WO2014014246A1 - 마르텐사이트계 스테인리스강 및 그 제조방법 - Google Patents

마르텐사이트계 스테인리스강 및 그 제조방법 Download PDF

Info

Publication number
WO2014014246A1
WO2014014246A1 PCT/KR2013/006315 KR2013006315W WO2014014246A1 WO 2014014246 A1 WO2014014246 A1 WO 2014014246A1 KR 2013006315 W KR2013006315 W KR 2013006315W WO 2014014246 A1 WO2014014246 A1 WO 2014014246A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
martensitic stainless
heat treatment
steel
hardness
Prior art date
Application number
PCT/KR2013/006315
Other languages
English (en)
French (fr)
Inventor
채동철
이재화
정성인
이일구
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201380038141.6A priority Critical patent/CN104471095B/zh
Publication of WO2014014246A1 publication Critical patent/WO2014014246A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to martensitic stainless steel and its manufacturing method, and more particularly, to martensitic stainless steel using a rapid cooling casting method for use in high-grade esophagus and the like.
  • Martensitic stainless steel is essentially steel composed of iron (Fe) -chromium (Cr) -carbon (C) and contains about 12 to 18% Cr by weight and contains as much as about 1% carbon. It is a steel containing.
  • the martensitic stainless steel is manufactured by using an annealing process in alloy manufacturing, to manufacture a hot-rolled annealing plate composed of a ferrite phase and Cr carbon nitride, and then cold-rolled to meet the required thickness of the end user after pickling the hot-rolled annealing plate. Is supplied. Subsequently, the final consumer converts the soft material composed of ferrite phase and carbide into high hardness martensite structure using the reinforcement heat treatment process on the stainless steel.
  • 420J2 series steel (0.3% C-13% Cr), which is 0.3% C and 13% Cr, is used mainly for transient or esophagus for general use, and is generally commercialized by reinforcement heat treatment at hardness level of about 52 ⁇ 54 HRC. do.
  • 420J2 has a relatively low carbon content, excellent corrosion resistance of the product, and excellent toughness. However, since the carbon content is low, the hardness is somewhat low.
  • High-grade esophageal materials with higher hardness than 420J2 are based on 0.5% C and 14% Cr in weight percent, and 1.4116 steel with a small amount of Mo is used.
  • Advanced esophagus based on components of the 1.4116 family are used primarily for enhanced heat treatment with hardness above about 55 HRC.
  • This steel can increase the carbon content compared to 420J2 and ensure high hardness by heat treatment, so that the blade tip has high resistance to deformation and excellent wear resistance during use.
  • coarse carbides remain in the material heat-treated with high carbon content, these carbides fall out of the blade edge during blade tip processing, which hinders blade tip quality, and also has a problem of poor corrosion resistance due to coarse residual carbide. .
  • the size of carbides remaining in the microstructure should be small, and the carbides observed in a commercially available high quality stainless steel kitchen knife have a size of 10 ⁇ m or less.
  • a continuous casting process or an ingot casting process is generally used.
  • a conventional casting method has a slow cooling rate during casting to form coarse carbide central segregation in the center of thickness, and thus the carbide central segregation remains in the microstructure even after the subsequent annealing process. It acts as a major source of coarse carbide residues in products. Therefore, as a martensitic steel production process for ceramics, in place of the conventional continuous casting and ingot casting method, a rapid cooling casting method may be mentioned as a step of drastically removing carbide central segregation.
  • Rapid cooling casting process is a process that can produce a hot rolled sheet of thin material directly from molten steel without a conventional casting process, including a strip casting process.
  • coarse carbides in the tissues subjected to the final reinforcement heat treatment may aggregate at grain boundaries and may be unsuitable for use in ceramics.
  • the length of residual carbide in the microstructure of the product is 10 ⁇ m or less.
  • the present invention provides a martensitic stainless steel excellent in the quality of the blade edge after strengthening heat treatment for martensitic stainless steel having a thickness of 1 mm or more used for esophagus.
  • Embodiment of the present invention relates to martensitic stainless steel produced by the rapid cooling casting method and a method of manufacturing the same.
  • the rapid cooling casting method may include a strip casting process.
  • the strip casting process includes a pair of rolls rotating in opposite directions, an edge dam installed to form molten steel pools on both sides thereof, and a meniscus shield for supplying inert nitrogen gas to the molten steel upper surface.
  • a strip casting device is a strip casting device.
  • the martensitic stainless steel produced by the rapid cooling casting method in the weight% C: 0.4 ⁇ 0.5%, N: 0.1 ⁇ 0.2%, Cr: 13 ⁇ 15%, Si: 0.1 ⁇ 1.0%, Mn: 0.1 ⁇ 1.0%, Ni: more than 1.0% or less, C + N: 0.5% or more and N / C is controlled to 0.2% or more, the rest containing Fe and other unavoidable impurities, the martens It provides a martensitic stainless steel characterized in that the residual carbide of the site-based stainless steel is 10 ⁇ m or less in size and 55HRC or more in hardness.
  • W 0.1-2% and Mo: 0.1-2% are added individually or in weight%.
  • the size of the residual carbide is preferably 3 ⁇ m or less.
  • the stainless steel exhibits a hardness of 55 HRC or more after tempering heat treatment.
  • the rapid cooling casting method is a pair of rolls that rotate in opposite directions to each other and an edge dam installed to form molten steel on both sides thereof and a meniscus shield for supplying inert nitrogen gas to the upper surface of the molten steel pool. And a strip casting process of supplying the molten stainless steel of the composition from the tundish to the molten steel pool through a nozzle to cast a stainless steel sheet.
  • the hot rolled strip is subjected to batch annealing in a temperature range of 700 to 950 ° C. under a reducing gas atmosphere to prepare a hot rolled annealing plate.
  • the hot rolled annealing plate is quenched after being maintained at a temperature of 1000 to 1100 ° C. so that the size of the residual carbide in the microstructure is 10 ⁇ m or less.
  • the quenched material is subjected to a tempering heat treatment at 150 ⁇ 250 °C.
  • the martensitic stainless steel exhibits a hardness of 55 HRC or more after tempering heat treatment.
  • the quenched martensitic stainless steel is subjected to deep freezing heat treatment at a temperature of ⁇ 50 to 150 ° C. before tempering heat treatment.
  • martensitic stainless steel of a high corrosion resistant material for kitchen knives with high blade quality while satisfying hardness characteristics of 55 HRC or more can be obtained by utilizing the rapid cooling casting method based on the alloy design of the present invention.
  • FIG. 1 is a schematic diagram of a strip casting process as an example of a rapid cooling casting method
  • Figure 2 is a tissue photograph showing an example in which the blade tip corrosion damage caused by the coarse carbide according to the prior art.
  • Figure 3 is a photomicrograph of a carbide microstructure of a conventional ingot casting method, a material quenched heat treatment after 1050 °C austenitic heat treatment.
  • Figure 4 is a photomicrograph of a carbide microstructure of the material prepared by the strip casting method, an example of a conventional rapid cooling casting process, quenched heat treatment after 1050 °C austenitic heat treatment.
  • FIG. 5 is a photomicrograph of a carbide microstructure of a material produced by strip casting, which is an example of a rapid cooling casting method according to the present invention, and quenched and heat treated after 1050 ° C. austenitic heat treatment.
  • 6A and 6B are graphs comparing the softening resistance after quenching and tempering according to the comparative example and the present invention steel
  • Korean Unexamined Patent Publication (2011-0071517) relates to martensitic stainless steel containing 0.10 to 0.50% C and 11 to 16% Cr in weight% and a method of manufacturing the same, and a pair of rolls rotating in opposite directions to each other
  • a strip casting apparatus including an edge dam installed to form molten steel on both sides and a meniscus shield for supplying inert nitrogen gas to the upper surface of the molten steel, C: 0.10 to 0.50% by weight and Cr: 11 to Supplying molten stainless steel containing 16% to the molten steel pool through a nozzle from a tundish to cast a stainless steel sheet, and to produce a hot rolled strip at a reduction ratio of 5 to 40% using an inline roller.
  • a method for producing martensitic stainless steel and martensitic stainless steel produced by the method are provided.
  • the above patent shows that when the strip casting method is used, due to the fast casting speed, the carbide central segregation is greatly alleviated, thereby realizing a microstructure having a uniform hardness in the thickness of the manufactured hot rolled annealing plate.
  • the present inventors further proceeded to improve the texture of the hot rolled annealing plate in which the carbide center segregation was significantly reduced in the strip casting process, and further, to the texture of the final cured material subjected to the final heat treatment process. That is, by utilizing the strip casting process disclosed in the Republic of Korea Patent Publication (KR 2011-0071517), C is 0.5% or more by weight, and 0 to 2% by weight of Mo or W alone or in combination to add corrosion resistance While conducting research on various strengthened esophageal stainless steel materials, even if there is no carbon-centered segregation in the microstructure of the hot-rolled annealing material, it is very coarse in the microstructure of the hardened material after the final strengthening heat treatment process. Above), carbides were found to aggregate at grain boundaries. After preparing the esophagus from such a material, the corrosion resistance test, it was confirmed that there is a disadvantage that the blade tip dull quickly.
  • FIG. 2 shows a tissue photograph showing an example in which blade tip corrosion damage is caused by coarse carbide. As shown in the figure, it can be seen that carbides of coarse size aggregate at grain boundaries.
  • the present invention proposes an alloy design and a manufacturing process aspect based on the alloy design as a solution to solve such problems.
  • the martensitic stainless steel provides a thin sheet material having a thickness of 1 mm or more, which exhibits a hardness of 55 HRC or more after tempering heat treatment.
  • the base material used in the present invention is martensitic stainless steel in weight% C is 0.4 to 0.5%, N is composed of 0.1 to 0.2%, the content of Cr is 13 to 15%.
  • the C + N is 0.5% or more while the N / C is controlled to 0.2% or more.
  • N is an element added for the purpose of improving corrosion resistance and hardness at the same time, and in particular, even if added within the range of 0.1% to 0.2% or less in place of C, it does not cause local micro segregation such as C. There is an advantage of not forming carbide. However, if the composition exceeds 0.2%, micropores may occur in the microstructure, limiting the upper limit to 0.2%.
  • N is less than 0.1%, the tempering resistance is not improved, so the hardness after tempering easily decreases, so the lower limit is set to 0.1%.
  • the C + N which is the sum of the carbon and nitrogen content
  • the N / C which is the ratio of nitrogen and carbon content
  • Coarse carbides in excess of may occur, but the range of C is less than 0.5% and N is added at least 0.1% so that the sum of the ranges of C + N is 0.5% or more. It is possible to suppress the occurrence and to improve the tempering resistance at the same time. It is preferable to control the range of C and N so that the range of C + N is 0.5% or more while the range of N / C is 0.2% or more.
  • the content of Cr should be 13% or more.
  • the corrosion resistance of the matrix structure of the ceramic product after reinforcing heat treatment has the characteristics of stainless steel, and if it exceeds 15%, the fine segregation of Cr component in the strip casting casting structure is increased, resulting in austenitization ( Since the size of Cr carbide remaining in the microstructure increases after the tempering heat treatment at 1000 to 1100 ° C., which is prescribed by Austenitization), the Cr content is limited to 15% or less.
  • W and Mo may be added alone or in combination for the purpose of enhancing corrosion resistance, but if excessive, it delays the re-use of carbides during the austenitization heat treatment, thereby promoting the formation of coarse residual carbides.
  • the content is limited to less than%.
  • the martensitic stainless steel according to the embodiment of the present invention is Si: 0.1 to 1.0, Mn: 0.1 to 1.0, Ni: more than 0 and less than 1.0, S: more than 0 and less than 0.04, P: more than 0.05
  • the remainder and remainder are intended for alloys relating to the component system consisting of Fe and other unavoidable impurities.
  • Si is an essential element for deoxidation
  • the addition of a high content of Si lowers the pickling property and increases the brittleness of the material, thus limiting the upper limit to 1.0%.
  • Mn is an essential element for deoxidation, while excessive addition limits the upper limit to 1.0% because it inhibits the surface quality of steel and suppresses the increase in hardness through residual austenite formation of the final heat treatment material.
  • Ni is an element that improves corrosion resistance, but is very expensive and its content is limited to 1.0% or less.
  • S is an element that is inevitably contained in the main element alloy, so the inclusions are easily formed, so the content is limited as low as 0 to 0.04%.
  • P is an element that is easy to segregate in the grain boundary, and the content is limited to 0 to 0.05% as low as it causes processing cracks during alloy production.
  • the present invention manufactures martensitic stainless steel based on the above alloy design by a rapid cooling casting method.
  • the rapid cooling casting method may include a strip casting process.
  • FIG. 1 is a schematic diagram of a facility for explaining the strip casting process as an example of the rapid cooling casting method.
  • This strip casting process produces hot rolled strips of thin metal directly from molten steel, eliminating the hot rolling process, and is a new steel processing process that can drastically reduce manufacturing costs, equipment investment costs, energy consumption, and pollution gas emissions.
  • the twin roll type sheet casting machine used in the strip casting process receives molten steel in the ladle 1 as shown in FIG. 1, flows into the tundish 2 along the nozzle, and the tundish 2.
  • the molten steel introduced into is supplied through the molten steel injection nozzle 3 between the edge dams 5 provided at both ends of the casting roll 6, that is, between the casting rolls 6 to start solidification.
  • the molten portion between the rolls to protect the molten surface with the meniscus shield (4) in order to prevent oxidation and inject the appropriate gas to properly control the atmosphere.
  • the molten steel is rolled out through the rolling mill 9 while being pulled out of the roll nip 7 where both rolls meet and rolled through the rolling mill 9 while being wound in the winding facility 10 through a cooling process.
  • an important technique in the twin-roll type sheet casting process for directly manufacturing a thin plate having a thickness of 10 mm or less from molten steel is supplying molten steel through an injection nozzle between internal water-cooled twin rolls rotating at opposite speeds at a high speed to obtain a thin plate of desired thickness. It is manufactured so that there is no crack and the error rate is improved.
  • the cast stainless steel Provided is a method for producing martensitic stainless steel in which a thin sheet is produced using a inline roller to produce a hot rolled strip at a reduction ratio of 5 to 40%.
  • the stainless steel is a weight%, W: 0.1-2%, Mo: 0.1-2% may be added alone or in combination.
  • the rapid cooling casting method includes a strip casting process, wherein the strip casting process includes a pair of rolls rotating in opposite directions and an edge dam installed to form molten steel on both sides thereof, and an inert nitrogen gas into an upper surface of the molten steel pool.
  • the molten stainless steel of the composition may be supplied from a tundish to the molten steel pool through a nozzle to cast a stainless steel sheet.
  • the hot rolled strip is subjected to batch annealing in a temperature range of 700 to 950 ° C. under a reducing gas atmosphere to prepare a hot rolled annealing plate.
  • the first heat treatment process is an austenitization process.
  • the austenitization process is a heat treatment that exposes the material to a high temperature of about 1000 to 1100 ° C. During this process, chromium carbide or chromium nitride is reconstructed into the matrix, and the matrix is transformed from ferrite to austenite. Next, quenching is performed. Quenching is a heat treatment process in which austenite structure is transformed into high hardness martensite through rapid cooling from high temperature to room temperature. In addition, a tempering heat treatment process is finally performed to give toughness to the martensite structure having high hardness. However, if the hardness is not sufficiently high even after quenching, a deep freezing process is further performed between the quenching and tempering heat treatment.
  • Deep Freezing process is an additional cooling process of the material quenched at room temperature to cryogenic temperature of about -50 ⁇ -150 °C, and the austenite remaining in the microstructure of the quenching material through this process.
  • the tissue is further transformed into martensitic tissue, resulting in a higher hardness.
  • hardness should be more than 55HRC.
  • the deep freezing heat treatment may be performed at -50 to 150 ° C before tempering heat treatment of the quenched martensitic stainless steel.
  • the microhistological characteristics of the steel produced through the strip casting method which is an example of the hot-rolled annealing plate manufactured by the conventional continuous casting method and the rapid cooling casting method, were compared.
  • Table 1 shows the components of steel produced by ingot casting and strip casting.
  • 40 kg of ingot-melted vacuum ingots of 140 mm thickness were manufactured by using the existing ingot casting method. This is shown as Comparative Example 1 in Table 1.
  • the ingot was reheated to 1250 ° C. in a heating furnace of an inert atmosphere for hot rolling, and then hot rolled to a thickness of 2 mm after maintaining for 3 hours at that temperature.
  • steels of various components including components similar to those in Table 1, which are component steels prepared by continuous casting, were manufactured in the form of hot rolled coils using a twin roll strip caster. This is shown in Tables 2-5.
  • Twin-roll strip casters are characterized by casting molten steel between twin-drum rolls and side dams rotating in opposite directions and releasing a large amount of heat through the roll surface to be cooled. At this time. On the surface of the roll, a solidification cell was formed at a high cooling rate, and a hot rolled coil having a thickness of 2 mm was prepared by performing in-line rolling after the main structure.
  • the quenched material is subjected to Deep Freezing heat treatment at a temperature of -50 to -150 ° C, preferably -70 ° C for at least 1 hour, and then 150 to 250 ° C, preferably Tempering heat treatment was performed at 200 degreeC for at least 2 hours, and the hardness of the raw material was measured.
  • FIG. 3 shows a photomicrograph of a carbide microstructure of a material prepared by an ingot casting method and subjected to a quench heat treatment after 1050 ° C. austenitic heat treatment (Table 1, Comparative Example), and FIG. 4 is manufactured by strip casting, and is 1050 ° C.
  • FIG. 4 The photomicrograph of the carbide microstructure of the material quenched after the austenitic heat treatment (Table 2, Comparative Example) is shown.
  • Figure 5 is a photomicrograph of a carbide microstructure produced by the strip casting method according to the present invention, quenched heat-treated material (Table 4, Example of the invention) after austenitic heat treatment at 1050 °C.
  • Figure 5 shows the microstructure after quenching of No. 4 steel of Table 1, showing a very good microstructure in which coarse carbide aggregates of irregular shape shown in Figure 4 is removed. Even if it is manufactured by the strip casting process, the carbon content is limited to minimize the fine segregation of carbon, and when the hardness of the martensitic steel, which decreases as the carbon is reduced by adding nitrogen, is made of a conventional ingot casting method. It is shown that it is possible to produce better microstructure steel for ceramics.
  • FIG. 6A and 6B are graphs illustrating the softening resistance of the tempering of the comparative steel and the inventive steel in the present invention.
  • FIG. 6A illustrates a case where the value of the existing nitrogen (N) is 0.03 wt% as a comparative example.
  • N the existing nitrogen
  • the austenitic heat treatment for heating the martensitic stainless steel hot-rolled annealing material at 1000 to 1100 ° C., preferably at 1050 ° C. and holding it for 1 hour, followed by quenching into oil.
  • the tellering heat treatment is performed at 150 to 250 ° C., preferably at 200 ° C. for at least 2 hours.
  • the austenite tissue remaining in the microstructure of the quenching material is further fleeceted by further cooling the material quenched at room temperature in the deep freezing process to a cryogenic temperature of about -50 to -150 ° C. Further transformation into the tissue may result in higher hardness.
  • Figure 7 is a graph showing that the corrosion resistance is improved compared to the existing steel grades by replacing C in the embodiment of the present invention with N and the addition of the corrosion resistance element Mo / W. This is in contrast to the results of the immersion corrosion weight loss results in 0.1% sulfuric acid solution (40 °C) for the comparative example and the invention steel can be seen that the weight loss occurs less compared to the comparative example steel is excellent corrosion resistance.
  • the comparative example is a steel grade including 0.5C-0.03N-14Cr, which is in contrast with the steel grade including 0.45C-0.1N-14Cr of the present invention steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 부엌칼등의 식도용에 마르텐사이트 스테인리스강 및 그 제조방법에 관한 것으로, 특히 급속냉각주조법(strip casting)에 의해 제조된 마르텐사이트계 스테인리스강에 있어서, 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 마르텐사이트계 스테인리스강의 잔류 탄화물의 크기가 10㎛ 이하이고 경도는 55HRC 이상인 마르텐사이트계 스테인리스강 과 그 제조방법을 제공한다.. 본 발명에 관한 마르텐사이트 스테인리스강은 스트립 캐스팅(strip casting) 법을 활용하여 강을 제조하되, 스트립 캐스팅으로 제조된 1㎜ 이상 두께의 열연소둔판에 대하여 강화열처리를 실시함에 있어서, 강화열처리 후 잔류탄화물의 길이를 10㎛이하로 저감시킴으로써, 부엌칼등의 식도용의 용도로 날끝 품질이 우수하고 경도와 내식성이 우수한 마르텐사이트계 스테인리스강을 얻을 수 있다.

Description

마르텐사이트계 스테인리스강 및 그 제조방법
본 발명은 마르텐사이트계 스테인리스강 및 그 제조방법에 관한 것으로 더욱 상세하게는 고급 식도용등으로 사용하기 위하여 급속냉각주조법을 활용한 마르텐사이트계 스테인리스강 및 그 제조방법에 관한 것이다.
마르텐사이트계 스테인리스강은 본질적으로 철(Fe)-크롬(Cr)-탄소(C)가 주성분으로 구성된 강으로, 중량%로 약 12~18%의 Cr을 함유하고, 많게는 약 1%의 탄소를 함유한 강이다. 이러한 마르텐사이트계 스테인리스강은 합금제조사에서 상소둔 공정을 활용하여, 페라이트상과 Cr탄질화물로 구성된 열연소둔판을 제조하고, 이어 상기 열연소둔판의 산세후에 최종수요자의 요구 두께에 맞도록 냉간압연하여 공급된다. 이어 최종 수요자는 상기 스테인리스강에 강화열처리 공정을 이용하여 페라이트상과 탄화물로 구성된 연질의 소재를 고경도의 마르텐사이트 조직으로 변태시켜 제품화한다.
마르텐사이트계 스테인리스강이 과도나 식도용도로 사용되기 위해서 갖추어야 할 요건은 크게 내식성, 경도, 인성의 3가지로 구분된다. 일반용의 과도나 식도에는 중량%로 0.3% C, 13% Cr인 420J2 계열강(0.3%C-13%Cr)이 주로 사용되고 있으며, 일반적으로 약 52~54 HRC 정도의 경도수준으로 강화열처리 되어 제품화된다. 420J2는 탄소함량이 비교적 낮아, 제품의 내식성이 우수하며, 인성이 우수한 특성을 갖는다. 그러나 탄소함량이 낮기 때문에 경도가 다소 낮은 단점이 있다.
경도를 420J2 대비 높인 고급식도 소재로는 중량%로 0.5% C, 14% Cr에 기반하며, Mo을 소량 첨가한 1.4116강이 대표적으로 사용되고 있다. 1.4116계열의 성분에 기반한 고급식도는 약 55 HRC 이상의 경도로 강화열처리 되어 주로 사용된다. 이 강은 420J2대비 탄소함량을 증대시켜 열처리에 의하여 고경도 확보가 가능하여, 사용중 날끝이 변형에 대한 저항성이 높고 내마모성이 우수한 특성을 갖는다. 그러나, 높은 탄소함량으로 강화열처리된 소재내에 조대한 탄화물이 잔존하므로 이 탄화물이 날끝 가공중에 날끝으로부터 탈락하여 날끝 품질을 저해하며, 또한 조대한 잔류탄화물에 기인하여 국부적으로 내식성이 나빠지는 문제점이 있다. 이러한 품질상의 악영향을 최소화하기 위하여 미세조직내에 잔류하는 탄화물의 크기는 작아야 하며, 통상의 상용의 고급 스테인리스 부엌칼에서 관찰되는 탄화물은 10㎛ 이하의 크기를 갖는다.
탄소가 높은 도물용 마르텐사이트계강을 제조하기 위하여, 일반적으로 연속주조공정이나 잉곳주조 공정이 사용된다. 그러나 이러한 종래의 주조방법은 주조시 냉각속도가 늦어 두께 중심부에 조대한 탄화물 중심편석부를 형성시키며, 이렇게 생성된 탄화물 중심편석부는 후속의 상소둔 공정을 수행하여도 미세조직에 잔존하여, 최종 제품에 조대한 탄화물을 잔류시키는 주요한 원인으로 작용한다. 따라서 도물용 마르텐사이트계강 생산공정으로 종래의 연속주조 및 잉곳주조법을 대신하여, 탄화물 중심편석을 획기적으로 제거한 공정으로 급속냉각주조법을 들 수 있다. 급속냉각주조법은 통상적인 주조공정을 거치지 않고 용강에서 바로 박물의 열연판을 제조할 수 있는 공정으로 스트립 캐스팅(strip casting) 공정을 포함한다. 그러나 상기 급속냉각주조법에 의하더라도 최종 강화열처리를 거친 조직에서 조대한 탄화물들이 결정립계에 응집되어 도물용으로 사용하기 부적합한 특징이 나타날 수 있다.
본 발명은 Mo이나 W을 단독 혹은 복합으로 첨가하여 내식성을 강화한 성분강을 급속냉각주조법으로 제조하더라도, 최종 강화열처리 후 제품의 미세조직에서 잔류탄화물의 길이가 10㎛ 이하인, 미세조직이 우수한 고내식 도물용 소재와 그 소재를 제조하는 방법을 제공하고자 한다.
또한, 본 발명은 식도용으로 사용되는 두께 1㎜ 이상의 마르텐사이트 스테인리스강에 대하여 강화열처리 후에 날끝의 품질이 우수한 마르텐사이트계 스테인리스강을 제공하는 것이다.
본 발명에 관한 실시예에서는 급속냉각주조법에 의하여 제조하는 마르텐사이트계 스테인리스강 및 그 제조방법에 관한 것이다. 상기 급속냉각주조법은 스트립 캐스팅(strip casting) 공정을 포함할 수 있다. 상기 스트립 캐스팅(strip casting) 공정은 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강풀을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 스트립 캐스팅 장치를 이용한다.
본 발명의 일 실시예에서는 급속냉각주조법에 의해 제조된 마르텐사이트계 스테인리스강에 있어서, 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 마르텐사이트계 스테인리스강의 잔류 탄화물의 크기가 10㎛ 이하이고 경도는 55HRC 이상인 것을 특징으로 하는 마르텐사이트계 스테인리스강을 제공한다.
또한, 본 발명에서는 중량%로, W : 0.1~2%, Mo : 0.1~2%가 단독 혹은 복합으로 첨가된다.
또한, 본 발명에서는 상기 잔류 탄화물의 크기는 3㎛ 이하인 것이 바람직하다.
또한, 본 발명에서는 상기 스테인리스강은 템퍼링 열처리후에 경도가 55HRC 이상을 나타낸다.
또한, 본 발명의 또 다른 실시예에서는 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함한 스테인리스강 용강을 급속냉각주조법에 의하여 박판으로 주조하고, 상기 주조된 스테인리스강 박판을 인라인 롤러를 이용하여 5~40%의 압하율로 열연스트립을 제조하는 마르텐사이트계 스테인리스강의 제조방법을 제공한다.
또한, 본 발명에서 상기 급속냉각주조법은 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강품을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 장치에서 상기 조성의 스테인리스 용강을 턴디쉬로부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하는 스트립 캐스팅 공정을 포함한다.
또한, 본 발명에서 상기 열연스트립을 환원성 가스분위기하에서 700~950℃의 온도범위에서 상소둔(batch annealing)을 실시하여 열연 소둔판을 제조한다.
또한, 본 발명에서 상기 열연 소둔판을 1000~1100℃의 온도에서 유지한 후에 켄칭 시켜 미세조직에서 잔류탄화물의 크기가 10㎛ 이하를 갖도록 한다.
또한, 본 발명에서 상기 켄칭된 소재를 150~250℃에서 템퍼링 열처리를 실시한다.
또한, 본 발명에서는 상기 마르텐사이트계 스테인리스강은 템퍼링 열처리후에 경도가 55HRC 이상을 나타낸다.
또한, 본 발명에서 상기 켄칭 시킨 마르텐사이트계 스테인리스강을 템퍼링 열처리 전에 -50 ~ 150℃의 온도에서 딥프리징(Deep freezing) 열처리를 실시한다.
상술한 바와 같이, 본 발명에 관한 합금설계를 기초로 급속냉각주조법을 활용하여 55HRC 이상의 경도특성을 만족시키면서도 날끝 품질이 우수한 부엌칼용 고내식 소재의 마르텐사이트 스테인리스강을 얻을 수 있다.
또한, 본 발명에 의하면 최종 제품의 미세조직에서 잔류탄화물의 길이가 10㎛ 이하인, 미세조직이 우수한 고내식용의 도물용 마르텐사이트 스테인리스강을 얻을 수 있다.
도 1은 급속냉각주조법의 일예인 스트립 캐스팅 공정의 개략도,
도 2는 종래기술에 관한 조대한 탄화물에 의하여 날끝 부식손상이 발생한 예를 나타낸 조직사진도.
도 3은 종래의 잉곳주조법으로 제조되고, 1050℃ 오스테나이트화 열처리 후 켄칭열처리된 소재의 탄화물 미세조직 사진도.
도 4는 종래의 급속냉각주조법의 일예인 스트립 캐스팅 법으로 제조되고, 1050℃ 오스테나이트화 열처리 후 켄칭 열처리된 소재의 탄화물 미세조직 사진도.
도 5는 본 발명에 관한 급속냉각주조법의 일예인 스트립 캐스팅으로 제조되고, 1050℃ 오스테나이트화 열처리 후 켄칭열처리된 소재의 탄화물 미세조직 사진도.
도 6a, 6b는 비교예와 본 발명강에 관한 켄칭과 템퍼링후의 연화저항성을 대비한 그래프도,
도 7은 본 발명강과 비교예의 황산 침지시의 무게감량을 대비하여 내식성을 평가하는 그래프도이다.
이하 본 발명을 도면을 참조하여 더욱 상세히 설명하기로 하며, 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 이하의 설명에서 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도 포함한다. 또한, 도면에서 본 발명과 관계없는 부분은 본 발명의 설명을 명확하게 하기 위하여 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
먼저 도물용 마르텐사이트계 스테인리스강을 제조하기 위한 급속냉각주조법의 일예로서 기존에 탄화물 중심편석을 획기적으로 제거한 스트립 캐스팅 공정이 알려져 있다. 대한민국 공개특허(2011-0071517)은 중량%로 0.10~0.50% C, 11~16% Cr을 함유한 마르텐사이트계 스테인리스강 및 그 제조방법에 관한 것으로, 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강풀을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 스트립 캐스팅 장치에서, 중량%로 C: 0.10~0.50%, Cr:11~16%를 함유하는 스테인리스용강을 턴디쉬로부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주조된 스테인리스 박판을 인라인롤러를 이용하여 5~40%의 압하율로 열연스트립을 제조하는 마르텐사이트계 스테인리스강의 제조방법과 그 제조방법에 의하여 제조된 마르텐사이트계 스테인리스강을 제시하고 있다. 상기한 특허는 스트립 캐스팅 법을 사용하면, 빠른 주조속도에 기인하여 탄화물 중심편석이 크게 완화되어, 제조된 열간압연 소둔판의 두께에서 경도가 균일한 미세조직을 구현할 수 있음을 나타내고 있다.
본 발명자들은 상기 스트립 캐스팅 공정에서 탄화물 중심편석이 크게 저감된 열간압연 소둔판의 조직특성의 개선에서 더 나아가 최종 열처리 공정을 수행한 최종 경화 소재의 조직까지 연구를 추가로 진행하였다. 즉, 대한민국 공개특허 (KR 2011-0071517)에 제시된 스트립 캐스팅 공정을 활용하여, 중량%로 C가 0.5% 이상이며, 중량%로 0~2%의 Mo이나 W을 단독 혹은 복합으로 첨가하여 내식성을 강화한 다양한 성분의 식도용 스테인리스 소재에 대한 연구를 수행하면서, 열연 소둔 소재의 미세조직내에 탄소중심 편석이 부재하더라도, 최종 강화열처리 공정을 거친 후, 경화된 소재의 미세조직내에 매우 조대한(10㎛이상) 크기로 탄화물들이 결정립계에 응집되는 현상을 발견하였다. 이러한 소재로 식도를 제조한 후, 내식성 테스트를 실시하면, 날끝이 빨리 무뎌지는 단점이 있음을 확인할 수 있었다.
도 2는 조대한 탄화물에 의하여 날끝 부식손상이 발생한 예를 나타낸 조직 사진도를 도시한다. 도면에 도시된 바와 같이 조대한 크기의 탄화물이 결정립계에 응집되는 것을 알 수 있다.
본 발명에서는 이와 같은 문제를 해결하기 위한 방안으로 합금설계와 상기 합금설계에 기초한 제조공정측면의 방안을 제시한다.
1. 합금설계
먼저 본 발명의 일 실시예에서는 급속냉각주조법으로 제조된 마르텐사이트계 스테인리스강에 있어서, 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 마르텐사이트계 스테인리스강의 잔류 탄화물의 크기가 10㎛ 이하이고 경도는 55HRC 이상인 마르텐사이트계 스테인리스강을 제공한다. 본 발명에서 중량%로, W : 0.1~2%, Mo : 0.1~2%가 단독 혹은 복합으로 더욱 첨가될 수 있으며, 바람직하기로 상기 잔류 탄화물의 크기는 3㎛ 이하인 것이 좋다. 그리고 상기 마르텐사이트계 스테인리스강은 템퍼링 열처리후에 경도가 55HRC 이상을 나타내는 두께가 1㎜ 이상의 박판 소재를 제공한다.
이하 본 발명에 관한 마르텐사이트 스테인리스강의 구체적인 조성범위 한정이유를 상세히 설명한다. 먼저, 본 발명에서 사용되는 모재는 마르텐사이트 스테인리스강으로서 중량%로 C는 0.4~0.5%, N은 0.1~0.2%로 구성되고, Cr의 함량이 13~15%로 된다. 그리고 상기 C+N은 0.5% 이상이면서 N/C는 0.2% 이상으로 제어하도록 한다.
C는 0.4%이상으로 할 경우 강화열처리 후 55HRC 이상의 경도 확보가 가능하며, 0.5%를 초과하는 경우 스트립 캐스팅 주조조직 내의 국부적인 탄소편석의 증대에 기인하여, 오스테나이트화(Austenitization) 처리로 규정되는 1000~1100℃ 강화열처리 이후에 10㎛를 초과하는 조대한 탄화물이 발생할 수 있다.
N은 내식성과 경도를 동시에 향상시킬 목적으로 첨가되는 원소이며, 특히 C를 대신하여 0.1%~0.2% 이하의 범위내에서 첨가하여도 C와 같은 국부적인 미세편석을 유발시키지 않으므로, 제품에 조대한 탄화물을 형성시키지 않는 장점이 있다. 그러나 0.2%를 초과하여 조성되면, 미세조직내에 미세 포어가 발생할 수 있어 상한을 0.2%로 제한한다. 그리고 N이 0.1% 미만일 경우에는 템퍼링 저항성이 개선되지 않아 템퍼링후 경도가 쉽게 하락하므로 그 하한을 0.1%로 설정하였다.
한편, 본 발명에서는 탄소와 질소함량의 합인 C+N을 0.5%이상이 되도록 제어하고, 또한 질소와 탄소함량의 비인 N/C가 0.2%이상이 되도록 제어하는 것이 바람직하다. 이는 C의 범위만으로 0.5%를 초과하는 경우 상술한 바와 같이 스트립 캐스팅 주조조직 내의 국부적인 탄소편석의 증대에 기인하여, 오스테나이트화(Austenitization) 처리로 규정되는 1000~1100℃ 강화열처리 이후에 10㎛를 초과하는 조대한 탄화물이 발생할 가능성이 있으나, C의 범위를 0.5%이하로 억제하고 대신에 N을 0.1% 이상을 첨가하여 C+N의 범위의 합이 0.5% 이상이 되도록 하여 조대한 탄화물의 발생을 억제하면서 동시에 템퍼링 저항성을 개선하는 것이 가능하다. 그리고 C+N의 범위가 0.5% 이상이 되도록 하는 한편 N/C의 범위가 0.2% 이상이 되도록 C, N의 범위를 제어하는 것이 바람직하다.
Cr의 함량은 13% 이상 이어야 강화열처리 이후 도물 제품의 기지조직의 내식성이 스테인리스강의 특성을 가지며, 15%를 초과할 경우에는 스트립 캐스팅 주조조직내에 Cr성분의 미세편석이 증가하여, 오스테나이트화 (Austenitization) 처리로 규정되는 1000~1100℃ 강화열처리 이후에 미세조직에 잔류하는 Cr탄화물의 크기가 증대하므로, Cr의 함량을 15%이하로 제한한다.
또한 W과 Mo은 내식성을 강화할 목적으로 단독 혹은 복합으로 첨가할 수 있으나, 과다할 경우 오스테나이트화(Austenitization) 열처리 동안에 탄화물의 재고용을 지연시켜, 조대한 잔류탄화물의 형성을 조장하므로 0.1%에서 2%이하로 함량을 제한한다.
또한, 본 발명의 실시예에 의한 상기 마르텐사이트계 스테인리스강은 중량%로 Si: 0.1~1.0, Mn:0.1~1.0, Ni:0초과 1.0이하, S: 0초과 0.04이하, P:0초과 0.05이하 및 잔부는 Fe 및 기타 불가피한 불순물로 이루어지는 성분계에 관한 합금을 대상으로 하고 있다.
Si은 탈산을 위해 필수적으로 첨가되는 원소인 반면, 높은 함량의 Si 첨가는 산세성을 떨어뜨리며, 소재의 취성을 높이므로 상한을 1.0%로 제한한다.
Mn은 탈산을 위해 필수적으로 첨가되는 원소인 반면, 과도하게 첨가될 경우 강의 표면품질을 저해하고 최종 열처리재의 잔류 오스테나이트 형성을 통해 경도상승을 억제하므로 상한을 1.0%로 제한한다.
Ni은 내식성을 향상시키는 원소이나, 매우 고가의 원소이므로 그 함량은 1.0%이하로 제한한다.
S는 주원소 합금내에 불가피하게 함유되는 원소로서 개재물을 쉽게 형성하므로, 그 함량을 0~0.04%로 가능한 낮게 제한한다.
P는 결정립계에 편석이 용이한 원소로서 합금제조시 가공크랙을 일으키기 때문에 그 함량을 0~0.05%로 가능한 낮게 제한한다.
2. 급속냉각주조법
본 발명은 상기의 합금설계를 기초로 한 마르텐사이트계 스테인리스강을 급속냉각주조법에 의하여 제조한다. 급속냉각주조법은 스트립 캐스팅 공정을 포함할 수 있다.
먼저, 도 1은 급속냉각주조법의 일예인 스트립 캐스팅 공정을 설명하기 위한 설비의 개략도이다. 이 스트립 캐스팅 공정은 용강으로부터 직접 박물의 열연스트립을 생산하는 공정으로서 열간 압연공정을 생략하여 제조원가, 설비투자비용, 에너지 사용량, 공해가스 배출량등을 획기적으로 저감할 수 있는 새로운 철강공정 프로세스이다. 본 발명의 일예로 스트립 캐스팅 공정에 사용되는 쌍롤형 박판주조기는 도 1에 도시된 바와 같이 용강을 래들(1)에 수용시키고, 노즐을 따라 턴디쉬(2)로 유입되며, 턴디쉬(2)로 유입된 용강은 주조롤(6) 양 끝단부에 설치된 에지댐(5)의 사이, 즉, 주조롤(6)의 사이로 용강주입노즐(3)을 통해 공급되어 응고가 개시된다. 이때 롤 사이의 용탕부에는 산화를 방지하기 위해 메니스커스 쉴드(4)로 용탕면을 보호하고 적절한 가스를 주입하여 분위기를 적절히 조절하게 된다. 용강은 양 롤이 만나는 롤 닙(7)을 빠져나오면서 박판(8)이 제조되어 인발되면서 압연기(9)를 거쳐 압연이 된 후 냉각공정을 거쳐 권취 설비(10)에서 권취된다. 이때, 용강으로부터 두께 10㎜ 이하의 박판을 직접 제조하는 쌍롤식 박판주조공정에 있어서 중요한 기술은, 빠른 속도로 반대방향으로 회전하는 내부 수냉식 쌍롤 사이에 주입 노즐을 통해 용강을 공급하여 원하는 두께의 박판을 균열이 없고 실수율이 향상되도록 제조하는 것이다.
본 발명의 일 실시예에서는 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함한 스테인리스강 용강을 급속냉각주조법에 의하여 박판으로 주조하고, 상기 주조된 스테인리스강 박판을 인라인 롤러를 이용하여 5~40%의 압하율로 열연스트립을 제조하는 마르텐사이트계 스테인리스강의 제조방법을 제공한다. 본 발명에서 상기 스테인리스강은 중량%로, W : 0.1~2%, Mo : 0.1~2%가 단독 혹은 복합으로 첨가될 수 있다.
상기 급속냉각주조법은 스트립 캐스팅 공정을 포함하고, 상기 스트립 캐스팅 공정은 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강품을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 장치에서 상기 조성의 스테인리스 용강을 턴디쉬로부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조할 수 있다.
그리고 본 발명에서는 상기 열연스트립을 환원성 가스분위기하에서 700~950℃의 온도범위에서 상소둔(batch annealing)을 실시하여 열연 소둔판을 제조한다.
본 발명에 관한 고급 식도용의 부엌칼, 과도등의 용도로 제품을 생산할 경우 다음과 같은 순서로 강화열처리를 수행한다.
가장 먼저 수행되는 열처리 공정은 오스테나이트화(Austenitization)공정이다.
오스테나이트화(Austenitization) 공정은 소재를 약 1000~1100℃의 고온으로 노출시키는 열처리로, 이 과정중에 크롬탄화물 혹은 크롬탄질화물이 기지조직으로 재고용되며, 기지조직은 페라이트에서 오스테나이트로 변태된다. 그 다음으로 켄칭(Quenching)이 진행된다. 켄칭(Quenching)은 고온에서 상온으로의 급속냉각을 통하여 오스테나이트 조직을 경도가 높은 마르텐사이트로 변태시키는 열처리 공정이다. 그리고 경도가 높아 취성이 강한 마르텐사이트 조직에 인성을 부여하기 위하여 템퍼링(Tempering) 열처리 공정이 최종적으로 수행된다. 그러나, 켄칭(Quenching)후에도 경도가 충분히 높지 않을 경우에는 켄칭(Quenching)과 템퍼링(Tempering) 열처리 사이에, 딥 프리징(Deep Freezing) 공정을 추가로 실시한다. 딥 프리징(Deep Freezing) 공정은 상온으로 켄칭(Quenching)된 소재를 약 -50~-150℃의 극저온으로 추가 냉각하는 공정으로 이 과정을 통하여 켄칭(Quenching) 소재의 미세조직에 잔류한 오스테나이트 조직이 마르텐사이트 조직으로 추가적으로 변태하여 경도가 더욱 상승하게 된다.
본 발명에서는 열연 소둔판을 1000~1100℃의 온도에서 유지한 후에 켄칭 시켜 미세조직에서 잔류탄화물의 크기가 10㎛ 이하를 갖도록 한다.
그리고 상기 켄칭된 소재를 150~250℃에서 템퍼링 열처리를 실시하여
템퍼링 열처리후에 경도가 55HRC 이상을 얻을 수 있도록 한다.
또한, 본 발명에서는 켄칭 시킨 마르텐사이트계 스테인리스강을 템퍼링 열처리 전에 -50 ~ 150℃의 온도에서 딥프리징(Deep freezing) 열처리를 실시할 수 있다.
(실시예)
이하 본 발명의 실시예를 설명한다. 본 발명에 관한 실시예에서는 기존의 연속주조법을 경유하여 제조된 열연소둔판과 급속냉각주조법의 일예인 스트립 캐스팅법을 경유하여 제조된 강의 미세 조직학적 특성을 비교하였다.
표 1은 잉곳주조법과 스트립 캐스팅 법으로 제조된 강의 성분을 도시한 것이다. 먼저 본 발명의 비교예에서는 기존의 잉곳주조법을 활용하여 140㎜ 두께의 진공유도용해 잉곳을 40kg 제조하였다. 이는 표 1에서 비교예 1로 나타난다. 그 후, 열간압연을 위하여 잉곳을 불활성분위기의 가열로에서 1250℃로 재가열하였으며, 그 온도에서 3시간 유지 후 최종 2㎜의 두께로 열간압연하였다. 한편 연속주조로 제조된 성분강인 표 1의 1과 유사한 성분을 포함하여 다양한 성분의 강을 쌍롤형 스트립캐스터를 이용하여 열연코일의 형태로 제조하였다. 이를 표 1의 2~5에 나타내었다.
쌍롤형 스트립캐스터는 서로 반대방향으로 회전하는 양롤(twin-drum rolls)과 측면 댐(side dams)사이로 용강을 공급하고, 수냉되는 롤 표면을 통해 많은 열량을 방출시키면서 주조하는 것을 특징으로 한다. 이 때. 롤 표면에서 빠른 냉각속도로 응고셀을 형성되며, 주조직후 인라인롤링(in-line rolling)을 실시하여 2㎜두께의 열연코일을 제조하였다.
잉곳주조법을 활용하여 제조된 2㎜ 두께의 열연판과 스트립 캐스팅을 활용하여 제조된 2㎜ 두께의 열연코일에 대하여 동일한 조건의 상소둔(batch annealing)을 실시하였다. 상소둔은 상기 열연스트립을 환원성 분위기하에서 700~950℃의 온도범위에서 실시하였다. 이어 상소둔을 마친 열연소둔소재에 대하여, 강화열처리를 실시하였다. 강화열처리는 열연 소둔판을 1000~1100℃의. 바람직하게는 1050℃로 가열하고 0.5~2시간, 바람직하게는 적어도 1시간 유지시키는 오스테나이트화(Austenitization) 열처리를 실시하였으며, 오스테나이트화(Austenitization) 열처리를 마친 소재는, 오일속으로 켄칭(Quenching) 되었다. 켄칭된 소재에 대하여 주사전자 현미경을 사용하여 미세조직을 조사하였으며, 미세조직내의 잔류탄화물의 크기를 조사하여 최대 10㎛ 이하의 탄화물이 존재할 경우 "미세", 10㎛ 를 초과하는 탄화물이 존재할 경우를 "조대"로 구분하여 표 1에 그 결과를 나타내었다.
또한, 켄칭된 소재에 대하여, -50~-150℃, 바람직하게는 -70℃의 온도에서 적어도 1시간 동안 딥프리징(Deep Freezing) 열처리를 실시하고, 그 후 150~250℃, 바람직하게는 200℃에서 적어도 2시간 템퍼링 열처리를 실시하여, 소재의 경도를 측정하였다.
표 1
구분 C Si Mn P S Cr Ni Mo W N 탄수화물크기 비고
1 0.54 0.44 0.36 0.018 0.002 14.5 0.37 0.60 1.20 0.03 미세 잉곳주조(비교예)
2 0.54 0.31 0.49 0.019 0.003 14.5 0.25 0.62 1.24 0.03 조대 스트립 캐스팅 (비교예
3 0.47 0.31 0.49 0.021 0.002 14.5 0.25 0.61 1.31 0.12 미세 스트립 캐스팅 (발명예)
4 0.45 0.43 0.61 0.019 0.002 14.2 0.31 0.51 1.57 0.13 미세 스트립 캐스팅(발명예)
5 0.42 0.38 0.55 0.020 0.003 13.8 0.26 1.53 1.02 0.1 미세 스트립 캐스팅 (발명예)
6 0.43 0.51 0.71 0.018 0.002 13.2 0.15 0.5 - 0.11 미세 스트립 캐스팅(발명예)
7 0.43 0.6 0.44 0.019 0.002 14.7 0.22 - 0.5 0.1 미세 스트립 캐스팅(발명예)
8 0.41 0.7 0.4 0.018 0.002 14.9 0.12 - - 0.18 미세 스트립 캐스팅(발명예)
9 0.45 0.32 0.5 0.019 0.002 14.2 0.22 0.6 1 0.08 미세 스트립캐스팅(비교예)
10 0.48 0.33 0.46 0.018 0.002 14.3 0.3 0.5 1.3 0.05 미세 스트립 캐스팅(비교예)
11 0.46 0.33 0.46 0.018 0.002 14.3 0.3 - - 0.05 미세 스트립캐스팅(비교예)
도 3은 잉곳주조법으로 제조되고, 1050℃ 오스테나이트화 열처리 후 켄칭 열처리된 소재(표1의 1, 비교예)의 탄화물 미세조직 사진도를 나타내고, 도 4는 스트립 캐스팅 법으로 제조되고, 1050℃ 오스테나이트화 열처리 후 켄칭 열처리된 소재(표1의 2, 비교예)의 탄화물 미세조직 사진도를 나타낸다. 한편, 도 5는 본 발명에 관한 스트립 캐스팅 법으로 제조되고, 1050℃ 오스테나이트화 열처리 후 켄칭열처리된 소재(표1의 4, 발명예)의 탄화물 미세조직 사진도이다.
먼저 도 3에 도시한 사진도를 보면, 약 2㎛ 이내의 다수의 잔류 탄화물과 소수의 조대탄화물이 관찰되나, 조대한 탄화물의 크기는 10㎛ 보다 작음을 알 수 있다.
다음은 잉곳주조법으로 제조되고 켄칭열처리된 강(표1의 1)과 유사한 성분을 가진 스트립 캐스팅으로 주조되고 켄칭 열처리된 강(표1의 2)에서 관찰되는 탄화물 미세조직을 도 4에 나타내었다.
도 4의 경우에서 도3의 경우와 마찬가지로 약 2㎛ 이내의 다수의 잔류 탄화물이 관찰되나, 조대한 탄화물의 경우에 있어서는 그 형상과 크기가 확연히 다름을 알 수 있다. 즉, 잉곳 주조법으로 제조된 소재에서는(도 3) 약 5㎛ 크기의 대체로 구형의 조대한 탄화물이 관찰되는 반면에, 스트립 캐스팅으로 제조된 소재의 경우에는(도 4) 입계를 따라서 응집된 불규칙한 형상의 10㎛ 이상 크기의 탄화물이 관찰된다. 따라서, 유사한 성분일지라도 합금의 제조방법이 다를 경우에 잔류탄화물의 크기와 형상에 차이가 있음을 알 수 있다. 특히, 스트립 캐스팅으로 식도등을 제조할 경우에 도 4에서 관찰되는 불규칙한 형상을 가진 10㎛ 이상의 탄화물은 날끝 품질을 저해할 수 있는 미세조직학적 인자이다.
도 4에서 관찰되는 조대한 탄화물의 크기를 10㎛ 이하로 제어하기 위하여, 표1의 2의 성분 대비 탄소를 줄이고 질소를 상향 조정한 성분강의 켄칭 후 미세조직을 도 5에 나타내었다.
도 5는 표 1의 넘버 4강의 켄칭 후 미세조직을 나타낸 것으로, 도 4에 나타난 불규칙한 형상의 조대한 탄화물 응집부가 제거된 매우 우수한 미세조직을 보이고 있다. 이는 스트립 캐스팅 공정으로 제조하더라도, 탄소의 함량을 제한하여 탄소의 미세편석을 최소화하고, 탄소의 저하에 따라서 감소하는 마르텐사이트강의 경도를 질소를 첨가하여 보상할 경우, 통상의 잉곳 주조법으로 제조된 소재보다 우수한 도물용 미세조직강의 제조가 가능하다는 것을 보여준다.
다음은 본 발명에 관한 마르텐사이트 스테인리강 열연소둔재를 1050℃로 가열하고 1시간 유지시키는 오스테나이트화 열처리 후, 오일속으로 켄칭(Quenching)을 실시하고. 켄칭된 소재에 대하여, -70℃의 온도에서 적어도 1시간 동안 딥프리징(Deep freezing) 열처리를 실시하고, 그 후 200℃에서 적어도 2시간 템퍼링 열처리를 실시한 소재의 경도측정 결과를 표 2에 나타내었다.
하기의 표 2에 나타난 바와 같이 본 발명에 관한 발명예 3 내지 8의 경우에는 C+N의 범위가 0.5% 이상을 나타내고 동시에 N/C의 범위가 0.2%이상을 나타내는 경우 경도가 55HRC 이상을 얻을 수 있다. 그러나 비교예 1 경우 잉곳주조법에 의하여 제조된 것이며 N/C의 범위가 각각 0.06을 나타낼 때 경도가 55HRC 이상을 나타낸다. 다만, 비교예 1의 경우 잉곳주조법에 의하여 제조되므로 열연판에서 탄화물 중심편석이 발생하는 문제점이 있다. 비교예 2번의 경우 스트립 캐스팅 공정으로 제조되나 N/C 범위가 0.2% 미만으로서 경도는 55HRC 이상을 나타내 조대한 탄화물이 생성되는 문제점이 있다. 한편 비교예 9 내지 11의 경우에는 N/C의 범위가 0.2% 미만으로 제어될 경우에 55HRC 미만의 경도가 얻어지는 것을 알 수 있다.
이상과 같은 결과는, 중량%로 C 0.4~0.5%와 N 0.1%~0.2%로 구성되고, Cr의 함량이 13~15%로 구성되며, C+N을 0.5% 이상, N/C을 0.2% 이상으로 제어하고 이를 스트립 캐스팅 공정을 이용하여 1㎜ 이상의 강을 제조할 경우, 고급 식도용으로 적합한 55HRC 이상의 경도를 갖는 날끝 품질이 우수한 고경도강을 제조하는 것이 가능함을 보여주고 있다.
표 2
구분 1 2 3 4 5 6 7 8 9 10 11
C+N 0.57 0.57 0.59 0.58 0.52 0.54 0.53 0.59 0.53 0.53 0.51
N/C 0.06 0.06 0.26 0.29 0.24 0.26 0.23 0.44 0.18 0.10 0.11
경도(HRC) 55.2 55.9 57.6 56.5 56.1 55.3 55.1 58.1 53.9 53.5 53.1
또한, 도 6a, 6b는 본 발명에서 비교강과 발명강에 관한 템퍼링의 연화저항성을 대비한 그래프도이다. 먼저 도 6a는 비교예로서 기존의 질소(N)의 값이 0.03wt%인 경우를 나타낸다. 그러나, 이와 같이 질소(N)이 값이 낮은 경우에는 템퍼링에 의하여 경도 하락이 크게 나타나므로 최종 제품에서 고경도 확보에 불리함을 알 수 있다. 한편 도 6b의 경우는 본 발명예 포함된 것으로 특히 C의 값을 0.5wt% 이하로 낮추어 탄화물 편석을 저감하고 N의 값을 0.1wt% 이상으로 증가하여 C의 편석 최소화로 열처리 미세조직의 균일성을 확보하면서도 N에 의한 고경도 값을 얻을 수 있음을 보여주고 있다. 도 6b에 도시된 바와 같이 본 발명의 실시예어서 N의 값을 0.10wt%로 상향하고 C의 값을 0.5wt% 미만으로 제어하는 경우에는 템퍼링에 의한 연화저항성이 커서 최종 제품에서도 고경도를 얻을 수 있다.
본 발명의 실시예에서의 강화열처리는 마르텐사이트 스테인리강 열연소둔재를 1000~1100℃, 바람직하게는 1050℃로 가열하고 1시간 유지시키는 오스테나이트화 열처리 후, 오일속으로 켄칭(Quenching)을 실시한 것이며, 또한, 텔퍼링 열처리른 150~250℃, 바람직하게는 200℃에서 적어도 2시간 열처리르 수행한 것이다.
물론 본 발명에서 켄칭(Quenching)과 템퍼링(Tempering) 열처리 사이에, 딥 프리징(Deep Freezing) 공정을 추가로 실시하는 것도 가능하다. 이 경우 딥 프리징(Deep Freezing) 공정에서 상온으로 켄칭(Quenching)된 소재를 약 -50~-150℃의 극저온으로 추가 냉각하여 켄칭(Quenching) 소재의 미세조직에 잔류한 오스테나이트 조직이 마르텐사이트 조직으로 추가적으로 변태하여 경도가 더욱 상승하게 할 수 있다.
한편, 도 7은 본 발명에 관한 실시예에서 C를 N으로 대체하고 내식원소인 Mo/W를 복합 첨가하여 기존강종 대비하여 내식성이 개선됨을 알려주는 그래프도이다. 이는 비교예와 발명강에 대하여 0.1% 황산용액에서(40℃)의 침지내식 무게감량 결과를 대비한 것으로 본 발명강이 비교예와 대비하여 무게감량이 적게 발생하여 내식성이 우수함을 알 수 있다. 본 그래프도에서 비교예는 기존의 0.5C-0.03N-14Cr을 포함한 강종으로, 본 발명강에 관한 0.45C-0.1N-14Cr을 포함한 강종과 대비된다.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 지식을 가진 자라면 본 발명의 기술 사상의 범위 내에서 다양한 변형예가 가능함을 이해할 수 있을 것이다.
[부호의 설명]
1 : 래들 2 : 턴디쉬 3 : 주입노즐
4 : 메니스커스쉴드 5 : 에지댐 6 : 주조롤
7 : 롤닙 8 : 주편 9 : 압연기
10 : 코일권취설비

Claims (13)

  1. 급속냉각주조법(strip casting)에 의해 제조된 마르텐사이트계 스테인리스강에 있어서, 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 마르텐사이트계 스테인리스강의 잔류 탄화물의 크기가 10㎛ 이하이고 경도는 55HRC 이상인 것을 특징으로 하는 마르텐사이트계 스테인리스강.
  2. 제1항에 있어서,
    중량%로, W : 0.1~2%, Mo : 0.1~2%가 단독 혹은 복합으로 첨가된 마르텐사이트계 스테인리스강.
  3. 제1항 또는 제2항에 있어서,
    상기 잔류 탄화물의 크기는 3㎛ 이하인 마르텐사이트계 스테인리스강.
  4. 제1항 또는 제2항에 있어서,
    상기 스테인리스강은 템퍼링 열처리후에 경도가 55HRC 이상을 나타내는 마르텐사이트계 스테인리스강.
  5. 제1항 또는 제2항에 있어서,
    상기 스테인리스강은 두께가 1㎜ 이상의 박판 소재인 마르텐사이트계 스테인리스강.
  6. 중량%로 C : 0.4~0.5%, N : 0.1~0.2%, Cr : 13~15%, Si : 0.1~1.0%, Mn : 0.1~1.0%, Ni : 0초과 1.0% 이하, C+N : 0.5% 이상 및 N/C는 0.2% 이상으로 제어하되, 나머지는 Fe 및 기타 불가피한 불순물을 포함한 스테인리스강 용강을 급속냉각주조법(strip casting)에 의하여 박판으로 주조하고, 상기 주조된 스테인리스강 박판을 인라인 롤러를 이용하여 5~40%의 압하율로 열연스트립을 제조하는 마르텐사이트계 스테인리스강의 제조방법.
  7. 제6항에 있어서,
    중량%로, W : 0.1~2%, Mo : 0.1~2%가 단독 혹은 복합으로 첨가된 마르텐사이트계 스테인리스강의 제조방법.
  8. 제6항 또는 제7항에 있어서,
    상기 급속냉각주조법(strip casting)은 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강품을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 장치에서 상기 조성의 스테인리스 용강을 턴디쉬로부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하는 마르텐사이트계 스테인리스강의 제조방법.
  9. 제6항 또는 제7항에 있어서,
    상기 열연스트립을 환원성 가스분위기하에서 700~950℃의 온도범위에서 상소둔(batch annealing)을 실시하여 열연 소둔판을 제조하는 마르텐사이트계 스테인리스강의 제조방법.
  10. 제9항에 있어서,
    상기 열연 소둔판을 1000~1100℃의 온도에서 유지한 후에 켄칭(Quenching) 시켜 미세조직에서 잔류탄화물의 크기가 10㎛ 이하를 갖도록 하는 마르텐사이트계 스테인리스강의 제조방법.
  11. 제10항에 있어서,
    상기 켄칭된 소재를 150~250℃에서 템퍼링 열처리를 실시하는 마르텐사이트계 스테인리스강의 제조방법.
  12. 제11항에 있어서,
    상기 마르텐사이트계 스테인리스강은 템퍼링 열처리후에 경도가 55HRC 이상을 나타내는 마르텐사이트계 스테인리스강의 제조방법.
  13. 제11항에 있어서,
    상기 켄칭 시킨 마르텐사이트계 스테인리스강을 템퍼링 열처리 전에 -50 ~ 150℃의 온도에서 딥프리징(Deep freezing) 열처리를 실시하는 마르텐사이트계 스테인리스강의 제조방법.
PCT/KR2013/006315 2012-07-16 2013-07-15 마르텐사이트계 스테인리스강 및 그 제조방법 WO2014014246A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380038141.6A CN104471095B (zh) 2012-07-16 2013-07-15 马氏体系不锈钢及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120077141A KR101423826B1 (ko) 2012-07-16 2012-07-16 마르텐사이트계 스테인리스강 및 그 제조방법
KR10-2012-0077141 2012-07-16

Publications (1)

Publication Number Publication Date
WO2014014246A1 true WO2014014246A1 (ko) 2014-01-23

Family

ID=49949024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006315 WO2014014246A1 (ko) 2012-07-16 2013-07-15 마르텐사이트계 스테인리스강 및 그 제조방법

Country Status (3)

Country Link
KR (1) KR101423826B1 (ko)
CN (1) CN104471095B (ko)
WO (1) WO2014014246A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018083A (zh) * 2014-06-20 2014-09-03 重庆材料研究院有限公司 含氮不锈轴承钢及制备方法
CN105881593A (zh) * 2014-10-29 2016-08-24 重庆市大足区袁鹏刀具有限公司 菜刀刀片及其制备方法
WO2016146857A1 (fr) * 2015-04-30 2016-09-22 Aperam Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
WO2020176163A1 (en) * 2019-02-28 2020-09-03 Edgewell Personal Care Brands, Llc Razor blade and composition for a razor blade
US20210207250A1 (en) * 2018-05-28 2021-07-08 Damasteel Ab Blank for a damascus patterned article
CN114749592A (zh) * 2022-04-18 2022-07-15 重庆新承航锐科技股份有限公司 一种消除9Cr18马氏体不锈钢网状碳化物的方法
CN115256060A (zh) * 2022-08-11 2022-11-01 宁蒗恒泰农业投资开发有限公司 一种果树专用嫁接刀具生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573033B2 (ja) 2017-03-13 2019-09-11 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2019196530A (ja) * 2018-05-11 2019-11-14 株式会社デンソー マルテンサイト系ステンレス鋼
JP7404792B2 (ja) 2018-12-04 2023-12-26 株式会社プロテリアル マルテンサイト系ステンレス鋼部品およびその製造方法
WO2021044889A1 (ja) * 2019-09-03 2021-03-11 日鉄ステンレス株式会社 マルテンサイト系ステンレス鋼板およびマルテンサイト系ステンレス鋼部材
WO2021124511A1 (ja) * 2019-12-19 2021-06-24 日鉄ステンレス株式会社 冷間加工性に優れる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼及びその製造方法
KR102326693B1 (ko) * 2020-03-20 2021-11-17 주식회사 포스코 고내식 마르텐사이트계 스테인리스강 및 그 제조방법
CN112474821B (zh) * 2020-10-29 2023-03-21 江苏延汉材料科技有限公司 一种马氏体不锈钢薄带的板型控制方法
WO2023121063A1 (ko) * 2021-12-20 2023-06-29 주식회사 포스코 연화저항성이 향상된 마르텐사이트계 스테인리스강 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009523B1 (ko) * 1994-12-29 1997-06-14 박용수 고강도 고내식성 마르텐사이트계 스테인레스강
JP2000282182A (ja) * 1999-03-29 2000-10-10 Sanyo Special Steel Co Ltd 冷間加工性に優れた高疲労寿命・高耐食マルテンサイト系ステンレス鋼
JP2002212679A (ja) * 2001-01-10 2002-07-31 Daido Steel Co Ltd 刃物及びそれに用いるFe系刃物用合金
KR20110071517A (ko) * 2009-12-21 2011-06-29 주식회사 포스코 마르텐사이트계 스테인리스강 및 그 제조방법
KR20110075387A (ko) * 2009-12-28 2011-07-06 주식회사 포스코 쌍롤식 박판 주조공정에 의해 제조된 마르텐사이트계 스테인리스강 및 그 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050054058A (ko) * 2003-12-03 2005-06-10 주식회사 포스코 핀홀결함이 없는 마르텐사이트계 스테인레스강
CN101372734A (zh) * 2007-08-24 2009-02-25 宝山钢铁股份有限公司 一种马氏体不锈钢及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970009523B1 (ko) * 1994-12-29 1997-06-14 박용수 고강도 고내식성 마르텐사이트계 스테인레스강
JP2000282182A (ja) * 1999-03-29 2000-10-10 Sanyo Special Steel Co Ltd 冷間加工性に優れた高疲労寿命・高耐食マルテンサイト系ステンレス鋼
JP2002212679A (ja) * 2001-01-10 2002-07-31 Daido Steel Co Ltd 刃物及びそれに用いるFe系刃物用合金
KR20110071517A (ko) * 2009-12-21 2011-06-29 주식회사 포스코 마르텐사이트계 스테인리스강 및 그 제조방법
KR20110075387A (ko) * 2009-12-28 2011-07-06 주식회사 포스코 쌍롤식 박판 주조공정에 의해 제조된 마르텐사이트계 스테인리스강 및 그 제조방법

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018083A (zh) * 2014-06-20 2014-09-03 重庆材料研究院有限公司 含氮不锈轴承钢及制备方法
CN104018083B (zh) * 2014-06-20 2016-01-06 重庆材料研究院有限公司 含氮不锈轴承钢及制备方法
CN105881593A (zh) * 2014-10-29 2016-08-24 重庆市大足区袁鹏刀具有限公司 菜刀刀片及其制备方法
WO2016146857A1 (fr) * 2015-04-30 2016-09-22 Aperam Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
WO2016174500A1 (fr) * 2015-04-30 2016-11-03 Aperam Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
JP2018521215A (ja) * 2015-04-30 2018-08-02 アペラン マルテンサイトステンレススチール、該スチールからの半製品の製造方法、及び該半製品から製造された切削具
US20210207250A1 (en) * 2018-05-28 2021-07-08 Damasteel Ab Blank for a damascus patterned article
WO2020176163A1 (en) * 2019-02-28 2020-09-03 Edgewell Personal Care Brands, Llc Razor blade and composition for a razor blade
CN114749592A (zh) * 2022-04-18 2022-07-15 重庆新承航锐科技股份有限公司 一种消除9Cr18马氏体不锈钢网状碳化物的方法
CN114749592B (zh) * 2022-04-18 2024-01-02 重庆新承航锐科技股份有限公司 一种消除9Cr18马氏体不锈钢网状碳化物的方法
CN115256060A (zh) * 2022-08-11 2022-11-01 宁蒗恒泰农业投资开发有限公司 一种果树专用嫁接刀具生产方法
CN115256060B (zh) * 2022-08-11 2023-12-01 宁蒗恒泰农业投资开发有限公司 一种果树专用嫁接刀具生产方法

Also Published As

Publication number Publication date
KR101423826B1 (ko) 2014-07-25
CN104471095B (zh) 2016-11-02
KR20140010248A (ko) 2014-01-24
CN104471095A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2014014246A1 (ko) 마르텐사이트계 스테인리스강 및 그 제조방법
KR101268800B1 (ko) 고탄소 마르텐사이트계 스테인리스강 및 그 제조방법
KR101312776B1 (ko) 마르텐사이트계 스테인리스강 및 그 제조방법
WO2013100687A1 (ko) 고강도 오스테나이트계 스테인리스강 및 그 제조방법
WO2012091394A2 (ko) 고내식 마르텐사이트 스테인리스강 및 그 제조방법
WO2012002638A2 (ko) 초고강도 철근 및 그 제조방법
WO2011081331A9 (ko) 쌍롤식 박판 주조공정에 의해 제조된 마르텐사이트계 스테인리스강 및 그 제조방법
WO2012067379A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 DP강의 제조방법
WO2016105145A1 (ko) 린 듀플렉스 스테인리스강 및 그 제조방법
WO2019125083A1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
WO2016111388A1 (ko) 인장강도 1300MPa 이상의 초고강도 도금강판 및 이의 제조방법
KR101543867B1 (ko) 쌍롤식 박판주조기를 사용한 마르텐사이트계 스테인리스 강판의 제조 방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2022139214A1 (ko) 강도 및 내식성이 향상된 마르텐사이트계 스테인리스강 및 이의 제조 방법
CN114058966B (zh) 基于三辊连铸机制备高硅无取向电工薄带钢的方法
KR950005320B1 (ko) 표면품질과 가공성이 우수한 크롬-니켈계 스텐레스강 박판의 제조방법
KR100832960B1 (ko) 고탄소 크롬 베어링강의 제조방법
WO2024085736A1 (ko) 마르텐사이트계 스테인리스강 및 그 제조방법
WO2023210911A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2017082631A1 (ko) 오렌지필 저항성이 우수한 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2023234509A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
KR101258764B1 (ko) 소입경도가 향상된 마르텐사이트계 스테인리스강 및 그 제조방법
WO2023234508A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2023210912A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2022265289A1 (ko) 신선 가공성이 우수한 선재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819458

Country of ref document: EP

Kind code of ref document: A1