WO2014015476A1 - 一种苯酚甲醇气相烷基化生产甲酚的方法 - Google Patents

一种苯酚甲醇气相烷基化生产甲酚的方法 Download PDF

Info

Publication number
WO2014015476A1
WO2014015476A1 PCT/CN2012/079082 CN2012079082W WO2014015476A1 WO 2014015476 A1 WO2014015476 A1 WO 2014015476A1 CN 2012079082 W CN2012079082 W CN 2012079082W WO 2014015476 A1 WO2014015476 A1 WO 2014015476A1
Authority
WO
WIPO (PCT)
Prior art keywords
hours
catalyst
phenol
cresol
oxide
Prior art date
Application number
PCT/CN2012/079082
Other languages
English (en)
French (fr)
Inventor
王坤院
徐云鹏
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to AU2012386465A priority Critical patent/AU2012386465B2/en
Priority to EP12881816.8A priority patent/EP2878590A4/en
Priority to PCT/CN2012/079082 priority patent/WO2014015476A1/zh
Priority to US14/416,209 priority patent/US9212116B2/en
Priority to IN241DEN2015 priority patent/IN2015DN00241A/en
Publication of WO2014015476A1 publication Critical patent/WO2014015476A1/zh
Priority to ZA2015/00599A priority patent/ZA201500599B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • This invention relates to a process for the production of cresol, and more particularly to a process for the gas phase alkylation of phenol methanol to produce cresol. Background technique
  • P-cresol is a colorless liquid or crystal with a special odor. It is corrosive and toxic. It is hardly soluble in water. It is easily soluble in alkaline solution or organic solvents such as toluene and ethanol. It is an important fine chemical raw material and is widely used. Antioxidants, dyes, pharmaceuticals, pesticides, spices, etc. O-cresol, also known as: 2-cresol, o-cresol is an important fine chemical intermediate for synthetic pesticides, medicines, dyes, synthetic resins, perfumes, antioxidants, etc.
  • M-cresol also known as 3-cresol, m-cresol, m-methylphenol
  • 3-cresol m-cresol
  • m-methylphenol is mainly used as a pesticide intermediate to produce insecticides such as chlorpyrifos, fenthion, carbaryl, and permethrin.
  • insecticides such as chlorpyrifos, fenthion, carbaryl, and permethrin.
  • Coal tar contains about 30% phenol, 10%-13% o-cresol, 14%-18% m-cresol, 9%-12% p-cresol, 13%-15% xylenol, traditional cresol
  • the preparation method is a natural separation method, and the separation method can recover the three isomers of cresol.
  • Toluene sulfonation alkali fusion method is a traditional cresol synthesis production technology. Toluene is sulfonated to obtain toluenesulfonic acid, and then the molten sulfonate is treated with sodium hydroxide to obtain a sodium cresol salt, and the sodium salt is mixed with water. Acidification with sulfur dioxide or sulfuric acid gives cresol.
  • the composition of the cresol isomer depends on the reaction conditions, and mainly produces p-cresol, and the sulfonating agent may be sulfuric acid or chlorosulfonic acid.
  • the reaction temperature is 110 ° C
  • the resulting product composition is o-, m-cresol 5%-8%, p-cresol 84%-86%, the rest is xylenol; if chlorosulfonic acid
  • the sulfonated alkali is melted, the reaction temperature is 40 ° C, and the obtained product composition is: p-cresol 84%-86%, o-cresol 14%-16%, no m-cresol.
  • the method is mature in technology, simple in process, and suitable for the production of p-cresol, but the method uses a large amount of strong acid and alkali, equipment rot Corrosion and environmental pollution are serious, and it is intermittent production, suitable for small-scale production.
  • this method is mainly used in China to produce p-cresol.
  • the toluene chlorination method the chlorobenzene is substituted for chlorination, and the mixture is hydrolyzed to obtain a cresol mixture.
  • chlorine gas was introduced into the toluene reactor under the condition of 230 C, and a mixture of three chlorotoluenes was obtained, which was then hydrolyzed to obtain cresol in the presence of 425 ° C and the catalyst S 3 ⁇ 4.
  • the sodium salt mixture is hydrolyzed to a continuous reaction.
  • the cresol sodium salt solution is acidified, neutralized to obtain a cresol mixture, and finally distilled to obtain p-, m-, m-cresol.
  • the ratio of cresol to o, m, and p is 1:1.
  • the environmental pollution of this law is relatively serious, and there are many by-products, so the quality of the products is not high.
  • Phenol alkylation method using phenol as raw material and methanol as alkylating agent. Under liquid phase conditions, phenol and methanol are used at a temperature of 300-400 ° C and a pressure of l ⁇ 3 MPa, and A1 2 0 3 is used. Catalyst, phenol is methylated to prepare o-cresol. The product obtained by this method is 43% ⁇ 51% o-cresol, 17% ⁇ 36% m-cresol, 17% ⁇ 36% p-cresol, but the reaction conditions are harsh, high temperature and high pressure impurities, and other mixed cresol synthesis routes Not competitive.
  • Isopropyltoluene method isopropyl toluene is converted to methyl cumene hydroperoxide by the peroxide free radical of hydrogen, and then oxidized by oxygen of air, similar to the oxidation of cumene to phenol and
  • the acetone process produces a mixture of meta- and para-cresols, while producing by-product acetone, but the reaction complexity is much higher than that of phenol.
  • the method has almost no ortho-products, and the ratio of meta- and para-position is about 7:3. It is the main synthetic m-cresol process route at home and abroad. This method has high purity and is suitable for large-scale production. The disadvantages are technical difficulty, long process flow and high purification cost.
  • the object of the present invention is to provide a method for the selective alkylation of phenol methanol to produce cresol.
  • the phenol methanol is used as a raw material, and the modified molecular sieve is used as a catalyst.
  • the cresol selectivity is up to 90%, and the para-selectivity is up to 58. %, the catalyst has good stability. There is no equipment corrosion during the production process, which is an environment-friendly process with good industrial application prospects. Summary of the invention
  • the technical problem to be solved by the present invention is that the equipment in the conventional production of p-cresol technology is seriously corroded, and a large amount of waste water is generated in the production process.
  • the present invention provides a process for the selective catalysis of phenol methanol to cresol.
  • the technical scheme adopted by the present invention is as follows: a method for producing cresol by gas phase alkylation of phenol methanol, wherein phenol and methanol are preheated and mixed with a diluent gas continuously through a phenol methanol alkylation catalyst bed, The gas phase reaction is carried out at a reaction temperature of 200-500 ° C and a feed weight space velocity of 0.5-20 h -1 to form cresol, wherein the phenol methanol alkylation catalyst is prepared by mixing a molecular sieve as an active component with a binder. It is prepared by acid treatment, silanization, and steam treatment for acid level modulation.
  • the phenol methanol alkylation catalyst is also subjected to oxide modification.
  • the molecular sieve is molded by using a hydrogen- or ammonium-type molecular sieve having a weight percentage of 60-85% and a binder of 15% to 40% by weight.
  • the binder is a neutral oxide selected from one or more of the silica sol, diatomaceous earth or silica of silica.
  • the molecular sieve is ZSM-5, MCM-22, BETA molecular sieve, and the molar silicon to aluminum ratio is 20-80.
  • the method for producing cresol by gas phase alkylation of phenol methanol of the present invention is usually under normal pressure reaction conditions. Go on.
  • the preparation of the phenol methanol alkylation catalyst specifically comprises: (1) molecular sieve and binder mixed molding, drying, 550 ° C - 700 ° C roasting 4 10 hours. (2) Acid treatment, drying, calcination at 500 ° C - 600 ° C for 2-10 hours. (3) Silanization treatment with a silylating reagent, drying, 5 (XrC-80 (TC calcination for 2-10 hours. (4) Oxide modification, drying, 550 ° C-70 (TC roasting for 3-10 hours). (5) 350-800 ° C steam treatment for 0.5-10 hours.
  • the acid treatment uses an inorganic acid selected from the group consisting of dilute nitric acid, boric acid, and an organic acid selected from the group consisting of oxalic acid and citric acid.
  • the inorganic acid dilute nitric acid and boric acid used for the acid treatment are immersed at room temperature for 4 to 24 hours, and the organic acid oxalic acid and citric acid are immersed at 80 ° C for 4 to 12 hours.
  • the silylation treatment is carried out by an equal volume impregnation method, and the silylating agent used is one or more of tetraethyl orthosilicate, benzyl silicone oil, and dimethicone.
  • the solvent used was cyclohexane or n-hexane, and the immersion time was 2 to 10 hours.
  • the oxide modification is compounded with one or more oxides of an alkaline earth metal oxide, a transition metal oxide, and a phosphorus oxide.
  • the alkaline earth metal oxide is calcium oxide or cerium oxide, and the weight content is 0.1-10%
  • the transition metal oxide is iron oxide or nickel oxide, the weight content is 0.1-10%
  • the phosphorus oxide is diammonium phosphate or phosphoric acid.
  • the ammonium dihydrogenate has a P 2 0 5 loading of 0.01% to 3%.
  • the steam treatment is 100% steam
  • the treatment temperature is 35 CTC - 800 ° C
  • the time is 0.5-10 hours.
  • the diluent gas is N2 or water vapor, and the molar ratio of the diluent gas to the phenol is 0.5-20.
  • the preparation process considers the characteristics of the molecular sieve structure and the number of acid sites on the inner and outer surfaces of the molecular sieve, and optimizes and controls the modification step and the percentage of the modifier in the catalyst, and uses silicon oxide during molding.
  • silica sol and diatomaceous earth after calcination, increase the silicon hydroxyl group on the surface of the molecular sieve.
  • the acid treatment is beneficial to increase the silanization efficiency, further eliminate the acidity of the outer surface, and at the same time, silanization reduces the molecular sieve pore size, thereby improving the para-selectivity.
  • phosphorus modification is to further eliminate the acid sites on the outer surface of the molecular sieve and enhance the hydrothermal stability of the catalyst.
  • Steam treatment is to enhance the hydrothermal stability of the catalyst. It is the synergistic effect of these several modification processes that the catalyst has good para-selective properties and the strength of the catalyst is good. Well, it can fully meet the requirements of industrial use.
  • the preparation process of the cresol catalyst is a molecular sieve, a binder and a water mixed molding, and the molding method may be spray drying or extrusion molding.
  • the molecular sieves may be hydrogen or ammonia type ZSM-5 and MCM-22, beta molecular sieves.
  • the formed molecular sieve is subjected to an acid treatment, which may be nitric acid or boric acid, which is immersed at room temperature for 4 to 24 hours, and immersed in an organic acid of citric acid and oxalic acid at 80 ° C for 4 to 12 hours.
  • silanization is required 1-2 times.
  • the reagent used for silanization is benzyl silicone oil or dimethyl silicone oil.
  • the solvent is n-hexane or cyclohexane.
  • the phosphorus modification uses ammonium dihydrogen phosphate or diammonium hydrogen phosphate, and the weight content of phosphorus pentoxide in the catalyst is 0.8% to 3.0%.
  • the steam treatment temperature is preferably 350 ° C -80 CTC, 100% steam treatment for 0.5-10 hours.
  • the molding method can be used as a fluidized bed catalyst or a fixed bed catalyst.
  • the above-mentioned preparation steps are carried out to obtain a fluidized bed catalyst.
  • the extruded bed is formed into a precursor by the above steps to obtain a fixed bed catalyst.
  • the MCM-22 molecular sieve in the examples was synthesized according to the method of US Pat. No. 4,954,325.
  • Sodium metaaluminate is used as the aluminum source
  • silica sol is used as the silicon source
  • sodium hydroxide is used as the alkali source
  • cycloheximide (HMD is used as the template.
  • the preparation process of the catalyst is as follows: 120 g of ZSM-5 molecular sieve with a molar ratio of silica to alumina of 20, mixed with 60 g of diatomaceous earth, 100 g of silica weight 20% silica sol, and an appropriate amount of 10% dilute nitric acid as a squeezing agent. Extrusion molding. It was dried at 120 ° C and calcined at 500 ° C for 10 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor A0. 20 g of the parent catalyst AO was added to 50 ml of a 10% by weight nitric acid solution, and immersed at room temperature for 4 hours.
  • Example 2 20 g of A3 was subjected to steam treatment in a 100% steam atmosphere for 10 hours, a treatment temperature of 350 ° C, and calcination at 550 ° C for 3 hours to obtain a catalyst.
  • the molecular sieve content is 60%.
  • the preparation process of the catalyst was as follows: 170 g of ZSM-5 molecular sieve having a molar ratio of silicon to aluminum of 30, mixed with 100 g of silica weight 30% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent to form a squeezing strip. It was dried at 120 ° C and calcined at 700 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor B0. 20 g of the parent catalyst B0 was added to 50 ml of a 10% by weight ammonium nitrate solution, and immersed for 10 hours at room temperature.
  • B2 Drying at 120 ° C, baking at 600 ° C for 2 hours to obtain Bl.
  • 7.5 g of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of Bl and immersed at room temperature for 24 hours.
  • the 12CTC was dried, and then baked at 800 ° C for 2 hours to obtain B2.
  • 20 g of the B2 sample was immersed in an aqueous solution of ammonium dihydrogen phosphate solution for 12 hours, dried at 120 ° C, calcined at 550 ° C for 10 hours, and had a P 2 0 5 weight content of 0.01% to obtain B3.
  • the preparation process of the catalyst is as follows: 200 g of ZSM-5 molecular sieve with a molar ratio of silicon to aluminum of 200, mixed with 20 g of diatomaceous earth, 100 g of silica weight of 30% silica sol, and an appropriate amount of 10% dilute nitric acid as a squeezing agent. Extrusion molding. The 12CTC was dried and calcined at 550 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor D0. 20 grams of the parent catalyst D0 was added to 50 ml, A 10% by weight nitric acid solution was immersed for 24 hours at room temperature.
  • the 12CTC was dried and calcined at 600 ° C for 3 hours to obtain Dl.
  • 7.5 g of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of D1, and immersed at room temperature for 24 hours.
  • D21 was dried at 120 ° C and then calcined at 500 ° C for 3 hours.
  • 7.5 g of a 50% by weight solution of dimethyl silicone oil in n-hexane was added to 20 g of D21, and immersed at room temperature for 10 hours. Drying at 120 ° C, then calcining at 550 ° C for 3 hours to obtain D2.
  • the preparation process of the catalyst is as follows: 200 g of ammonia type ZSM-5 molecular sieve with a molar ratio of silicon to aluminum of 30, mixed with 10 g of diatomaceous earth, 100 g of silica weight 40% silica sol, and added with an appropriate amount of 10% dilute nitric acid as a help. Extrusion extrusion molding. The 12CTC was dried and calcined at 550 ° C for 4 hours. The above catalyst is cut into l ⁇ 3 mm to prepare a columnar catalyst precursor F0. 20 g of the parent catalyst F0 was added to 150 ml of an oxalic acid solution having a weight content of 0.5 mol/L, and soaked at 80 ° C for 4 hours.
  • 12CTC drying 50 (TC roasting for 2 hours to obtain Fl. 5% of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of Fl, and immersed for 2 hours at room temperature. 12 CTC drying, then baking at 600 ° C F2 was obtained in 3 hours. 20 g of F2 sample was immersed in an aqueous solution of calcium nitrate for 24 hours, dried at 120 ° C, calcined at 70 CTC for 3 hours, and the weight content of calcium oxide was 10% to obtain F3. 20 g of F3 was at 100%. The steam was treated in a steam atmosphere for 10 hours, the treatment temperature was 350 ° C, and the calcination was carried out at 550 ° C for 3 hours to obtain a catalyst F. The content of the molecular sieve in the catalyst was 80%.
  • the preparation process of the catalyst was as follows: 200 g of an ammonia type ZSM-5 molecular sieve having a molar ratio of silicon to aluminum of 40, mixed with 125 g of silica weight 40% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent to form a squeezing strip. Drying at 120 ° C, 55 (TC roasting for 4 hours. The above catalyst is cut into l ⁇ 3 mm to obtain the column catalyst precursor G0. 20 g of the parent catalyst GO is added to 50 ml, the weight content of 0.5 mol / L of oxalic acid solution, soaked at 80 ° C 12 hours.
  • the preparation process of the catalyst is as follows: 140 g of ammonia type ZSM-5 molecular sieve having a molar ratio of silicon to aluminum of 30, mixed with 20 g of silica, 100 g of silica by weight of 40% silica sol, and an appropriate amount of 10% dilute nitric acid as a co-extruding
  • the agent is extruded into a strip.
  • the 12CTC was dried and calcined at 550 ° C for 4 hours.
  • the above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor H0.
  • 20 g of the parent catalyst H0 was added to 150 ml of an oxalic acid solution having a weight content of 0.5 mol/L, and soaked at 80 ° C for 24 hours.
  • the preparation process of the catalyst was as follows: 170 g of ZSM-5 molecular sieve having a molar ratio of silicon to aluminum of 30, mixed with 100 g of silica weight 30% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent for extrusion molding. It was dried at 120 ° C and calcined at 55 CTC for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor 10. 20 g of the parent catalyst 10 was added to a citric acid solution having a weight of 0.5 mol L and soaked at 80 ° C for 8 hours. 12CTC was dried, and 5CXTC was calcined for 2 hours to obtain II.
  • 7.5 g of a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of II, and immersed at room temperature for 2 hours. The mixture was dried at 120 ° C and then calcined at 50 CTC for 3 hours to obtain 121.
  • 7.5 g of a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of 121, and immersed at room temperature for 2 hours. 12CTC drying, It was then calcined at 550 ° C for 3 hours to obtain 122.
  • the catalyst was prepared as follows: 160 g of ZSM-5 molecular sieve having a molar ratio of silica to alumina of 160, mixed with 100 g of silica weight 40% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a co-extruding agent to form a strip. It was dried at 120 ° C and calcined at 550 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor J0. 20 g of the parent catalyst J0 was added to 50 ml of a 10% by weight nitric acid solution, and immersed at room temperature for 10 hours. Drying at 120 ° C, baking at 500 ° C for 2 hours to obtain Jl.
  • the preparation process of the catalyst was as follows: 160 g of a ZSM-5 molecular sieve having a molar ratio of silicon to aluminum of 30, mixed with 100 g of silica weight 40% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent to form a squeezing strip. It was dried at 120 ° C and calcined at 550 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor K0. 20 g of the mother catalyst ⁇ 0 was added to 50 ml of a 10% by weight nitric acid solution, and immersed at room temperature for 10 hours.
  • the 12CTC was dried, and the 50CTC was baked for 2 hours to obtain Kl.
  • 7.5 g of a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of K1, and immersed at room temperature for 2 hours.
  • the 12CTC was dried, and then baked at 50 CTC for 3 hours to obtain K1.
  • 7.5 g of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of hydrazine 21, and immersed at room temperature for 2 hours. It was dried at 120 ° C and then calcined at 550 ° C for 3 hours to obtain K22.
  • the preparation process of the catalyst was as follows: 160 g of ZSM-5 molecular sieve having a molar ratio of silicon to aluminum of 30, mixed with 40 g of diatomaceous earth, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent to form a squeezing strip. 12CTC drying, 55CTC roasting for 4 hours. The above catalyst was cut into l ⁇ 3 mm to prepare a columnar catalyst precursor L0. 20 g of the parent catalyst L0 was added to 50 ml of a 10% by weight nitric acid solution, and immersed at room temperature for 24 hours. Drying at 120 ° C, baking at 500 ° C for 2 hours to obtain Ll.
  • a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of L1, and immersed at room temperature for 2 hours.
  • the 12CTC was dried, and then baked at 50 CTC for 3 hours to obtain L2.
  • 20 g of the L2 sample was immersed in an aqueous solution of nickel nitrate solution for 24 hours, dried at 120 ° C, calcined at 60 CTC for 3 hours, and the weight of nickel oxide was 10% to obtain L3.
  • 20 g of L3 was subjected to steam treatment in a 100% steam atmosphere for 2 hours, and the treatment temperature was 60 (TC, 55 CTC was calcined for 3 hours to obtain a catalyst!).
  • the molecular sieve content in the catalyst was 80%.
  • the catalyst was prepared as follows: 170 g of MCM-22 molecular sieve having a molar ratio of silica to alumina of 100, mixed with 100 g of silica weight 30% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent for extrusion molding. It was dried at 120 ° C and calcined at 550 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor M0. 20 g of the parent catalyst M0 was added to 50 ml of a 10% by weight nitric acid solution and immersed for 24 hours at room temperature. Drying at 120 ° C, baking at 500 ° C for 2 hours to obtain Ml.
  • a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of M1, and immersed at room temperature for 12 hours. It was dried at 120 ° C and then calcined at 50 °C for 3 hours to obtain M2.
  • 20 g of the M2 sample was immersed in an aqueous solution of ammonium dihydrogen phosphate solution for 10 hours, dried at 120 ° C, calcined at 70 CTC for 3 hours, and P 2 0 5 by weight was 3% to obtain M3.
  • 20 g of M3 was subjected to steam treatment in a 100% steam atmosphere for 10 hours, a treatment temperature of 450 ° C, and calcination at 550 ° C for 3 hours to obtain a catalyst.
  • the content of the molecular sieve in the catalyst was 85%.
  • the catalyst was prepared as follows: 170 g of MCM-22 molecular sieve having a molar ratio of silicon to aluminum of 60, mixed with 100 g of silica weight 30% silica sol, and an appropriate amount of 10% dilute nitric acid as a co-extruding agent for extrusion molding. It was dried at 120 ° C and calcined at 550 ° C for 4 hours. The above catalyst was cut into l ⁇ 3 mm to prepare a columnar catalyst precursor N0. 20 g of the parent catalyst NO was added to 50 ml of a 10% by weight nitric acid solution, and immersed at room temperature for 12 hours. 12CTC drying, 50CTC roasting for 2 hours to obtain Nl.
  • 7.5 g of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of N1, and immersed at room temperature for 2 hours.
  • the 12CTC was dried, and then calcined at 500 ° C for 3 hours to obtain N21.
  • 7.5 g of a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of N21, and immersed at room temperature for 2 hours.
  • the 12CTC was dried and then calcined at 550 ° C for 3 hours to obtain N22.
  • the catalyst was prepared as follows: 170 g of MCM-22 molecular sieve having a molar ratio of silicon to aluminum of 50, mixed with 100 g of silica weight 30% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent for extrusion molding. It was dried at 120 ° C and calcined at 550 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor P0. 20 g of the parent catalyst P0 was added to 50 ml of a 10% by weight nitric acid solution and immersed at room temperature for 24 hours. Drying at 120 ° C, baking at 500 ° C for 2 hours to obtain Pl.
  • 7.5 g of a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of P1, and immersed at room temperature for 2 hours. Drying at 120 ° C, followed by calcination at 500 ° C for 3 hours to obtain P21.
  • 7.5 g of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of P21 and immersed at room temperature for 2 hours. The 12CTC was dried, and then baked at 550 ° C for 3 hours or more to obtain P22.
  • the preparation process of the catalyst is as follows: 160 g of MCM-22 molecular sieve with a molar ratio of silicon to aluminum of 40, mixed with 20 g of diatomaceous earth, 100 g of silica weight 20% silica sol, and an appropriate amount of 10% dilute nitric acid as a squeezing agent. Extrusion molding. The 12CTC was dried and calcined at 550 ° C for 4 hours. The above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor R0. 20 g of the parent catalyst R0 was added to 50 ml of a 10% by weight nitric acid solution, and immersed at room temperature for 10 hours.
  • Rl was dried at 120 ° C and calcined at 50 °C for 2 hours to obtain Rl.
  • 7.5 g of a 50% by weight solution of benzyl silicone oil in cyclohexane was added to 20 g of R1, and immersed at room temperature for 2 hours. Drying at 120 ° C, followed by baking at 50 °C for 3 hours gave R2.
  • 20 g of the R2 sample was impregnated with a ferric nitrate solution for 20 hours, dried at 120 ° C, and calcined at 700 ° C for 3 hours, and the weight content of the ferric oxide was 3% to obtain R3.
  • the preparation process of the catalyst was as follows: 170 g of a beta molecular sieve having a molar ratio of silica to alumina of 20, mixed with 100 ml of silica weight 30% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent for extrusion molding.
  • the 12CTC was dried and calcined at 550 ° C for 4 hours.
  • the above catalyst was cut into 1 to 3 mm to prepare a columnar catalyst precursor S0. 20 g of the parent catalyst SO was added to 50 ml, and a citric acid solution having a weight of 0.5 mol/L was added thereto, and immersed at 80 ° C for 8 hours.
  • the 12CTC was dried and calcined at 500 ° C for 2 hours to obtain Sl.
  • 7.5 g of a cyclohexane solution of 50% by weight of benzyl silicone oil was added to 20 g of S1, and immersed at room temperature for 2 hours. Drying at 120 ° C, followed by calcination at 550 ° C for 3 hours or more to obtain S22.
  • 20 g of the S22 sample was immersed in an aqueous solution of ammonium dihydrogen phosphate solution for 20 hours, dried at 120 ° C, calcined at 700 ° C for 3 hours, and P 2 0 5 by weight was 3% to obtain S3.
  • the catalyst was prepared as follows: 160 g of MCM-22 molecular sieve having a molar ratio of silicon to aluminum of 30, mixed with 100 g of silica weight 40% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a squeezing agent for extrusion molding. It was dried at 120 ° C and calcined at 550 ° C for 4 hours. The above catalyst is cut into l ⁇ 3mm A columnar catalyst precursor T0 was obtained. 20 g of the parent catalyst TO was added to 50 ml of a 2% by weight aqueous solution of boric acid and soaked at 80 ° C for 24 hours. It is dried at 120 ° C and calcined at 600 ° C for 2 hours to obtain dibutyl. The content of the molecular sieve in the catalyst was 80%.
  • the catalyst was prepared as follows: 160 g of ZSM-5 molecular sieve having a molar ratio of silica to alumina of 160, mixed with 100 g of silica weight 40% silica sol, and an appropriate amount of 10% dilute nitric acid was added as a co-extruding agent to form a strip. It was dried at 120 ° C and calcined at 55 °C for 4 hours. The above catalyst was cut into l ⁇ 3 mm to prepare a columnar catalyst precursor U0. 20 g of the parent catalyst U0 was added to 50 ml of a 2% by weight aqueous solution of boric acid and soaked at 80 ° C for 24 hours. It is dried at 120 ° C and calcined at 600 ° C for 2 hours to obtain U. The content of the molecular sieve in the catalyst was 80%.
  • Example 1-17 The catalyst obtained in Example 1-17 was subjected to a phenol methanol alkylation to a cresol reaction on a fixed bed reactor.
  • the raw materials phenol, methanol and water vapor are preheated into the reactor for reaction, and the reaction products are analyzed by on-line chromatography.
  • the gas chromatograph is the Agilent 7890A, and the column is a cyclodextrin column 30m X 0.25mm X 0.25 ⁇ ⁇ .
  • Chromatographic conditions Column temperature: initial temperature 150 ° C, stay 15 minutes, 1 (TC / minute heating rate increased to 180 ° C, constant temperature 5.3 minutes; carrier gas is high purity nitrogen, column pressure: 6.5pisa, column flow rate 12.6cm/sec.
  • the reaction catalyst loading is 6.0g, the weight space velocity is 2-6 hours, the reaction temperature is 300-50CTC, the dilution gas is water vapor, and the molar ratio of diluent gas to phenol is 0.5-20.
  • the molar ratio of raw material methanol to phenol The ratio is 1:1.
  • the results of the reaction of the catalyst for 72 hours in various examples are shown in Table 1.
  • the amount of phenol in the reactor: : percentage - (reactor outlet phenol + anisole) weight percent phenol conversion X 100% by weight of reactor phenol by weight of reactor outlet cresol
  • Catalyst reaction temperature weight empty feed water / phenol conversion para-selection cresol selectivity plant c speed h- 1 phenol (fraction rate / % sex / % sex / % erby)
  • the catalyst evaluation device and the test method were the same as those in Example 20.
  • the reaction catalyst loading amount was 20.0 g
  • the molar ratio of feed methanol to phenol was 1:1
  • the weight space velocity was 3 hours
  • the dilution gas was water vapor, or nitrogen gas
  • the molar ratio of diluent gas to feed phenol was 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种苯酚甲醇气相烷基化生产甲酚的方法,苯酚、甲醇经预热后与稀释气混合连续通过苯酚甲醇烷基化催化剂床层,在反应温度200-500°C,进料重量空速0.5-20h-1反应条件下进行气相反应生成甲酚。以MCM-22,ZSM-5,beta分子筛为活性组份改性制得苯酚甲醇烷基化催化剂。以苯酚甲醇为原料,甲酚选择性可达90%,对位选择性可达58%,催化剂稳定性好。生产过程中无设备腐蚀,是一种环境友好的催化剂,具有良好的工业应用前景。

Description

一种苯酚甲醇气相烷基化生产甲酚的方法 技术领域
本发明涉及生产甲酚的方法,特别是一种苯酚甲醇气相烷基化生产甲 酚的方法。 背景技术
对甲酚是具有特殊气味的无色液体或晶体, 有腐蚀性和毒性, 难溶 于水, 易溶于碱溶液或甲苯、 乙醇等有机溶剂, 是一种重要的精细化工 原料, 广泛应用于抗氧剂、 染料、 医药、 农药、 香料等行业。 邻甲酚, 又 名: 2-甲酚、 邻甲苯酚是合成农药、 医药、 染料、 合成树脂、 香料、 抗氧 剂等重要的精细化工中间体。 间甲酚, 又名 3-甲酚、 间甲苯酚、 间甲 基苯酚主要用作农药中间体, 生产杀虫剂杀螟松、 倍硫磷、速灭威、 二氯 苯醚菊酯, 也是彩色胶片、 树脂、 增塑剂和香料的中间体。 煤焦油酚中约 含有苯酚 30%, 邻甲酚 10%-13%, 间甲酚 14%-18%, 对甲酚 9%-12%, 二甲酚 13%-15%, 传统的甲酚制备方法是天然分离法, 采用分离方法可 以回收甲酚 3种异构体。
由于资源有限, 加之工艺过程复杂, 分离装置众多等不足, 经过多年 的努力与探索, 开发出许多种甲酚化学合成工艺, 自化学合成获得成功之 后, 天然分离法制备甲酚生产装置不断地被关闭。 文献报道有近 10种化 学合成路线。
甲苯磺化碱熔法是传统的甲酚合成生产技术,将甲苯磺化制得甲苯磺 酸,然后用氢氧化钠处理熔融的磺化物,得到甲酚钠盐,将钠盐与水混合, 通入二氧化硫或硫酸酸化得到甲酚。甲酚异构体的组成含量取决于反应条 件, 主要生成对甲酚, 磺化剂可以选用硫酸或氯磺酸。通常用硫酸磺化碱 液, 反应温度为 110 °C, 所得产品组成为邻、 间甲酚 5%-8%, 对甲酚 84%-86%, 其余为二甲酚; 若用氯磺酸磺化碱熔, 反应温度为 40°C, 所 得产品组成为:对甲酚 84%-86%, 邻甲酚 14%-16%, 无间甲酚。 该法技术 成熟、 工艺简单、 适于生产对甲酚, 但是该法使用大量强酸强碱, 设备腐 蚀和环境污染严重, 而且是间歇式生产, 适用于小规模生产, 目前国内主 要采用该法生产对甲酚。
甲苯氯化水解法, 甲苯苯环上取代氯化, 水解得到甲酚混合物。 首 先在 Cu-Fe催化剂作用下, 在 230 C条件下, 向甲苯反应器中通入氯气, 反应得到三个氯代甲苯的混合物,再在 425 °C和催化剂 S ¾的存在下水解 得到甲酚钠盐混合物, 水解为连续化反应。 甲酚钠盐溶液进行酸化, 再中 和得到甲酚混合物, 最后蒸熘分离得到对、 邻、 间甲酚, 该法得到的甲酚 邻、 间、 对之比为 1 :2: 1。 该法环境污染比较严重, 副产物多, 因此产品 质量不高。
苯酚烷基化法, 以苯酚为原料, 甲醇为烷基化剂, 在液相条件下, 苯 酚、 甲醇在温度为 300-400°C和压力 l~3MPa的条件下,采用 A1203为催化 剂, 苯酚进行甲基化反应制备邻甲酚。 该法获得产品组成为邻甲酚 43%〜51%、 间甲酚 17%~36%、对甲酚 17%~36%, 但是反应条件苛刻, 高 温高压杂质多, 与其他混合甲酚合成路线相比不具备竞争力。
异丙基甲苯法, 异丙基甲苯在氢的过氧化物游离基的引发下, 转化成 甲基异丙苯氢过氧化物, 再用空气的氧气进行氧化, 类似异丙苯氧化制备 苯酚与丙酮工艺, 生产出富含间、 对位甲酚, 同时副产丙酮, 但是反应复 杂程度远远高于苯酚的合成。 该法得到产品几乎没有邻位产品, 间、对位 比例约为 7:3, 是目前国内外主要合成间甲酚工艺路线。 此法得到产品纯 度高、 适宜大规模生产, 缺点是技术难度大, 工艺流程长、 蒸馏提纯费用 目前, 大量的文献专利都是基于金属氧化物催化剂上的苯酚甲醇烷基 化反应, 以邻甲酚为主要产物, 产物中无高附加值的对甲酚, 同时副产一 定量的二甲酚。而以分子筛为催化剂, 苯酚烷基化苯制甲基苯酚的报道较 少。 催化学报, 1998,19 ( 5 ) :423-427, 报道苯酚甲醇在 beta分子筛上的 反应性能, 采用镁、 锰、 镧改性, 催化剂的稳定性差。 催化学报, 2001,22 (6):545-549, 报道采用 P205 ,MgO和 Sb23对 HZSM-5 改性都可以提 高芳香醚的选择性,降低甲酚和二甲酚的选择性. 随着氧化物负载量的增 加,邻甲酚选择性升高. 适度的氧化物改性可以提高对甲酚的选择性,磷改 性后对位选择性增加为 35.87%, 甲酚的的选择性下降为 44.10%。 文献 Appl.Catal.A:Gen, 342 (2008) 40— 48;文献 J. Mol. Catal. A:Chem., 327 (2010) 63-72 及文献 Catalysis Today 133-135 (2008) 720-728中对氢型分子筛催 化剂上苯酚甲醇垸基化进行报道, 但实验使用大量的氮气做稀释气, 反应 条件苛刻, 且催化剂的稳定差, 没有工业应用价值。 目前国内外无分子筛 催化苯酚甲醇气相烷基化生产甲酚的工业装置, 传统的甲酚工业生产路 线, 使用强酸强碱、 生产过程中产生大量的工业废水, 环境污染严重, 设 备腐蚀严重。开发一种以分子筛为催化剂苯酚气相烷基化生产甲酚的工业 技术迫在眉睫。本发明的目的在于提供一种苯酚甲醇择形烷基化生产甲酚 的方法, 以苯酚甲醇为原料, 以改性分子筛为催化剂, 甲酚选择性可达 90%, 对位选择性可达 58%, 催化剂稳定性好。 生产过程中无设备腐蚀, 是一种环境友好的工艺, 具有良好的工业应用前景。 发明内容
本发明所要解决的技术问题是以往生产对甲酚技术中设备腐蚀严重, 生产过程中产生大量废水。本发明提供一种苯酚甲醇择形催化制甲酚的方 法。 以苯酚甲醇为原料, 在分子筛催化剂上气相烷基化高选择性的生产甲 酚, 生产过程不腐蚀设备, 不产生大量的工业废水, 是一种环境友好绿色 工艺。
为解决上述问题, 本发明采用的技术方案如下: 一种苯酚甲醇气相烷 基化生产甲酚的方法, 苯酚、 甲醇经预热后与稀释气混合连续通过苯酚甲 醇烷基化催化剂床层, 在反应温度 200-500°C、 进料重量空速 0.5-20h— 1条 件下进行气相反应生成甲酚,其中所述苯酚甲醇烷基化催化剂以分子筛为 活性组分, 与粘结剂混合成型, 经酸处理, 硅烷化, 和水蒸气处理进行酸 性位调变制备而成。
在本发明的方法中, 所述苯酚甲醇烷基化催化剂还进行氧化物改性。 在本发明的方法中, 分子筛成型采用重量百分比为 60-85%的氢型或 铵型分子筛和重量百分比为 15%-40%的粘结剂。 所述粘结剂为中性氧化 物, 其选自二氧化硅的硅溶胶、硅藻土或氧化硅中的一种或几种。所述分 子筛为 ZSM-5 , MCM-22, BETA分子筛, 摩尔硅铝比为 20-80。
本发明的苯酚甲醇气相烷基化生产甲酚的方法通常在常压反应条件 下进行。
在本发明的苯酚甲醇气相烷基化生产甲酚的方法中,苯酚甲醇烷基化 催化剂制备具体包括: (1 )分子筛与粘结剂混合成型,干燥、 550°C-700°C 焙烧 4-10小时。 (2)酸处理, 干燥、 500°C-600°C焙烧 2-10小时。 (3 )采 用硅烷化试剂进行硅烷化处理, 干燥、 5(XrC-80(TC焙烧 2-10小时。 (4 ) 氧化物改性, 干燥、 550°C-70(TC焙烧 3-10小时。 (5 ) 350-800°C水蒸气处 理 0.5-10小时。
在本发明的方法中, 所述酸处理使用选自稀硝酸,硼酸的无机酸和选 自草酸、 柠檬酸的有机酸。 酸处理使用的无机酸稀硝酸、 硼酸常温浸渍 4-24小时, 有机酸草酸、 柠檬酸 80°C浸渍 4-12小时。
在本发明的方法中, 所述硅烷化处理采用等体积浸渍法, 使用的硅烷 化试剂为正硅酸乙酯, 苯甲基硅油, 二甲基硅油中的一种或几种。使用的 溶剂为环己烷或正己烷, 浸渍时间 2-10小时。
在本发明的方法中, 所述氧化物改性使用碱土金属氧化物、过渡金属 氧化物和磷氧化物中的一种或多种氧化物复合改性。所述碱土金属氧化物 为氧化钙或氧化钡, 重量含量 0.1-10%, 所述过渡金属氧化物为氧化铁或 氧化镍, 重量含量 0.1-10%, 磷氧化物为磷酸氢二铵或磷酸二氢铵, P205 负载量为 0.01%-3%。
在本发明的方法中, 水蒸气处理为 100%水蒸气, 处理温度为 35CTC -800 °C , 时间为 0.5-10小时。
在本发明的方法中, 稀释气为 N2或水蒸气, 稀释气与苯酚的摩尔比 为 0.5-20。
在此需要进一步说明的是由于制备过程考虑分子筛结构的特点及分 子筛内外表面酸性位的数量,对改性的步骤和催化剂中改性剂的所占的百 分比进行优化和控制, 成型时使用氧化硅、硅溶胶和硅藻土, 焙烧后增加 分子筛表面的硅羟基。 成型后, 进行酸处理, 有利于提高硅烷化的效率, 进一步消除外表面的酸性, 同时硅烷化缩小分子筛孔口尺寸, 从而提高对 位选择性。磷改性的目的是进一步消除分子筛外表面的酸性位及增强催化 剂的水热稳定性。水蒸气处理是增强催化剂的水热稳定性, 正是这几种改 性过程的协同作用, 使得催化剂有良好的对位择形性能, 催化剂的强度良 好, 完全能满足工业使用要求。
甲酚催化剂制备过程是分子筛、粘合剂及水混合成型,成型方式可以 是喷雾干燥或挤条成型。分子筛可以是氢型或氨型的 ZSM-5和 MCM-22, beta分子筛。 成型后的分子筛进行酸处理, 可以是硝酸, 硼酸, 常温浸渍 4-24小时, 采用有机酸柠檬酸, 草酸, 80°C浸渍 4-12小时。 根据外表面 酸性不同, 需要进行 1-2次硅烷化, 硅烷化采用的试剂为苯甲基硅油或二 甲基硅油, 溶剂采用正己烷、环己烷。磷改性采用磷酸二氢铵或磷酸氢二 铵,催化剂中五氧化二磷的重量含量为 0.8%-3.0%。水蒸气处理温度 350°C -80CTC为宜, 100%水蒸气处理 0.5-10小时。
根据成型方式不同, 可作为流化床催化剂或固定床催化剂。喷雾成型 后经过上述的制备步骤, 即可制得流化床催化剂。挤条成型为母体经上述 步骤即可制得固定床催化剂。
需要说明的是, 催化剂的各种改性方法, 是根据母体分子筛的酸强度 和不同酸性位的密度不同而不同,专利中使用的各种改性方法复合改性得 到所需的催化剂。对于催化剂的酸性位密度较小的分子筛母体, 采用专利 的一种或两种改性方法就可得到理想的酸性位密度。 因此,各种元素的单 一改性方法, 也属于该专利的涵盖领域。 例如, 金属氧化物钙改性, 磷改 性, 硅烷化, 水蒸气处理等单一改性均属于该专利的范围。
实施例中的 MCM-22分子筛是按照专利 US4954325中的方法合成。 以偏铝酸钠为铝源, 以硅溶胶为硅源, 氢氧化钠为碱源, 以环己亚胺 ( HMD 为模板剂, 合成液摩尔组成: SiO2/Al2O3=R;OH-/SiO2=0.18 ; Na/SiO2=0.18;HMI/ SiO2=0.35; H20/ Si02=44.9, 15CTC转动合成 168小时。 其中 R根据不同要求的分子筛硅铝比, 调整其数值。
ZSM-5分子筛, 南开大学催化剂厂生产, 产品名称 NKF-5。 beta分子 筛, 南幵大学催化剂厂生产, 产品名称 NKF-6。 具体实施方式
以下结合实施例对本发明进行作进一步阐述。 催化剂的制备过程如下: 摩尔硅铝比为 20的 ZSM-5分子筛 120克, 与 60克硅藻土、 100克二氧化硅重量 20%硅溶胶混合, 加入适量的 10% 稀硝酸作为助挤剂挤条成型。 120°C烘干, 500°C焙烧 10小时。 上述催化 剂切成 l~3mm制得柱状催化剂母体 A0。20克的母体催化剂 AO加入 50ml, 重量含量 10%的硝酸溶液, 室温浸泡 4小时。 120°C烘干, 55CTC焙烧 10 小时制得 Al。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Al, 室温浸渍 2小时。 120°C烘干, 然后 550°C焙烧 2小时制得 A2。 将 20克的 A2样品采用磷酸二氢铵溶液水溶液浸渍 12小时, 12CTC烘干, 700°C焙烧 3小时, P205重量含量为 3%, 制得 A3。 将 20克 A3在 100% 水蒸气气氛中进行水蒸气处理 10小时, 处理温度为 350°C, 550°C焙烧 3 小时制得催化剂 。 分子筛含量 60%。 实施例 2
催化剂的制备过程如下: 摩尔硅铝比为 30的 ZSM-5分子筛 170克, 与 100g二氧化硅重量 30%硅溶胶混合, 加入适量的 10%稀硝酸作为助挤 剂挤条成型。 120°C烘干, 700°C焙烧 4小时。 上述催化剂切成 l~3mm制 得柱状催化剂母体 B0。 20克的母体催化剂 B0加入 50ml, 重量含量 10% 的硝酸铵溶液,室温浸泡 10小时。 120°C烘干, 600°C焙烧 2小时制得 Bl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Bl, 室温浸渍 24小时。 12CTC烘干, 然后 800°C焙烧 2小时制得 B2。将 20克的 B2样品 采用磷酸二氢铵溶液水溶液浸渍 12小时, 120°C烘干, 550°C焙烧 10小 时, P205重量含量为 0.01%, 制得 B3。将 20克 B3在 100%水蒸气气氛中 进行水蒸气处理 0.5小时, 处理温度为 800°C, 550°C焙烧 3小时制得催化 剂13。 催化剂中分子筛含量 85%。 实施例 3
催化剂的制备过程如下:摩尔硅铝比为 400的 ZSM-5分子筛 200克, 与 20克硅藻土、 100克二氧化硅重量 30%硅溶胶混合, 加入适量的 10% 稀硝酸作为助挤剂挤条成型。 12CTC烘干, 550°C焙烧 4小时。上述催化剂 切成 l〜3mm制得柱状催化剂母体 D0。 20克的母体催化剂 D0加入 50ml, 重量含量 10%的硝酸溶液, 室温浸泡 24小时。 12CTC烘干, 600°C焙烧 3 小时制得 Dl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Dl, 室温浸渍 24小时。 120°C烘干, 然后 500°C焙烧 3小时制得 D21。 将 重量 50%的二甲基硅油的正己烷溶液 7.5g加入 20克的 D21,室温浸渍 10 小时。 120°C烘干, 然后 550°C下焙烧 3小时制得 D2.将 20克的 D2样品 采用硝酸钙溶液水溶液浸渍 24小时, 120°C烘干, 600°C焙烧 3小时, 催 化剂中氧化钙重量百分比为 0.1%, 制得 D3。 将 20克 D3在 100%水蒸气 气氛中进行水蒸气处理 10小时, 处理温度为 350°C, 550°C焙烧 3小时制 得催化剂0。 制得催化剂中分子筛的含量为 80%。 实施例 4
催化剂的制备过程如下: 摩尔硅铝比为 30的氨型 ZSM-5分子筛 200 克, 与 10克硅藻土、 100克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作为助挤剂挤条成型。 12CTC烘干, 550°C焙烧 4小时。 上述催 化剂切成 l~3mm制得柱状催化剂母体 F0。 20克的母体催化剂 F0加入 150ml, 重量含量 0.5mol/L的草酸溶液, 80°C浸泡 4小时。 12CTC烘干, 50(TC焙烧 2小时制得 Fl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g 加入 20克的 Fl, 室温浸渍 2小时。 12CTC烘干, 然后 600°C焙烧 3小时制 得 F2。 将 20克的 F2样品采用硝酸钙水溶液浸渍 24小时, 120°C烘干, 70CTC焙烧 3小时,氧化钙重量含量为 10%,制得 F3。将 20克 F3在 100% 水蒸气气氛中进行水蒸气处理 10小时, 处理温度为 350°C, 550°C焙烧 3 小时制得催化剂F。 制得催化剂中分子筛的含量为 80%。 实施例 5
催化剂的制备过程如下: 摩尔硅铝比为 40的氨型 ZSM-5分子筛 200 克, 与 125克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作 为助挤剂挤条成型。 120°C烘干, 55(TC焙烧 4小时。上述催化剂切成 l~3mm 制得柱状催化剂母体 G0。 20克的母体催化剂 GO加入 50ml, 重量含量 0.5mol/L的草酸溶液, 80°C浸泡 12小时。 120°C烘干, 500°C焙烧 2小时 制得 G1。 将重量 50%的苯甲基硅油的正己烷溶液 7.5g加入 20克的 G1, 室温浸渍 2小时。 120°C烘干, 然后 50CTC焙烧 3小时制得 G2。 将 20克 的 G2样品采用硝酸钡水溶液浸渍 36小时, 120°C烘干, 70CTC焙烧 3小 时, 氧化钡重量含量为 10%, 制得 G3。 将 20克 G3在 100%水蒸气气氛 中进行水蒸气处理 10小时, 处理温度为 450°C, 550°C焙烧 3小时制得催 化剂 G。 制得催化剂中分子筛的含量为 80%。 实施例 6
催化剂的制备过程如下: 摩尔硅铝比为 30的氨型 ZSM-5分子筛 140 克, 与 20克氧化硅、 100克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作为助挤剂挤条成型。 12CTC烘干, 550°C焙烧 4小时。 上述催 化剂切成 l〜3mm制得柱状催化剂母体 H0。 20克的母体催化剂 H0加入 150ml, 重量含量 0.5mol/L的草酸溶液, 80°C浸泡 24小时。 12CTC烘干, 50CTC焙烧 2小时制得 Hl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g 加入 20克的 Hl, 室温浸渍 2小时。 120°C烘干, 然后 500°C焙烧 3小时 制得 H21。将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 H21, 室温浸渍 2小时。 120°C烘干, 然后 55CTC下焙烧 3小时制得 H22。 将 20 克的 H22样品采用硝酸钡水溶液浸渍 20小时, 120°C烘干, 70CTC焙烧 3 小时, 氧化钡重量含量为 0.1%, 制得 H3。 将 20克 H3在 100%水蒸气气 氛中进行水蒸气处理 4小时, 处理温度为 550°C, 550°C焙烧 3制得催化 剂 H。 制得催化剂中分子筛的含量为 70%。 实施例 7
催化剂的制备过程如下: 摩尔硅铝比为 30的 ZSM-5分子筛 170克, 与 100克二氧化硅重量 30%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 55CTC焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 10。 20克的母体催化剂 10, 加入重量含量 0.5mol L 的柠檬酸溶液, 80°C浸泡 8小时。 12CTC烘干, 5CXTC焙烧 2小时制得 II。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 II, 室温浸渍 2 小时。 120°C烘干, 然后 50CTC焙烧 3小时制得 121。 将重量 50%的苯甲基 硅油的环己烷溶液 7.5g加入 20克的 121, 室温浸渍 2小时。 12CTC烘干, 然后 550°C焙烧 3小时制得 122。 将 20克的 122样品采用硝酸铁水溶液浸 渍 20小时, 120°C烘干, 700°C焙烧 3小时,三氧化二铁重量含量为 0.1%, 制得 13。将 20克 13在 100%水蒸气气氛中进行水蒸气处理 10小时, 处理 温度为 350°C, 55CTC焙烧 3小时制得催化剂 I。 制得催化剂中分子筛的含 量为 85%。 实施例 8
催化剂的制备过程如下: 摩尔硅铝比为 20的 ZSM-5分子筛 160克, 与 100克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 J0。 20克的母体催化剂 J0加入 50ml,重量含量 10% 的硝酸溶液, 常温浸泡 10小时。 120°C烘干, 500°C焙烧 2小时制得 Jl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Jl, 室温浸渍 2 小时。 120°C烘干, 然后 500°C焙烧 3小时制得 J2。 将 20克的 J2样品采 用硝酸铁水溶液浸渍 24小时, 120°C烘干, 700°C焙烧 3小时, 氧化铁重 量含量为 10%, 制得 J3。 将 20克 J3在 100%水蒸气气氛中进行水蒸气处 理 4小时, 处理温度为 350°C, 55(TC焙烧 3小时制得催化剂 J。 制得催化 剂中分子筛的含量为 80%。 实施例 9
催化剂的制备过程如下: 摩尔硅铝比为 30的 ZSM-5分子筛 160克, 与 100克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 K0。20克的母体催化剂 Κ0加入 50ml,重量含量 10% 的硝酸溶液, 常温浸泡 10小时。 12CTC烘干, 50CTC焙烧 2小时制得 Kl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 K1,室温浸渍 2 小时。 12CTC烘干, 然后 50CTC焙烧 3小时制得 Kl。 将重量 50%的苯甲基 硅油的环己烷溶液 7.5g加入 20克的 Κ21, 室温浸渍 2小时。 120°C烘干, 然后 550°C焙烧 3小时制得 K22。 将 20克的 Κ22样品采用硝酸镍溶液水 溶液浸渍 24小时, 120°C烘干, 60CTC焙烧 3小时,氧化镍重量含量为 0.1%, 制得 K3。 将 20克 Κ3在 100%水蒸气气氛中进行水蒸气处理 4小时, 处 理温度为 35(TC, 550°C焙烧 3小时制得催化剂 K。 制得催化剂中分子筛 的含量为 80%。 实施例 10
催化剂的制备过程如下: 摩尔硅铝比为 30的 ZSM-5分子筛 160克, 与 40克硅藻土混合,加入适量的 10%稀硝酸作为助挤剂挤条成型。 12CTC 烘干, 55CTC焙烧 4小时。 上述催化剂切成 l~3mm制得柱状催化剂母体 L0。 20克的母体催化剂 L0加入 50ml, 重量含量 10%的硝酸溶液, 室温 浸泡 24小时。 120°C烘干, 500°C焙烧 2小时制得 Ll。 将重量 50%的苯甲 基硅油的环己烷溶液 7.5g加入 20克的 Ll,室温浸渍 2小时。 12CTC烘干, 然后 50CTC焙烧 3小时制得 L2。 将 20克的 L2样品采用硝酸镍溶液水溶 液浸渍 24小时, 120°C烘干, 60CTC焙烧 3小时,氧化镍重量含量为 10%, 制得 L3。将 20克 L3在 100%水蒸气气氛中进行水蒸气处理 2小时, 处理 温度为 60(TC, 55CTC焙烧 3小时制得催化剂!^。制得催化剂中分子筛的含 量为 80%。 实施例 11
催化剂的制备过程如下:摩尔硅铝比为 20的 MCM-22分子筛 170克, 与 100克二氧化硅重量 30%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 M0。 20克的母体催化剂 M0加入 50ml, 重量含量 10%的硝酸溶液, 室温浸泡 24小时。 120°C烘干, 500°C焙烧 2小时制得 Ml。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Ml, 室温 浸渍 12小时。 120°C烘干, 然后 50CTC下焙烧 3小时制得 M2。 将 20克的 M2样品采用磷酸二氢铵溶液水溶液浸渍 10小时, 120°C烘干, 70CTC焙 烧 3小时, P205重量含量为 3%, 制得 M3。 将 20克 M3在 100%水蒸气 气氛中进行水蒸气处理 10小时, 处理温度为 450°C, 550°C焙烧 3小时制 得催化剂^。 制得催化剂中分子筛的含量为 85%。 实施例 12
催化剂的制备过程如下:摩尔硅铝比为 60的 MCM-22分子筛 170克, 与 100克二氧化硅重量 30%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 N0。20克的母体催化剂 NO加入 50ml,重量含量 10% 的硝酸溶液, 室温浸泡 12小时。 12CTC烘干, 50CTC焙烧 2小时制得 Nl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 N1,室温浸渍 2 小时。 12CTC烘干, 然后 500°C焙烧 3小时制得 N21。 将重量 50%的苯甲 基硅油的环己烷溶液 7.5g加入 20克的 N21, 室温浸渍 2小时。 12CTC烘 干, 然后 550°C焙烧 3小时制得 N22。 将 20克的 N22样品采用乙酸钙溶 液水溶液浸渍 10小时, 120°C烘干, 65CTC下焙烧 3小时, 氧化钙重量含 量为 3%,制得 N3。将 20克 N3在 100%水蒸气气氛中进行水蒸气处理 10 小时, 处理温度为 350 C, 55CTC下焙烧 3小时制得催化剂!^。 制得催化 剂中分子筛的含量为 85%。 实施例 13
催化剂的制备过程如下:摩尔硅铝比为 50的 MCM-22分子筛 170克, 与 100克二氧化硅重量 30%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 P0。 20克的母体催化剂 P0加入 50ml,重量含量 10% 的硝酸溶液, 室温浸泡 24小时。 120°C烘干, 500°C焙烧 2小时制得 Pl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Pl,室温浸渍 2 小时。 120°C烘干, 然后 500°C焙烧 3小时制得 P21。将重量 50%的苯甲基 硅油的环己烷溶液 7.5g加入 20克的 P21 , 室温浸渍 2小时。 12CTC烘干, 然后 550°C焙烧 3小时以上制得 P22。将 20克的 P22样品采用硝酸钡水溶 液浸 36小时, 12CTC烘干, 700°C焙烧 3小时, 氧化钡重量含量为 3%, 制得 P3。 将 20克 P3在 100%水蒸气气氛中进行水蒸气处理 10小时, 处 理温度为 350°C, 550°C焙烧 3小时制得催化剂?。制得催化剂中分子筛的 含量为 85%。 实施例 14
催化剂的制备过程如下:摩尔硅铝比为 40的 MCM-22分子筛 160克, 与 20克硅藻土、 100克二氧化硅重量 20%硅溶胶混合, 加入适量的 10% 稀硝酸作为助挤剂挤条成型。 12CTC烘干, 550°C焙烧 4小时。上述催化剂 切成 l〜3mm制得柱状催化剂母体 R0。 20克的母体催化剂 R0加入 50ml, 重量含量 10%的硝酸溶液, 室温浸泡 10小时。 120°C烘干, 50CTC焙烧 2 小时制得 Rl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Rl, 室温浸渍 2小时。 120°C烘干, 然后 50CTC焙烧 3小时制得 R2。将 20 克的 R2样品采用硝酸铁溶液浸渍 20小时, 120°C烘干, 700°C焙烧 3小 时, 三氧化二铁重量含量为 3%, 制得 R3。 将 20克 R3在 100%水蒸气气 氛中进行水蒸气处理 6小时, 处理温度为 350°C, 550°C焙烧 3小时制得 催化剂 R。 制得催化剂中分子筛的含量为 80%。 实施例 15
催化剂的制备过程如下: 摩尔硅铝比为 20的 beta分子筛 170克, 与 100ml二氧化硅重量 30%硅溶胶混合,加入适量的 10%稀硝酸作为助挤剂 挤条成型。 12CTC烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm制得 柱状催化剂母体 S0。 20 克的母体催化剂 SO 加入 50ml, 加入重量含量 0.5mol/L的柠檬酸溶液, 80°C浸泡 8小时。 12CTC烘干, 500°C焙烧 2小时 制得 Sl。 将重量 50%的苯甲基硅油的环己烷溶液 7.5g加入 20克的 Sl, 室温浸渍 2小时。 120°C烘干, 然后 550°C下焙烧 3小时以上制得 S22。将 20克的 S22样品采用磷酸二氢铵溶液水溶液浸渍 20小时, 120°C烘干, 700°C焙烧 3小时, P205重量含量为 3%, 制得 S3。 将 20克 S3在 100% 水蒸气气氛中进行水蒸气处理 4小时, 处理温度为 550°C, 550°C下焙烧 3 小时制得催化剂 S。 制得催化剂中分子筛的含量为 85%。 实施例 16
催化剂的制备过程如下:摩尔硅铝比为 30的 MCM-22分子筛 160克, 与 100克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 550°C焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 T0。 20克的母体催化剂 TO加入 50ml,重量含量 2% 的硼酸水溶液, 80°C浸泡 24小时。 120°C烘干, 600°C焙烧 2小时制得丁。 制得催化剂中分子筛的含量为 80%。 实施例 17
催化剂的制备过程如下: 摩尔硅铝比为 60的 ZSM-5分子筛 160克, 与 100克二氧化硅重量 40%硅溶胶混合, 加入适量的 10%稀硝酸作为助 挤剂挤条成型。 120°C烘干, 55CTC焙烧 4小时。 上述催化剂切成 l~3mm 制得柱状催化剂母体 U0。 20克的母体催化剂 U0加入 50ml,重量含量 2% 的硼酸水溶液处理, 80°C浸泡 24小时。 120°C烘干, 600°C焙烧 2小时制 得 U。 制得催化剂中分子筛的含量为 80%。 实施例 18
将实施例 1-17 制得的催化剂,在固定床反应装置上进行苯酚甲醇烷 基化制甲酚反应。原料苯酚, 甲醇及水蒸气经预热进入反应器进行反应, 反应产物在线色谱分析。 气相色谱为安捷伦 7890A, 色谱柱为环糊精柱 30m X 0.25mm X 0.25 μ ηι。 色谱分析条件: 柱温: 初温 150°C, 停留 15 分钟, 1(TC/分钟升温速率升至 180°C, 恒温 5.3分钟; 载气为高纯氮气, 柱前压: 6.5pisa, 柱流速 12.6cm/sec。 反应催化剂装填量为 6.0克, 重量 空速 2-6小时 反应温度 300-50CTC, 稀释气为水蒸气, 稀释气与苯酚 的摩尔比为 0.5-20.原料甲醇与苯酚的摩尔比为 1 :1。各种实施例中催化剂 反应 72小时的反应结果列于表 1。 进反应器苯酚的: :百分比- (反应器出口苯酚 +苯甲醚) 的重量百分比 苯酚转化率 = X 100% 进反应器苯酚的重量百分比 反应器出口甲酚的重量百分比
甲酚选择性 = X 100%
反应苯酚的转化率 反应器出口对甲基苯酚的重量百分比
对位选择性 = X 100%
表 1反应条件及反应性能
催化剂 反应温 重量空 进料水 / 苯酚转化 对位选择 甲酚选择 度厂 c 速 h-1 苯酚(摩 率 / % 性 / % 性 / % 尔比)
A 450 2 3 20 29 72
B 400 3 5 29 32 85
D 450 3 2 18 30 60
F 500 3 6 25 32 72
G 500 3 10 32 38 87
H 500 2 6 28 30 70
I 200 0.5 2 20 30 78
J 300 2 6 24 35 73
K 350 3 6 28 30 70
L 300 3 6 20 30 80
M 300 5 4 28 40 89
N 350 20 0.5 15 58 90
P 300 5 6 20 40 87
320 2 3 35 42 85
S 280 2 4 30 36 65
U 400 3 6 20 21 80
T 450 3 6 28 20 75 实施例 19-22
催化剂评价装置与测试方法与实施例 20相同。 反应催化剂装填量为 20.0克, 进料甲醇与苯酚的摩尔比为 1 :1, 重量空速 3小时 稀释气为水 蒸气, 或氮气, 稀释气与进料苯酚的摩尔比为 6。 各种实施例中催化剂的 反应结果列于表 2。 表 2 催化剂的反应性能
实 施 催 化 反应温 稀释气 运转时 苯酚转化 对位选 甲酚选 例 剂 度厂 c 间/ h 率 / % 择性 / % 择 性
/ %
19 B 400 N2 500 29 40 90
20 F 450 水 600 30 39 85
21 M 320 N2 500 28 40 90
22 N 320 水 600 30 38 87

Claims

权 利 要 求
1、 一种苯酚甲醇气相烷基化生产甲酚的方法, 苯酚、 甲醇经预热后 与稀释气混合连续通过苯酚甲醇烷基化催化剂床层, 在反应温度
200-500 °C , 进料重量空速 0.5-20h— 1条件下进行气相反应生成甲酚, 其中 所述苯酚甲醇烷基化催化剂以分子筛为活性组分, 与粘结剂混合成型, 经 酸处理, 硅烷化, 和水蒸气处理进行酸性位调变制备而成。
2、 根据权利要求 1所述苯酚甲醇气相烷基化生产甲酚的方法, 其特 征在于, 所述苯酚甲醇垸基化催化剂还进行氧化物改性。
3、 根据权利要求 1所述的苯酚甲醇气相烷基化生产甲酚的方法, 其 特征在于, 分子筛成型采用重量百分比为 60-85%的氢型或铵型分子筛和 重量百分比为 15%-40%的粘结剂。
4、 根据权利要求 1所述的苯酚甲醇气相烷基化生产甲酚的方法, 其 特征在于, 所述粘结剂为中性氧化物, 其选自二氧化硅的硅溶胶、硅藻土 或氧化硅中的一种或几种。
5、 根据权利要求 1所述的苯酚甲醇气相烷基化生产甲酚的方法, 其 特征在于, 所述分子筛为 ZSM-5 , MCM-22, BETA分子筛, 摩尔硅铝比 为 20-80。
6、 根据权利要求 1所述的苯酚甲醇气相烷基化生产甲酚的方法, 其 特征在于, 所述酸处理使用选自稀硝酸, 硼酸的无机酸和选自草酸、柠檬 酸的有机酸。
7、 根据权利要求 1所述的苯酚甲醇气相烷基化生产甲酚的方法, 其 特征在于, 所述硅烷化处理采用等体积浸渍法, 使用的硅烷化试剂为正硅 酸乙酯, 苯甲基硅油, 二甲基硅油中的一种或几种。
8、 根据权利要求 2中所述的苯酚甲醇气相烷基化生产甲酚的方法, 其特征在于, 所述氧化物改性使用碱土金属氧化物、过渡金属氧化物和磷 氧化物中的一种或多种氧化物复合改性。
9、 根据权利要求 8中所述的苯酚甲醇气相烷基化生产甲酚的方法, 其特征在于, 所述碱土金属氧化物为氧化钙或氧化钡,所述过渡金属氧化 物为氧化铁或氧化镍, 所述磷氧化物为磷酸氢二铵或磷酸二氢铵。
10、根据权利要求 1所述的苯酚甲醇气相烷基化生产甲酚的方法, 其 特征在于, 水蒸气处理为 100%水蒸气, 处理温度为 350°C-800°C, 时间 为 0.5-10小时。
PCT/CN2012/079082 2012-07-24 2012-07-24 一种苯酚甲醇气相烷基化生产甲酚的方法 WO2014015476A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2012386465A AU2012386465B2 (en) 2012-07-24 2012-07-24 Cresol producing method through phenol methanol gas-phase alkylation
EP12881816.8A EP2878590A4 (en) 2012-07-24 2012-07-24 PROCESS FOR PREPARING KRESOL BY PHENOL-METHANOL GAS PHASE ALKYLATION
PCT/CN2012/079082 WO2014015476A1 (zh) 2012-07-24 2012-07-24 一种苯酚甲醇气相烷基化生产甲酚的方法
US14/416,209 US9212116B2 (en) 2012-07-24 2012-07-24 Method for producing cresol from phenol and methanol via gas phase alkylation
IN241DEN2015 IN2015DN00241A (zh) 2012-07-24 2012-07-24
ZA2015/00599A ZA201500599B (en) 2012-07-24 2015-01-27 Method for producing cresol from phenol and methanol via gas phase alkylation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079082 WO2014015476A1 (zh) 2012-07-24 2012-07-24 一种苯酚甲醇气相烷基化生产甲酚的方法

Publications (1)

Publication Number Publication Date
WO2014015476A1 true WO2014015476A1 (zh) 2014-01-30

Family

ID=49996489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079082 WO2014015476A1 (zh) 2012-07-24 2012-07-24 一种苯酚甲醇气相烷基化生产甲酚的方法

Country Status (6)

Country Link
US (1) US9212116B2 (zh)
EP (1) EP2878590A4 (zh)
AU (1) AU2012386465B2 (zh)
IN (1) IN2015DN00241A (zh)
WO (1) WO2014015476A1 (zh)
ZA (1) ZA201500599B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944129A (zh) * 2017-03-07 2017-07-14 中国科学院大连化学物理研究所 用于干气和苯烷基化反应核壳ZSM‑11@Silicalite‑2分子筛的制备方法
CN113831223A (zh) * 2021-10-15 2021-12-24 宁夏沪惠药化科技有限公司 一种同时制备2-甲基间苯二酚和4-甲基间苯二酚的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212784A1 (en) * 2018-05-03 2019-11-07 Exxonmobil Chemical Patents Inc Preparation of an hydroalkylation catalyst
CN110075911A (zh) * 2019-05-20 2019-08-02 南京工业大学 一种用于c10+重质芳烃加氢脱烷基的催化剂及其制备方法
CN112919489B (zh) * 2019-12-05 2023-02-24 同济大学 多级孔分子筛颗粒及其制备方法
CN115283009B (zh) * 2022-08-11 2023-04-18 扬州晨化新材料股份有限公司 一种用于连续合成聚氨酯用叔胺类催化剂的含sapo-34分子筛组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
CN101786943A (zh) * 2010-02-25 2010-07-28 华东理工大学 甲苯一步羟基化反应制备甲酚的催化合成方法
CN101992118A (zh) * 2009-08-13 2011-03-30 上海宝钢化工有限公司 苯酚甲醇气相烷基化的方法、介孔分子筛及其制备方法、用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371714A (en) * 1980-12-30 1983-02-01 Mobil Oil Corporation Preparation of 4-alkylanisoles and phenols
JPH0660117B2 (ja) * 1987-12-18 1994-08-10 丸善石油化学株式会社 パラエチルフェノールの製造方法
US5726114A (en) * 1993-10-27 1998-03-10 Mobil Oil Corporation Method of preparation of ex situ selectivated zeolite catalysts for enhanced shape selective applications and methods to increase the activity thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
CN101992118A (zh) * 2009-08-13 2011-03-30 上海宝钢化工有限公司 苯酚甲醇气相烷基化的方法、介孔分子筛及其制备方法、用途
CN101786943A (zh) * 2010-02-25 2010-07-28 华东理工大学 甲苯一步羟基化反应制备甲酚的催化合成方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
APPL. CATAL. A: GEN, vol. 342, 2008, pages 40 - 48
CATALYSIS TODAY, vol. 133-135, 2008, pages 720 - 728
CHINESE JOURNAL OF CATALYSIS, vol. 19, no. 5, 1998, pages 423 - 427
CHINESE JOURNAL OF CATALYSIS, vol. 22, no. 6, 2001, pages 545 - 549
J. MOL. CATAL. A: CHEM., vol. 327, 2010, pages 63 - 72
LIN, XIAOQIN: "Studies on the oxidative dehydrogenation of cyclohexane and the alkylation of phenol with methanol over a fixed bed reactor", MASTER'S THESIS OF HUNAN NORMAL UNIVERSITY, 19 October 2007 (2007-10-19), XP008175962 *
PAN, LVRANG ET AL.: "The Effect of Steam Treatment on the Structure Acidity and Catalytic Property of HZSM-5 Zeolite", ACTA PETROLEI SINICA, vol. 10, no. 3, September 1994 (1994-09-01), pages 97 - 101, XP008175912 *
See also references of EP2878590A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944129A (zh) * 2017-03-07 2017-07-14 中国科学院大连化学物理研究所 用于干气和苯烷基化反应核壳ZSM‑11@Silicalite‑2分子筛的制备方法
CN113831223A (zh) * 2021-10-15 2021-12-24 宁夏沪惠药化科技有限公司 一种同时制备2-甲基间苯二酚和4-甲基间苯二酚的方法
CN113831223B (zh) * 2021-10-15 2024-02-09 上海大学 一种同时制备2-甲基间苯二酚和4-甲基间苯二酚的方法

Also Published As

Publication number Publication date
AU2012386465A1 (en) 2015-02-05
IN2015DN00241A (zh) 2015-06-12
US20150203425A1 (en) 2015-07-23
ZA201500599B (en) 2016-10-26
EP2878590A1 (en) 2015-06-03
US9212116B2 (en) 2015-12-15
EP2878590A4 (en) 2016-03-16
AU2012386465B2 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
CN103570504B (zh) 一种苯酚甲醇气相烷基化生产甲酚的方法
WO2014015476A1 (zh) 一种苯酚甲醇气相烷基化生产甲酚的方法
CN103570505B (zh) 一种以分子筛为催化剂生产甲酚的方法
WO2014101374A1 (zh) 一种生产甲酚的方法
DK2328852T3 (en) PROCESS OF ALKYLING THE BENZEN WITH ISOPROPANOL OR MIXTURES OF ISOPROPANOL AND PROPYLENE
CN109277115A (zh) 醚化催化剂的制备方法以及生产邻甲基苯甲醚的方法
JP2013518883A (ja) スチレン製造方法およびそこでの使用のための触媒
US5059725A (en) One step synthesis of methyl t-butyl ether from t-butanol plus methanol using Group IV oxides treated with sulfates or sulfuric acid
CN103288602B (zh) 一种由苯甲醚制对甲基苯酚的方法及所使用的催化剂的制备方法
KR102302874B1 (ko) 알코올, 또는 알코올 및 올레핀의 혼합물을 사용한 방향족 탄화수소의 알킬화를 위한 촉매 조성물 및 이를 사용하는 공정
CN104437596A (zh) 甲醇制芳烃催化剂及其制备方法
JPS6136232A (ja) アルキル芳香族化合物の製造法
CN103664477A (zh) 甲苯择形歧化的方法
WO2003076372A1 (fr) Transalkylation du benzene et d'hydrocarbures aromatiques c9+
CN112142549B (zh) 甲基异丙苯的合成方法
US20120296130A1 (en) Method for alkylation of toluene to form styrene utilizing an oxy-dehydrogenation reactor
US20120296132A1 (en) Use of an oxidant in the coupling of toluene with a carbon source
CN114762832B (zh) 一种用于苯与碳四烯烃烷基化生产混合丙苯的催化剂的制备方法及应用
CN114433198A (zh) 烷基化分子筛催化剂及其制备方法
CN1223565C (zh) 间甲酚的制备工艺
CN115155650B (zh) 一种催化剂及其制备方法和应用
CN102500398A (zh) 一种SO42-/纳米TiO2催化剂及其在制备环己烯基环己酮中的应用
KR20020073219A (ko) 톨루엔 및 중방향족의 불균화 및 트란스알킬화를 위한공정 및 촉매
Lin et al. Highly selective hydrolyzation of cyclohexyl acetate over HZSM-5 assisted by [BMIm] Br ionic liquid
CN106902868B (zh) 一种改性催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012881816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14416209

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012386465

Country of ref document: AU

Date of ref document: 20120724

Kind code of ref document: A