있다.
하나의 예시에서 상기 반도체 소자는, 발광 다이오드일 수 있다.
상기 발광 다이오드로는, 예를 들면, 기판 상에 반도체 재료를 적층하여 형성한 발광 다이오드 등이 예시될 수 있다. 상기 반도체 재료로는, GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN 또는 SiC 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 기판으로는, 사파이어, 스핀넬, SiC, Si, ZnO 또는 GaN 단결정 등이 예시될 수 있다.
또한, 발광 다이오드의 제조 시에는 필요에 따라서, 기판과 반도체 재료의 사이에 버퍼층을 형성할 수도 있다. 버퍼층으로서는, GaN 또는 AlN 등이 사용될 수 있다. 기판상으로의 반도체 재료의 적층 방법은, 특별히 제한되지 않으며, 예를 들면, MOCVD법, HDVPE법 또는 액상성장법 등을 사용할 수 있다. 또한, 발광 다이오드의 구조는, 예를 들면, MIS 접합, PN 접합, PIN 접합을 가지는 모노접합, 헤테로접합, 이중 헤테로 접합 등일 수 있다. 또한, 단일 또는 다중양자우물구조로 상기 발광 다이오드를 형성할 수 있다.
하나의 예시에서, 상기 발광 다이오드의 발광 파장은, 예를 들면, 250 nm 내지 550 nm, 300 nm 내지 500 nm 또는 330 nm 내지 470 nm일 수 있다. 상기 발광 파장은, 주발광 피크 파장을 의미할 수 있다. 발광 다이오드의 발광파장을 상기 범위로 설정함으로써, 보다 긴 수명으로, 에너지 효율이 높고, 색재현성이 높은 백색 발광 다이오드를 얻을 수 있다.
발광 다이오드는, 상기 조성물을 사용하여 봉지될 수 있다. 발광 다이오드의 봉지는 상기 조성물만으로 수행될 수 있고, 경우에 따라서는 다른 봉지재가 상기 조성물과 병용될 수 있다. 2종의 봉지재를 병용하는 경우, 상기 조성물을 사용한 봉지 후에, 그 주위를 다른 봉지재로 봉지할 수도 있고, 다른 봉지재로 먼저 봉지한 후, 그 주위를 상기 조성물로 봉지할 수도 있다. 다른 봉지재로는, 에폭시 수지, 실리콘 수지, 아크릴 수지, 우레아 수지, 이미드 수지 또는 유리 등을 들 수 있다.
경화성 조성물로 발광 다이오드를 봉지하는 방법으로는, 예를 들면, 몰드형 거푸집에 상기 조성물을 미리 주입하고, 거기에 발광 다이오드가 고정된 리드프레임 등을 침지시키고, 조성물을 경화시키는 방법, 발광 다이오드를 삽입한 거푸집 중에 조성물을 주입하고, 경화시키는 방법 등을 사용할 수 있다. 조성물을 주입하는 방법으로는, 디스펜서에 의한 주입, 트랜스퍼 성형 또는 사출성형 등이 예시될 수 있다. 또한, 그 외의 봉지 방법으로서는, 조성물을 발광 다이오드 상에 적하, 공판인쇄, 스크린 인쇄 또는 마스크를 매개로 도포하고, 경화시키는 방법, 저부에 발광 다이오드를 배치한 컵 등에 조성물을 디스펜서 등에 의해 주입하고, 경화시키는 방법 등이 사용될 수 있다.
경화성 조성물은, 필요에 따라서, 발광 다이오드를 리드 단자나 패키지에 고정하는 다이본드재나, 발광 다이오드 상의 부동화(passivation)막 또는 패키지 기판 등으로도 이용될 수 있다.
상기 조성물의 경화가 필요한 경우, 경화 방법은 특별히 제한되지 않고, 예를 들면, 60℃ 내지 200℃의 온도에서 10분 내지 5시간 동안 상기 조성물을 유지하여 수행하거나, 적정 온도 및 시간에서의 2단계 이상의 과정을 거쳐 단계적인 경화 공정을 진행할 수도 있다.
봉지재의 형상은 특별히 한정되지 않으며, 예를 들면, 포탄형의 렌즈 형상, 판상 또는 박막상 등으로 구성할 수 있다.
또한, 종래의 공지에 방법에 따라 발광 다이오드의 추가적인 성능 향상을 도모할 수 있다. 성능 향상의 방법으로서는, 예를 들면, 발광 다이오드 배면에 광의 반사층 또는 집광층을 설치하는 방법, 보색 착색부를 저부에 형성하는 방법, 주발광 피크보다 단파장의 광을 흡수하는 층을 발광 다이오드 상에 설치하는 방법, 발광 다이오드를 봉지한 후 추가로 경질 재료로 몰딩하는 방법, 발광 다이오드를 관통홀에 삽입하여 고정하는 방법, 발광 다이오드를 플립칩 접속 등에 의해서 리드 부재 등과 접속하여 기판 방향으로부터 광을 취출하는 방법 등을 들 수 있다.
상기 광반도체, 예를 들면, 발광 다이오드는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다.
예시적인 경화성 조성물은, 우수한 가공성 및 작업성을 나타낸다. 또한, 상기 경화성 조성물은, 경화되면 광추출 효율, 경도, 내열 충격성, 내습성, 가스 투과성 및 접착성 등이 뛰어나다. 또한, 상기 경화성 조성물은, 가혹 조건에서도 장시간 동안 안정적인 내구 신뢰성을 나타내고, 백탁 및 표면에서의 끈적임 등이 유발되지 않는 경화물을 제공할 수 있다. 상기 조성물은, 경화되면 탁월한 광추출 효율, 균열 내성, 경도, 내열 충격성 및 접착성을 나타낼 수 있다.
이하 실시예 및 비교예를 통하여 상기 경화성 조성물을 보다 상세히 설명하나, 상기 경화성 조성물의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
이하에서 부호 Vi는 비닐기를 나타내고, 부호 Ph는 페닐기를 나타내며, 부호 Me는 메틸기를 나타내고, 부호 Ep는 3-글리시독시프로필기를 나타낸다.
1. 소자 특성 평가
폴리프탈아미드(PPA)로 제조된 5450 LED 패키지를 사용하여 소자 특성을 평가한다. 폴리프탈아미드 컵 내에 경화성 조성물을 디스펜싱하고, 70℃에서 30분 동안 유지한 후, 다시 150℃에서 1 시간 동안 유지하여 경화시켜, 표면 실장형 LED를 제조한다. 그 후, 하기 제시된 방법에 따라서 테스트를 진행한다.
(1) 유황 폭로 시험
LED를 200 L의 유리병 용기에 넣고 유황 분말 0.2 g을 추가로 투입한 후에 70℃에서 40 시간 동안 유지한 후에 광속을 측정하여 초기 광속 대비 광속의 저하율을 측정하고 하기 기준에 따라서 평가한다.
<평가 기준>
A: 초기 휘도 대비 휘도 감소율이 15% 이하인 경우
B: 초기 대비 휘도 감소율이 15%를 초과하고, 20% 이하인 경우
C: 초기 대비 휘도 감소율이 20%를 초과하고, 25% 이하인 경우
D: 초기 대비 휘도 감소율이 25%를 초과하는 경우
(2) 장기 신뢰성 테스트
LED를 85℃ 및 85%의 상대 습도의 조건에서 유지한 상태로 30 mA의 전류를 흘리면서 500 시간 동안 동작시킨다. 이어서 동작 전의 초기 휘도 대비 동작 후의 휘도 감소율을 측정하고 하기 기준으로 평가한다.
<평가 기준>
A: 초기 휘도 대비 휘도 감소율이 5% 이하인 경우
B: 초기 대비 휘도 감소율이 5%를 초과하고, 7% 이하인 경우
C: 초기 대비 휘도 감소율이 7%를 초과하는 경우
실시예 1
각각 하기의 화학식 A 내지 E로 표시되는 화합물을 혼합하여, 히드로실릴화 반응에 의해 경화할 수 있는 경화성 조성물을 제조하였다(배합량: 화학식 A: 70 g, 화학식 B: 200 g, 화학식 C: 25 g, 화학식 D: 45 g, 화학식 E: 4 g). 상기에서 화학식 A의 폴리오가노실록산은, 옥타메틸시클로테트라실록산(octamethylcyclotetrasiloxane) 및 옥타페닐시클로테트라실록산(octaphenylcyclotetrasiloxane)의 혼합물을 디비닐테트라메틸디실록산(divinyltetramethyldisiloxane)과 혼합한 상태에서 촉매인 테트라메틸암모늄 히드록시드(TMAH; tetramethylammonium hydroxide) 존재 하에 약 115℃의 온도에서 약 20 시간 동안 반응시켜 제조하였다. 그 후 공지의 정제 방법으로 GPC로 측정한 분자량 800 이하의 고리형 화합물(상기 화학식 6에서 Ra 및 Rb가 모두 메틸기이고, Rc는 페닐기이며, m 및 n이 각각 0 내지 4의 범위 내이고, m+n이 1 내지 8의 범위 내인 화합물을 포함)의 중량 비율이 약 7%가 되도록 한 후에 경화성 조성물의 제조에 사용하였다. 이어서 상기 조성물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합하여 경화성 조성물을 제조하였다.
[화학식 A]
(ViMe2SiO1/2)2(Me2SiO2/2)6(Ph2SiO2/2)10
[화학식 B]
(ViMe2SiO1/2)2(PhSiO3/2)6
[화학식 C]
(HMe2SiO1/2)2(MePhSiO2/2)1.5
[화학식 D]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
[화학식 E]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)10(Ph2SiO2/2)15
실시예 2
각각 하기의 화학식 A, B, D 및 F로 표시되는 화합물을 혼합하여, 히드로실릴화 반응에 의해 경화할 수 있는 경화성 조성물을 제조하였다(배합량: 화학식 A: 70 g, 화학식 B: 200 g, 화학식 D: 70 g, 화학식 F: 4 g). 상기에서 화학식 A의 폴리오가노실록산은, 옥타메틸시클로테트라실록산(octamethylcyclotetrasiloxane) 및 옥타페닐시클로테트라실록산(octaphenylcyclotetrasiloxane)의 혼합물을 디비닐테트라메틸디실록산(divinyltetramethyldisiloxane)과 혼합한 상태에서 촉매인 테트라메틸암모늄 히드록시드(TMAH; tetramethylammonium hydroxide) 존재 하에 약 115℃의 온도에서 약 20 시간 동안 반응시켜 제조하였다. 그 후 공지의 정제 방법으로 GPC로 측정한 분자량 800 이하의 고리형 화합물(상기 화학식 6에서 Ra 및 Rb가 모두 메틸기이고, Rc는 페닐기이며, m 및 n이 각각 0 내지 4의 범위 내이고, m+n이 1 내지 8의 범위 내인 화합물을 포함)의 중량 비율이 약 5%가 되도록 한 후에 경화성 조성물의 제조에 사용하였다. 이어서 상기 조성물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합하여 경화성 조성물을 제조하였다.
[화학식 A]
(ViMe2SiO1/2)2(Me2SiO2/2)6(Ph2SiO2/2)10
[화학식 B]
(ViMe2SiO1/2)2(PhSiO3/2)6
[화학식 D]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
[화학식 F]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)20
실시예 3
각각 하기의 화학식 G, H, D 및 F로 표시되는 화합물을 혼합하여, 히드로실릴화 반응에 의해 경화할 수 있는 경화성 조성물을 제조하였다(배합량: 화학식 G: 70 g, 화학식 H: 200 g, 화학식 D: 70 g, 화학식 F: 4 g). 상기에서 화학식 G의 폴리오가노실록산은, 테트라메틸테트라페닐시클로테트라실록산(tetramethyltetraphenylcyclotetrasiloxane), 옥타메틸시클로테트라실록산(octamethylcyclotetrasiloxane) 및 옥타페닐시클로테트라실록산(octaphenylcyclotetrasiloxane)의 혼합물을 디비닐테트라메틸디실록산(divinyltetramethyldisiloxane)과 혼합한 상태에서 촉매인 테트라메틸암모늄 히드록시드(TMAH; tetramethylammonium hydroxide) 존재 하에 약 115℃의 온도에서 약 20 시간 동안 반응시켜 제조하였다. 그 후 공지의 정제 방법으로 GPC로 측정한 분자량 800 이하의 고리형 화합물(상기 화학식 6에서 Ra 및 Rb가 모두 메틸기이고, Rc는 페닐기이며, m 및 n이 각각 0 내지 4의 범위 내이고, m+n이 1 내지 8의 범위 내인 화합물을 포함)의 중량 비율이 약 7%가 되도록 한 후에 경화성 조성물의 제조에 사용하였다. 이어서 상기 조성물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합하여 경화성 조성물을 제조하였다.
[화학식 G]
(ViMe2SiO1/2)2(Me2SiO2/2)5(Ph2SiO2/2)18(MePhSiO2/2)2
[화학식 H]
(ViMe2SiO1/2)2(PhSiO3/2)7
[화학식 D]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
[화학식 F]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)20
비교예 1
각각 하기의 화학식 I, B, C, D 및 E로 표시되는 화합물을 혼합하여, 히드로실릴화 반응에 의해 경화할 수 있는 경화성 조성물을 제조하였다(배합량: 화학식 I: 70 g, 화학식 B: 200 g, 화학식 C: 45 g, 화학식 D: 25 g, 화학식 E: 4 g). 상기에서 화학식 I의 화합물은 실시예 1의 화학식 A와 유사한 방식으로 원료의 조성비를 조절하여 제조하고, 저분자량 성분을 제거한 후에 적용하였다. 이어서 상기 조성물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합하여 경화성 조성물을 제조하였다.
[화학식 I]
(ViMe2SiO1/2)2(Me2SiO2/2)15(Ph2SiO2/2)10
[화학식 B]
(ViMe2SiO1/2)2(PhSiO3/2)6
[화학식 C]
(HMe2SiO1/2)2(MePhSiO2/2)1.5
[화학식 D]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
[화학식 E]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)10(Ph2SiO2/2)15
비교예 2
각각 하기의 화학식 J, B, D 및 F로 표시되는 화합물을 혼합하여, 히드로실릴화 반응에 의해 경화할 수 있는 경화성 조성물을 제조하였다(배합량: 화학식 J: 70 g, 화학식 B: 200 g, 화학식 D: 70 g, 화학식 F: 4 g). 상기에서 화학식 J의 화합물은 실시예 1의 화학식 A와 유사한 방식으로 원료의 조성비를 조절하여 제조하고, 저분자량 성분을 제거한 후에 적용하였다. 이어서 상기 조성물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합하여 경화성 조성물을 제조하였다.
[화학식 J]
(ViMe2SiO1/2)2(Me2SiO2/2)16(Ph2SiO2/2)10
[화학식 B]
(ViMe2SiO1/2)2(PhSiO3/2)6
[화학식 D]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
[화학식 F]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)20
비교예 3
각각 하기의 화학식 K. I, C 및 F로 표시되는 화합물을 혼합하여, 히드로실릴화 반응에 의해 경화할 수 있는 경화성 조성물을 제조하였다(배합량: 화학식 K: 70 g, 화학식 I: 200 g, 화학식 D: 70 g, 화학식 F: 4 g). 이어서 상기 조성물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합하여 경화성 조성물을 제조하였다.
[화학식 K]
(ViMe2SiO1/2)2(Ph2SiO2/2)5(MePhSiO2/2)15
[화학식 I]
(ViMe2SiO1/2)2(Me2SiO2/2)0.5((PhSiO3/2)6
[화학식 C]
(HMe2SiO1/2)2(MePhSiO2/2)1.5
[화학식 F]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)20
상기 실시예 및 비교예에 대하여 측정한 물성을 하기 표 1에 정리하여 기재하였다
표 1
유황 폭로 테스트 장기 신뢰성
실시예 1 B B
실시예 2 A A
실시예 3 A A
비교예 1 D C
비교예 2 D C
비교예 3 D C

Claims (16)

  1. 지방족 불포화 결합을 가지는 관능기, 하기 화학식 2의 실록산 단위 및 하기 화학식 3의 실록산 단위를 포함하고, 전체 이관능성 실록산 단위 대비 하기 화학식 3의 실록산 단위의 비율이 60% 이상이며, 아릴기가 결합되어 있는 이관능성 실록산 단위 대비 하기 화학식 3의 실록산 단위의 비율이 70% 이상인 폴리오가노실록산을 포함하는 중합 반응물 및
    규소 원자에 결합하고 있는 수소 원자를 포함하는 규소 화합물을 포함하는 경화성 조성물:
    [화학식 2]
    (R1R2SiO2/2)
    [화학식 3]
    (R3 2SiO2/2)
    상기 화학식 2 및 3에서 R1 및 R2는 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, R3는 아릴기이다.
  2. 제 1 항에 있어서, 폴리오가노실록산에서 전체 이관능성 실록산 단위 대비 화학식 3의 실록산 단위의 비율이 65% 초과인 경화성 조성물.
  3. 제 1 항에 있어서, 화학식 2에서 R1 및 R2가 각각 독립적으로 알킬기인 경화성 조성물.
  4. 제 1 항에 있어서, 중합 반응물은 하기 화학식 6으로 표시되는 화합물을 포함하고, 중량평균분자량이 800 이하인 고리형 화합물을 포함하는 경화성 조성물:
    [화학식 6]
    Figure PCTKR2013006800-appb-I000006
    상기 화학식 6에서 Ra 및 Rb는 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, Rc는 아릴기이며, m은 0 내지 10이고, n은 0 내지 10이며, m 및 n의 합(m+n)은 2 내지 20이다.
  5. 제 4 항에 있어서, 화학식 6에서 Ra 및 Rb가 각각 독립적으로 알킬기인 경화성 조성물.
  6. 제 4 항에 있어서, 중합 반응물 내의 고리형 화합물의 중량 비율이 10 중량% 이하인 경화성 조성물.
  7. 제 1 항에 있어서, 폴리오가노실록산은 하기 화학식 4의 평균 조성식을 가지는 경화성 조성물:
    [화학식 4]
    (R4 3SiO1/2)a(R4 2SiO2/2)b(R4SiO3/2)c(SiO4/2)d
    상기 화학식 4에서 R4는, 각각 독립적으로 에폭시기 또는 1가 탄화수소기이되, R4 중 적어도 하나는 알케닐기이고, R4 중 적어도 하나는 아릴기이며, a는 양의 수이고, b는 양의 수이며, c는 0 또는 양의 수이고, d는 0 또는 양의 수이며, b/(b+c+d)는 0.7 내지 1이다.
  8. 제 1 항에 있어서, 폴리오가노실록산은, 하기 화학식 5의 평균 조성식을 가지는 경화성 조성물:
    [화학식 5]
    (R5R6 2SiO1/2)e(R7R8SiO2/2)f(R9 2SiO2/2)g(R10SiO3/2)h
    상기 화학식 5에서 R5는, 1가 탄화수소기이고, R6는 탄소수 1 내지 4의 알킬기이며, R7 및 R8은, 각각 독립적으로 알킬기, 알케닐기 또는 아릴기이고, R9는 아릴기이며, e는 양의 수이고, f는 0 또는 양의 수이며, g는 0 또는 양의 수이고, h는 0 또는 양의 수이며, (f+g)/(f+g+h)는 0.7 내지 1이다.
  9. 제 1 항에 있어서, 중합 반응물은 하기 화학식 7로 표시되는 화합물을 포함하는 혼합물의 중합 반응물인 경화성 조성물:
    [화학식 7]
    Figure PCTKR2013006800-appb-I000007
    상기 화학식 7에서 Rd 및 Re는 각각 독립적으로 1가 탄화수소기이고, o는 3 내지 6이다.
  10. 제 1 항에 있어서, 중합 반응물은 하기 화학식 8의 화합물 및 하기 화학식 9의 화합물을 포함하는 혼합물의 중합 반응물인 경화성 조성물:
    [화학식 8]
    Figure PCTKR2013006800-appb-I000008
    [화학식 9]
    Figure PCTKR2013006800-appb-I000009
    상기 화학식 8 및 9에서 Rf 및 Rg는 알킬기이고, Rh 및 Ri는 아릴기이며, p는 3 내지 6의 수이고, q는 3 내지 6의 수이다.
  11. 제 9 항 또는 제 10 항에 있어서, 혼합물은 하기 화학식 10 또는 하기 화학식 11의 평균 조성식을 가지는 폴리오가노실록산을 추가로 포함하는 경화성 조성물:
    [화학식 10]
    [RjSiO3/2]
    [화학식 11]
    [RkRl 2SiO1/2] p[RmSiO3/2]q
    상기 화학식 10 및 11에서 Rj, Rk 및 Rm은 각각 독립적으로 1가 탄화수소기이고, Rl은 탄소수 1 내지 4의 알킬기이며, p는 1 내지 3이고, q는 1 내지 10 이다.
  12. 제 1 항에 있어서, 하기 화학식 13의 평균 조성식을 가지는 가교형 폴리오가노실록산을 추가로 포함하는 경화성 조성물:
    [화학식 13]
    (R11 3SiO1/2)a(R11 2SiO2/2)b(R11SiO3/2)c(SiO4/2)d
    상기 화학식 13에서 R11은 각각 독립적으로 에폭시기 또는 1가 탄화수소기이고, R11 중 적어도 하나는 알케닐기이며, R11 중 적어도 하나는 아릴기이고, a는 양의 수이며, b는 0 또는 양의 수이고, c는 양의 수이며, d는 0 또는 양의 수이고, b/(b+c+d)는 0.65 이하이며, c/(c+d)는 0.8 이상이다.
  13. 제 1 항에 있어서, 규소 화합물은, 하기 화학식 14의 화합물 또는 하기 화학식 15의 평균 조성식을 가지는 화합물인 경화성 조성물:
    [화학식 14]
    R12 3SiO(R12 2SiO)nSiR12 3
    [화학식 15]
    (R13 3SiO1/2)a(R13 2SiO2/2)b(R13SiO3/2)c(SiO2)d
    상기 화학식 14 및 15에서 R12는 각각 독립적으로 수소 또는 1가의 탄화수소기이고, R12 중 적어도 2개는 수소 원자이며, R12 중 적어도 하나는 아릴기이고, n은 1 내지 100이며, R13은 각각 독립적으로 수소 또는 1가의 탄화수소기이고, R13 중 적어도 2개는 수소 원자이며, R13 중 적어도 하나는 아릴기이고, a는 양의 수이며, b는 0 또는 양의 수이고, c는 양의 수이며, d는 0 또는 양의 수이다.
  14. 경화된 제 1 항의 경화성 조성물로 봉지된 광반도체.
  15. 제 14 항의 광반도체를 백라이트 유닛에 포함하는 액정 디스플레이.
  16. 제 14 항의 광반도체를 포함하는 조명 기구.
PCT/KR2013/006800 2012-07-27 2013-07-29 경화성 조성물 WO2014017889A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13823902.5A EP2878639A4 (en) 2012-07-27 2013-07-29 CURING COMPOSITION
JP2015524195A JP6066385B2 (ja) 2012-07-27 2013-07-29 硬化性組成物
CN201380039718.5A CN104508046B (zh) 2012-07-27 2013-07-29 可固化组合物
US14/606,443 US9624345B2 (en) 2012-07-27 2015-01-27 Curable composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0082691 2012-07-27
KR20120082691 2012-07-27
KR1020130089717A KR101560047B1 (ko) 2012-07-27 2013-07-29 경화성 조성물
KR10-2013-0089717 2013-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/606,443 Continuation US9624345B2 (en) 2012-07-27 2015-01-27 Curable composition

Publications (1)

Publication Number Publication Date
WO2014017889A1 true WO2014017889A1 (ko) 2014-01-30

Family

ID=50264928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006800 WO2014017889A1 (ko) 2012-07-27 2013-07-29 경화성 조성물

Country Status (7)

Country Link
US (1) US9624345B2 (ko)
EP (1) EP2878639A4 (ko)
JP (1) JP6066385B2 (ko)
KR (1) KR101560047B1 (ko)
CN (1) CN104508046B (ko)
TW (1) TWI506094B (ko)
WO (1) WO2014017889A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510554B (zh) * 2012-07-27 2015-12-01 Lg Chemical Ltd 可固化組成物
EP3067382B1 (en) * 2014-01-28 2020-12-23 LG Chem, Ltd. Cured product
KR102561851B1 (ko) * 2015-03-20 2023-08-02 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 유기폴리실록산, 이의 제조 방법, 및 경화성 실리콘 조성물
US10370497B2 (en) * 2016-08-23 2019-08-06 Milliken & Company Method for producing a cross-linked siloxane network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274571A (ja) 1998-01-26 1999-10-08 Nichia Chem Ind Ltd 半導体発光装置
JP2001196151A (ja) 2000-01-12 2001-07-19 Takazono Sangyo Kk 発熱体装置及び発熱体温度制御方法
JP2002226551A (ja) 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd 発光ダイオード
JP2011527356A (ja) * 2008-07-09 2011-10-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 重合性組成物
JP2012012556A (ja) * 2010-07-05 2012-01-19 Kaneka Corp オルガノポリシロキサン系組成物を用いた光学デバイス。
KR101114922B1 (ko) * 2010-01-25 2012-02-14 주식회사 엘지화학 실리콘 수지
KR20120080141A (ko) * 2011-01-06 2012-07-16 주식회사 엘지화학 경화성 조성물

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043872B2 (ja) * 1979-09-29 1985-09-30 信越化学工業株式会社 熱硬化性オルガノポリシロキサン組成物
JPS61207463A (ja) * 1985-03-12 1986-09-13 Toray Silicone Co Ltd 光通信フアイバ接合部の屈折率整合用弾性体組成物
JP4180474B2 (ja) * 2003-09-03 2008-11-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 付加硬化型シリコーン組成物
JP5972512B2 (ja) * 2008-06-18 2016-08-17 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物及び半導体装置
CN102197092A (zh) * 2008-10-31 2011-09-21 道康宁东丽株式会社 可固化的有机基聚硅氧烷组合物,光学半导体元件密封剂和光学半导体器件
JP4862032B2 (ja) * 2008-12-05 2012-01-25 信越化学工業株式会社 高屈折率を有する硬化物を与える付加硬化型シリコーン組成物、及び該組成物からなる光学素子封止材
JP5567865B2 (ja) * 2010-03-15 2014-08-06 信越化学工業株式会社 発光ダイオード用付加硬化型シリコーン樹脂組成物及び発光ダイオード
KR20140006786A (ko) * 2010-10-19 2014-01-16 세키스이가가쿠 고교가부시키가이샤 광반도체 장치용 밀봉제 및 그것을 이용한 광반도체 장치
JP5323038B2 (ja) * 2010-12-14 2013-10-23 積水化学工業株式会社 光半導体装置用封止剤及びそれを用いた光半導体装置
WO2012093910A2 (ko) 2011-01-06 2012-07-12 주식회사 엘지화학 경화성 조성물
JPWO2012157330A1 (ja) * 2011-05-17 2014-07-31 積水化学工業株式会社 光半導体装置用封止剤及び光半導体装置
KR101851423B1 (ko) * 2011-05-31 2018-04-23 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 반도체 밀봉용 실리콘 조성물
JP2013139547A (ja) * 2011-12-05 2013-07-18 Jsr Corp 硬化性組成物、硬化物および光半導体装置
DE102012204627A1 (de) 2012-03-22 2013-09-26 Robert Bosch Gmbh Elektronischer Batteriesensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274571A (ja) 1998-01-26 1999-10-08 Nichia Chem Ind Ltd 半導体発光装置
JP2001196151A (ja) 2000-01-12 2001-07-19 Takazono Sangyo Kk 発熱体装置及び発熱体温度制御方法
JP2002226551A (ja) 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd 発光ダイオード
JP2011527356A (ja) * 2008-07-09 2011-10-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 重合性組成物
KR101114922B1 (ko) * 2010-01-25 2012-02-14 주식회사 엘지화학 실리콘 수지
JP2012012556A (ja) * 2010-07-05 2012-01-19 Kaneka Corp オルガノポリシロキサン系組成物を用いた光学デバイス。
KR20120080141A (ko) * 2011-01-06 2012-07-16 주식회사 엘지화학 경화성 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878639A4

Also Published As

Publication number Publication date
KR20140015219A (ko) 2014-02-06
TW201420682A (zh) 2014-06-01
KR101560047B1 (ko) 2015-10-15
US20150141608A1 (en) 2015-05-21
EP2878639A1 (en) 2015-06-03
CN104508046A (zh) 2015-04-08
CN104508046B (zh) 2017-08-01
JP2015522705A (ja) 2015-08-06
EP2878639A4 (en) 2016-03-02
US9624345B2 (en) 2017-04-18
JP6066385B2 (ja) 2017-01-25
TWI506094B (zh) 2015-11-01

Similar Documents

Publication Publication Date Title
WO2013015591A2 (ko) 경화성 조성물
WO2011090361A2 (ko) 경화성 조성물
WO2014017885A1 (ko) 경화성 조성물
WO2011090364A2 (ko) 경화성 조성물
WO2013077702A1 (ko) 경화성 조성물
WO2011090362A2 (ko) 실리콘 수지
WO2012093907A2 (ko) 경화성 조성물
WO2013077699A1 (ko) 경화성 조성물
WO2014084639A1 (ko) 발광 다이오드
WO2014017888A1 (ko) 경화성 조성물
WO2013077706A1 (ko) 경화성 조성물
WO2013077708A1 (ko) 경화성 조성물
WO2013077703A1 (ko) 경화성 조성물
WO2014163442A1 (ko) 경화성 조성물
WO2011081325A2 (ko) 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
WO2012093910A2 (ko) 경화성 조성물
WO2013077705A1 (ko) 오가노폴리실록산
WO2012173460A2 (ko) 경화성 조성물
WO2013077707A1 (ko) 경화성 조성물
WO2012093909A2 (ko) 경화성 조성물
WO2014017889A1 (ko) 경화성 조성물
KR101204116B1 (ko) 경화성 조성물
WO2014163440A1 (ko) 경화성 조성물
WO2014163439A1 (ko) 경화성 조성물
WO2014163441A1 (ko) 경화성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013823902

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE