WO2014017321A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2014017321A1
WO2014017321A1 PCT/JP2013/069165 JP2013069165W WO2014017321A1 WO 2014017321 A1 WO2014017321 A1 WO 2014017321A1 JP 2013069165 W JP2013069165 W JP 2013069165W WO 2014017321 A1 WO2014017321 A1 WO 2014017321A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
storage device
carbon atoms
hydrocarbon group
general formula
Prior art date
Application number
PCT/JP2013/069165
Other languages
English (en)
French (fr)
Inventor
滝 敬之
裕知 渡辺
厚輝 渋谷
晃子 田崎
瑛自 勝野
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201380039070.1A priority Critical patent/CN104488053B/zh
Priority to KR1020157001192A priority patent/KR102046335B1/ko
Priority to EP13822676.6A priority patent/EP2879144A4/en
Priority to US14/416,393 priority patent/US9583280B2/en
Priority to JP2014526854A priority patent/JP6295197B2/ja
Publication of WO2014017321A1 publication Critical patent/WO2014017321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to an electricity storage device using a nonaqueous electrolytic solution containing a specific electrolyte additive.
  • non-aqueous electrolyte secondary batteries having high voltage and high energy density have been widely used as power sources.
  • attempts have been made to use energy more efficiently by using capacitors that can be charged and discharged at high speed as power buffers.
  • various non-aqueous electrolyte hybrid electricity storage devices that contain lithium ions in a non-aqueous electrolyte have been proposed as capacitors having a large amount of electricity storage.
  • additives for non-aqueous electrolyte solutions have been proposed in order to improve the stability and electrical characteristics of non-aqueous electrolyte secondary batteries.
  • additives include 1,3-propane sultone (for example, see Patent Document 1), vinyl ethylene carbonate (for example, see Patent Document 2), vinylene carbonate (for example, see Patent Document 3), 1, 3-Propane sultone, butane sultone (for example, see Patent Document 4), vinylene carbonate (for example, see Patent Document 5), vinyl ethylene carbonate (for example, see Patent Document 6), and the like have been proposed. Carbonate is widely used because of its great effect.
  • JP 63-102173 A Japanese Patent Laid-Open No. 4-087156 JP-A-5-074486 Japanese Patent Laid-Open No. 10-050342 US Pat. No. 5,626,981 JP 2001-006729 A
  • an object of the present invention is to provide a non-aqueous electrolyte hybrid electricity storage device that uses an anode from which lithium can be inserted and removed and a cathode containing activated carbon. The goal is to maintain capacity.
  • the present inventor has found that the above object can be achieved by using a nonaqueous electrolytic solution containing a compound having a specific structure, and has completed the present invention.
  • the present invention provides an electricity storage device comprising an anode from which lithium can be inserted and removed, a cathode containing activated carbon, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is any one of the following general formulas (1) to (5): It is an object of the present invention to provide an electricity storage device comprising at least one of the compounds represented.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 has an unsaturated bond or Represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, and the aliphatic hydrocarbon group represented by R 3 may be substituted with a halogen atom.
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 6 has or has an unsaturated bond.
  • R 6 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, and the aliphatic hydrocarbon group represented by R 6 may be substituted with a halogen atom, and n represents 1 or 2.
  • R 7 , R 8 , R 9 and R 10 are each independently an aliphatic hydrocarbon having 1 to 8 carbon atoms which has or does not have an unsaturated bond.
  • R 7 and R 8 can further represent a fluorine atom
  • R 7 , R 8 , R 9 and R 10 represent aliphatic carbonization.
  • the hydrogen group and the aromatic hydrocarbon group may be substituted with a halogen atom
  • R 11 represents an alkylene group having 1 to 8 carbon atoms with or without an ether group, or an oxygen atom.
  • R 12 , R 13 , R 14 , R 15 , R 16 and R 17 each independently have 1 or less carbon atoms having or not having an unsaturated bond.
  • R 18 represents a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms having an unsaturated bond, or a divalent aromatic hydrocarbon group.
  • R 19 , R 20 and R 21 each independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms which has or does not have an unsaturated bond.
  • M represents 1 or 2.
  • a low internal resistance and a high electric capacity can be maintained even after high-temperature storage or high-temperature charge / discharge, and non-aqueous Improved storage stability of the electrolyte can be realized.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type electricity storage device of the electricity storage device of the present invention.
  • FIG. 2 is a schematic diagram showing a basic configuration of a cylindrical power storage device of the power storage device of the present invention.
  • FIG. 3 is a perspective view showing a cross section of the internal structure of the cylindrical power storage device of the power storage device of the present invention.
  • the anode from which lithium can be inserted / removed is not particularly limited as long as lithium can be inserted / removed, but is preferably as follows. That is, as the anode of the electricity storage device of the present invention, an anode active material and a binder slurried with an organic solvent or water are applied to a current collector and dried to form a sheet, A conductive material is blended as necessary.
  • anode active material natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, lithium, lithium alloy, tin alloy, silicon alloy, silicon oxide, titanium oxide, etc. are used singly or in combination.
  • carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon, and graphitizable carbon are always included.
  • the content of the carbon material in the anode active material is preferably 50 to 100% by mass, more preferably 80 to 100% by mass.
  • the binder for the anode include, but are not limited to, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, fluororubber, and polyacrylic acid.
  • the amount of the anode binder used is preferably 0.001 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and most preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the anode active material.
  • the slurry for the anode slurry include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran and the like. However, it is not limited to this.
  • the amount of the solvent used is preferably 30 to 300 parts by mass, more preferably 50 to 200 parts by mass, with respect to 100 parts by mass of the anode active material.
  • copper, nickel, stainless steel, nickel-plated steel or the like is used for the current collector of the anode.
  • the conductive material blended as necessary graphene, fine particles of graphite, carbon black such as acetylene black and ketjen black, fine particles of amorphous carbon such as needle coke, carbon nanofiber, etc. are used. However, it is not limited to these.
  • the cathode containing activated carbon used in the present invention is not limited to the alkali activation method, particle size, and surface area of activated carbon, and is not particularly limited as long as activated carbon is used, activated carbon, binder, A material obtained by slurrying a conductive material or the like with an organic solvent or water is applied to a current collector and dried to form a sheet.
  • the cathode binder and slurry solvent are the same as those used in the anode.
  • the amount of the binder used for the cathode is preferably 0.001 to 20 parts by mass, more preferably 0.01 to 10 parts by mass, and most preferably 0.02 to 8 parts by mass with respect to 100 parts by mass of the cathode active material.
  • the amount of the solvent used for the cathode is preferably from 30 to 300 parts by weight, more preferably from 50 to 200 parts by weight, based on 100 parts by weight of the activated carbon.
  • Examples of the conductive material for the cathode include graphene, graphite fine particles, carbon black such as acetylene black and ketjen black, amorphous carbon fine particles such as needle coke, and carbon nanofibers, but are not limited thereto.
  • the amount of the conductive material used for the cathode is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the cathode active material.
  • As the cathode current collector aluminum, stainless steel, nickel-plated steel or the like is usually used.
  • the non-aqueous electrolyte solution used in the present invention (hereinafter also referred to as the non-aqueous electrolyte solution of the present invention) is a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent, and the above general formulas (1) to (5) A compound represented by any of the above:
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R 1 and R 2 in the general formula (1) include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, t-butyl, pentyl, isopentyl. Secondary pentyl, t-pentyl, hexyl, secondary hexyl, heptyl, secondary heptyl, octyl, secondary octyl, 2-methylpentyl, 2-ethylhexyl and the like can be mentioned.
  • R 1 and R 2 are preferably a hydrogen atom, methyl, ethyl, and propyl, more preferably a hydrogen atom and methyl, and particularly preferably a hydrogen atom, since there is little adverse effect on the movement of lithium ions and charging characteristics are good. .
  • the aliphatic hydrocarbon group having 1 to 8 carbon atoms represented by R 3 in the general formula (1) has or does not have an unsaturated bond.
  • Examples of those having no unsaturated bond include the same groups as the alkyl group having 1 to 8 carbon atoms represented by R 1 above.
  • Examples of those having an unsaturated bond include those of the above alkyl group.
  • carbon - some carbon single bond, which has a double or triple bond, the number and position of double bonds and triple bonds are not particularly limited, the end of the substituent of R 3 double What is a bond or a triple bond is preferable.
  • aliphatic hydrocarbon group represented by R 3 may be substituted with a halogen atom.
  • substituents include chloromethyl, trifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2, 2,2-trifluoroethyl, 2,2,2-trichloroethyl, 1,1,2,2-tetrafluoroethyl, pentafluoroethyl, pentachloroethyl, 3-fluoropropyl, 2-chloropropyl, 3-chloro Propyl, 1-chloro-1-methylethyl, 3,3,3-trifluoropropyl, 2,2,3,3-tetrafluoropropyl, heptafluoropropyl, 2-chlorobutyl, 3-chlorobutyl, 4-chlorobutyl, 3 -Chloro-2-butyl, (1-chloromethyl) propyl, 2-chloro-1,1-dimethylethyl, 3-chloro-2 Methylpropyl, 5-chloropentyl, 3-
  • R 3 is preferably methyl, ethyl, propyl, isopropyl, butyl, pentyl, 2-propynyl, 3-chloropropyl, 3-chlorobutyl and 4-chlorobutyl, since the internal resistance of the electricity storage device is small. Further, propyl and 2-propynyl are more preferable, and ethyl and 2-propynyl are particularly preferable.
  • the compounds in which R 1 and R 2 are hydrogen atoms include, for example, methyl bis (2-propynyl) phosphate, ethyl bis (2-propynyl) phosphate, propyl bis ( 2-propynyl) phosphate, butylbis (2-propynyl) phosphate, pentylbis (2-bropinyl) phosphate, allylbis (2-propynyl) phosphate, tris (2-propynyl) phosphate, 2-chloroethylbis (2 -Propynyl) phosphate, 2,2,2-trifluoroethylbis (2-propynyl) phosphate, 2,2,2-trichloroethylbis (2-propynyl) phosphate, and the like.
  • Examples of the compound in which R 1 is methyl and R 2 is a hydrogen atom include, for example, methyl bis (1-methyl-2-propynyl) phosphate, ethyl bis (1-methyl-2-propynyl) phosphate, propyl bis (1-methyl-2-propynyl) phosphate, butyl bis (1-methyl-2-propynyl) phosphate, pentyl bis (1-methyl-2-propynyl) phosphate, allyl bis (1-methyl-2-flopinyl) phosphate 2-Flopinylbis (1-methyl-2-propynyl) phosphate, Tris (1-methyl-1-methyl-2-propynyl) phosphate, 2-chloroethylbis (1-methyl-2-flopinyl) phosphate, 2,2,2-trifluoroethylbis (1-methyl-2-propynyl) fur Sufeto, 2,2,2-trichloroethyl bis (1-methyl-2-propynyl
  • compounds in which R 1 and R 2 are methyl include, for example, methyl bis (1,1-dimethyl-2-propynyl) phosphate, ethyl bis (1,1-dimethyl) -2-propynyl) phosphate, propylbis (1,1-dimethyl-2-propynyl) phosphate, butylbis (1,1-dimethyl-2-propynyl) phosphate, pentylbis (1,1-dimethyl-2-flopinyl) ) Phosphate, allylbis (1,1-dimethyl-2-propynyl) phosphate, 2-propynylbis (1,1-dimethyl-2-propynyl) phosphate, tris (1,1-dimethyl-2-propynyl) phosphate Fate, 2-chloroethylbis (1,1-dimethyl-2-flopinyl) phosphate, 2,2 2,2-trifluor
  • Examples of the compound represented by the general formula (1) include methyl bis (2-propynyl) phosphate, ethyl bis (2-propynyl) phosphate, propyl bis (2-propynyl) phosphate, butyl bis (2-propynyl) phosphate, Pentyl bis (2-propynyl) phosphate, tris (2-propynyl) phosphate, and 2-chloroethyl bis (2-propynyl) phosphate are preferred, ethyl bis (2-propynyl) phosphate, propyl bis (2-propynyl) Phosphate, butyl bis (2-propynyl) phosphate, and tris (2-propynyl) phosphate are more preferable, and ethyl bis (2-propynyl) phosphate and tris (2-flopinyl) phosphate are particularly preferable.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R 4 and R 5 in the general formula (2) include the same groups as the groups represented by R 1 in the general formula (1).
  • R 1 a hydrogen atom, methyl, ethyl and propyl are preferable, a hydrogen atom and methyl are more preferable, and a hydrogen atom is particularly preferable.
  • Examples of the aliphatic hydrocarbon group represented by R 6 in the general formula (2) include the same groups as the groups represented by R 3 in the general formula (1).
  • the group represented by R 6 methyl, ethyl, propyl, isopropyl, butyl, pentyl, 2-propynyl, 3-chloropropyl, 3-chlorobutyl, and 4-chlorobutyl are preferable because the internal resistance of the electricity storage device is reduced.
  • Methyl, ethyl, propyl and 2-propynyl are more preferred, and methyl and ethyl are particularly preferred.
  • n represents a number of 1 or 2. Since the phosphoric acid ester reaction from the alkyne diol as a raw material is easy and the target compound is obtained in high yield, n is preferably a number of 2.
  • Examples of the compound represented by the general formula (2) in which n is a number of 1, include, for example, 2-butyne-1,4-diol tetramethyldiphosphate, 2-butyne-1,4-diol tetraethyldiethyl Phosphate, 2-butyne-1,4-diol tetrapropyl diphosphate, 2-butyne-1,4-diol tetraisopropyl diphosphate, 2-butyne-1,4-diol tetrabutyl diphosphate, 2- Butyne-1,4-diol tetrapentyl diphosphate, 2-butyne-1,4-diol tetrakis (2-flopinyl) diphosphate, 2-butyne-1,4-diol tetrakis (3-chloropropyl) diphos Fate, 2-butyne-1,4-diolt
  • diphosphate and 2-butyne-1,4-dioltetrakis (2-propynyl) diphosphate More preferred are diphosphate and 2-butyne-1,4-dioltetrakis (2-propynyl) diphosphate.
  • Examples of the compound represented by the general formula (2) where n is 2 are 2,4-hexadiyne-1,6-dioltetramethyldiphosphate, 2,4-hexadiyne- 1,6-diol tetraethyl diphosphate, 2,4-hexadiyne-1,6-diol tetrafuropyl diphosphate, 2,4-hexadiyne-1,6-diol tetraisopropyl diphosphate, 2,4-hexadiyne -1,6-diol tetrabutyl diphosphate, 2,4-hexadiyne-1,
  • Examples of the aliphatic hydrocarbon group having 1 to 8 carbon atoms represented by R 7 , R 8 , R 9 and R 10 in the general formula (3) include an aliphatic hydrocarbon group or a cycloalkyl group represented by R 3 above. Can be mentioned. Examples of the cycloalkyl group include cyclopentyl, cyclohexyl, cyclohexylmethyl, 4-methylcyclohexyl and the like. Examples of the aromatic hydrocarbon group having 6 to 8 carbon atoms represented by R 7 , R 8 , R 9 and R 10 in the general formula (3) include phenyl, toluyl, xylyl, and benzyl.
  • the aliphatic hydrocarbon group and the aromatic hydrocarbon group represented by R 7 , R 8 , R 9 and R 10 may be substituted with a halogen atom, and in addition to those mentioned for R 3 above, pentafluorocyclohexyl, Examples include 4-fluorocyclohexylmethyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,4,6-chlorophenyl and the like.
  • methyl and ethyl are preferable, and methyl is more preferable because it has a small adverse effect on the movement of lithium ions and good charge characteristics.
  • Examples of the alkylene group having 1 to 8 carbon atoms not having an ether group represented by R 11 in the general formula (3) include methylene, ethane-1,2-diyl, propane-1,3-diyl, butane-1,4. -Diyl, pentane-1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, 2-methylbutane-1,4-diyl and the like.
  • the carbon-carbon bond of the alkylene having 1 to 8 carbon atoms may be interrupted by an oxygen atom, and specific examples include 2 -Oxapropylene, 3-oxapentylene, 4-oxaheptylene, 2,4-dioxapentylene, 3,5-dioxaheptylene, and the like are preferable, and those having 4 to 8 carbon atoms are preferable.
  • R 11 ethane-1,2-diyl, propane-1,3-diyl, butane-1,4-diyl, since the adverse effect on the movement of lithium ions is small and the charging characteristics are good.
  • 2-methylbutane-1,4-diyl, 4-oxaheptylene, and oxygen atoms are preferred, ethane-1,2-diyl, 4-oxaheptylene, and oxygen atoms are more preferred, and ethane-1,2-diyl and oxygen atoms are particularly preferred preferable.
  • Examples of the compound represented by the general formula (3) include 1,2-bis (fluorodimethylsilyl) ethane, 1,2-bis (fluorodiethylsilyl) ethane, 1,2-bis (fluorodipropylsilyl).
  • the aliphatic hydrocarbon group represented by R 12 , R 13 , R 14 , R 15 , R 16 and R 17 in the general formula (4) represents the same group as the aliphatic hydrocarbon group represented by R 3 above, Of these, methyl, ethyl, propyl, butyl, and vinyl are preferable, and methyl is more preferable in that the durability of the anode coating can be improved.
  • Examples of the divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms having an unsaturated bond represented by R 18 include vinylene, propenylene, isopropenylene, butenylene, pentenylene, hexenylene, ethynylene, propynylene, butynylene, pentynylene and hexynylene. Etc.
  • Examples of the divalent aromatic hydrocarbon group represented by R 18 include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene and the like.
  • R 18 is preferably vinylene, ethynylene and 1,4-phenylene, particularly preferably vinylene, from the viewpoint that a highly durable surface structure that hardly changes in quality by the action of the cathode can be obtained.
  • Examples of the compound represented by the general formula (4) include bis (trimethylsilyl) acetylenedicarboxylate, bis (ethyldimethylsilyl) acetylenedicarboxylate, bis (dimethylpropylsilyl) acetylenedicarboxylate, and bis (dimethylbutyl).
  • Silyl) acetylene carboxylate bis (allyldimethylsilyl) acetylenedicarboxylate, bis (dimethylvinylsilyl) acetylenedicarboxylate, bis (trimethylsilyl) fumarate, bis (dimethylvinylsilyl) fumarate, bis (allyl fumarate) Dimethylsilyl), bis (trimethylsilyl) itaconate, bis (trimethylsilyl) phthalate, bis (trimethylsilyl) isophthalate, and bis (trimethylsilyl) terephthalate.
  • (Trimethylsilyl) acetylene dicarboxylate and fumaric acid bis (trimethylsilyl) are preferred, fumaric acid bis (trimethylsilyl) is more preferable.
  • the aliphatic hydrocarbon group represented by R 19 , R 20 , and R 21 in the general formula (5) represents the same group as the aliphatic hydrocarbon group represented by R 3 above, and does not hinder lithium migration.
  • methyl, ethyl, propyl, butyl and vinyl are preferable, and methyl is more preferable.
  • trimethylsilylbenzene triethylsilylbenzene, tripropylsilylbenzene, tributylsilylbenzene, m-bistrimethylsilylbenzene and p-bistrimethylsilylbenzene are preferable, and trimethylsilylbenzene is more preferable.
  • the compounds represented by any one of the general formulas (1) to (5) may be used alone or in combination of two or more.
  • the content of these additives is preferably 0.005 to 10% by mass in the nonaqueous electrolyte because it may adversely affect the characteristics of the nonaqueous electrolyte. % By mass is more preferable, and 0.05 to 3% by mass is most preferable.
  • the compound represented by the general formula (4) when the compound represented by the general formula (4) is contained, it is preferable in terms of small internal resistance in the initial characteristics, and in addition to the compound represented by the general formula (4), the general formula (4 When the compound represented by any one of 1) to (3) or (5) is further contained, the cycle characteristics are improved as compared with the case where only the compound represented by the general formula (4) is used. It is particularly preferable in terms of improvement.
  • the ratio is 0: 100 to 20: 1 (the former: the latter) is preferable, and 1:10 to 10: 1 is more preferable.
  • organic solvent used in the non-aqueous electrolyte of the present invention those usually used for non-aqueous electrolytes can be used alone or in combination of two or more. Specific examples include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds.
  • saturated cyclic carbonate compounds saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds and amide compounds have a high relative dielectric constant, and thus serve to increase the dielectric constant of non-aqueous electrolytes.
  • Compounds are preferred.
  • saturated cyclic carbonate compounds include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1, -dimethylethylene carbonate. Etc.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, and ⁇ -octanolactone.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like.
  • sulfone compounds include dimethylsulfone, diethylsulfone, dipropylsulfone, diphenylsulfone, sulfolane (also referred to as tetramethylenesulfone), 3-methylsulfolane, 3,4-dimethylsulfolane, 3,4-diphenimethylsulfolane, sulfolene. , 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like, and sulfolane and tetramethylsulfolane are preferable.
  • amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds can lower the viscosity of the non-aqueous electrolyte and increase the mobility of electrolyte ions.
  • the power storage characteristics such as the output density can be made excellent.
  • a saturated chain carbonate compound is preferable.
  • saturated chain carbonate compounds include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, and t-butyl propyl carbonate. Etc.
  • Examples of the chain ether compound or cyclic ether compound include dimethoxyethane (DME), ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2 -Bis (ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether And diethylene glycol bis (trifluoroethyl) ether.
  • DME dimethoxyethane
  • ethoxymethoxyethane diethoxyethane
  • tetrahydrofuran dioxolane
  • dioxane 1,2-bis (methoxycarbonyloxy) ethane
  • dioxolane is preferred.
  • monoester compounds and diester compounds having a total number of carbon atoms in the molecule of 2 to 8 are preferable.
  • Specific compounds include methyl formate, ethyl formate, methyl acetate, ethyl acetate, Propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, 3- Methyl methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, and the like, such as methyl formate, ethyl formate, methyl acetate, ethy
  • acetonitrile acetonitrile, propionitrile, nitromethane and their derivatives can be used as the organic solvent.
  • the lithium salt can be dissolved in the organic solvent so that the concentration in the non-aqueous electrolyte of the present invention is 0.1 to 3.0 mol / L, particularly 0.5 to 2.0 mol / L. preferable. If the concentration of the lithium salt is less than 0.1 mol / L, a sufficient current density may not be obtained, and if it is more than 3.0 mol / L, the stability of the nonaqueous electrolyte may be impaired.
  • the lithium salt may be used in combination of two or more lithium salts.
  • halogen-based, phosphorus-based, and other flame retardants can be appropriately added to the non-aqueous electrolyte of the present invention to impart flame retardancy. If the amount of flame retardant added is too small, sufficient flame retarding effect cannot be exerted.If it is too large, not only an increase effect corresponding to the blending amount can be obtained, but on the other hand, the characteristics of the non-aqueous electrolyte Since it may have an adverse effect, the content is preferably 1 to 50% by mass, more preferably 3 to 10% by mass with respect to the organic solvent constituting the nonaqueous electrolytic solution of the present invention.
  • a separator between the cathode and the anode.
  • a commonly used polymer microporous film can be used without any particular limitation.
  • the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide.
  • the microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous.
  • the film is extruded and then heat treated, the crystals are arranged in one direction, and a “stretching method” or the like is performed by forming a gap between the crystals by stretching, and is appropriately selected depending on the film used.
  • the anode, the cathode, the non-aqueous electrolyte and the separator have a phenolic antioxidant, a phosphorus antioxidant, a thioether antioxidant, a hindered amine compound, etc. for the purpose of improving safety. May be added.
  • the electricity storage device of the present invention include capacitors such as an electric double layer capacitor and a hybrid capacitor.
  • the power storage device (capacitor) of the present invention having the above configuration is not particularly limited in shape, and can be various shapes such as a coin shape, a cylindrical shape, and a square shape.
  • FIG. 1 shows an example of a coin-type capacitor of the electricity storage device of the present invention
  • FIGS. 2 and 3 show examples of a cylindrical capacitor.
  • 1 is an activated carbon cathode
  • 1a is a cathode current collector
  • 2 is an anode made of a carbonaceous material capable of occluding and releasing lithium ions released from the cathode
  • 2a is an anode current collector.
  • 3 is a non-aqueous electrolyte of the present invention
  • 4 is a cathode case made of stainless steel
  • 5 is an anode case made of stainless steel
  • 6 is a gasket made of polypropylene
  • 7 is a separator made of polyethylene.
  • 11 is an anode
  • 12 is an anode current collector
  • 13 is a cathode
  • 14 is a cathode current collector
  • 15 is the non-aqueous electrolysis of the present invention.
  • Liquid 16 is a separator
  • 17 is a cathode terminal
  • 18 is an anode terminal
  • 19 is an anode plate
  • 20 is an anode lead
  • 21 is a cathode plate
  • 22 is a cathode lead
  • 23 is a case
  • 24 is an insulating plate
  • 25 is a gasket
  • 26 Is a safety valve
  • 27 is a PTC element.
  • Examples 1 to 17 and Comparative Examples 1 to 6 are examples of the electricity storage device of the present invention and comparative examples thereof.
  • Examples 1 to 17 and Comparative Examples 1 to 6 Production and evaluation of electricity storage devices As shown below, electricity storage devices of the present invention and comparative examples were produced, and initial characteristic tests and cycle characteristics were obtained using the obtained electricity storage devices. A test was conducted to evaluate the electricity storage device.
  • Anode A After mixing 90 parts by mass of non-graphitizable carbon as an active material, 5 parts by mass of acetylene black, and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder, it is dispersed in 140 parts by mass of N-methyl-2-pyrrolidone (NMP). To make a slurry. This slurry was applied to a copper anode current collector, dried and press-molded. After that, lithium was doped by connecting the anode to the lithium foil in the electrolytic solution for a predetermined time. It was cut into a disk shape of a predetermined size to make an anode A.
  • NMP N-methyl-2-pyrrolidone
  • Anode B was produced in the same manner as anode A, except that graphitizable carbon was used instead of non-graphitizable carbon as the active material.
  • cathode was prepared in the same manner as anode A except that activated carbon was used instead of non-graphitizable carbon as the active material.
  • Step 1 Preparation of electrolyte solution LiPF 6 was added to a mixed solvent consisting of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate so as to have a concentration of 1 mol / L, and this was used as an electrolyte solution.
  • Step 2 Preparation of non-aqueous electrolyte The ratio of the following compounds A1 to A6 (compounds represented by the above general formulas (1) to (5)) and the comparative compound A′1 or A′2 shown in [Table 1] And dissolved in the electrolyte solution prepared in Step 1.
  • the number in () in [Table 1] represents the concentration (% by mass) in the non-aqueous electrolyte.
  • Compound A1 Tris (2-propynyl) phosphate (compound represented by the general formula (1))
  • Compound A2 2,4-hexadiyne-1,6-diol tetraethyldiphosphate (compound represented by the general formula (2))
  • Compound A3 1,3-difluoro-1,1,3,3-tetramethyldisiloxane (compound represented by the general formula (3))
  • Compound A4 1,2-bis (difluoro (methyl) silyl) ethane (compound represented by the general formula (3))
  • Compound A5 Bis (trimethylsilyl) fumarate (compound represented by general formula (4))
  • Compound A6 Trimethylsilylbenzene (compound represented by the general formula (5))
  • Compound A′1 Vinylene carbonate compound A′2: Propane sultone
  • the initial stage characteristic test and the cycle characteristic test were done as the following test method.
  • the initial characteristic test the internal resistance ratio was obtained.
  • the cycle characteristic test the discharge capacity maintenance rate and the internal resistance increase rate were obtained.
  • the test results are shown in [Table 2] below.
  • it is an electrical storage device which is excellent in an initial characteristic, so that the numerical value of internal resistance ratio is low.
  • the arc portion is fitted with a circle, the diameter of the arc is set as the initial internal resistance, and the internal resistance ratio (%) is set as the initial internal resistance of Example 5 as shown in the following formula.
  • the ratio was determined as the ratio of the initial internal resistance when the resistance was 100.
  • Discharge capacity retention rate (%) [(discharge capacity at 1000th cycle) / (initial discharge capacity)] ⁇ 100
  • Internal resistance increase rate (%) [internal resistance after 1000 cycles ⁇ initial internal resistance) / (initial internal resistance)] ⁇ 100

Abstract

本願発明は、リチウムが脱挿入可能なアノードと活性炭を含有するカソードを使用した非水電解液ハイブリット蓄電デバイスにおいて、高温保存や高温での充放電を経ても小さな内部抵抗と高い電気容量の維持を実現するものであり、具体的には、リチウムが脱挿入可能なアノード、活性炭を含有するカソード及び非水電解液を具備する蓄電デバイスにおいて、一般式(1)~(5)の何れかで表される化合物を少なくとも1種含有する非水電解液を用いるものである。尚、一般式(1)~(5)の内容については、本明細書に記載の通りである。

Description

蓄電デバイス
 本発明は、特定の電解質添加剤を含有する非水電解液を用いた蓄電デバイスに関する。
 近年、高電圧、高エネルギー密度を有する非水電解液二次電池が電源として広く用いられるようになった。それら高密度の蓄電デバイスを有効に活用するために、高速での放充電が可能なキャパシタを電力のバッファーとして活用することにより、より効率的にエネルギーを利用する試みが進んでいる。その中でも蓄電量の大きなキャパシタとしてリチウムイオンを非水電解液に含有する種々の非水電解液ハイブリット蓄電デバイスが提案されている。
 非水電解液二次電池では、非水電解液二次電池の安定性や電気特性の向上のために、非水電解液用の種々の添加剤が提案されている。このような添加剤として、1,3-プロパンスルトン(例えば、特許文献1を参照)、ビニルエチレンカーボネート(例えば、特許文献2を参照)、ビニレンカーボネート(例えば、特許文献3を参照)、1,3-プロパンスルトン、ブタンスルトン(例えば、特許文献4を参照)、ビニレンカーボネート(例えば、特許文献5を参照)、ビニルエチレンカーボネート(例えば、特許文献6を参照)等が提案されており、中でも、ビニレンカーボネートは効果が大きいことから広く使用されている。これらの添加剤は、アノードの表面にSEI(Solid Electrolyte Interface:固体電解質膜)と呼ばれる安定な被膜を形成し、この被膜がアノードの表面を覆うことにより、非水電解液の還元分解を抑制するものと考えられている。
 しかしながら、活性炭をカソードとし、リチウムイオン二次電池で使用される炭素材料をアノードとするハイブリット蓄電デバイスに対して効果の大きい電解液用の添加剤についての提案は少なかった。
特開昭63-102173号公報 特開平4-087156号公報 特開平5-074486号公報 特開平10-050342号公報 米国特許5626981号明細書 特開2001-006729号公報
 従って、本発明の目的は、リチウムが脱挿入可能なアノードと活性炭を含有するカソードを使用した非水電解液ハイブリット蓄電デバイスにおいて、高温保存や高温での充放電を経ても小さな内部抵抗と高い電気容量の維持を実現することにある。
 本発明者は、鋭意検討を行なった結果、特定の構造の化合物を含有する非水電解液を使用することで上記目的を達成できることを見出し、本発明を完成させた。

 本発明は、リチウムが脱挿入可能なアノード、活性炭を含有するカソード及び非水電解液を具備する蓄電デバイスにおいて、上記非水電解液が、下記一般式(1)~(5)の何れかで表される化合物を少なくとも1種含有することを特徴とする蓄電デバイスを提供するものである。
Figure JPOXMLDOC01-appb-C000002
(上記一般式(1)中の、R1及びR2は、それぞれ独立して水素原子又は炭素原子数1~8のアルキル基を表し、R3は、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、R3が表す脂肪族炭化水素基は、ハロゲン原子により置換されていてもよい。
 上記一般式(2)中の、R4及びR5は、それぞれ独立に水素原子又は炭素原子数1~8のアルキル基を表し、R6は、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、R6が表す脂肪族炭化水素基は、ハロゲン原子により置換されていてもよく、nは1又は2を表す。
 上記一般式(3)中の、R7、R8、R9及びR10は、それぞれ独立して不飽和結合を有している若しくは有していない炭素原子数1~8の脂肪族炭化水素基、又は炭素原子数6~8の芳香族炭化水素基を表し、R7及びR8は、更にフッ素原子を表すことができ、R7、R8、R9及びR10が表す脂肪族炭化水素基及び芳香族炭化水素基は、ハロゲン原子により置換されていてもよく、R11は、エーテル基を有する若しくは有しない炭素原子数1~8のアルキレン基、又は酸素原子を表す。
 上記一般式(4)中の、R12、R13、R14、R15、R16及びR17は、それぞれ独立して、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、R18は、不飽和結合を有する炭素原子数2~6の2価の脂肪族炭化水素基、又は2価の芳香族炭化水素基を表す。
 上記一般式(5)中の、R19、R20及びR21は、それぞれ独立して、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、mは1又は2を表す。)
 本発明によれば、リチウムが脱挿入可能なアノードと活性炭を含有するカソードとを用いたハイブリット蓄電デバイスにおいて、高温保存若しくは高温充放電を経ても小さな内部抵抗と高い電気容量の維持、及び非水電解液の保存性向上が実現できる。
図1は、本発明の蓄電デバイスのコイン型蓄電デバイスの構造の一例を概略的に示す縦断面図である。 図2は、本発明の蓄電デバイスの円筒型蓄電デバイスの基本構成を示す概略図である。 図3は、本発明の蓄電デバイスの円筒型蓄電デバイスの内部構造を断面として示す斜視図である。
 以下、本発明の蓄電デバイスについて好ましい実施形態に基づき詳細に説明する。
<アノード>
 本発明で用いられるリチウムが脱挿入可能なアノードは、リチウムが脱挿入可能であれば特に限定されないが、好ましくは次の通りである。すなわち、本発明の蓄電デバイスのアノードとしては、アノード活物質と結着剤とを有機溶媒又は水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用され、必要に応じて導電材が配合される。
 アノード活物質としては、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、リチウム、リチウム合金、スズ合金、珪素合金、酸化珪素、チタン酸化物等が単一又は複数種類組み合わされて使用されるが、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素等の炭素材料が必ず含まれる。アノード活物質中における炭素材料の含有量は、好ましくは50~100質量%、より好ましくは80~100質量%である。
 アノードの結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム、ポリアクリル酸等が挙げられるが、これらに限定されない。アノードの結着剤の使用量は、アノード活物質100質量部に対し、0.001~5質量部が好ましく、0.05~3質量部が更に好ましく、0.01~2質量部が最も好ましい。
 アノードのスラリー化する溶媒としては、例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン等が挙げられるが、これに限定されない。溶媒の使用量は、アノード活物質100質量部に対し、30~300質量部が好ましく、50~200質量部が更に好ましい。
 アノードの集電体には、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用される。
 また、必要に応じて配合される導電材としては、グラフェン、グラファイトの微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。
<カソード>
 本発明で用いられる活性炭を含有するカソードとしては、活性炭のアルカリ賦活方法、粒径、表面積には限定されず、活性炭を用いていれば特に限定されるものではないが、活性炭、結着剤、導電材等を有機溶媒又は水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。
 カソードの結着剤及びスラリー化する溶媒としては、上記アノードで用いられるものと同様である。カソードの結着剤の使用量は、カソード活物質100質量部に対し、0.001~20質量部が好ましく、0.01~10質量部が更に好ましく、0.02~8質量部が最も好ましい。カソードの溶媒の使用量は、活性炭100質量部に対し、30~300質量部が好ましく、50~200質量部が更に好ましい。
 カソードの導電材としては、グラフェン、グラファイトの微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。カソードの導電材の使用量は、カソード活物質100質量部に対し、0.01~20質量部が好ましく、0.1~10質量部が更に好ましい。
 カソードの集電体としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
<非水電解液>
 本発明で用いられる非水電解液(以下、本発明の非水電解液ともいう)は、リチウム塩を有機溶媒に溶解させた非水電解液であり、上記一般式(1)~(5)の何れかで表される化合物を含有する。
 一般式(1)におけるR1及びR2が表す炭素原子数1~8のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、t-ブチル、ペンチル、イソペンチル、2級ペンチル、t-ペンチル、ヘキシル、2級ヘキシル、ヘプチル、2級ヘプチル、オクチル、2級オクチル、2-メチルペンチル、2-エチルヘキシル等が挙げられる。
 R1及びR2としては、リチウムイオンの移動への悪影響が少なく充電特性が良好であることから、水素原子、メチル、エチル及びプロピルが好ましく、水素原子及びメチルが更に好ましく、水素原子が特に好ましい。
 一般式(1)におけるR3が表す炭素原子数1~8の脂肪族炭化水素基は、不飽和結合を有しているか又は有していないものである。不飽和結合を有していないものとしては、上記R1が表す炭素原子数1~8のアルキル基と同様の基が挙げられ、不飽和結合を有しているものとしては、上記アルキル基の炭素-炭素単結合の一部が、二重結合又は三重結合になっているものであり、二重結合及び三重結合の数及び位置は特に限定されないが、R3の置換基の末端が二重結合又は三重結合であるものが好ましい。具体的な例としては、ビニル、アリル、3-ブテニル、イソブテニル、4-ペンテニル、5-ヘキセニル、6-ヘプテニル、7-オクテニル、エチニル、2-プロピニル、3-ブチニル、1-メチルー2-プロピニル、1,1-ジメチル-2-プロピニル等が挙げられる。
 R3が表す上記脂肪族炭化水素基は、ハロゲン原子により置換されていてもよく、そのような置換基の例としては、クロロメチル、トリフルオロメチル、2-フルオロエチル、2-クロロエチル、2,2,2-トリフルオロエチル、2,2,2-トリクロロエチル、1,1,2,2-テトラフルオロエチル、ペンタフルオロエチル、ペンタクロロエチル、3-フルオロプロピル、2-クロロプロピル、3-クロロプロピル、1-クロロ-1-メチルエチル、3,3,3-トリフルオロプロピル、2,2,3,3-テトラフルオロプロピル、ヘプタフルオロプロピル、2-クロロブチル、3-クロロブチル、4-クロロブチル、3-クロロ-2-ブチル、(1-クロロメチル)プロピル、2-クロロ-1,1-ジメチルエチル、3-クロロ-2-メチルプロピル、5-クロロペンチル、3-クロロ-2-メチルプロピル、3-クロロ-2,2-ジメチルプロピル、6-クロロへキシル等が挙げられる。
 R3としては、蓄電デバイスの内部抵抗が小さくなることから、メチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、2-プロピニル、3-クロロプロピル、3-クロロブチル及び4-クロロブチルが好ましく、メチル、エチル、プロピル及び2-プロピニルが更に好ましく、エチル及び2-プロピニルが特に好ましい。
 一般式(1)で表される化合物のうち、R1及びR2が水素原子である化合物としては、例えば、メチルビス(2-プロピニル)フォスフェート、エチルビス(2-プロピニル)フォスフェート、プロピルビス(2-プロピニル)フォスフェート、ブチルビス(2-プロピニル)フォスフェート、ペンチルビス(2-ブロピニル)フォスフェート、アリルビス(2-プロピニル)フォスフェート、トリス(2-プロピニル)フォスフェート、2-クロロエチルビス(2-プロピニル)フォスフェート、2,2,2-トリフルオロエチルビス(2-プロピニル)フオスフェート、2,2,2-トリクロロエチルビス(2-プロピニル)フォスフェート等が挙げられる。
 また、R1がメチルであり、R2が水素原子である化合物としては、例えば、メチルビス(1-メチル-2-プロピニル)フォスフェート、エチルビス(1-メチル-2-プロピニル)フォスフェート、プロピルビス(1-メチル-2-プロピニル)フォスフェート、ブチルビス(1-メチル-2-プロピニル)フォスフェート、ペンチルビス(1-メチル-2-プロピニル)フォスフェート、アリルビス(1-メチル-2-フロピニル)フォスフェート、2-フロピニルビス(1-メチル-2-プロピニル)フォスフェート、トリス(1-メチル-1-メチル-2-プロピニル)フォスフェート、2-クロロエチルビス(1-メチル-2-フロピニル)フォスフェート、2,2,2-トリフルオロエチルビス(1-メチル-2-プロピニル)フォスフェート、2,2,2-トリクロロエチルビス(1-メチル-2-プロピニル)フォスフェート等が挙げられる。
 一般式(1)で表される化合物のうち、R1及びR2がメチルである化合物としては、例えば、メチルビス(1,1-ジメチル-2-プロピニル)フォスフェート、エチルビス(1,1-ジメチル-2-プロピニル)フォスフェート、プロピルビス(1,1-ジメチル-2-プロピニル)フォスフェート、ブチルビス(1,1-ジメチル-2-プロピニル)フォスフェート、ペンチルビス(1,1-ジメチル-2-フロピニル)フォスフェート、アリルビス(1,1-ジメチル-2-プロピニル)フォスフェート、2-プロピニルビス(1,1-ジメチル-2-プロピニル)フォスフェート、トリス(1,1-ジメチル-2-プロピニル)フォスフェート、2-クロロエチルビス(1,1-ジメチル-2-フロピニル)フォスフェート、2,2,2-トリフルオロエチルビス(1,1-ジメチル-2-プロピニル)フォスフェート、2,2,2-トリクロロエチルビス(1,1-ジメチル-2-プロピニル)フォスフェート等が挙げられる。
 一般式(1)で表される化合物としては、メチルビス(2-プロピニル)フォスフェート、エチルビス(2-プロピニル)フォスフェート、プロピルビス(2-プロピニル)フォスフェート、ブチルビス(2-プロピニル)フォスフェート、ペンチルビス(2-プロピニル)フォスフェート、トリス(2-プロピニル)フォスフェート、及び2-クロロエチルビス(2-プロピニル)フォスフェートが好ましく、エチルビス(2-プロピニル)フォスフェート、プロピルビス(2-プロピニル)フォスフェート、ブチルビス(2-プロピニル)フォスフェート、及びトリス(2-プロピニル)フォスフェートが更に好ましく、エチルビス(2-プロピニル)フォスフェート、及びトリス(2-フロピニル)フォスフェートが特に好ましい。
 一般式(2)におけるR4及びR5が表す炭素原子数1~8のアルキル基としては、上記一般式(1)におけるR1が表す基と同様の基が挙げられる。また、R1と同様の理由により、水素原子、メチル、エチル及びプロピルが好ましく、水素原子及びメチルが更に好ましく、水素原子が特に好ましい。
 一般式(2)におけるR6が表す脂肪族炭化水素基としては、上記一般式(1)におけるR3が表す基と同様の基が挙げられる。R6が表す基としては、蓄電デバイスの内部抵抗が小さくなることから、メチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、2-プロピニル、3-クロロプロピル、3-クロロブチル、及び4-クロロブチルが好ましく、メチル、エチル、プロピル及び2-プロピニルが更に好ましく、メチル及びエチルが特に好ましい。
 一般式(2)において、nは1又は2の数を表す。原料となるアルキンジオールからのリン酸エステル反応が容易であり、高収率で目的化合物が得られることから、nは2の数であることが好ましい。
 一般式(2)で表され化合物のうちnが1の数である化合物としては、例えば、2-ブチン-1,4-ジオールテトラメチルジフォスフェート、2-ブチン-1,4-ジオールテトラエチルジフォスフェート、2-ブチン-1,4-ジオールテトラプロピルジフォスフェート、2-ブチン-1,4-ジオールテトライソプロピルジフォスフェート、2-ブチン-1,4-ジオールテトラブチルジフォスフェート、2-ブチン-1,4-ジオールテトラペンチルジフォスフェート、2-ブチン-1,4-ジオールテトラキス(2-フロピニル)ジフォスフェート、2-ブチン-1,4-ジオールテトラキス(3-クロロプロピル)ジフォスフェート、2-ブチン-1,4-ジオールテトラキス(3-クロロブチル)ジフォスフェート、2-ブチン-1,4-ジオールテトラキス(4-クロロブチル)ジフォスフェート等が挙げられ、中でも、2-ブチン-1,4-ジオールテトラメチルジフォスフェート、2-ブチン-1,4-ジオールテトラエチルジフォスフェート、2-ブチン-1,4-ジオールテトラフロピルジフォスフェート、及び2-ブチン-1,4-ジオールテトラキス(2-フロピニル)ジフォスフェートが好ましく、2-ブチン-1,4-ジオールテトラメチルジフォスフェート、及び2-ブチン-1,4-ジオールテトラキス(2-プロピニル)ジフォスフェートが更に好ましい。
 また、一般式(2)で表される化合物のうちnが2の数である化合物としては、例えば、2,4-ヘキサジイン-1,6-ジオールテトラメチルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラエチルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラフロピルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトライソプロピルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラブチルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラペンチルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラキス(2-フロピニル)ジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラキス(3-クロロプロピル)ジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラキス(3-クロロブチル)ジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラキス(4-クロロブチル)ジフォスフェート等が挙げられ、中でも、2,4-ヘキサジイン-1,6-ジオールテトラメチルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラエチルジフォスフェート、2,4-ヘキサジイン-1,6-ジオールテトラプロピルジフォスフェート、及び2,4-ヘキサジイン-1,6-ジオールテトラキス(2-プロピニル)ジフォスフェートが好ましく、2,4-ヘキサジイン-1,6-ジオールテトラメチルジフォスフェート、及び2,4-ヘキサジイン-1,6-ジオールテトラキス(2-プロピニル)ジフォスフェートが更に好ましい。
 一般式(3)におけるR7、R8、R9及びR10が表す炭素原子数1~8の脂肪族炭化水素基としては、上記R3が表す脂肪族炭化水素基又はシクロアルキル基等が挙げられる。
 シクロアルキル基としては、シクロペンチル、シクロヘキシル、シクロヘキシルメチル、4-メチルシクロヘキシル等が挙げられる。
 一般式(3)におけるR7、R8、R9及びR10が表す炭素原子数6~8の芳香族炭化水素基としては、フェニル、トルイル、キシリル、ベンジル等が挙げられる。
 R7、R8、R9及びR10が表す脂肪族炭化水素基及び芳香族炭化水素基は、ハロゲン原子により置換されていてもよく、上記R3で挙げたもの以外に、ペンタフルオロシクロヘキシル、4-フルオロシクロヘキシルメチル、2-クロロフェニル、3-クロロフェニル、4-クロロフェニル、2-フルオロフェニル、3-フルオロフェニル、4-フルオロフェニル、2,4,6-クロロフェニル等が挙げられる。
 R7、R8、R9及びR10が表す基の中でも、リチウムイオンの移動への悪影響が小さく充電特性が良好であることから、メチル及びエチルが好ましく、メチルが更に好ましい。
 一般式(3)におけるR11が表すエーテル基を有しない炭素原子数1~8のアルキレン基としては、メチレン、エタン-1,2-ジイル、プロパン-1,3-ジイル、ブタン-1,4-ジイル、ペンタン-1,5-ジイル、ヘキサン-1,6-ジイル、ヘプタン-1,7-ジイル、オクタン-1,8-ジイル、2-メチルブタン-1,4-ジイル等が挙げられる。
 エーテル基を有する炭素原子数1~8のアルキレン基としては、上記炭素原子数1~8のアルキレンの炭素-炭素間が任意に酸素原子で中断されていてよく、具体的な例としては、2-オキサプロピレン、3-オキサペンチレン、4-オキサヘプチレン、2,4-ジオキサペンチレン、3,5-ジオキサヘプチレン等が挙げられ、好ましくは、炭素原子数4~8のものである。
 R11が表す基の中でも、リチウムイオンの移動への悪影響が小さく充電特性が良好であることから、エタン-1,2-ジイル、プロパン-1,3-ジイル、ブタン-1,4-ジイル、2-メチルブタン-1,4-ジイル、4-オキサヘプチレン、及び酸素原子が好ましく、エタン-1,2-ジイル、4-オキサヘプチレン及び酸素原子が更に好ましく、エタン-1,2-ジイル及び酸素原子が特に好ましい。
 一般式(3)で表される化合物としては、例えば、1,2-ビス(フルオロジメチルシリル)エタン、1,2-ビス(フルオロジエチルシリル)エタン、1,2-ビス(フルオロジプロピルシリル)エタン、1,2-ビス(フルオロジブチルシリル)エタン、1,3-ビス(フルオロジメチルシリル)プロパン、1,2-ビス(フルオロジェチルシリル)プロパン、1,3-ビス(フルオロジプロピルシリル)プロパン、1,3-ビス(フルオロジブチルシリル)プロパン、1,4-ビス(フルオロジメチルシリル)ブタン、1,4-ビス(フルオロジエチルシリル)ブタン、1,4-ビス(フルオロジプロピルシリル)ブタン、1,4-ビス(フルオロジブチルシリル)ブタン、1,5-ビス(フルオロジメチルシリル)ペンタン、1,5-ビス(フルオロジエチルシリル)ペンタン、1,5-ビス(フルオロジプロピルシリル)ペンタン、1,5-ビス(フルオロジブチルシリル)ペンタン、1,6-ビス(フルオロジメチルシリル)ヘキサン、1,6-ビス(フルオロジエチルシリル)ヘキサン、1,6-ビス(フルオロジプロピルシリル)ヘキサン、1,6-ビス(フルオロジブチルシリル)ヘキサン、1,7-ビス(フルオロジメチルシリル)ヘプタン、1,7-ビス(フルオロジエチルシリル)ヘプタン、1,7-ビス(フルオロジプロピルシリル)ヘプタン、1,7-ビス(フルオロジブチルシリル)ヘプタン、1,8-ビス(フルオロジメチルシリル)オクタン、1,8-ビス(フルオロジエチルシリル)オクタン、1,8-ビス(フルオロジプロピルシリル)オクタン、1,8-ビス(フルオロジブチルシリル)オクタン、1,4-ビス(フルオロジメチルシリル)-2-メチルブタン、1,4-ビス(フルオロジエチルシリル)-2-メチルブタン、1,4-ビス(フルオロジプロピルシリル)-2-メチルブタン、1,4-ビス(フルオロジブチルシリル)-2-メチルブタン、1,7-ビス(フルオロジメチルシリル)-3-オキサヘプタン、1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン、1,3-ジフルオロ-1,3-ジフェニル-1,3-ジメチルジシロキサン、1,1-ビス(ジフルオロメチルシリル)メタン、1,2-ビス(ジフルオロメチルシリル)エタン、1,2-ビス(ジフルオロエチルシリル)エタン、1,2-ビス(ジフルオロプロピルシリル)エタン、1,2-ビス(ジフルオロブチルシリル)エタン、1,2-ビス(ジフルオロペンチルシリル)エタン、1,2-ビス(ジフルオロヘキシルシリル)エタン、1,2-ビス(ジフルオロヘプチルシリル)エタン、1,2-ビス(ジフルオロオクチルシリル)エタン、1,4-ビス(ジフルオロメチルシリル)ブタン、1,4-ビス(ジフルオロエチルシリル)ブタン、1,4-ビス(ジフルオロプロピルシリル)ブタン、1,4-ビス(ジフルオロブチルシリル)ブタン、1,4-ビス(ジフルオロペンチルシリル)ブタン、1,4-ビス(ジフルオロヘキシルシリル)ブタン、1,4-ビス(ジフルオロヘプチルシリル)ブタン、1,4-ビス(ジフルオロオクチルシリル)ブタン、1,4-ビス(ジフルオロメチルシリル)-2-メチルブタン、1,4-ビス(ジフルオロエチルシリル)-2-メチルブタン、1,4-ビス(ジフルオロプロピルシリル)-2-メチルブタン、1,4-ビス(ジフルオロブチルシリル)-2-メチルブタン、1,4-ビス(ジフルオロペンチルシリル)-2-メチルブタン、1,4-ビス(ジフルオロヘキシルシリル)-2-メチルブタン、1,4-ビス(ジフルオロヘプチルシリル)-2-メチルブタン、1,4-ビス(ジフルオロオクチルシリル)-2-メチルブタン、1,6-ビス(ジフルオロメチルシリル)ヘキサン、1,6-ビス(ジフルオロエチルシリル)ヘキサン、1,6-ビス(ジフルオロプロピルシリル)ヘキサン、1,6-ビス(ジフルオロブチルシリル)ヘキサン、1,6-ビス(ジフルオロペンチルシリル)ヘキサン、1,6-ビス(ジフルオロヘキシルシリル)ヘキサン、1,6-ビス(ジフルオロヘプチルシリル)ヘキサン、1,6-ビス(ジフルオロオクチルシリル)ヘキサン、1,7-ビス(ジフルオロメチルシリル)-4-オキサヘプタン等が挙げられ、中でも、1,2-ビス(フルオロジメチルシリル)エタン、1,4-ビス(フルオロジメチルシリル)-2-メチルブタン、1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン、1,1-ビス(ジフルオロメチルシリル)メタン、1,2-ビス(ジフルオロメチルシリル)エタン、1,4-ビス(ジフルオロメチルシリル)ブタン、及び1,7-ビス(ジフルオロメチルシリル)-4-オキサヘプタンが好ましく、1,2-ビス(フルオロジメチルシリル)エタン、1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン、及び1,2-ビス(ジフルオロメチルシリル)エタンが更に好ましい。
 一般式(4)におけるR12、R13、R14、R15、R16及びR17が表す脂肪族炭化水素基としては、上記R3が表す脂肪族炭化水素基と同様の基を表し、中でも、アノードの被膜の耐久性を高めることが可能な点で、メチル、エチル、プロピル、ブチル及びビニルが好ましく、メチルが更に好ましい。
 R18が表す不飽和結合を有する炭素原子数2~6の2価の脂肪族炭化水素基としては、ビニレン、プロペニレン、イソプロペニレン、ブテニレン、ペンテニレン、ヘキセニレン、エチニレン、プロピニレン、ブチニレン、ペンチニレン、ヘキシニレン等が挙げられる。
 また、R18が表す2価の芳香族炭化水素基としては、1,2-フェニレン、1,3-フェニレン、1,4-フェニレン等が挙げられる。
 R18としては、カソードとの作用で変質し難く耐久性の高い表面構造とすることが可能な点で、ビニレン、エチニレン及び1,4-フェニレンが好ましく、ビニレンが特に好ましい。
 一般式(4)で表される化合物としては、例えはビス(トリメチルシリル)アセチレンジカルボキシレート、ビス(エチルジメチルシリル)アセチレンジカルボキシレート、ビス(ジメチルプロピルシリル)アセチレンジカルボキシレート、ビス(ジメチルブチルシリル)アセチレンジカルボキシレート、ビス(アリルジメチルシリル)アセチレンジカルボキシレート、ビス(ジメチルビニルシリル)アセチレンジカルボキシレート、フマル酸ビス(トリメチルシリル)、フマル酸ビス(ジメチルビニルシリル)、フマル酸ビス(アリルジメチルシリル)、イタコン酸ビス(トリメチルシリル)、フタル酸ビス(トリメチルシリル)、イソフタル酸ビス(トリメチルシリル)、テレフタル酸ビス(トリメチルシリル)が挙げられ、中でも、ビス(トリメチルシリル)アセチレンジカルボキシレート及びフマル酸ビス(トリメチルシリル)が好ましく、フマル酸ビス(トリメチルシリル)が更に好ましい。
 一般式(5)におけるR19、R20、及びR21が表す脂肪族炭化水素基としては、上記R3が表す脂肪族炭化水素基と同様の基を表し、中でも、リチウムの移動を妨げないという点で、メチル、エチル、プロピル、ブチル及びビニルが好ましく、メチルが更に好ましい。
 一般式(5)で表される化合物としては、トリメチルシリルベンゼン、トリエチルシリルベンゼン、トリプロピルシリルベンゼン、トリブチルシリルベンゼン、m-ビストリメチルシリルベンゼン及びp-ビストリメチルシリルベンゼンが好ましく、トリメチルシリルベンゼンが更に好ましい。
 上記一般式(1)~(5)の何れかで表される化合物は1種のみを使用してもよいし、2種以上を組合せて使用してもよい。本発明の非水電解液において、これらの添加剤の含有量が、あまりに少ない場合には十分な効果を発揮できず、またあまりに多い場合には、配合量に見合う増量効果が得られないばかりか、却って非水電解液の特性に悪影響を及ぼすことがあることから、これらの添加剤の含有量は、非水電解液中、合計で0.005~10質量%が好ましく、0.02~5質量%が更に好ましく、0.05~3質量%が最も好ましい。
 中でも、上記一般式(4)で表される化合物を含有している場合、初期特性における内部抵抗が小さい点で好ましく、上記一般式(4)で表される化合物に加えて、上記一般式(1)~(3)又は(5)の何れかで表される化合物を更に含有していると、上記一般式(4)で表される化合物のみを用いた場合と比較して、サイクル特性が向上する点で特に好ましい。
 また、上記一般式(4)で表される化合物と、上記一般式(1)~(3)又は(5)の何れかで表される化合物とを併用する場合その比率は、0:100~20:1(前者:後者)が好ましく、1:10~10:1がより好ましい。
 本発明の非水電解液に用いられる有機溶媒としては、非水電解液に通常用いられているものを1種又は2種以上組み合わせて用いることができる。具体的には、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。
 上記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、非水電解液の誘電率を上げる役割を果たし、特に飽和環状カーボネート化合物が好ましい。斯かる飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1,-ジメチルエチレンカーボネート等が挙げられる。上記飽和環状エステル化合物としては、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。上記スルホキシド化合物としては、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。上記スルホン化合物としては、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、及びテトラメチルスルホランが好ましい。上記アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 上記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、非水電解液の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の蓄電特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解液の性能を高くすることができ、中でも、飽和鎖状カーボネート化合物が好ましい。斯かる飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。上記の鎖状エーテル化合物又は環状エーテル化合物としては、例えば、ジメトキシエタン(DME)、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
 上記飽和鎖状エステル化合物としては、分子中の炭素数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
 その他、有機溶媒としてアセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体を用いることもできる。
 本発明の非水電解液に用いられるリチウム塩としては、従来公知のリチウム塩が用いられ、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiC(CF3SO23、LiB(CF3SO34、LiB(C242、LiBF2(C24)、LiSbF6、LiSiF5、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、及びこれらの誘導体等が挙げられ、これらの中でも、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、及びLiC(CF3SO23並びにLiCF3SO3の誘導体、及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上を用いるのが、電気特性に優れるので好ましい。
 上記リチウム塩は、本発明の非水電解液中の濃度が、0.1~3.0mol/L、特に0.5~2.0mol/Lとなるように、上記有機溶媒に溶解することが好ましい。該リチウム塩の濃度が0.1mol/Lより小さいと、充分な電流密度を得られないことがあり、3.0mol/Lより大きいと、非水電解液の安定性を損なう恐れがある。上記リチウム塩は、2種以上のリチウム塩を組み合わせて使用してもよい。
 また、本発明の非水電解液には、難燃性を付与するために、ハロゲン系、リン系、その他の難燃剤を適宜添加することができる。難燃剤の添加量が、あまりに少ない場合には十分な難燃化効果を発揮できず、またあまりに多い場合は、配合量に見合う増量効果は得られないばかりか、却って非水電解液の特性に悪影響を及ぼすことがあることから、本発明の非水電解液を構成する有機溶媒に対して、1~50質量%であることが好ましく、3~10質量%であることが更に好ましい。
 本発明の蓄電デバイスでは、カソードとアノードとの間にセパレータを用いることが好ましく、該セパレータとしては、通常用いられる高分子の微多孔フィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられる。これらのフィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。更に、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、本発明の蓄電デバイスには、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホン、セルロース類からなるフィルムが好ましく用いられる。
 これらのフィルムは、非水電解液がしみ込んでイオンが透過し易いように、微多孔化がなされている。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。
 本発明の蓄電デバイスにおいて、アノード、カソード、非水電解液及びセパレータには、より安全性を向上する目的で、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、ヒンダードアミン化合物等を添加してもよい。
 本発明の蓄電デバイスの具体例としては、電気二重層キャパシタ、ハイブリットキャパシタ等のキャパシタ類が挙げられる。
 上記構成からなる本発明の蓄電デバイス(キャパシタ)は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状とすることができる。 図1は、本発明の蓄電デバイスのコイン型キャパシタの一例を、 図2及び 図3は円筒型キャパシタの一例をそれぞれ示したものである。
 図1に示すコイン型のキャパシタ10において、1は活性炭カソード、1aはカソード集電体、2はカソードから放出されたリチウムイオンを吸蔵、放出できる炭素質材料よりなるアノード、2aはアノード集電体、3は本発明の非水電解液、4はステンレス製のカソードケース、5はステンレス製のアノードケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。
 また、図2及び図3に示す円筒型の蓄電デバイス10、10'において、11はアノード、12はアノード集電体、13はカソード、14はカソード集電体、15は本発明の非水電解液、16はセパレータ、17はカソード端子、18はアノード端子、19はアノード板、20はアノードリード、21はカソード板、22はカソードリード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。
 以下に、実施例及び比較例により本発明を更に詳細に説明する。但し、以下の実施例等により本発明は何等制限されるものではない。尚、実施例中の「部」や「%」は、特にことわらないかぎり質量によるものである。
 下記実施例1~17及び比較例1~6は、本発明の蓄電デバイスの実施例並びにその比較例である。
〔実施例1~17及び比較例1~6〕蓄電デバイスの作製及び評価
 以下に示す通り、本発明及び比較例の蓄電デバイスを作製し、得られた蓄電デバイスを用いて初期特性試験及びサイクル特性試験を行い、蓄電デバイスを評価した。
〔アノードAの作製〕
 活物質として難黒鉛化炭素90質量部、アセチレンブラック5質量部、及びバインダーとしてポリフッ化ビニリデン(PVDF)5質量部を混合した後、N-メチル-2-ピロリドン(NMP)140質量部に分散させてスラリー状とした。このスラリーを銅製のアノード集電体に塗布し、乾燥後、プレス成型した。その後、アノードを電解液中でリチウム箔と所定の時間接続させることでリチウムのドープを行った。所定の大きさの円盤状にカットし、アノードAとした。
〔アノードBの作製〕
 活物質として難黒鉛化炭素の代わりに易黒鉛化炭素を用いた以外は、アノードAの作製と同様の方法でアノードBを作製した。
〔カソードの作製〕
 活物質として難黒鉛化炭素の代わりに活性炭を用いた以外は、アノードAの作製と同様の方法でカソードを作製した。
〔非水電解液の作製〕
<ステップ1>電解質溶液の調製
 プロピレンカーボネート50体積%、及びジエチルカーボネート50体積%からなる混合溶媒に、LiPF6が1mol/Lの濃度となるように加え、溶解し、これを電解質溶液とした。
<ステップ2>非水電解液の作製
 下記化合物A1~A6(上記一般式(1)~(5)で表される化合物)、比較化合物A’1又はA’2を〔表1〕に示す割合でステップ1にて調製した電解質溶液に溶解した。尚、〔表1〕中の( )内の数字は、非水電解液における濃度(質量%)を表す。
Figure JPOXMLDOC01-appb-T000003
化合物A1:トリス(2-プロピニル)フォスフェート(一般式(1)で表される化合物)
化合物A2:2,4-ヘキサジイン-1,6-ジオールテトラエチルジフォスフェート(一般式(2)で表される化合物)
化合物A3:1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン(一般式(3)で表される化合物)
化合物A4:1,2-ビス(ジフルオロ(メチル)シリル)エタン(一般式(3)で表される化合物)
化合物A5:フマル酸ビス(トリメチルシリル)(一般式(4)で表される化合物)
化合物A6:トリメチルシリルベンゼン(一般式(5)で表される化合物)
化合物A’1:ビニレンカーボネート
化合物A’2:プロパンスルトン
〔蓄電デバイスの評価〕
 得られた円盤状アノードA又はアノードBと円盤状カソードを、厚さ25μmのセルロース製のセパレータをはさんでケース内に保持した。その後、予め作製した非水電解液No.1~No.9又は比較No.1~No.3とアノードとの組合せが〔表2〕となるように、それぞれの非水電解液をケース内に注入し、ケースを密閉、封止して、実施例1~14及び比較例1~6の蓄電デバイス(φ20mm、厚さ3.2mmのコイン型)を製作した。
 作製した蓄電デバイスについて、下記試験法のとおり初期特性試験及びサイクル特性試験を行った。初期特性試験では、内部抵抗比を求めた。またサイクル特性試験では、放電容量維持率及び内部抵抗増加率を求めた。これらの試験結果を下記〔表2〕に示す。尚、内部抵抗比の数値が低いほど初期特性に優れる蓄電デバイスである。また、放電容量維持率が高いほど、内部増加率が低いほどサイクル特性に優れる蓄電デバイスである。
<初期特性試験の内部抵抗比の測定方法>
 蓄電デバイスを、20℃の恒温槽内に入れ、充電電流0.3mA/cm2(0.2
C相当の電流値)で3.8Vまで定電流定電圧充電し、放電電流0.3mA/cm2(0
.2C相当の電流値、1Cは蓄電容量を1時間で放電する電流値)で2.2Vまで定電流放電する操作を6回行った。上記6回目の放電容量(初期放電容量)を測定後の蓄電デバイスについて、先ず、充電電流1.5mA/cm2(0.2C相当の電流値)でSOC50%になるように定電流充電し、交流インピーダンス測定装置(Bio Logic製、商品名:VSP)を用いて、周波数100kHz~0.02Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール-コールプロットを作成した。続いて、このコール-コールプロットにおいて、円弧部分を円でフィッティングして、この円弧の直径を初期内部抵抗とし、下記式に示すように、内部抵抗比(%)を、実施例5の初期内部抵抗を100とした場合の初期内部抵抗の割合として求めた。
 内部抵抗比(%)=[(初期内部抵抗)/(実施例5における初期内部抵抗)]×100
<サイクル特性試験の測定方法>
 初期特性試験後の蓄電デバイスを、60℃の恒温槽内に入れ、充電電流7.5mA/cm2(5C相当の電流値)で3.8Vまで定電流充電し、放電電流7.5mA/cm2で2.2Vまで定電流放電を行うサイクルを1000回繰り返して行った。この1000回目の放電容量と初期放電容量とから、下記式により放電容量維持率(%)を求めた。その後、雰囲気温度を20℃に戻して、20℃における内部抵抗を測定し、その測定結果から下記式により内部抵抗増加率を求めた。
 放電容量維持率(%)=[(1000サイクル目の放電容量)/(初期放電容量)]×100
 内部抵抗増加率(%)=[1000サイクル後の内部抵抗-初期内部抵抗)/(初期内部抵抗)]×100
Figure JPOXMLDOC01-appb-T000004
 〔表2〕の結果から明らかなように、本発明の蓄電デバイスは、60℃におけるサイクル特性試験後において、内部抵抗及び放電容量の面で優れており、優れたキャパシタ特性を維持できることが明白である。
1  カソード
1a カソード集電体
2  アノード
2a アノード集電体
3  非水電解液
4  カソードケース
5  アノードケース
6  ガスケット
7  セパレータ
10 コイン型の蓄電デバイス
10' 円筒型の蓄電デバイス
11 アノード
12 アノード集電体
13 カソード
14 カソード集電体
15 非水電解液
16 セパレータ
17 カソード端子
18 アノード端子
19 アノード板
20 アノードリード
21 カソード板
22 カソードリード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子

Claims (4)

  1.  リチウムが脱挿入可能なアノード、活性炭を含有するカソード及び非水電解液を具備する蓄電デバイスにおいて、上記非水電解液が、下記一般式(1)~(5)の何れかで表される化合物を少なくとも1種含有することを特徴とする蓄電デバイス。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中の、R1及びR2は、それぞれ独立して水素原子又は炭素原子数1~8のアルキル基を表し、R3は、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、R3が表す脂肪族炭化水素基は、ハロゲン原子により置換されていてもよい。
     上記一般式(2)中の、R4及びR5は、それぞれ独立に水素原子又は炭素原子数1~8のアルキル基を表し、R6は、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、R6が表す脂肪族炭化水素基は、ハロゲン原子により置換されていてもよく、nは1又は2を表す。
     上記一般式(3)中の、R7、R8、R9及びR10は、それぞれ独立して不飽和結合を有している若しくは有していない炭素原子数1~8の脂肪族炭化水素基、又は炭素原子数6~8の芳香族炭化水素基を表し、R7及びR8は、更にフッ素原子を表すことができ、R7、R8、R9及びR10が表す脂肪族炭化水素基及び芳香族炭化水素基は、ハロゲン原子により置換されていてもよく、R11は、エーテル基を有する若しくは有しない炭素原子数1~8のアルキレン基、又は酸素原子を表す。
     上記一般式(4)中の、R12、R13、R14、R15、R16及びR17は、それぞれ独立して、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、R18は、不飽和結合を有する炭素原子数2~6の2価の脂肪族炭化水素基、又は2価の芳香族炭化水素基を表す。
     上記一般式(5)中の、R19、R20及びR21は、それぞれ独立して、不飽和結合を有している又は有していない炭素原子数1~8の脂肪族炭化水素基を表し、mは1又は2を表す。)
  2.  上記非水電解液が上記一般式(4)で表される化合物を含有する請求項1に記載の蓄電デバイス。
  3.  更に、上記非水電解液が少なくとも上記一般式(1)、(2)、(3)又は(5)の何れかで表される化合物を含有する請求項2に記載の蓄電デバイス。
  4.  キャパシタであることを特徴とする請求項1~3の何れか1項に記載の蓄電デバイス。
PCT/JP2013/069165 2012-07-26 2013-07-12 蓄電デバイス WO2014017321A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380039070.1A CN104488053B (zh) 2012-07-26 2013-07-12 蓄电装置
KR1020157001192A KR102046335B1 (ko) 2012-07-26 2013-07-12 축전 디바이스
EP13822676.6A EP2879144A4 (en) 2012-07-26 2013-07-12 DEVICE FOR STORING ELECTRICITY
US14/416,393 US9583280B2 (en) 2012-07-26 2013-07-12 Electricity storage device
JP2014526854A JP6295197B2 (ja) 2012-07-26 2013-07-12 蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-166293 2012-07-26
JP2012166293 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017321A1 true WO2014017321A1 (ja) 2014-01-30

Family

ID=49997136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069165 WO2014017321A1 (ja) 2012-07-26 2013-07-12 蓄電デバイス

Country Status (7)

Country Link
US (1) US9583280B2 (ja)
EP (1) EP2879144A4 (ja)
JP (1) JP6295197B2 (ja)
KR (1) KR102046335B1 (ja)
CN (1) CN104488053B (ja)
TW (1) TWI612711B (ja)
WO (1) WO2014017321A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006488A1 (ja) * 2014-07-07 2016-01-14 株式会社Adeka キャパシタ用非水電解液及びキャパシタ
WO2016076145A1 (ja) * 2014-11-11 2016-05-19 新日鉄住金化学株式会社 非水電解液二次電池
KR20160079620A (ko) * 2014-12-26 2016-07-06 삼성에스디아이 주식회사 리튬 이차 전지
WO2016147872A1 (ja) * 2015-03-17 2016-09-22 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2017004885A1 (zh) * 2015-07-08 2017-01-12 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
JPWO2016060038A1 (ja) * 2014-10-16 2017-07-27 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2020017378A1 (ja) * 2018-07-19 2020-01-23 株式会社Adeka 非水電解質二次電池
US11024880B2 (en) 2018-05-29 2021-06-01 Hyundai Motor Company Electrolyte for lithium secondary battery and lithium secondary battery including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016209969A1 (de) * 2016-06-07 2017-12-07 Robert Bosch Gmbh Hybridsuperkondensator mit feuerhemmendem Elektrolyt
DE102016217709A1 (de) 2016-09-15 2018-03-15 Robert Bosch Gmbh Hybridsuperkondensator mit SEI-Additiven
CN109004273A (zh) * 2017-06-07 2018-12-14 宁德时代新能源科技股份有限公司 电解液及二次电池
KR102477644B1 (ko) 2017-07-03 2022-12-15 주식회사 엘지에너지솔루션 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2019009595A1 (ko) * 2017-07-03 2019-01-10 주식회사 엘지화학 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
KR102264048B1 (ko) * 2019-08-16 2021-06-14 동화일렉트로라이트 주식회사 이차전지용 전해액 및 이를 포함하는 이차전지
CN111900470B (zh) * 2020-05-15 2021-08-27 浙江锂威能源科技有限公司 一种多功能高电压锂离子电池电解液及高电压锂离子电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
JPH087156A (ja) 1994-06-21 1996-01-12 Hitachi Ltd 自動取引装置
US5626981A (en) 1994-04-22 1997-05-06 Saft Rechargeable lithium electrochemical cell
JPH1050342A (ja) 1996-08-01 1998-02-20 Sony Corp 非水電解質二次電池
JP2001006729A (ja) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2001052965A (ja) * 1999-06-04 2001-02-23 Mitsui Chemicals Inc コンデンサ用非水電解液、電極、およびそれを用いたコンデンサ
JP2002260440A (ja) * 2001-02-28 2002-09-13 Mitsubishi Paper Mills Ltd イオン伝導性組成物およびそれを用いた電池、電気化学素子
JP2003323915A (ja) * 2002-04-26 2003-11-14 Denso Corp 非水電解液および該電解液を用いた非水電解液二次電池
JP2008146930A (ja) * 2006-12-07 2008-06-26 Sony Corp 電解液および電池
JP2012109092A (ja) * 2010-11-16 2012-06-07 Adeka Corp 非水電解液二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962782B2 (ja) 1990-07-26 1999-10-12 三洋電機株式会社 非水系電解液電池
JP4139960B2 (ja) * 2002-12-19 2008-08-27 日本電気株式会社 蓄電デバイス
JP4964404B2 (ja) 2003-03-07 2012-06-27 株式会社デンソー リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP4041044B2 (ja) * 2003-09-18 2008-01-30 Tdk株式会社 電気化学デバイスの製造方法
JP4656312B2 (ja) * 2005-09-13 2011-03-23 信越化学工業株式会社 環状カーボネート変性有機ケイ素化合物を含有する非水電解液並びに二次電池及びキャパシタ
JP2008300523A (ja) * 2007-05-30 2008-12-11 Bridgestone Corp キャパシタ用非水電解液及びそれを備えた非水電解液キャパシタ
US20080318136A1 (en) * 2007-06-22 2008-12-25 Uchicago Argonne, Llc Non-aqueous electrolytes
JP2009016441A (ja) * 2007-07-02 2009-01-22 Mitsubishi Chemicals Corp 電気化学キャパシタ用非水系電解液及びそれを用いた電気化学キャパシタ
JP2009065074A (ja) * 2007-09-10 2009-03-26 Japan Carlit Co Ltd:The シュードキャパシタ用電解液及びシュードキャパシタ
WO2009101947A2 (en) * 2008-02-12 2009-08-20 Sumitomo Chemical Company, Limited Process for producing carbon material
JP2012028177A (ja) * 2010-07-23 2012-02-09 Toyota Motor Corp リチウムイオン二次電池
KR101874490B1 (ko) * 2010-08-31 2018-08-02 가부시키가이샤 아데카 비수 전해액 이차전지
US9391345B2 (en) 2010-09-30 2016-07-12 Uchicago Argonne, Llc Non-aqueous electrolytes for electrochemical cells
JP5955629B2 (ja) * 2011-11-01 2016-07-20 株式会社Adeka 非水電解液二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
US5626981A (en) 1994-04-22 1997-05-06 Saft Rechargeable lithium electrochemical cell
JPH087156A (ja) 1994-06-21 1996-01-12 Hitachi Ltd 自動取引装置
JPH1050342A (ja) 1996-08-01 1998-02-20 Sony Corp 非水電解質二次電池
JP2001052965A (ja) * 1999-06-04 2001-02-23 Mitsui Chemicals Inc コンデンサ用非水電解液、電極、およびそれを用いたコンデンサ
JP2001006729A (ja) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2002260440A (ja) * 2001-02-28 2002-09-13 Mitsubishi Paper Mills Ltd イオン伝導性組成物およびそれを用いた電池、電気化学素子
JP2003323915A (ja) * 2002-04-26 2003-11-14 Denso Corp 非水電解液および該電解液を用いた非水電解液二次電池
JP2008146930A (ja) * 2006-12-07 2008-06-26 Sony Corp 電解液および電池
JP2012109092A (ja) * 2010-11-16 2012-06-07 Adeka Corp 非水電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2879144A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018844A (ja) * 2014-07-07 2016-02-01 パナソニック株式会社 キャパシタ用非水電解液及びキャパシタ
WO2016006488A1 (ja) * 2014-07-07 2016-01-14 株式会社Adeka キャパシタ用非水電解液及びキャパシタ
CN106663551B (zh) * 2014-07-07 2019-04-23 株式会社Adeka 电容器用非水电解液和电容器
CN106663551A (zh) * 2014-07-07 2017-05-10 株式会社Adeka 电容器用非水电解液和电容器
JPWO2016060038A1 (ja) * 2014-10-16 2017-07-27 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2016076145A1 (ja) * 2014-11-11 2016-05-19 新日鉄住金化学株式会社 非水電解液二次電池
JPWO2016076145A1 (ja) * 2014-11-11 2017-08-17 株式会社Adeka 非水電解液二次電池
KR20160079620A (ko) * 2014-12-26 2016-07-06 삼성에스디아이 주식회사 리튬 이차 전지
KR102489610B1 (ko) * 2014-12-26 2023-01-16 삼성에스디아이 주식회사 리튬 이차 전지
JPWO2016147872A1 (ja) * 2015-03-17 2018-01-25 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2016147872A1 (ja) * 2015-03-17 2016-09-22 株式会社Adeka 非水電解液及び非水電解液二次電池
US10388989B2 (en) 2015-03-17 2019-08-20 Adeka Corporation Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
WO2017004885A1 (zh) * 2015-07-08 2017-01-12 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
US11024880B2 (en) 2018-05-29 2021-06-01 Hyundai Motor Company Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2020017378A1 (ja) * 2018-07-19 2020-01-23 株式会社Adeka 非水電解質二次電池

Also Published As

Publication number Publication date
KR20150039745A (ko) 2015-04-13
TWI612711B (zh) 2018-01-21
JPWO2014017321A1 (ja) 2016-07-11
JP6295197B2 (ja) 2018-03-14
US20150206664A1 (en) 2015-07-23
CN104488053B (zh) 2018-06-29
US9583280B2 (en) 2017-02-28
KR102046335B1 (ko) 2019-11-19
EP2879144A4 (en) 2016-05-25
EP2879144A1 (en) 2015-06-03
CN104488053A (zh) 2015-04-01
TW201409800A (zh) 2014-03-01

Similar Documents

Publication Publication Date Title
JP6295197B2 (ja) 蓄電デバイス
JP5955629B2 (ja) 非水電解液二次電池
KR101881445B1 (ko) 비수전해액 이차전지
JP5781293B2 (ja) 非水電解液二次電池
JP5881119B2 (ja) 非水電解液二次電池
JP5604162B2 (ja) 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
KR102613337B1 (ko) 비수전해액 및 비수전해액 이차전지
WO2016013480A1 (ja) 非水電解液二次電池、非水電解液及び化合物
JP6713452B2 (ja) 非水電解液及び非水電解液二次電池
JP2013145702A (ja) 非水電解液二次電池及び二次電池用非水電解液
TWI660537B (zh) 非水電解液及非水電解液二次電池
JP5897869B2 (ja) 新規フルオロシラン化合物
JP5709574B2 (ja) 二次電池用非水電解液及び該電解液を有する非水電解液二次電池
JP5823261B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822676

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014526854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157001192

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013822676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14416393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE