WO2023234508A1 - 핫 스탬핑 부품 및 이의 제조 방법 - Google Patents

핫 스탬핑 부품 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023234508A1
WO2023234508A1 PCT/KR2022/020564 KR2022020564W WO2023234508A1 WO 2023234508 A1 WO2023234508 A1 WO 2023234508A1 KR 2022020564 W KR2022020564 W KR 2022020564W WO 2023234508 A1 WO2023234508 A1 WO 2023234508A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot stamping
stamping part
base material
depth
blank
Prior art date
Application number
PCT/KR2022/020564
Other languages
English (en)
French (fr)
Inventor
장민호
강석현
박민서
한성경
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023234508A1 publication Critical patent/WO2023234508A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to hot stamping parts and methods for manufacturing the same.
  • the hot stamping process generally consists of heating/forming/cooling/trimming, and can take advantage of the phase transformation and microstructure of the material during the process.
  • the hot stamping process In order to improve the toughness of hot stamping steel, research is being actively conducted on methods of improving the toughness of the base material, generally using alloy components.
  • Embodiments of the present invention can improve the toughness of manufactured hot stamping parts by appropriately forming a decarburization layer and an internal oxide layer on the surface of the base material, and at the same time, cracks can be prevented from occurring during hot stamping molding.
  • One embodiment of the present invention is a hot stamping part, comprising: a base material; A decarburization layer disposed on the surface of the base material; and an internal oxide layer disposed on the surface of the decarburization layer, wherein the hot stamping part has a tensile strength (TS) of 1350 MPa to 1680 MPa, and the plate thickness of the hot stamping part at the surface of the hot stamping part
  • TS tensile strength
  • a hot stamping part is provided, wherein the hardness within a depth of 50 ⁇ m in a direction and the average hardness of the hot stamping part satisfy the following relational expression 1.
  • A is the hardness (Hv( ⁇ 50 ⁇ m)) within a depth of 50 ⁇ m in the plate thickness direction of the hot stamping part
  • B is the average hardness (Hv(avg.)) of the hot stamping part.
  • the depth of the internal oxide layer may satisfy the following relational equation 2.
  • C is the depth of the internal oxide layer in the direction of the plate thickness of the hot stamping part.
  • the hot stamping part may have a VDA bending angle of 60° or more.
  • the hot stamping part may have a yield stress (YP) of 900 MPa to 1300 MPa and an elongation (EL) of 4% to 10%.
  • the hot stamping part may have a microstructure containing a martensite fraction of 90% or more.
  • a plating layer disposed on the surface of the internal oxide layer may be further included.
  • the thickness of the plating layer may be 10 ⁇ m to 30 ⁇ m.
  • Another embodiment of the present invention is a method of manufacturing hot stamping parts, comprising the steps of cutting a plated steel sheet with a plating layer formed on at least one surface of a base material to form a blank; and heating the blank in a heating furnace having a plurality of sections having different temperature ranges, wherein the heating of the blank includes a multi-stage heating step of heating the blank in stages; And a crack heating step of heating the multi-stage heated blank to a temperature of Ac1 to 910° C., wherein the hardness within 50 ⁇ m depth in the thickness direction of the hot stamping part from the surface of the hot stamping part and the hot stamping part
  • a method for manufacturing hot stamping parts is provided, wherein the average hardness satisfies the following relational expression 3.
  • A is the hardness (Hv ( ⁇ 50 ⁇ m)) within a depth of 50 ⁇ m in the plate thickness direction of the hot stamping part
  • B is the average hardness (Hv (avg.)) of the hot stamping part.
  • the dew point temperature of the annealing furnace of the base material may be -15°C to +15°C.
  • the annealing temperature of the base material may be 750°C to 900°C.
  • a decarburization layer formed on the surface of the base material may further include an internal oxide layer formed on the surface of the decarburization layer.
  • the depth of the internal oxide layer may satisfy the following relational equation 4.
  • C is the depth of the internal oxide layer in the direction of the plate thickness of the hot stamping part.
  • the toughness of the manufactured hot stamping part can be improved by forming a decarburization layer on the surface of the base material.
  • the internal oxide layer formed on the surface of the decarburization layer is provided below a preset depth, thereby preventing cracks from occurring during the hot stamping process.
  • FIG. 1 is a cross-sectional view schematically showing a hot stamping part according to an embodiment of the present invention.
  • Figure 2 is a flow chart schematically showing a method of manufacturing a hot stamping part according to an embodiment of the present invention.
  • 3 to 5 are cross-sectional views schematically showing a method of manufacturing hot stamping parts according to an embodiment of the present invention.
  • Figure 6 is a flowchart schematically showing hot stamping steps according to an embodiment of the present invention.
  • Figure 7 is a flowchart schematically showing a heating step according to an embodiment of the present invention.
  • Figure 8 is a diagram illustrating a heating furnace having a plurality of sections in the heating step of the method for manufacturing hot stamping parts according to an embodiment of the present invention.
  • first and second are used not in a limiting sense but for the purpose of distinguishing one component from another component.
  • a and/or B refers to A, B, or A and B. Additionally, in this specification, “at least one of A and B” refers to the case of A, B, or A and B.
  • “on a plane” means when the target part is viewed from above, and “on a cross-section” means when a cross section of the target part is cut vertically and viewed from the side.
  • “overlapping” when referring to “overlapping”, this includes “in-plane” and “in-cross-section” overlapping.
  • FIG. 1 is a cross-sectional view schematically showing a hot stamping part according to an embodiment of the present invention.
  • a hot stamping part 1 may include a base material 100, a decarburization layer 200, an internal oxide layer 300, and a plating layer 400.
  • the base material 100, the decarburization layer 200, the internal oxide layer 300, and the plating layer 400 may be sequentially stacked in the thickness direction of the hot stamping part 1.
  • the base material 100 is carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), boron (B), and the remainder of iron (Fe). ) and other unavoidable impurities.
  • the base material 100 is, in weight percent, about 0.15 wt% or more and about 0.3 wt% or less of carbon (C), about 0.05 wt% or more and about 0.8 wt% or less of silicon (Si), and about 0.8 wt% or more of manganese (Mn).
  • the base material 100 may further include one or more of titanium (Ti), niobium (Nb), and vanadium (V). Additionally, the base material 100 may further contain calcium (Ca). For example, the base material 100 contains about 0.01 wt% to about 0.1 wt% of titanium (Ti), about 0.01 wt% to about 0.1 wt% of niobium (Nb), and about 0.01 wt% to about 0.1 wt% of vanadium (V). It may further include one or more of the following and calcium (Ca) in an amount of about 0.0001% by weight or more and about 0.01% by weight or less.
  • Carbon (C) is a major element that determines the strength and hardness of steel, and can be added for the purpose of securing the tensile strength of steel after the hot stamping (or hot pressing) process. Additionally, carbon (C) may be added for the purpose of securing the hardenability properties of steel. In one embodiment, carbon (C) may be included in an amount of about 0.15% by weight or more and about 0.3% by weight or less based on the total weight of the base material 100. If carbon (C) is included in less than about 0.15% by weight based on the total weight of the base material 100, it may be difficult to achieve the desired mechanical strength.
  • carbon (C) is included in an amount exceeding about 0.3% by weight based on the total weight of the base material 100, a problem of lowering the toughness of the steel material or a problem of controlling the brittleness of the steel may occur.
  • Silicon (Si) may act as a ferrite stabilizing element in the base material 100. Silicon (Si) improves ductility by purifying ferrite and can improve carbon concentration in austenite by suppressing the formation of low-temperature carbides. Furthermore, silicon (Si) may be a key element in hot rolling, cold rolling, hot stamping tissue homogenization (perlite, manganese segregation zone control), and ferrite fine dispersion. In one embodiment, silicon (Si) may be included in an amount of about 0.05% by weight or more and about 0.8% by weight or less based on the total weight of the base material 100.
  • silicon (Si) is included in less than about 0.05% by weight based on the total weight of the base material 100, the above-described functions may not be sufficiently performed.
  • silicon (Si) is included in an amount of more than about 0.8% by weight based on the total weight of the base material 100, hot rolling and cold rolling loads increase, hot rolling red scale may become excessive, and bonding properties may deteriorate.
  • Manganese (Mn) may be added to increase hardenability and strength during heat treatment.
  • manganese (Mn) may be included in an amount of about 0.8 wt% or more and about 3.0 wt% or less based on the total weight of the base material 100. If manganese (Mn) is included in an amount of less than about 0.8% by weight based on the total weight of the base material 100, there may be a high possibility that the material will be insufficient (for example, the hard phase fraction will be insufficient) after hot stamping due to insufficient hardenability.
  • manganese (Mn) is contained in an amount exceeding about 3.0% by weight based on the total weight of the base material 100, ductility and toughness may be reduced due to manganese segregation or pearlite bands, and it may cause a decrease in bending performance. Heterogeneous microstructure may occur.
  • Phosphorus (P) is an element that is prone to segregation and may be an element that inhibits the toughness of steel.
  • phosphorus (P) may be included in an amount greater than 0 and less than or equal to about 0.1% by weight based on the total weight of the base material 100.
  • phosphorus (P) is included in the above-mentioned range with respect to the total weight of the base material 100, deterioration of the toughness of the steel can be prevented.
  • phosphorus (P) is contained in an amount exceeding about 0.1% by weight based on the total weight of the base material 100, cracks may occur during the process, and iron phosphide compounds may be formed, thereby reducing the toughness of the steel.
  • Sulfur (S) may be an element that inhibits processability and physical properties.
  • sulfur (S) may be included in an amount greater than 0 and less than or equal to about 0.1% by weight based on the total weight of the base material 100. If sulfur (S) is contained in an amount exceeding about 0.1% by weight based on the total weight of the base material 100, hot workability may be reduced and surface defects such as cracks may occur due to the creation of large inclusions.
  • Chromium (Cr) can be added to improve the hardenability and strength of steel.
  • chromium (Cr) may be included in an amount of about 0.1% by weight or more and about 0.9% by weight or less based on the total weight of the base material 100.
  • chromium (Cr) is included in the above-mentioned range with respect to the total weight of the base material 100, the hardenability and strength of the steel can be improved, an increase in production costs can be prevented, and the toughness of the steel material can be prevented from decreasing. It can be prevented.
  • Boron (B) is added for the purpose of securing the hardenability and strength of steel by securing the martensite structure, and can have a grain refining effect by increasing the austenite grain growth temperature.
  • boron (B) may be included in an amount of about 0.001% by weight or more and about 0.005% by weight or less based on the total weight of the base material 100. When boron (B) is included in the above-mentioned range with respect to the total weight of the base material 100, hard phase grain boundary embrittlement can be prevented and high toughness and bendability can be secured.
  • Titanium (Ti) may be added to strengthen hardenability and improve material quality by forming precipitates after hot stamping heat treatment.
  • titanium (Ti) forms precipitated phases such as Ti(C,N) at high temperatures, which can effectively contribute to austenite grain refinement.
  • titanium (Ti) may be included in an amount of about 0.01% by weight or more and about 0.1% by weight or less based on the total weight of the base material 100.
  • Niobium (Nb) can be added to increase strength and toughness as the martensite packet size decreases.
  • niobium (Nb) may be included in an amount of about 0.01% by weight or more and about 0.1% by weight or less based on the total weight of the base material 100.
  • the grain refining effect of the steel material is excellent in the hot rolling and cold rolling processes, and the occurrence of cracks in the slab and brittleness of the product during steelmaking/continuity are reduced. Fracture can be prevented and the generation of steelmaking coarse precipitates can be minimized.
  • Vanadium (V) may be added for the purpose of increasing the strength of steel through the precipitation strengthening effect by forming precipitates.
  • vanadium (V) may be included in an amount of about 0.01% by weight or more and about 0.1% by weight or less based on the total weight of the base material 100. When vanadium (V) is included in the above-mentioned range with respect to the total weight of the base material 100, the strength of the steel material may be improved.
  • Calcium (Ca) can be added to form CaS to lower the sulfur content in the steel and to prevent the creation of MnS inclusions that are elongated during rolling and cause defects such as hook cracks during electric resistance welding. .
  • the base material 100 may have a microstructure containing a martensite fraction of 90% or more. Specifically, the base material 100 may have a microstructure containing more than 90% of marstensite and less than 10% of remaining unavoidable structures and other precipitates.
  • a decarburization layer 200 may be disposed on the base material 100. Specifically, the decarburization layer 200 may be disposed on the surface of the base material 100. When the decarburization layer 200 is disposed on the base material 100, the decarburization layer 200 is a softer layer than the base material 100, so the toughness of the hot stamping part 1 can be improved.
  • a layer having a hardness of about 70% or less compared to the average hardness at about 1/4 point from the surface of the base material 100 in the thickness direction of the hot stamping part 1 may be defined as the decarburization layer 200.
  • a layer having a hardness of about 70% or less compared to the average hardness at about 1/4 point from the surface of the hot stamping part 1 in the thickness direction of the hot stamping part 1 may be defined as the decarburization layer 200. That is, the average hardness of the decarburization layer 200 is about 70 compared to the average hardness at about 1/4 of the point from the surface of the base material 100 or from the surface of the hot stamping part 1 in the direction of the plate thickness of the hot stamping part 1. It may be less than %.
  • the average hardness of the decarburization layer 200 is the average hardness of about 1/4 of the point from the surface of the base material 100 or from the surface of the hot stamping part 1 in the direction of the plate thickness of the hot stamping part 1. It may be about 70% or less.
  • an internal oxide layer 300 may be disposed on the decarburization layer 200. Specifically, an internal oxide layer 300 may be disposed on the surface of the decarburization layer 200.
  • the internal oxide layer 300 may include silicon (Si), manganese (Mn), chromium (Cr), etc.
  • the depth (or thickness t1) of the internal oxide layer 300 may be about 5 ⁇ m or less in the thickness direction of the hot stamping part 1. This will be explained in more detail below.
  • a plating layer 400 may be disposed on the internal oxide layer 300. Specifically, a plating layer 400 may be disposed on the surface of the internal oxide layer 300.
  • the plating layer 400 may be a zinc (Zn)-based plating layer or an aluminum (Al)-based plating layer.
  • the plating layer 400 may include zinc (Zn) and/or aluminum (Al).
  • the plating layer 400 when the plating layer 400 is provided as a zinc (Zn)-based plating layer, the plating layer 400 includes iron (Fe), aluminum (Al), manganese (Mn), silicon (Si), and the remainder of zinc ( Zn), and other unavoidable impurities.
  • the plating layer 400 contains more than about 10% by weight and less than about 70% by weight of iron (Fe), more than 0% by weight and less than about 5% by weight of aluminum (Al), more than 0% by weight of manganese (Mn) and less than about 1% by weight of silicon (Si). It may contain more than 0% by weight and less than about 1% by weight, with the balance being zinc (Zn) and other unavoidable impurities.
  • the plating layer 400 may be provided to a depth (or thickness t2) of about 10 ⁇ m to about 30 ⁇ m in the thickness direction of the hot stamping part 1. If the thickness (t2) of the plating layer 400 is less than about 10 ⁇ m, the sacrificial anti-corrosion effect unique to zinc may be reduced, and if the thickness (t2) of the plating layer 400 is more than about 30 ⁇ m, the plating layer 400 If the thickness t2 is too thick, the toughness of the hot stamping part 1 including the plating layer 400 may be reduced.
  • the plating layer 400 when the plating layer 400 is provided with a thickness t2 of about 10 ⁇ m to about 30 ⁇ m, the surface of the base material (or steel) can be protected, and at the same time, the toughness of the hot stamping part 1 is reduced. can be prevented or minimized.
  • the decarburization layer 200 is a softer layer than the base material 100, and when the hot stamping part 1 includes the decarburization layer 200, the toughness of the hot stamping part 1 including it can be improved.
  • the depth (or thickness (t1)) of the internal oxide layer 300 when the depth (or thickness (t1)) of the internal oxide layer 300 is too large, the liquid zinc more easily penetrates into the base material 100 due to the internal oxide layer 300, resulting in hot stamping.
  • the possibility of cracks occurring during molding may increase, which may reduce the bendability of the manufactured hot stamping part 1.
  • the depth (or thickness (t1)) of the internal oxide layer 300 is greater than about 5 ⁇ m, liquid zinc more easily penetrates into the base material 100 due to the internal oxide layer 300, thereby performing hot stamping forming.
  • the possibility of major cracks occurring may increase, which may lower the bendability of the manufactured hot stamping part 1.
  • a decarburization layer 200 may be formed on the base material 100 in the annealing step.
  • the internal oxide layer 300 may be formed simultaneously on the decarburization layer 200.
  • a decarburization layer 200 may be formed on the surface of the base material 100, and at the same time, an internal oxide layer 300 may be formed on the surface of the decarburization layer 200.
  • the depth (or thickness) of the decarburization layer 200 may be increased.
  • the depth (or thickness) of the internal oxide layer 300 may also increase. That is, in order to increase the toughness of the hot stamping part 1, the depth (or thickness) of the decarburization layer 200 must be increased, but when the depth (or thickness) of the decarburization layer 200 is increased, the internal oxide layer
  • the depth (or thickness) of 300 may also increase, which may increase the possibility of cracks occurring during hot stamping molding, which may lower the bendability of the manufactured hot stamping part 1. Therefore, it is necessary to appropriately adjust the depth (or thickness) of the decarburization layer 200 and the depth (or thickness) of the internal oxide layer 300.
  • hot stamping part 1 may satisfy relation 1 and relation 2.
  • the hardness within a depth of about 50 ⁇ m from the surface of the hot stamping part 1 in the direction of the plate thickness of the hot stamping part 1 and the average hardness of the hot stamping part 1 may satisfy the following relational equation 1, and the internal oxide
  • the depth (or thickness) of the layer 300 may satisfy the following relational equation 2.
  • the hot stamping part 1 may satisfy both Equation 1 and Equation 2 below.
  • A is the hardness (Hv ( ⁇ 50 ⁇ m)) within about 50 ⁇ m depth (or thickness) in the direction of the plate thickness of the hot stamping part (1)
  • B is the average hardness (Hv) of the hot stamping part (1) (avg.)).
  • the hardness within a depth of approximately 50 ⁇ m from the surface of the hot stamping part (1) in the direction of the sheet thickness of the hot stamping part (1) is approximately from the surface of the hot stamping part (1) to the thickness direction of the hot stamping part (1). It may be a hardness value measured with a Vickers hardness meter at a point below 50 ⁇ m depth, and the average hardness (Hv (avg.)) of the hot stamping part (1) is about 1/4 point in the direction of the plate thickness of the hot stamping part (1). It may be a hardness value measured with a Vickers hardness tester.
  • Equation 2 C is the depth (or thickness) of the internal oxide layer 300 in the plate thickness direction of the hot stamping part 1.
  • the decarburization layer 200 may be disposed in a portion adjacent to the surface of the hot stamping part 1. Since the decarburization layer 200 corresponds to a softer layer compared to the base material 100, the hardness of the portion adjacent to the surface of the hot stamping part 1 among the hot stamping parts 1 is greater than the average hardness of the hot stamping part 1. It can be low. At this time, when the depth (or thickness) of the decarburization layer 200 increases, the hardness of the portion adjacent to the surface of the hot stamping part 1 among the hot stamping parts 1 and the average hardness of the hot stamping part 1 Differences may increase. On the other hand, when the depth (or thickness) of the decarburization layer 200 is reduced, the hardness of the portion adjacent to the surface of the hot stamping part 1 and the average hardness of the hot stamping part 1 The difference can be reduced.
  • the ratio of the hardness (Hv ( ⁇ 50 ⁇ m)) within a depth (or thickness) of about 50 ⁇ m in the direction of the plate thickness of the hot stamping part (1) and the average hardness (Hv (avg.)) of the hot stamping part (1) is about If it exceeds 0.7, the decarburization layer 200 may not be formed (or provided) at a sufficient depth (or thickness), so the toughness of the hot stamping part 1 including it may be low.
  • the VDA bending angle of the hot stamping part 1 may be less than about 60°.
  • the ratio of the hardness (Hv ( ⁇ 50 ⁇ m)) within a depth (or thickness) of about 50 ⁇ m in the direction of the plate thickness of the hot stamping part (1) and the average hardness (Hv (avg.)) of the hot stamping part (1) is about If it is 0.7 or less, it may mean that the decarburization layer 200 is formed (or provided) at a sufficient depth (or thickness).
  • the hardness (Hv ( ⁇ 50 ⁇ m)) within about 50 ⁇ m depth (or thickness) in the thickness direction of the hot stamping part (1) and the average hardness (Hv (avg.)) of the hot stamping part (1) When the ratio satisfies about 0.7 or less, the decarburization layer 200 is formed (or provided) at a sufficient depth (or thickness), so that the toughness of the hot stamping part 1 including it can be improved.
  • the hot stamping part 1 may have a VDA bending angle of about 60° or more.
  • the depth (or thickness) of the internal oxide layer 300 included in the hot stamping part 1 may be about 5 ⁇ m or less.
  • liquid metal embrittlement (LME) phenomenon may occur due to the low melting point of zinc, which may cause internal cracks to form in the hot stamping part.
  • the bendability of (1) may decrease.
  • the liquid zinc can more easily penetrate into the internal oxide layer 300, increasing the probability of cracks occurring during hot stamping forming. This may cause the bendability of the manufactured hot stamping part 1 to deteriorate.
  • the depth (or thickness) of the internal oxide layer 300 is greater than about 5 ⁇ m, liquid zinc can more easily penetrate into the internal oxide layer 300, increasing the probability of cracks occurring during hot stamping forming. There is, and as a result, the bendability of the manufactured hot stamping part 1 may be reduced.
  • the depth (or thickness) of the internal oxide layer 300 is provided to be about 5 ⁇ m or less in the thickness direction of the hot stamping part 1, cracks can be prevented from occurring during hot stamping, Through this, the high-temperature formability of hot stamping parts (or blanks) can be improved.
  • the hot stamping part 1 may simultaneously satisfy the above-described equations 1 and 2.
  • the hot stamping part 1 may have high toughness and may have excellent high-temperature formability.
  • the hardness within 50 ⁇ m depth (or thickness) from the surface of the hot stamping part 1 in the direction of the plate thickness of the hot stamping part 1 and the average hardness of the hot stamping part 1 satisfy the above-mentioned relational equation 1.
  • the hot stamping part 1 can have high toughness and at the same time, the high temperature formability of the hot stamping part can be excellent.
  • the hot stamping part 1 when the hot stamping part 1 satisfies both Equation 1 and Equation 2 described above, the hot stamping part 1 has a tensile strength (TS) of about 1350 MPa to about 1680 MPa, and about 900 MPa to about 900 MPa. It may have a yield stress (YP) of about 1300 MPa, and an elongation (EL) of about 4% to about 10%. Additionally, the hot stamping part 1 may have a VDA bending angle of about 60° or more. At this time, the VDA bending angle can be measured based on the VDA standard (VDA238-100).
  • Figure 2 is a flow chart schematically showing a method of manufacturing a hot stamping part according to an embodiment of the present invention
  • Figures 3 to 5 are schematically showing a method of manufacturing a hot stamping part according to an embodiment of the present invention. These are cross-sectional views.
  • the manufacturing method of a hot stamping part (1, see FIG. 1) includes a hot rolling step (S100), a cooling/winding step (S200), a cold rolling step (S300), It may include an annealing step (S400), a plating step (S500), and a hot stamping step (S600).
  • a reheating step of the base material 100 (eg, steel slab) provided with the composition described above in FIG. 1 may be performed.
  • the steel slab reheating step the steel slab obtained through a continuous casting process is reheated to a predetermined temperature, so that components segregated during casting can be re-employed.
  • the slab reheating temperature (SRT) may be about 1,200°C to about 1,400°C. If the slab reheating temperature (SRT) is lower than about 1,200°C, the components segregated during casting are not sufficiently re-dissolved, making it difficult to see the homogenization effect of the alloy elements and the solid solution effect of titanium (Ti). The higher the slab reheating temperature (SRT), the more advantageous it is for homogenization. However, if the slab reheating temperature (SRT) exceeds about 1,400°C, the austenite crystal grain size increases, making it difficult to secure strength, and the excessive heating process makes it difficult to manufacture steel sheets. Costs may rise.
  • the reheated base material 100 may be hot rolled at a predetermined finish rolling temperature.
  • a hot rolled steel sheet can be manufactured through the hot rolling step (S100).
  • the finishing delivery temperature (FDT) may be about 880°C to about 950°C.
  • the finish rolling temperature (FDT) is lower than about 880°C, it is difficult to secure the workability of the steel sheet due to the occurrence of a mixed structure due to abnormal region rolling, and there is a problem of deterioration of workability due to microstructure unevenness and rapid phase change. This may cause problems with sheetability during hot rolling.
  • the finish rolling temperature (FDT) exceeds about 950°C, austenite grains may coarsen and TiC precipitates may coarsen, thereby deteriorating the performance of hot stamping parts.
  • the hot-rolled base material 100 can be cooled to a predetermined coiling temperature (Coiling Temperature, CT) and then wound.
  • the coiling temperature of the cooling/winding step (S300) may be about 550°C to about 800°C.
  • the coiling temperature affects the redistribution of carbon (C). If the coiling temperature is less than about 550°C, the low-temperature phase fraction increases due to supercooling, which may increase the strength, and there is a risk that the rolling load during cold rolling may intensify. Ductility may deteriorate rapidly. Conversely, if the coiling temperature exceeds about 800°C, deterioration of formability and strength may occur due to abnormal or excessive crystal grain growth.
  • the wound base material 100 may be uncoiled, pickled, and then cold rolled. At this time, pickling may be performed for the purpose of removing scale from the wound steel sheet (or base material), that is, the hot rolled coil manufactured through the above hot rolling process.
  • a cold rolled steel sheet can be manufactured through the cold rolling step (S300).
  • the cold rolled base material 100 may be annealed at a temperature of about 700° C. or higher.
  • the annealing step (S400) may include heating the cold rolled base material 100 and cooling the heated base material 100 at a predetermined cooling rate.
  • the base material may be annealed in the annealing step (S400).
  • the annealing step (S400) may be performed in an annealing furnace.
  • Annealing of the base material 100 may be performed in a gas atmosphere consisting of about 0.5 volume% to about 25 volume% of hydrogen and the balance nitrogen. At this time, water may be sprayed into the annealing furnace along with hydrogen gas and nitrogen gas. When water is sprayed into the annealing furnace, the dew point temperature of the annealing furnace may increase. Therefore, the dew point temperature of the annealing furnace can be adjusted by controlling the amount of water sprayed into the annealing furnace.
  • a decarburization layer 200 may be formed on the base material 100.
  • carbon may be lost from the surface of the base material 100 to form the decarburization layer 200.
  • the internal oxide layer 300 may be formed simultaneously on the decarburization layer 200. That is, the decarburization layer 200 may be formed on the surface of the base material 100, and the internal oxide layer 300 may be formed on the surface of the decarburization layer 200.
  • the decarburization layer 200 and the internal oxide layer 300 may be a layer in which a portion of the base material 100 is changed.
  • a layer whose hardness is about 80% or less compared to the average hardness at about 1/4 of the surface of the base material 100 may be defined as the decarburization layer 200. That is, the average hardness of the decarburization layer 200 may be about 80% or less of the average hardness of about 1/4 of the point from the surface of the base material 100.
  • the dew point temperature of the annealing furnace in which annealing of the base material 100 is performed may be about -15°C to about +15°C.
  • a decarburization layer 200 is formed on the base material 100.
  • the depth of the decarburization layer 200 formed when the dew point temperature of the annealing furnace is about -15°C or lower. If the (or thickness) is too thin, the effect of improving the toughness of the manufactured hot stamping part may be minimal.
  • the dew point temperature of the annealing furnace is about +15°C or higher, the depth (or thickness (t3)) of the internal oxide layer 300 formed is too large, which may cause LME cracks and cause operation damage due to equipment oxidation. Sexuality may be reduced.
  • a large amount of water must be supplied to the annealing furnace. If a large amount of water is supplied to the annealing furnace, the equipment of the annealing furnace may be oxidized, and it takes a lot of time to clean it. operation efficiency may be reduced.
  • the dew point temperature of the annealing furnace when the dew point temperature of the annealing furnace is high, the depth (or thickness) of the decarburization layer 200 formed and the depth (or thickness (t3)) of the internal oxide layer 300 may increase, and the internal oxide layer ( 300), internal cracks may occur during high-temperature molding. Therefore, when the dew point temperature of the annealing furnace in which the annealing of the base material 100 is performed satisfies about -15°C to about +15°C, the toughness of the manufactured hot stamping part 1 is improved and the efficiency of the manufacturing process is improved. You can do it.
  • the line speed of the annealing furnace in which the base material 100 is annealed may be about 30 meters per minute (mpm) to about 200 mpm. If the line speed of the annealing furnace is about 30 mpm or less, the moving speed of the base material 100 is too slow, which may lead to a sharp decrease in productivity. If the line speed of the annealing furnace is about 200 mpm or more, the residence time of the base material 100 in the annealing furnace is shortened. If it is too short, the depth (or thickness) of the decarburization layer 200 may be reduced, and as a result, the effect of improving the toughness of the manufactured hot stamping part may be minimal.
  • mpm meters per minute
  • the productivity of hot stamping parts can be improved, and at the same time, the toughness of the manufactured hot stamping parts can be improved. You can do it.
  • the annealing temperature of the base material 100 may be about 750°C to about 900°C. If the annealing temperature of the base material 100 is less than about 750°C, the desired structure cannot be obtained and recrystallization may not be sufficiently completed. On the other hand, when the annealing temperature of the base material 100 exceeds about 900° C., the annealing temperature may be too high and the efficiency of the manufacturing process may be reduced. Therefore, when the annealing temperature of the base material 100 satisfies about 750°C to about 900°C, the desired structure can be obtained, recrystallization can be sufficiently completed, and the efficiency of the manufacturing process can be improved.
  • the plating step (S500) may be a step of forming a plating layer 400 on the annealed base material 100.
  • the plating layer 400 may be formed on the annealed base material 100 through the plating step (S500).
  • the plating layer 400 may be formed on the surface of the internal oxide layer 300 through the plating step (S500).
  • the plating layer 400 may include a zinc (Zn)-based plating layer or an aluminum (Al)-based plating layer.
  • the annealed base material 100 may be immersed in a plating bath.
  • the plating bath can maintain a temperature of about 400°C to about 700°C.
  • the plating adhesion amount may be about 40 g/m 2 to about 200 g/m 2 on both sides of the base material (100, or the internal oxide layer 300).
  • the depth (or thickness (t4)) of the plating layer 400 formed on the base material 100 or the decarburization layer 200 is about 5 ⁇ m to about 20 ⁇ m in the plate thickness direction of the base material 100. You can. If the depth (or thickness) of the plating layer 400 is about 5 ⁇ m or less, the sacrificial anti-corrosion ability of the plating layer 400 may be insufficient, and if the depth (or thickness) of the plating layer 400 is about 20 ⁇ m or more, the plating layer The cost of forming (400) increases, which may reduce economic feasibility. Therefore, when the depth (or thickness t4) of the plating layer 400 satisfies about 5 ⁇ m to about 20 ⁇ m, corrosion of the base material 100 of the hot stamping part 1 can be prevented or minimized. .
  • the annealing step (S400) and the plating step (S500) may be performed in the same line.
  • the line speed at which the plating step (S500) is performed may be about 30 mpm to about 200 mpm. If the line speed is below about 30 mpm, productivity may be reduced because the line speed is too slow.
  • the plating amount is controlled using an air knife. If the line speed is about 200 mpm or higher, the line speed is too fast to control the plating amount using an air knife. Therefore, when the line speed at which the plating step (S500) is performed satisfies about 30 mpm to about 200 mpm, productivity can be improved and the plating amount can be easily controlled at the same time.
  • a plated steel sheet with a plating layer 400 formed on at least one surface of the base material 100 may be manufactured through the plating step (S500).
  • the plated steel sheet includes a base material 100, a decarburization layer 200 formed on the base material 100, an internal oxide layer 300 formed on the decarburization layer 200, and a plating layer formed on the internal oxide layer 300 ( 400).
  • the plated steel sheet has a base material 100, a decarburization layer 200 formed on the surface of the base material 100, an internal oxide layer 300 formed on the surface of the decarburization layer 200, and a surface of the internal oxide layer 300. It may include a plating layer 400 formed on.
  • Figure 6 is a flowchart schematically showing a hot stamping step according to an embodiment of the present invention
  • Figure 7 is a flowchart schematically showing a heating step according to an embodiment of the present invention.
  • a hot stamping step (S600) may be performed after the plating step (S500, see FIG. 2).
  • the hot stamping step (S600) may include a heating step (S610), a transfer step (S620), a forming step (S630), and a cooling step (S640).
  • a blank can be formed by cutting a plated steel sheet on which a plating layer (400, see FIG. 5) is formed on at least one side of the base material (100, see FIG. 5). At this time, a decarburization layer (200, see FIG. 5) and an internal oxide layer (300, see FIG. 5) may exist between the base material 100 and the plating layer 400.
  • the blank may be heated in a heating furnace having a plurality of sections having different temperature ranges.
  • the heating step (S610) may include a multi-stage heating step (S611) and a crack heating step (S612).
  • the multi-stage heating step (S611) and the crack heating step (S612) may be steps in which the blank is heated while passing through a plurality of sections provided in the heating furnace.
  • the overall furnace temperature may be from about 680°C to about 910°C.
  • the overall temperature of the heating furnace where the multi-stage heating step (S611) and the crack heating step (S612) are performed may be about 680°C to about 910°C.
  • the temperature of the heating furnace where the multi-stage heating step (S611) is performed may be from about 680°C to about Ac1
  • the temperature of the heating furnace where the crack heating step (S612) is performed may be from about Ac1 to about 910°C.
  • the blank may pass through a plurality of sections provided in the heating furnace and be heated (or heated) step by step.
  • the plurality of sections provided in the heating furnace there may be a plurality of sections in which the multi-stage heating step (S611) is performed, and the temperature is increased in the direction from the entrance of the heating furnace where the blank is input to the outlet of the heating furnace where the blank is taken out.
  • the temperature is set for each section, so the blank can be heated (or heated) in stages.
  • a crack heating step (S612) may be performed after the multi-stage heating step (S611).
  • the multi-stage heated blank may be heated (or crack heated) while passing through a section of the heating furnace set to a temperature of about Ac1 to about 910°C.
  • the plurality of sections provided in the heating furnace there may be at least one section in which the crack heating step (S612) is performed.
  • Figure 8 is a diagram illustrating a heating furnace having a plurality of sections in the heating step of the method for manufacturing hot stamping parts according to an embodiment of the present invention.
  • a heating furnace may include a plurality of sections having different temperature ranges.
  • the heating furnace includes a first section (P 1 ) having a first temperature range (T 1 ), a second section (P 2 ) having a second temperature range (T 2 ), and a third temperature range (T 3 ).
  • the blank in the multi-stage heating step (S611), may be heated step by step while passing through the first section (P 1 ) to the fourth section (P 4 ) defined within the heating furnace.
  • the blank heated in multiple stages in the first section (P 1 ) to the fourth section (P 4 ) passes through the fifth section (P 5 ) to the seventh section (P 7 ) and is crack heated. It can be.
  • the first section (P 1 ) to the seventh section (P 7 ) may be sequentially arranged in the heating furnace.
  • the first section (P 1 ) having the first temperature range (T 1 ) is adjacent to the inlet of the heating furnace into which the blank is input
  • the seventh section (P 7 ) having the seventh temperature range (T 7 ) is adjacent to the entrance of the heating furnace into which the blank is introduced. It may be adjacent to the outlet of the heating furnace. Therefore, the first section (P 1 ) having the first temperature range (T 1 ) may be the first section of the heating furnace
  • the seventh section (P 7 ) having the seventh temperature range (T 7 ) may be the heating furnace. It may be the last section of .
  • the temperature of a plurality of sections provided in the heating furnace for example, the temperature of the first section (P 1 ) to the seventh section (P 7 ) increases in the direction from the entrance of the heating furnace where the blank is input to the outlet of the heating furnace where the blank is taken out. can do.
  • the temperatures of the fifth section (P 5 ), the sixth section (P 6 ), and the seventh section (P 7 ) may be the same.
  • the temperature difference between two adjacent sections among the plurality of sections provided in the heating furnace may be greater than 0°C and less than or equal to about 100°C.
  • the temperature difference between the first section (P 1 ) and the second section (P 2 ) may be greater than 0°C and less than or equal to about 100°C.
  • the heating furnace temperature of the crack heating step (S612) may be about Ac1 to about 910°C. If the furnace temperature of the crack heating step (S612) is about Ac1 or less, the manufactured hot stamping part may not have the desired material. On the other hand, when the heating furnace temperature in the crack heating step (S612) is about 910° C. or higher, zinc (Zn) contained in the plating layer 400 may be vaporized, resulting in loss of the plating layer 400. Therefore, when the heating furnace temperature of the crack heating step (S612) satisfies about Ac1 to about 910°C, the manufactured hot stamping part can be formed of a desired material, and loss of the plating layer 400 can be prevented. .
  • the heating furnace according to one embodiment is shown as having seven sections having different temperature ranges, but the present invention is not limited thereto.
  • the heating furnace may be provided with five, six, or eight sections having different temperature ranges.
  • the heating step (S610) includes a multi-stage heating step (S611) and a crack heating step (S612), so that the temperature of the heating furnace can be set in stages, thereby improving the energy efficiency of the heating furnace.
  • the furnace may have a length of about 20 m to about 40 m along the transport path of the blank.
  • the heating furnace may be provided with a plurality of sections having different temperature ranges, and the ratio of the length of the section in which the blank is heated in multiple stages among the plurality of sections and the length of the section in which the blank is crack-heated among the plurality of sections is about 1:1 to 1:1. Approximately 4:1 can be satisfied. If the length of the section where the blank is crack-heated increases within the heating furnace and the ratio of the length of the section where the blank is multi-stage heated and the length of the section where the blank is crack-heated exceeds approximately 1:1, penetration into the blank from the crack-heated section As the amount of hydrogen increases, delayed rupture may increase.
  • the crack heating section (or time) is sufficient. Because this is not ensured, the strength of hot stamping parts manufactured by the hot stamping part manufacturing process may be uneven.
  • the length of the uniform heating section among the plurality of sections provided in the heating furnace may be about 20% to about 50% of the total length of the heating furnace.
  • the total heating time during which the heating step (S610) is performed may be about 2 min to about 20 min. That is, the total time the blank stays in the heating furnace may be about 2 min to about 20 min. If the total heating time for which the heating step (S610) is performed is about 2 min or less, the hot stamping part 1 manufactured may not have the desired material due to insufficient heating time. On the other hand, if the total heating time during which the heating step (S610) is performed is about 20 minutes or more, the heating time may be too long and the production speed may decrease, thereby reducing economic efficiency.
  • the manufactured hot stamping part 1 can have the desired material, and at the same time, the economic efficiency of the manufacturing process is prevented from being reduced. Or it can be minimized.
  • a transfer step (S620), a forming step (S630), and a cooling step (S640) may be further performed.
  • the transfer step (S620) may be a step of transferring the heated blank from the heating furnace to the mold.
  • the heated blank may be cooled at atmospheric temperature (or room temperature). That is, the heated blank can be air-cooled during transport. If the heated blank is not cooled in air, the mold entry temperature (eg, molding start temperature) may increase and wrinkles (or bends) may occur on the surface of the manufactured hot stamping part 1. Additionally, since the use of a coolant may affect the subsequent process (hot stamping), it may be desirable for the heated blank to be air-cooled during transport.
  • the forming step (S630) may be a step of forming a molded body by hot stamping the transferred blank.
  • the molded body may be formed by pressing the blank with a mold.
  • the molding start temperature may be about 500°C or more and about 700°C or less. If the forming start temperature
  • the forming start temperature is about 500°C or more and about 700°C or less
  • the formability of the blank can be improved
  • the manufactured hot stamping part (1) can have the target structure and physical properties
  • the manufactured hot stamping part ( 1) The occurrence of wrinkles (or bends) on the surface can be prevented or minimized.
  • the cooling step (S500) may be a step of cooling the molded body.
  • the cooling step (S500) may be performed within a mold in which the blank is pressed.
  • the final product can be formed by cooling the molded body at the same time as molding it into the final part shape in a mold.
  • the mold may be provided with cooling channels through which refrigerant circulates inside.
  • the molded body can be rapidly cooled by circulation in the refrigerant supplied through the cooling channel provided in the mold.
  • rapid cooling can be performed while pressing while the mold is closed.
  • the average cooling rate can be at least about 10°C/s to the martensite end temperature.
  • the cooling end temperature at which the cooling step (S640) ends may be about room temperature or higher and about 200°C or lower. If the cooling end temperature is below room temperature, the productivity of the manufacturing process may decrease. On the other hand, if the cooling end temperature exceeds about 200°C, the manufactured hot stamping part (1) is cooled in air at room temperature. At this time, distortion may occur in the hot stamping part (1), and it may be difficult to secure the target material. there is. Therefore, when the cooling end temperature at which the cooling step (S640) is completed satisfies the range of about 200°C or higher above room temperature, the productivity of the manufacturing process can be improved and distortion of the manufactured hot stamping part 1 can be prevented. can be prevented or minimized.
  • the present inventor derived equations 3 and 4 that ensure that the hot stamping part 1 manufactured through excessively repeated experiments has a VDA bending angle of about 60° or more.
  • the manufactured hot stamping part 1 may satisfy equation 3 and equation 4 below.
  • the hardness within 50 ⁇ m depth (or thickness) from the surface of the hot stamping part 1 in the direction of the plate thickness of the hot stamping part 1 and the average hardness of the hot stamping part 1 can satisfy the following relational equation 3.
  • the depth (or thickness) of the internal oxide layer 300 may satisfy the following relational equation 4.
  • the hot stamping part 1 may satisfy both equations 3 and 4.
  • A is the hardness (Hv ( ⁇ 50 ⁇ m)) within about 50 ⁇ m depth (or thickness) in the direction of the plate thickness of the hot stamping part (1)
  • B is the average hardness (Hv) of the hot stamping part (1) (avg.)).
  • the hardness within a depth of approximately 50 ⁇ m from the surface of the hot stamping part (1) in the direction of the sheet thickness of the hot stamping part (1) is approximately from the surface of the hot stamping part (1) to the thickness direction of the hot stamping part (1). It may be a hardness value measured with a Vickers hardness meter at a point below 50 ⁇ m depth, and the average hardness (Hv (avg.)) of the hot stamping part (1) is about 1/4 point in the direction of the plate thickness of the hot stamping part (1). It may be a hardness value measured with a Vickers hardness tester.
  • Equation 4 is the depth (or thickness) of the internal oxide layer 300 in the plate thickness direction of the hot stamping part 1.
  • the toughness of the hot stamping part 1 manufactured through the hot stamping part manufacturing method may be improved.
  • a hot stamping part 1 manufactured through a hot stamping part manufacturing method may have a VDA bending angle of about 60° or more.
  • the hot stamping part 1 manufactured through the hot stamping part manufacturing method has a tensile strength (TS) of about 1350 MPa to about 1680 MPa, a yield stress (YP) of about 900 MPa to about 1300 MPa, and a yield stress of about 4%. It may have an elongation (EL) of from about 10%.
  • composition (wt%) C Si Mn P S Cr B Ti 0.22 0.3 1.5 0.02 or less 0.015 or less 0.25 0.0025 0.05
  • Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are hot stamping parts (specimens) manufactured from slabs having the compositions listed in Table 1 through the process conditions listed in Table 2.
  • Example 1 0.70 1.3 72.19 2.8
  • Example 2 0.39 5 75.44 4.1 Comparative Example 1 0.33 7.1 58.96 15.2 Comparative Example 2 0.72 0.1 54.77 1.0
  • A is the hardness (Hv( ⁇ 50 ⁇ m)) within about 50 ⁇ m depth (or thickness) in the direction of the plate thickness of the hot stamping part
  • B is the average hardness (Hv(avg.)) of the hot stamping part
  • C is the depth (or thickness) of the internal oxide layer 300 in the plate thickness direction of the hot stamping part.
  • It may be a hardness value measured with a Vickers hardness meter at a point below 50 ⁇ m depth, and the average hardness (Hv (avg.)) of the hot stamping part (1) is about 1/4 point in the direction of the plate thickness of the hot stamping part (1). It may be a hardness value measured with a Vickers hardness tester.
  • the VDA bending angle was evaluated using the VDA standard (VDA238-100), and the crack depth was measured using a scanning electron microscope. At this time, the crack depth corresponds to the deepest crack depth measured through a scanning electron microscope.
  • the VDA bending angle of the hot stamping part required in the present invention is 60° or more. Additionally, if the crack depth in the hot stamping part is large, the VDA bending angle of the hot stamping part may become small and the toughness of the hot stamping part may deteriorate. Accordingly, the crack depth in the hot stamping part required in the present invention is 10 ⁇ m or less. If it falls outside the above-mentioned range, it constitutes a case where the required conditions are not met.
  • Example 1 In the case of Examples 1 and 2, both relational expressions 1 ((A / B) ⁇ 0.7) and 2 (C ⁇ 5) are satisfied, and Comparative Example 1 satisfies relational expression 2 (C ⁇ 5). This corresponds to the case where this is not done, and Comparative Example 2 corresponds to the case where relational expression 1 ((A / B) ⁇ 0.7) is not satisfied.
  • Example 1, Example 2, Comparative Example 1, and Comparative Example 2 correspond to specimens manufactured from a base material (100, or steel sheet) satisfying the composition described above in FIG. 1 according to a hot stamping part manufacturing method. However, Comparative Examples 1 and 2 are specimens that do not satisfy equation 1 ((A / B) ⁇ 0.7) and/or equation 2 (C ⁇ 5) due to differences in process control conditions.
  • Equation 1 ((A / B) ⁇ 0.7) and Equation 2 (C ⁇ 5) are satisfied, it can be confirmed that the VDA bending angle and crack depth satisfy the required conditions. Specifically, when both Equation 1 ((A / B) ⁇ 0.7) and Equation 2 (C ⁇ 5) are satisfied, it can be confirmed that the VDA bending angle is 60° or more and the crack depth is 10 ⁇ m or less.
  • Relation 2 (C ⁇ 5) is not satisfied, it can be confirmed that the VDA bending angle and crack depth do not satisfy the required conditions. Specifically, when relational equation 2 (C ⁇ 5) is not satisfied, it can be confirmed that the VDA bending angle is less than 60° and the crack depth is more than 10 ⁇ m.
  • relational expression 1 ((A / B) ⁇ 0.7) is not satisfied, it can be confirmed that the VDA bending angle does not satisfy the required conditions. Specifically, when relational equation 1 ((A / B) ⁇ 0.7) is not satisfied, it can be confirmed that the VDA bending angle is less than 60°.
  • the hot stamping part 1 satisfies both relation 1 ((A / B) ⁇ 0.7) and relation 2 (C ⁇ 5), the hot stamping part 1 can have the required VDA bending angle, and , the depth of the crack in the hot stamping part 1 may be formed below a preset value.
  • both relational expression 1 ((A / B) ⁇ 0.7) and relational expression 2 (C ⁇ 5) both the toughness and high temperature formability of the hot stamping part (1) will be excellent. You can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 핫 스탬핑 부품으로서, 모재; 상기 모재 상에 배치된 탈탄층; 및 상기 탈탄층 상에 배치된 내부 산화물층;을 포함하고, 상기 핫 스탬핑 부품은 1350 MPa 내지 1680 MPa의 인장강도(TS)를 가지며, 상기 핫 스탬핑 부품의 표면에서 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도와 상기 핫 스탬핑 부품의 평균 경도는 하기 관계식 1을 만족하는, 핫 스탬핑 부품이 제공된다. <관계식 1> (A / B) ≤ 0.7 (상기 관계식 1에서 A는 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도(Hv(≤50㎛))이고, B는 상기 핫 스탬핑 부품의 평균 경도(Hv(avg.))이다.)

Description

핫 스탬핑 부품 및 이의 제조 방법
본 발명은 핫 스탬핑 부품 및 이의 제조 방법에 관한 것이다.
세계적으로 환경 규제 및 연비 규제가 강화되면서 보다 가벼운 차량 소재에 대한 필요성이 증가하고 있다. 이에 따라, 초고강력강과 핫 스탬핑 강에 대한 연구개발이 활발하게 이루어지고 있다.
핫 스탬핑 공정은 일반적으로 가열/성형/냉각/트림으로 이루어지며 공정 중 소재의 상변태 및 미세조직의 변화를 이용할 수 있다. 핫 스탬핑 강의 인성을 향상시키기 위해 일반적으로 합금 성분을 이용하여 모재의 인성을 향상시키는 방법으로 연구가 활발하게 이루어지고 있다.
다만, 합금 성분을 변경 또는 증가시키게 되면 원가가 상승하는 등 경제성이 저하되는 문제가 있다.
이와 관련된 기술로서, 대한민국 공개특허공보 제10-2021-0129902호(발명의 명칭: 핫 스탬핑 부품 및 이의 제조 방법) 등이 있다.
본 발명의 실시예들은 모재의 표면에 탈탄층과 내부 산화물층이 적절히 형성되게 함으로써, 제조된 핫 스탬핑 부품의 인성을 향상시킬 수 있고, 동시에 핫 스탬핑 성형 중 크랙이 발생하는 것이 방지될 수 있다.
본 발명의 일 실시예는, 핫 스탬핑 부품으로서, 모재; 상기 모재의 표면에 배치된 탈탄층; 및 상기 탈탄층의 표면에 배치된 내부 산화물층;을 포함하고, 상기 핫 스탬핑 부품은 1350 MPa 내지 1680 MPa의 인장강도(TS)를 가지며, 상기 핫 스탬핑 부품의 표면에서 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도와 상기 핫 스탬핑 부품의 평균 경도는 하기 관계식 1을 만족하는, 핫 스탬핑 부품이 제공된다.
<관계식 1>
(A / B) ≤ 0.7
(상기 관계식 1에서 A는 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도(Hv(≤50㎛))이고, B는 상기 핫 스탬핑 부품의 평균 경도(Hv(avg.))이다.)
본 실시예에 있어서, 상기 내부 산화물층의 깊이는 하기 관계식 2를 만족할 수 있다.
<관계식 2>
C ≤ 5㎛
(상기 관계식 2에서 C는 상기 핫 스탬핑 부품의 판 두께 방향으로 상기 내부 산화물층의 깊이이다.)
본 실시예에 있어서, 상기 핫 스탬핑 부품은 60° 이상의 VDA 굽힘각을 가질 수 있다.
본 실시예에 있어서, 상기 핫 스탬핑 부품은 900 MPa 내지 1300 MPa의 항복응력(YP) 및 4% 내지 10%의 연신율(EL)을 가질 수 있다.
본 실시예에 있어서, 상기 핫 스탬핑 부품은 마르텐사이트(martensite) 분율 90% 이상을 포함하는 미세조직을 가질 수 있다.
본 실시예에 있어서, 상기 내부 산화물층의 표면에 배치된 도금층을 더 포함할 수 있다.
본 실시예에 있어서, 상기 도금층의 두께는 10㎛ 내지 30㎛ 일 수 있다.
본 발명의 다른 실시예는, 핫 스탬핑 부품의 제조 방법으로서, 모재의 적어도 일면 상에 도금층이 형성된 도금강판을 재단하여 블랭크를 형성하는 단계; 및 서로 다른 온도 범위를 갖는 복수의 구간을 구비한 가열로 내에서 상기 블랭크를 가열하는 단계;를 포함하고, 상기 블랭크를 가열하는 단계는, 상기 블랭크를 단계적으로 가열하는 다단 가열 단계; 및 상기 다단 가열된 블랭크를 Ac1 내지 910℃의 온도로 가열하는 균열 가열 단계;를 포함하며, 상기 핫 스탬핑 부품의 표면에서 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도와 상기 핫 스탬핑 부품의 평균 경도는 하기 관계식 3을 만족하는, 핫 스탬핑 부품의 제조 방법이 제공된다.
<관계식 3>
(A / B) ≤ 0.7
(상기 관계식 3에서 A는 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도(Hv(≤50㎛))이고, B는 상기 핫 스탬핑 부품의 평균 경도(Hv(avg.))이다.)
본 실시예에 있어서, 상기 모재의 소둔로의 이슬점 온도는 -15℃ 내지 +15℃일 수 있다.
본 실시예에 있어서, 상기 모재의 소둔 온도는 750℃ 내지 900℃일 수 있다.
본 실시예에 있어서, 상기 블랭크를 가열하는 단계 이후에, 상기 가열된 블랭크를 이송하는 단계; 상기 이송된 블랭크를 금형으로 가압하여 성형체를 성형하는 단계; 및 상기 성형된 성형체를 냉각하는 단계;를 더 포함할 수 있다.
본 실시예에 있어서, 상기 모재의 표면에 형성된 탈탄층; 및 상기 탈탄층의 표면에 형성된 내부 산화물층;을 더 포함할 수 있다.
본 실시예에 있어서, 상기 내부 산화물층의 깊이는 하기 관계식 4를 만족할 수 있다.
<관계식 4>
C ≤ 5㎛
(상기 관계식 4에서 C는 상기 핫 스탬핑 부품의 판 두께 방향으로 상기 내부 산화물층의 깊이이다.)
전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 청구범위 및 도면으로부터 명확해질 것이다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 모재의 표면에 탈탄층이 형성됨으로써, 제조된 핫 스탬핑 부품의 인성이 향상될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 탈탄층의 표면에 형성된 내부 산화물층이 미리 설정된 깊이 이하로 구비됨으로써, 핫 스탬핑 공정 중 크랙이 발생하는 것이 방지될 수 있다.
도 1은 본 발명의 일 실시예에 따른 핫 스탬핑 부품을 개략적으로 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법을 개략적으로 도시한 순서도이다.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법을 개략적으로 도시한 단면도들이다.
도 6은 본 발명의 일 실시예에 따른 핫 스탬핑 단계를 개략적으로 도시한 순서도이다.
도 7은 본 발명의 일 실시예에 따른 가열 단계를 개략적으로 도시한 순서도이다.
도 8은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법의 가열 단계에 있어서, 복수의 구간을 구비한 가열로를 설명하기 위해 도시한 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예를 들어, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
본 명세서에서 "A 및/또는 B"는 A이거나, B이거나, A와 B인 경우를 나타낸다. 또한, 본 명세서에서 "A 및 B 중 적어도 어느 하나"는 A이거나, B이거나, A와 B인 경우를 나타낸다.
이하의 실시예들에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다. 이하의 실시예들에서, "중첩"이라 할 때, 이는 "평면상" 및 "단면상" 중첩을 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하기로 한다.
도 1은 본 발명의 일 실시예에 따른 핫 스탬핑 부품을 개략적으로 도시한 단면도이다.
도 1을 참조하면, 일 실시예에 따른 핫 스탬핑 부품(1)은 모재(100), 탈탄층(200), 내부 산화물층(300) 및 도금층(400)을 포함할 수 있다. 모재(100), 탈탄층(200), 내부 산화물층(300) 및 도금층(400)은 핫 스탬핑 부품(1)의 판 두께 방향으로 순차적으로 적층될 수 있다.
일 실시예에서, 모재(100)는 탄소(C), 실리콘(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 붕소(B), 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함할 수 있다. 예컨대, 모재(100)는 중량%로, 탄소(C) 약 0.15 중량% 이상 약 0.3 중량% 이하, 실리콘(Si) 약 0.05 중량% 이상 약 0.8 중량% 이하, 망간(Mn) 약 0.8 중량% 이상 약 3.0 중량% 이하, 인(P) 0 초과 약 0.1 중량% 이하, 황(S) 0 초과 약 0.1 중량% 이하, 크롬(Cr) 약 0.1 중량% 이상 약 0.9 중량% 이하, 붕소(B) 약 0.001 중량% 이상 약 0.005 중량% 이하, 잔부의 철(Fe) 및 기타 불가피한 불순물을 포함할 수 있다.
또한, 모재(100)는 티타늄(Ti), 니오븀(Nb), 및 바나듐(V) 중 하나 이상의 성분을 더 포함할 수 있다. 또한, 모재(100)는 칼슘(Ca)을 더 포함할 수 있다. 예컨대, 모재(100)는 티타늄(Ti) 약 0.01 중량% 이상 약 0.1 중량% 이하, 니오븀(Nb) 약 0.01 중량% 이상 약 0.1 중량% 이하, 바나듐(V) 약 0.01 중량% 이상 약 0.1 중량% 이하, 및 칼슘(Ca) 약 0.0001 중량% 이상 약 0.01 중량% 이하 중 하나 이상의 성분을 더 포함할 수 있다.
탄소(C)는 강의 강도, 경도를 결정하는 주요 원소이며, 핫 스탬핑(또는, 열간 프레스) 공정 이후, 강재의 인장강도를 확보하는 목적으로 첨가될 수 있다. 또한, 탄소(C)는 강재의 소입성 특성을 확보하기 위한 목적으로 첨가될 수 있다. 일 실시예에서, 탄소(C)는 모재(100)의 전체 중량에 대하여 약 0.15 중량% 이상 약 0.3 중량% 이하 포함될 수 있다. 탄소(C)가 모재(100)의 전체 중량에 대하여 약 0.15 중량% 미만으로 포함되는 경우, 원하는 기계적 강도를 달성하기 어려울 수 있다. 반면에, 탄소(C)가 모재(100)의 전체 중량에 대하여 약 0.3 중량% 초과로 포함되는 경우, 강재의 인성 저하 문제 또는 강의 취성 제어 문제가 야기될 수 있다.
실리콘(Si)은 모재(100) 내 페라이트 안정화 원소로 작용할 수 있다. 실리콘(Si)은 페라이트를 청정하게 해줌으로써 연성을 향상시키며, 저온역 탄화물 형성을 억제함으로써 오스테나이트 내 탄소 농화도를 향상시키는 기능을 수행할 수 있다. 나아가, 실리콘(Si)은 열연, 냉연, 핫 스탬핑 조직 균질화(펄라이트, 망간 편석대 제어) 및 페라이트 미세 분산의 핵심 원소일 수 있다. 일 실시예에서, 실리콘(Si)은 모재(100)의 전체 중량에 대하여 약 0.05 중량% 이상 약 0.8 중량% 이하 포함될 수 있다. 실리콘(Si)이 모재(100)의 전체 중량에 대하여 약 0.05 중량% 미만으로 포함되는 경우, 전술한 기능을 충분히 발휘하지 못할 수 있다. 반면에, 실리콘(Si)이 모재(100)의 전체 중량에 대하여 약 0.8 중량% 초과로 포함되는 경우, 열연 및 냉연 부하가 증가하며 열연 붉은형 스케일이 과다해지고 접합성이 저하될 수 있다.
망간(Mn)은 열처리 시 소입성 및 강도 증가 목적으로 첨가될 수 있다. 일 실시예에서, 망간(Mn)은 모재(100)의 전체 중량에 대하여 약 0.8 중량% 이상 약 3.0 중량% 이하 포함될 수 있다. 망간(Mn)이 모재(100)의 전체 중량에 대하여 약 0.8 중량% 미만으로 포함되는 경우, 소입성 미달로 핫 스탬핑 후 재질이 미달(예컨대, 경질상 분율 미달)될 가능성이 높을 수 있다. 반면에, 망간(Mn)이 모재(100)의 전체 중량에 대하여 약 3.0 중량% 초과로 포함되는 경우, 망간 편석 또는 펄라이트 밴드에 의한 연성 및 인성이 저하될 수 있으며, 굽힘 성능 저하의 원인이 되며 불균질 미세조직이 발생할 수 있다.
인(P)은 편석이 잘 되는 원소로 강의 인성을 저해하는 원소일 수 있다. 일 실시예에서, 인(P)은 모재(100)의 전체 중량에 대하여 0 초과 약 0.1 중량% 이하 포함될 수 있다. 인(P)이 모재(100)의 전체 중량에 대하여 전술한 범위로 포함되는 경우 강의 인성 저하를 방지할 수 있다. 반면에, 인(P)이 모재(100)의 전체 중량에 대하여 약 0.1 중량% 초과로 포함되는 경우, 공정 중 크랙이 발생할 수 있고, 인화철 화합물이 형성되어 강의 인성이 저하될 수 있다.
황(S)은 가공성 및 물성을 저해하는 원소일 수 있다. 일 실시예에서, 황(S)은 모재(100)의 전체 중량에 대하여 0 초과 약 0.1 중량% 이하 포함될 수 있다. 황(S)이 모재(100)의 전체 중량에 대하여 약 0.1 중량% 초과로 포함되는 경우, 열간 가공성이 저하될 수 있고, 거대 개재물 생성에 의해 크랙 등 표면 결함이 발생할 수 있다.
크롬(Cr)은 강의 소입성 및 강도를 향상시키는 목적으로 첨가될 수 있다. 일 실시예에서, 크롬(Cr)은 모재(100)의 전체 중량에 대하여 약 0.1 중량% 이상 약 0.9 중량% 이하 포함될 수 있다. 크롬(Cr)이 모재(100)의 전체 중량에 대하여 전술한 범위로 포함되는 경우, 강의 소입성 및 강도를 향상시킬 수 있고, 생산비가 증가되는 것이 방지될 수 있으며, 강재의 인성이 저하되는 것이 방지될 수 있다.
붕소(B)는 마르텐사이트 조직을 확보함으로써, 강재의 소입성 및 강도를 확보하는 목적으로 첨가되며, 오스테나이트 결정립 성장 온도 증가로 결정립 미세화 효과를 가질 수 있다. 일 실시예에서, 붕소(B)는 모재(100)의 전체 중량에 대하여 약 0.001 중량% 이상 약 0.005 중량% 이하 포함될 수 있다. 붕소(B)가 모재(100)의 전체 중량에 대하여 전술한 범위로 포함되는 경우, 경질상 입계 취성 발생을 방지하며 고인성과 굽힘성을 확보할 수 있다.
티타늄(Ti)은 핫 스탬핑 열처리 후 석출물 형성에 의한 소입성 강화 및 재질 상향 목적으로 첨가될 수 있다. 또한, 티타늄(Ti)은 고온에서 Ti(C,N) 등의 석출상을 형성하여, 오스테나이트 결정립 미세화에 효과적으로 기여할 수 있다. 일 실시예에서, 티타늄(Ti)은 모재(100)의 전체 중량에 대하여 약 0.01 중량% 이상 약 0.1 중량% 이하 포함될 수 있다. 티타늄(Ti)이 모재(100)의 전체 중량에 대하여 전술한 범위로 포함되는 경우, 연주 불량이 방지될 수 있고 석출물 조대화가 방지될 수 있으며 강재의 물성을 용이하게 확보할 수 있고 강재 표면에 크랙이 발생되는 것이 방지 또는 최소화될 수 있다.
니오븀(Nb)은 마르텐사이트(Martensite) 패캣 크기(Packet size) 감소에 따른 강도 및 인성 증가를 목적으로 첨가될 수 있다. 일 실시예에서, 니오븀(Nb)은 모재(100)의 전체 중량에 대하여 약 0.01 중량% 이상 약 0.1 중량% 이하 포함될 수 있다. 니오븀(Nb)이 모재(100)의 전체 중량에 대하여 전술한 범위로 포함되는 경우, 열간 압연 및 냉간 압연 공정에서 강재의 결정립 미세화 효과가 우수하고, 제강/연주시 슬라브의 크랙 발생 및 제품의 취성 파단 발생을 방지하며, 제강성 조대 석출물 생성을 최소화할 수 있다.
바나듐(V)은 석출물 형성에 의한 석출 강화 효과를 통하여 강재의 강도 증가를 목적으로 첨가될 수 있다. 일 실시예에서, 바나듐(V)은 모재(100)의 전체 중량에 대하여 약 0.01 중량% 이상 약 0.1 중량% 이하 포함될 수 있다. 바나듐(V)이 모재(100)의 전체 중량에 대하여 전술한 범위로 포함되는 경우, 강재의 강도가 향상될 수 있다.
칼슘(Ca)은 CaS를 형성시켜 강 내의 황의 함량을 낮추고, 압연 중에 연신되어 전기저항용접시 훅 크랙(Hook Crack) 등의 결함을 유발하는 MnS 개재물의 생성을 방해하기 위한 목적으로 첨가될 수 있다.
일 실시예에서, 모재(100)는 마르텐사이트(martensite) 분율 90% 이상을 포함하는 미세조직을 가질 수 있다. 구체적으로, 모재(100)는 마스텐사이트 90% 이상, 잔부 기타 불가피한 조직 및 기타 석출물 10% 미만을 포함하는 미세조직을 가질 수 있다.
일 실시예에서, 모재(100) 상에는 탈탄층(200)이 배치될 수 있다. 구체적으로, 모재(100)의 표면에 탈탄층(200)이 배치될 수 있다. 모재(100) 상에 탈탄층(200)이 배치되는 경우, 탈탄층(200)은 모재(100)에 비해 연질한 층이므로 핫 스탬핑 부품(1)의 인성이 향상될 수 있다.
모재(100)의 표면으로부터 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점의 평균 경도 대비 경도가 약 70% 이하인 층이 탈탄층(200)으로 정의될 수 있다. 또는, 핫 스탬핑 부품(1)의 표면으로부터 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점의 평균 경도 대비 경도가 약 70% 이하인 층이 탈탄층(200)으로 정의될 수 있다. 즉, 탈탄층(200)의 평균 경도는 모재(100)의 표면으로부터 또는 핫 스탬핑 부품(1)의 표면으로부터 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점의 평균 경도 대비 약 70% 이하일 수 있다. 다른 표현으로, 탈탄층(200)의 평균 경도는 모재(100)의 표면으로부터 또는 핫 스탬핑 부품(1)의 표면으로부터 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점의 평균 경도의 약 70% 이하일 수 있다.
일 실시예에서, 탈탄층(200) 상에는 내부 산화물층(300)이 배치될 수 있다. 구체적으로, 탈탄층(200)의 표면에는 내부 산화물층(300)이 배치될 수 있다. 내부 산화물층(300)은 실리콘(Si), 망간(Mn), 크롬(Cr) 등을 포함할 수 있다.
일 실시예에서, 내부 산화물층(300)의 깊이(또는, 두께(t1))는 핫 스탬핑 부품(1)의 판 두께 방향으로 약 5㎛의 이하로 구비될 수 있다. 이에 대해서는 아래에서 보다 자세히 설명하기로 한다.
일 실시예에서, 내부 산화물층(300) 상에는 도금층(400)이 배치될 수 있다. 구체적으로, 내부 산화물층(300)의 표면에는 도금층(400)이 배치될 수 있다. 도금층(400)은 아연(Zn)계 도금층 또는 알루미늄(Al)계 도금층일 수 있다. 예컨대, 도금층(400)은 아연(Zn) 및/또는 알루미늄(Al)을 포함할 수 있다.
일 실시예에서, 도금층(400)이 아연(Zn)계 도금층으로 구비되는 경우, 도금층(400)은 철(Fe), 알루미늄(Al), 망간(Mn), 실리콘(Si), 잔부의 아연(Zn), 및 기타 불가피한 불순물을 포함할 수 있다. 예컨대, 도금층(400)은 철(Fe) 약 10 중량% 이상 약 70 중량% 이하, 알루미늄(Al) 0 초과 약 5 중량% 이하, 망간(Mn) 0 초과 약 1 중량% 이하, 실리콘(Si) 0 초과 약 1 중량% 이하, 잔부의 아연(Zn) 및 기타 불가피한 불순물을 포함할 수 있다.
도금층(400)은 핫 스탬핑 부품(1)의 판 두께 방향으로 약 10㎛ 내지 약 30㎛의 깊이(또는, 두께(t2))로 구비될 수 있다. 도금층(400)의 두께(t2)가 약 10㎛ 미만인 경우, 아연 특유의 희생 방식 효과가 저하될 수 있고, 도금층(400)의 두께(t2)가 약 30㎛ 초과인 경우, 도금층(400)의 두께(t2)가 너무 두꺼워 도금층(400)을 포함하는 핫 스탬핑 부품(1)의 인성이 저하될 수 있다. 따라서, 도금층(400)이 약 10㎛ 내지 약 30㎛의 두께(t2)로 구비되는 경우, 모재(또는, 강재)의 표면을 보호할 수 있고, 동시에 핫 스탬핑 부품(1)의 인성이 저하되는 것이 방지 또는 최소화될 수 있다.
탈탄층(200)은 모재(100)에 비해 연질한 층으로 핫 스탬핑 부품(1)이 탈탄층(200)을 포함하는 경우, 이를 포함하는 핫 스탬핑 부품(1)의 인성이 향상될 수 있다.
다만, 전술한 바와 같이, 내부 산화물층(300)의 깊이(또는, 두께(t1))가 너무 큰 경우, 내부 산화물층(300)에 의해 액상 아연이 더 쉽게 모재(100)로 침투하여 핫 스탬핑 성형 중 크랙이 발생할 가능성이 증가할 수 있고, 이로 인해 제조된 핫 스탬핑 부품(1)의 굽힘성이 저하될 수 있다. 구체적으로, 내부 산화물층(300)의 깊이(또는, 두께(t1))가 약 5㎛ 초과인 경우, 내부 산화물층(300)에 의해 액상 아연이 더 쉽게 모재(100) 측으로 침투하여 핫 스탬핑 성형 중 크랙이 발생할 가능성이 증가할 수 있고, 이로 인해 제조된 핫 스탬핑 부품(1)의 굽힘성이 저하될 수 있다.
핫 스탬핑 부품의 제조 방법에서 후술할 바와 같이, 소둔 단계에서 모재(100) 상에 탈탄층(200)이 형성될 수 있다. 이때, 탈탄층(200) 상에 내부 산화물층(300)이 동시에 형성될 수 있다. 구체적으로, 소둔 단계에서 모재(100)의 표면에 탈탄층(200)이 형성될 수 있고, 동시에 탈탄층(200)의 표면에 내부 산화물층(300)이 형성될 수 있다.
소둔 단계가 수행되는 소둔로의 이슬점 온도를 증가시키면 탈탄층(200)의 깊이(또는, 두께)가 증가될 수 있다. 다만, 탈탄층(200)의 깊이(또는, 두께)가 증가되는 경우, 내부 산화물층(300)의 깊이(또는, 두께) 역시 증가될 수 있다. 즉, 핫 스탬핑 부품(1)의 인성을 증가시키기 위해서는 탈탄층(200)의 깊이(또는, 두께)를 증가시켜야 하지만, 탈탄층(200)의 깊이(또는, 두께)가 증가되는 경우 내부 산화물층(300)의 깊이(또는, 두께)도 증가되어 핫 스탬핑 성형 중 크랙이 발생할 가능성이 증가할 수 있고, 이로 인해 제조된 핫 스탬핑 부품(1)의 굽힘성이 저하될 수 있다. 따라서, 탈탄층(200)의 깊이(또는, 두께)와 내부 산화물층(300)의 깊이(또는, 두께)를 적절히 조절할 필요가 있다.
이에, 본 발명자는 과도하게 반복된 실험을 거쳐 핫 스탬핑 부품(1)이 약 60° 이상의 VDA 굽힘각을 갖도록 하는 관계식 1 및 관계식 2를 도출하였다. 일 실시예에서, 핫 스탬핑 부품(1)은 관계식 1 및 관계식 2를 만족할 수 있다. 구체적으로, 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 내의 경도와 핫 스탬핑 부품(1)의 평균 경도는 하기 관계식 1을 만족할 수 있고, 내부 산화물층(300)의 깊이(또는, 두께)는 하기 관계식 2를 만족할 수 있다. 예컨대, 핫 스탬핑 부품(1)은 하기 관계식 1 및 관계식 2를 모두 만족할 수 있다.
<관계식 1>
(A / B) ≤ 0.7
관계식 1에서 A는 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이(또는, 두께) 내의 경도(Hv(≤50㎛))이고, B는 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))이다.
이때, 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 내의 경도는 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 이하의 지점에서 비커스 경도계로 측정한 경도 값일 수 있고, 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))는 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점에서 비커스 경도계로 측정한 경도 값일 수 있다.
<관계식 2>
C ≤ 5㎛
관계식 2에서 C는 핫 스탬핑 부품(1)의 판 두께 방향으로 내부 산화물층(300)의 깊이(또는, 두께)이다.
탈탄층(200)은 모재(100)의 표면에 배치되므로, 탈탄층(200)은 핫 스탬핑 부품(1)의 표면과 인접한 부분에 배치될 수 있다. 탈탄층(200)은 모재(100)에 비해 연질한 층에 해당하므로, 핫 스탬핑 부품(1) 중 핫 스탬핑 부품(1)의 표면과 인접한 부분의 경도는 핫 스탬핑 부품(1)의 평균 경도보다 낮을 수 있다. 이때, 탈탄층(200)이 깊이(또는, 두께)가 증가하는 경우, 핫 스탬핑 부품(1) 중 핫 스탬핑 부품(1)의 표면과 인접한 부분의 경도와 핫 스탬핑 부품(1)의 평균 경도의 차이가 증가할 수 있다. 반면에, 탈탄층(200)이 깊이(또는, 두께)가 감소하는 경우, 핫 스탬핑 부품(1) 중 핫 스탬핑 부품(1)의 표면과 인접한 부분의 경도와 핫 스탬핑 부품(1)의 평균 경도의 차이가 감소될 수 있다.
핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이(또는, 두께) 내의 경도(Hv(≤50㎛))와 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))의 비가 약 0.7 초과인 경우, 탈탄층(200)이 충분한 깊이(또는, 두께)로 형성(또는, 구비)되지 않아 이를 포함하는 핫 스탬핑 부품(1)의 인성이 낮을 수 있다. 특히, 핫 스탬핑 부품(1)의 VDA 굽힘각이 약 60° 미만일 수 있다.
핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이(또는, 두께) 내의 경도(Hv(≤50㎛))와 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))의 비가 약 0.7 이하인 경우, 탈탄층(200)이 충분한 깊이(또는, 두께)로 형성(또는, 구비)된 것을 의미할 수 있다. 따라서, 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이(또는, 두께) 내의 경도(Hv(≤50㎛))와 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))의 비가 약 0.7 이하를 만족하는 경우, 탈탄층(200)이 충분한 깊이(또는, 두께)로 형성(또는, 구비)되어 이를 포함하는 핫 스탬핑 부품(1)의 인성이 향상될 수 있다. 특히, 핫 스탬핑 부품(1)이 약 60° 이상의 VDA 굽힘각을 가질 수 있다.
또한, 전술한 바와 같이, 핫 스탬핑 부품(1)에 포함된 내부 산화물층(300)의 깊이(또는, 두께)는 약 5㎛ 이하일 수 있다.
도금층(400)이 아연(Zn)계 도금층으로 구비되는 경우, 아연의 낮은 녹는점으로 인해 액체금속취화(Liquid Metal Embrittlement, LME) 현상이 발생할 수 있고, 이로 인해 내부에 크랙이 발생하여 핫 스탬핑 부품(1)의 굽힘성이 저하될 수 있다. 이때, 내부 산화물층(300)의 깊이(또는, 두께)가 큰 경우, 내부 산화물층(300)에 의해 액상 아연이 더 쉽게 내부로 침투하여 핫 스탬핑 성형 중 크랙이 발생할 확률이 증가할 수 있고, 이로 인해 제조된 핫 스탬핑 부품(1)의 굽힘성이 저하될 수 있다.
내부 산화물층(300)의 깊이(또는, 두께)가 약 5㎛ 초과인 경우, 내부 산화물층(300)에 의해 액상 아연이 더 쉽게 내부로 침투하여 핫 스탬핑 성형 중 크랙이 발생할 확률이 증가할 수 있고, 이로 인해 제조된 핫 스탬핑 부품(1)의 굽힘성이 저하될 수 있다.
따라서, 내부 산화물층(300)의 깊이(또는, 두께)가 핫 스탬핑 부품(1)의 판 두께 방향으로 약 5㎛의 이하로 구비되는 경우, 핫 스탬핑 중 크랙이 발생하는 것을 방지할 수 있고, 이를 통해 핫 스탬핑 부품(또는, 블랭크)의 고온 성형성을 향상시킬 수 있다.
일 실시예에서, 핫 스탬핑 부품(1)은 전술한 관계식 1 및 관계식 2를 동시에 만족할 수 있다. 핫 스탬핑 부품(1)이 전술한 관계식 1 및 관계식 2를 동시에 만족하는 경우, 핫 스탬핑 부품(1)이 높은 인성을 가지면서도 핫 스탬핑 부품(1)의 고온 성형성이 우수할 수 있다. 구체적으로, 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 50㎛ 깊이(또는, 두께) 내의 경도와 핫 스탬핑 부품(1)의 평균 경도가 전술한 관계식 1을 만족하고, 내부 산화물층(300)의 깊이(또는, 두께)가 전술한 관계식 2를 만족하는 경우, 핫 스탬핑 부품(1)이 높은 인성을 가지면서 동시에 핫 스탬핑 부품의 고온 성형성이 우수할 수 있다.
일 실시예에서, 핫 스탬핑 부품(1)이 전술한 관계식 1 및 관계식 2를 모두 만족하는 경우, 핫 스탬핑 부품(1)은 약 1350 MPa 내지 약 1680 MPa의 인장강도(TS), 약 900 MPa 내지 약 1300 MPa의 항복응력(YP), 및 약 4% 내지 약 10%의 연신율(EL)을 가질 수 있다. 또한, 핫 스탬핑 부품(1)은 약 60° 이상의 VDA 굽힘각을 가질 수 있다. 이때, VDA 굽힘각은 VDA 규격(VDA238-100)에 준거하여 측정될 수 있다.
도 2는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법을 개략적으로 도시한 순서도이고, 도 3 내지 도 5는 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법을 개략적으로 도시한 단면도들이다.
도 2 내지 도 5를 참조하면, 일 실시예에 따른 핫 스탬핑 부품(1, 도 1 참조)의 제조 방법은 열간 압연 단계(S100), 냉각 / 권취 단계(S200), 냉간 압연 단계(S300), 소둔 단계(S400), 도금 단계(S500), 및 핫 스탬핑 단계(S600)를 포함할 수 있다.
먼저, 도 1에서 전술한 조성으로 구비된 모재(100, 예컨대, 강 슬라브)의 재가열 단계가 진행될 수 있다. 강 슬라브 재가열 단계에서는 연속 주조 공정을 통해 확보된 강 슬라브를 소정의 온도로 재가열함으로써, 주조 시 편석된 성분이 재고용될 수 있다. 일 실시예에서, 슬라브 재가열 온도(Slab Reheating Temperature, SRT)는 약 1,200℃ 내지 약 1,400℃일 수 있다. 슬라브 재가열 온도(SRT)가 약 1,200℃ 보다 낮은 경우에는 주조 시 편석된 성분이 충분히 재고용되지 못해 합금 원소의 균질화 효과를 크게 보기 어렵고, 티타늄(Ti)의 고용 효과를 크게 보기 어려울 수 있다. 슬라브 재가열 온도(SRT)가 높을수록 균질화에 유리하나, 슬라브 재가열 온도(SRT)가 약 1,400℃를 초과할 경우에는 오스테나이트 결정 입도가 증가하여 강도 확보가 어려울 뿐만 아니라 과도한 가열 공정으로 인하여 강판의 제조 비용이 상승할 수 있다.
열간 압연 단계(S100)에서는 재가열된 모재(100)를 소정의 마무리 압연 온도에서 열간 압연할 수 있다. 열간 압연 단계(S100)를 통해 열연 강판이 제조될 수 있다. 일 실시예에서, 마무리 압연 온도(Finishing Delivery Temperature: FDT)는 약 880℃ 내지 약 950℃일 수 있다. 이때, 마무리 압연 온도(FDT)가 약 880℃ 보다 낮으면, 이상 영역 압연에 의한 혼립 조직이 발생으로 강판의 가공성 확보가 어렵고, 미세조직 불균일에 따라 가공성이 저하되는 문제가 있을 뿐만 아니라 급격한 상 변화에 의해 열간 압연 중 통판성의 문제가 발생할 수 있다. 마무리 압연 온도(FDT)가 약 950℃를 초과할 경우에는 오스테나이트 결정립이 조대화될 수 있고, TiC 석출물이 조대화되어 핫 스탬핑 부품의 성능이 저하될 수 있다.
냉각 / 권취 단계(S200)에서는 열간 압연된 모재(100)를 소정의 권취 온도(Coiling Temperature, CT)까지 냉각하여 권취할 수 있다. 일 실시예에서, 냉각 / 권취 단계(S300)의 권취 온도는 약 550℃ 내지 약 800℃일 수 있다. 권취 온도는 탄소(C)의 재분배에 영향을 미치며, 권취 온도가 약 550℃ 미만일 경우에는 과냉으로 인한 저온상 분율이 높아져 강도가 증가할 수 있고, 냉간 압연 시 압연 부하가 심화될 우려가 있으며, 연성이 급격히 저하될 수 있다. 반대로, 권취 온도가 약 800℃를 초과할 경우에는 이상 결정 입자 성장이나 과도한 결정 입자 성장으로 성형성 열화 및 강도 열화가 발생할 수 있다.
냉간 압연 단계(S300)에서는 권취된 모재(100)를 언코일링(uncoiling)하여 산세 처리한 후, 냉간 압연할 수 있다. 이때, 산세는 권취된 강판(또는, 모재), 즉 상기의 열연 과정을 통하여 제조된 열연 코일의 스케일을 제거하기 위한 목적으로 실시될 수 있다. 냉간 압연 단계(S300)를 통해 냉연 강판이 제조될 수 있다.
소둔 단계(S400)는 냉간 압연된 모재(100)를 약 700℃ 이상의 온도에서 소둔할 수 있다. 예컨대, 소둔 단계(S400)는 냉간 압연된 모재(100)를 가열하고, 가열된 모재(100)를 소정의 냉각 속도로 냉각하는 단계를 포함할 수 있다.
일 실시예에서, 소둔 단계(S400)에서 모재가 소둔될 수 있다. 소둔 단계(S400)는 소둔로에서 이루어질 수 있다.
모재(100)의 소둔은 약 0.5 체적% 내지 약 25 체적%의 수소 및 잔부 질소로 이루어지는 가스 분위기에서 수행될 수 있다. 이때, 소둔로에 수소 가스 및 질소 가스와 함께 물이 분사될 수 있다. 소둔로 내에 물이 분사되는 경우 소둔로의 이슬점 온도가 증가될 수 있다. 따라서, 소둔로 내로 분사되는 물의 양을 조절하여 소둔로의 이슬점 온도를 조절할 수 있다.
일 실시예에서, 소둔로의 이슬점 온도가 증가하는 경우, 모재(100) 상에 탈탄층(200)이 형성될 수 있다. 예컨대, 모재(100)의 표면에서 탄소가 소실되어 탈탄층(200)이 형성될 수 있다. 또한, 탈탄층(200) 상에 내부 산화물층(300)이 동시에 형성될 수 있다. 즉, 모재(100)의 표면에 탈탄층(200)이 형성될 수 있고, 탈탄층(200)의 표면에 내부 산화물층(300)이 형성될 수 있다. 이때, 탈탄층(200) 및 내부 산화물층(300)은 모재(100)의 일 부분이 변화된 층일 수 있다.
이때, 모재(100)의 표면으로부터 약 1/4 지점의 평균 경도 대비 경도가 약 80% 이하인 층이 탈탄층(200)으로 정의될 수 있다. 즉, 탈탄층(200)의 평균 경도는 모재(100)의 표면으로부터 약 1/4 지점의 평균 경도 대비 약 80% 이하일 수 있다.
일 실시예에서, 모재(100)의 소둔이 수행되는 소둔로의 이슬점 온도는 약 -15℃ 내지 약 +15℃일 수 있다. 제조된 핫 스탬핑 부품(1)의 인성 향상을 목적으로 모재(100) 상에 탈탄층(200)이 형성되는데, 소둔로의 이슬점 온도가 약 -15℃ 이하인 경우 형성되는 탈탄층(200)의 깊이(또는, 두께)가 너무 얇아 제조된 핫 스탬핑 부품의 인성 향상 효과가 미미할 수 있다. 반면에, 소둔로의 이슬점 온도가 약 +15℃ 이상인 경우, 형성되는 내부 산화물층(300)의 깊이(또는, 두께(t3))가 너무 커 LME 크랙이 유발될 수 있고, 설비 산화에 의한 조업성이 감소될 수 있다. 예컨대, 소둔로의 이슬점 온도를 증가시키기 위해서는 소둔로에 많은 양의 물을 공급해야 되는데, 소둔로에 많은 양의 물이 공급되는 경우 소둔로의 설비가 산화될 수 있고, 이를 청소하는데 많은 시간이 소요되어 조업성이 감소될 수 있다. 또한, 소둔로의 이슬점 온도가 높으면 형성되는 탈탄층(200)의 깊이(또는, 두께) 및 내부 산화물층(300)의 깊이(또는, 두께(t3))가 증가할 수 있고, 내부 산화물층(300)으로 인해 고온 성형 시 내부에 크랙이 발생할 수 있다. 따라서, 모재(100)의 소둔이 수행되는 소둔로의 이슬점 온도가 약 -15℃ 내지 약 +15℃를 만족하는 경우, 제조된 핫 스탬핑 부품(1)의 인성을 향상시키면서 제조 공정의 효율을 향상시킬 수 있다.
일 실시예에서, 모재(100)의 소둔이 수행되는 소둔로의 라인 속도는 약 30 mpm(meters per minute) 내지 약 200 mpm 일 수 있다. 소둔로의 라인 속도가 약 30 mpm 이하에서는 모재(100)의 이동 속도가 너무 느려 생산성이 급감할 수 있고, 소둔로의 라인 속도가 약 200 mpm 이상에서는 모재(100)의 소둔로의 체재 시간이 너무 짧아 탈탄층(200)의 깊이(또는, 두께)가 감소될 수 있고, 이로 인해 제조된 핫 스탬핑 부품의 인성 향상 효과가 미미할 수 있다. 따라서, 모재(100)의 소둔이 수행되는 소둔로의 라인 속도가 약 30 mpm 내지 약 200 mpm을 만족하는 경우, 핫 스탬핑 부품의 생산성을 향상시킬 수 있고, 동시에 제조된 핫 스탬핑 부품의 인성을 향상시킬 수 있다.
일 실시예에서, 모재(100)의 소둔 온도는 약 750℃ 내지 약 900℃일 수 있다. 모재(100)의 소둔 온도가 약 750℃ 미만인 경우 원하는 조직을 얻을 수 없고, 재결정이 충분히 완료되지 않을 수 있다. 반면에, 모재(100)의 소둔 온도가 약 900℃ 초과인 경우, 소둔 온도가 너무 높아 제조 공정의 효율이 저하될 수 있다. 따라서, 모재(100)의 소둔 온도가 약 750℃ 내지 약 900℃를 만족하는 경우, 원하는 조직을 얻을 수 있고, 재결정이 충분히 완료될 수 있으며, 제조 공정의 효율이 향상될 수 있다.
도금 단계(S500)는 소둔된 모재(100) 상에 도금층(400)을 형성하는 단계일 수 있다. 일 실시예에서, 도금 단계(S500)를 통해 소둔된 모재(100) 상에 도금층(400)이 형성될 수 있다. 구체적으로, 도금 단계(S500)를 통해 내부 산화물층(300)의 표면에 도금층(400)이 형성될 수 있다. 이때, 도금층(400)은 아연(Zn)계 도금층 또는 알루미늄(Al)계 도금층을 포함할 수 있다.
구체적으로, 도금 단계(S500)에서는 소둔된 모재(100)를 도금욕에 침지시킬 수 있다. 이때, 도금욕은 약 400℃ 내지 약 700℃의 온도를 유지할 수 있다. 도금부착량은 모재(100, 또는, 내부 산화물층(300))의 양면 기준 약 40 g/m2 내지 약 200 g/m2 일 수 있다.
일 실시예에서, 모재(100) 또는 탈탄층(200) 상에 형성된 도금층(400)의 깊이(또는, 두께(t4))는 모재(100)의 판 두께 방향으로 약 5㎛ 내지 약 20㎛일 수 있다. 도금층(400)의 깊이(또는, 두께)가 약 5㎛ 이하인 경우, 도금층(400)의 희생 방식 능력이 부족할 수 있고, 도금층(400)의 깊이(또는, 두께)가 약 20㎛ 이상인 경우, 도금층(400)을 형성하는데 드는 비용이 증가하여 경제성이 감소될 수 있다. 따라서, 도금층(400)의 깊이(또는, 두께(t4))가 약 5㎛ 내지 약 20㎛를 만족하는 경우, 핫 스탬핑 부품(1)의 모재(100)가 부식되는 것이 방지 또는 최소화될 수 있다.
일 실시예에서, 소둔 단계(S400)와 도금 단계(S500)는 동일한 라인에서 수행될 수 있다. 따라서, 도금 단계(S500)가 수행되는 라인 속도는 약 30 mpm 내지 약 200 mpm일 수 있다. 라인 속도가 약 30 mpm 이하인 경우, 라인 속도가 너무 느려 생산성이 저하될 수 있다. 에어 나이프(Air knife)를 이용하여 도금량을 제어하는데, 라인 속도가 약 200 mpm 이상인 경우, 라인 속도가 너무 빨라 에어 나이프를 이용한 도금량 제어가 힘들 수 있다. 따라서, 도금 단계(S500)가 수행되는 라인 속도가 약 30 mpm 내지 약 200 mpm을 만족하는 경우, 생산성을 향상시킬 수 있고, 동시에 도금량을 용이하게 제어할 수 있다.
일 실시예에서, 도금 단계(S500)를 통해 모재(100)의 적어도 일면 상에 도금층(400)이 형성된 도금강판이 제조될 수 있다. 이때, 도금강판은 모재(100), 모재(100) 상에 형성된 탈탄층(200), 탈탄층(200) 상에 형성된 내부 산화물층(300), 및 내부 산화물층(300) 상에 형성된 도금층(400)을 포함할 수 있다. 구체적으로, 도금강판은 모재(100), 모재(100)의 표면에 형성된 탈탄층(200), 탈탄층(200)의 표면에 형성된 내부 산화물층(300), 및 내부 산화물층(300)의 표면에 형성된 도금층(400)을 포함할 수 있다.
도 6은 본 발명의 일 실시예에 따른 핫 스탬핑 단계를 개략적으로 도시한 순서도이고, 도 7은 본 발명의 일 실시예에 따른 가열 단계를 개략적으로 도시한 순서도이다.
도 6 및 도 7을 참조하면, 도금 단계(S500, 도 2 참조) 이후에 핫 스탬핑 단계(S600)가 수행될 수 있다. 핫 스탬핑 단계(S600)는 가열 단계(S610), 이송 단계(S620), 성형 단계(S630), 및 냉각 단계(S640)를 포함할 수 있다.
먼저, 모재(100, 도 5 참조)의 적어도 일면 상에 도금층(400, 도 5 참조)이 형성된 도금강판을 재단하여 블랭크를 형성할 수 있다. 이때, 모재(100)와 도금층(400) 사이에는 탈탄층(200, 도 5 참조) 및 내부 산화물층(300, 도 5 참조)이 존재할 수 있다.
가열 단계(S610)에서는 서로 다른 온도 범위를 갖는 복수의 구간을 구비한 가열로 내에서 블랭크를 가열할 수 있다. 도 7에 도시된 바와 같이, 가열 단계(S610)는 다단 가열 단계(S611) 및 균열 가열 단계(S612)를 포함할 수 있다. 다단 가열 단계(S611) 및 균열 가열 단계(S612)는 블랭크가 가열로 내에 구비된 복수의 구간을 통과하며 가열되는 단계일 수 있다.
일 실시예에서, 가열로 전체 온도는 약 680℃ 내지 약 910℃ 일 수 있다. 구체적으로, 다단 가열 단계(S611) 및 균열 가열 단계(S612)가 수행되는 가열로 전체 온도는 약 680℃ 내지 약 910℃ 일 수 있다. 이때, 다단 가열 단계(S611)가 수행되는 가열로의 온도는 약 680℃ 내지 약 Ac1 일 수 있고, 균열 가열 단계(S612)가 수행되는 가열로의 온도는 약 Ac1 내지 약 910℃일 수 있다.
다단 가열 단계(S611)에서는 블랭크가 가열로 내에 구비된 복수의 구간을 통과하며 단계적으로 가열(또는, 승온)될 수 있다. 가열로 내에 구비된 복수의 구간 중 다단 가열 단계(S611)가 수행되는 구간은 복수 개 존재할 수 있고, 블랭크가 투입되는 가열로의 입구로부터 블랭크가 취출되는 가열로의 출구 방향으로 온도가 높아지도록 각 구간별로 온도가 설정되어 블랭크가 단계적으로 가열(또는,승온)될 수 있다.
다단 가열 단계(S611) 이후에 균열 가열 단계(S612)가 이루어질 수 있다. 균열 가열 단계(S612)에서는 다단 가열된 블랭크가 약 Ac1 내지 약 910℃의 온도로 설정된 가열로의 구간을 통과하며 가열(또는, 균열 가열)될 수 있다. 가열로 내에 구비된 복수의 구간 중 균열 가열 단계(S612)가 수행되는 구간은 적어도 하나 이상일 수 있다.
도 8은 본 발명의 일 실시예에 따른 핫 스탬핑 부품의 제조 방법의 가열 단계에 있어서, 복수의 구간을 구비한 가열로를 설명하기 위해 도시한 도면이다.
도 8을 참조하면, 일 실시예에 따른 가열로는 서로 다른 온도 범위를 가지는 복수의 구간을 구비할 수 있다. 구체적으로, 가열로는 제1 온도 범위(T1)를 가지는 제1 구간(P1), 제2 온도 범위(T2)를 가지는 제2 구간(P2), 제3 온도 범위(T3)를 가지는 제3 구간(P3), 제4 온도 범위(T4)를 가지는 제4 구간(P4), 제5 온도 범위(T5)를 가지는 제5 구간(P5), 제6 온도 범위(T6)를 가지는 제6 구간(P6), 및 제7 온도 범위(T7)를 가지는 제7 구간(P7)을 구비할 수 있다.
일 실시예에서, 다단 가열 단계(S611)에서는 블랭크가 가열로 내에 정의된 제1 구간(P1) 내지 제4 구간(P4)을 통과하며 단계적으로 가열될 수 있다. 또한, 균열 가열 단계(S612)에서는 제1 구간(P1) 내지 제4 구간(P4)에서 다단 가열된 블랭크가 제5 구간(P5) 내지 제7 구간(P7)을 통과하며 균열 가열될 수 있다.
제1 구간(P1) 내지 제7 구간(P7)은 차례대로 가열로 내에 배치될 수 있다. 제1 온도 범위(T1)를 가지는 제1 구간(P1)은 블랭크가 투입되는 가열로의 입구와 인접하고, 제7 온도 범위(T7)를 가지는 제7 구간(P7)은 블랭크가 배출되는 가열로의 출구와 인접할 수 있다. 따라서, 제1 온도 범위(T1)를 가지는 제1 구간(P1)이 가열로의 첫 번째 구간일 수 있고, 제7 온도 범위(T7)를 가지는 제7 구간(P7)이 가열로의 마지막 구간일 수 있다.
가열로 내에 구비된 복수의 구간의 온도, 예컨대 제1 구간(P1) 내지 제7 구간(P7)의 온도는 블랭크가 투입되는 가열로의 입구로부터 블랭크가 취출되는 가열로의 출구 방향으로 증가할 수 있다. 다만, 제5 구간(P5), 제6 구간(P6), 및 제7 구간(P7)의 온도는 동일할 수 있다. 또한, 가열로 내에 구비된 복수의 구간 중 서로 인접한 두 개의 구간들 간의 온도 차는 0℃ 보다 크고 약 100℃ 이하일 수 있다. 예를 들어, 제1 구간(P1)과 제2 구간(P2)의 온도 차는 0℃ 보다 크고 약 100℃ 이하일 수 있다.
균열 가열 단계(S612)의 가열로 온도는 약 Ac1 내지 약 910℃일 수 있다. 균열 가열 단계(S612)의 가열로 온도가 약 Ac1 이하일 경우, 제조된 핫 스탬핑 부품이 원하는 재질을 갖지 않을 수 있다. 반면에, 균열 가열 단계(S612)의 가열로 온도가 약 910℃ 이상인 경우, 도금층(400)에 포함된 아연(Zn)이 기화되어 도금층(400)의 손실이 발생할 수 있다. 따라서, 균열 가열 단계(S612)의 가열로 온도가 약 Ac1 내지 약 910℃를 만족하는 경우, 제조된 핫 스탬핑 부품이 원하는 재질로 형성될 수 있고, 도금층(400)이 손실되는 것이 방지될 수 있다.
도 8에서는 일 실시예에 따른 가열로가 서로 다른 온도 범위를 가지는 일곱 개의 구간을 구비한 것으로 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니다. 가열로 내에는 서로 다른 온도 범위를 가지는 다섯 개, 여섯 개, 또는 여덟 개 등의 구간이 구비될 수도 있다.
일 실시예에서, 가열 단계(S610)가 다단 가열 단계(S611) 및 균열 가열 단계(S612)로 구비됨으로써, 가열로의 온도를 단계적으로 설정할 수 있어 가열로의 에너지 효율을 향상시킬 수 있다.
일 실시예에서, 가열로는 블랭크의 이송 경로를 따라 약 20m 내지 약 40m의 길이를 가질 수 있다. 가열로는 서로 다른 온도 범위를 가지는 복수의 구간을 구비할 수 있고 복수의 구간 중 블랭크가 다단 가열되는 구간의 길이와 복수의 구간 중 블랭크가 균열 가열되는 구간의 길이의 비는 약 1:1 내지 약 4:1을 만족할 수 있다. 가열로 내에서 블랭크가 균열 가열되는 구간의 길이가 증가하여 블랭크가 다단 가열되는 구간의 길이와 블랭크가 균열 가열되는 구간의 길이의 비가 약 1:1을 초과할 경우, 균열 가열 구간에서 블랭크 내로 침투되는 수소량이 증가하여 지연파단이 증가할 수 있다. 반면에, 블랭크가 균열 가열되는 구간의 길이가 감소하여 블랭크가 다단 가열되는 구간의 길이와 블랭크가 균열 가열되는 구간의 길이의 비가 약 4:1 미만인 경우, 균열 가열 구간(또는, 시간)이 충분히 확보되지 않아 핫 스탬핑 부품의 제조 공정에 의해 제조된 핫 스탬핑 부품의 강도가 불균일할 수 있다. 예컨대, 가열로 내에 구비된 복수의 구간 중 균일 가열 구간의 길이는 가열로의 총 길이의 약 20% 내지 약 50%일 수 있다.
일 실시예에서, 가열 단계(S610)가 수행되는 총 가열 시간은 약 2min 내지 약 20min일 수 있다. 즉, 블랭크가 가열로에 체류하는 총 시간은 약 2min 내지 약 20min일 수 있다. 가열 단계(S610)가 수행되는 총 가열 시간이 약 2min 이하인 경우, 가열 시간이 부족하여 제조된 핫 스탬핑 부품(1)의 원하는 재질을 갖지 않을 수 있다. 반면에, 가열 단계(S610)가 수행되는 총 가열 시간이 약 20min 이상인 경우, 가열 시간이 너무 길어 생산 속도가 저하되어 경제성이 저하될 수 있다. 따라서, 가열 단계(S610)가 수행되는 총 가열 시간이 약 2min 내지 약 20min을 만족하는 경우, 제조된 핫 스탬핑 부품(1)이 원하는 재질을 가질 수 있고, 동시에 제조 공정의 경제성이 저하되는 것이 방지 또는 최소화될 수 있다.
가열 단계(S610) 이후에, 이송 단계(S620), 성형 단계(S630), 및 냉각 단계(S640)가 더 수행될 수 있다.
일 실시예에서, 이송 단계(S620)는 가열된 블랭크를 가열로로부터 금형으로 이송하는 단계일 수 있다. 이때, 이송 단계(S620)에서는 가열된 블랭크가 대기 온도(또는, 상온)에서 냉각될 수 있다. 즉, 가열된 블랭크는 이송 중 공랭될 수 있다. 가열된 블랭크가 공랭되지 않으면 금형진입온도(예컨대, 성형개시온도)가 높아져 제조된 핫 스탬핑 부품(1)의 표면에 주름(또는, 굴곡)이 발생할 수 있다. 또한, 냉매를 사용시 후공정(핫 스탬핑)에 영향을 미칠 수 있으므로 이송 중 가열된 블랭크가 공랭되는 것이 바람직할 수 있다.
일 실시예에서, 성형 단계(S630)는 이송된 블랭크를 핫 스탬핑하여 성형체를 성형하는 단계일 수 있다. 구체적으로, 성형 단계(S400)에서는 금형으로 블랭크를 가압하여 성형체를 성형할 수 있다.
일 실시예에서, 성형개시온도는 약 500℃ 이상 약 700℃ 이하일 수 있다. 성형개시온도|가 약 500℃ 미만인 경우, 성형 개시 온도가 너무 낮아 블랭크의 성형성이 저하될 수 있고, 제조된 핫 스탬핑 부품(1)이 목표한 조직과 물성을 갖지 못할 수 있다. 반면에, 성형개시온도가 약 700℃ 초과인 경우, 제조된 핫 스탬핑 부품(1)의 표면에 주름(또는 굴곡)이 발생할 수 있다. 또한, 도금층(400)이 금형에 소착될 수 있다. 따라서, 성형개시온도가 약 500℃ 이상 약 700℃ 이하인 경우 블랭크의 성형성이 향상될 수 있고, 제조된 핫 스탬핑 부품(1)이 목표한 조직과 물성을 가질 수 있으며, 제조된 핫 스탬핑 부품(1)의 표면에 주름(또는, 굴곡)이 발생하는 것이 방지 또는 최소화될 수 있다.
일 실시예에서, 냉각 단계(S500)는 성형된 성형체를 냉각하는 단계일 수 있다. 냉각 단계(S500)에서는 블랭크를 가압한 금형 내에서 이루어질 수 있다.
구체적으로, 금형에서 최종 부품형상으로 성형하는 것과 동시에 성형체를 냉각하여 최종 제품이 형성될 수 있다. 금형에는 내부에 냉매가 순환하는 냉각 채널이 구비될 수 있다. 금형에 구비된 냉각 채널을 통하여 공급되는 냉매에 순환에 의해 성형체를 급랭시킬 수 있게 된다. 이때, 판재의 스프링 백(spring back) 현상을 방지함과 더불어 원하는 형상을 유지하기 위해서는 금형을 닫은 상태에서 가압하면서 급랭을 실시할 수 있다. 성형체를 성형 및 냉각 조작을 함에 있어, 마르텐사이트 종료 온도까지 평균냉각속도를 최소 약 10℃/s 이상으로 냉각할 수 있다.
일 실시예에서, 냉각 단계(S640)가 종료되는 냉각종료온도는 약 상온 이상 약 200℃ 이하일 수 있다. 냉각종료온도가 상온 미만인 경우 제조 공정의 생산성이 저하될 수 있다. 반면에, 냉각종료온도가 약 200℃ 초과인 경우, 제조된 핫 스탬핑 부품(1)이 상온에서 공랭되는데, 이때, 핫 스탬핑 부품(1)에 뒤틀림이 발생할 수 있으며, 목표한 재질 확보가 어려울 수 있다. 따라서, 냉각 단계(S640)가 종료되는 냉각종료온도가 상온 이상 약 200℃ 이하의 범위를 만족하는 경우, 제조 공정의 생산성을 향상시킬 수 있고, 제조된 핫 스탬핑 부품(1)에 뒤틀림이 발생하는 것이 방지 또는 최소화될 수 있다.
이에, 본 발명자는 과도하게 반복된 실험을 거쳐 제조된 핫 스탬핑 부품(1)이 약 60° 이상의 VDA 굽힘각을 갖도록 하는 관계식 3 및 관계식 4를 도출하였다. 일 실시예에서, 제조된 핫 스탬핑 부품(1)은 하기 관계식 3 및 하기 관계식 4를 만족할 수 있다. 구체적으로, 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 50㎛ 깊이(또는, 두께) 내의 경도와 핫 스탬핑 부품(1)의 평균 경도는 하기 관계식 3을 만족할 수 있고, 내부 산화물층(300)의 깊이(또는, 두께)는 하기 관계식 4를 만족할 수 있다. 예컨대, 핫 스탬핑 부품(1)은 관계식 3 및 관계식 4를 모두 만족할 수 있다.
<관계식 3>
(A / B) ≤ 0.7
관계식 3에서 A는 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이(또는, 두께) 내의 경도(Hv(≤50㎛))이고, B는 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))이다.
이때, 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 내의 경도는 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 이하의 지점에서 비커스 경도계로 측정한 경도 값일 수 있고, 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))는 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점에서 비커스 경도계로 측정한 경도 값일 수 있다.
<관계식 4>
C ≤ 5㎛
관계식 4에서 C는 핫 스탬핑 부품(1)의 판 두께 방향으로 내부 산화물층(300)의 깊이(또는, 두께)이다.
일 실시예에서, 제조된 핫 스탬핑 부품(1)이 전술한 관계식 3 및 관계식 4를 만족하는 경우, 핫 스탬핑 부품의 제조 방법을 통해 제조된 핫 스탬핑 부품(1)의 인성이 향상될 수 있다. 예컨대, 핫 스탬핑 부품의 제조 방법을 통해 제조된 핫 스탬핑 부품(1)이 약 60° 이상의 VDA 굽힘각을 가질 수 있다. 또한, 핫 스탬핑 부품의 제조 방법을 통해 제조된 핫 스탬핑 부품(1)이 약 1350 MPa 내지 약 1680 MPa의 인장강도(TS), 약 900 MPa 내지 약 1300 MPa의 항복응력(YP), 약 4% 내지 약 10%의 연신율(EL)을 가질 수 있다.
<실험예>
이하에서는, 실험예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실험예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실험예에 의하여 한정되는 것은 아니다. 하기의 실험예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.
성분(wt%)
C Si Mn P S Cr B Ti
0.22 0.3 1.5 0.02 이하 0.015 이하 0.25 0.0025 0.05
SRT
(℃)
FDT
(℃)
CT
(℃)
소둔 온도
(℃)
소둔로
이슬점
(℃)
가열 온도
(℃)
가열 시간
(min)
실시예 1 1215 900 713 820 0 870 5
실시예 2 1215 900 713 820 14 870 5
비교예 1 1215 900 713 820 20 870 5
비교예 2 1215 900 713 820 -30 870 5
실시예 1, 실시예 2, 비교예 1 및 비교예 2는 표 1에 기재된 조성을 갖는 슬래브를 표 2에 기재된 공정 조건을 통해 제조된 핫 스탬핑 부품들(시편들)이다.
A / B C(㎛) VDA 굽힘각(°) 균열 깊이(㎛)
실시예 1 0.70 1.3 72.19 2.8
실시예 2 0.39 5 75.44 4.1
비교예 1 0.33 7.1 58.96 15.2
비교예 2 0.72 0.1 54.77 1.0
표 3에서 A는 핫 스탬핑 부품의 판 두께 방향으로 약 50㎛ 깊이(또는, 두께) 내의 경도(Hv(≤50㎛))이고, B는 핫 스탬핑 부품의 평균 경도(Hv(avg.))이며, C는 핫 스탬핑 부품의 판 두께 방향으로 내부 산화물층(300)의 깊이(또는, 두께)이다. 이때, 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 내의 경도는 핫 스탬핑 부품(1)의 표면에서 핫 스탬핑 부품(1)의 판 두께 방향으로 약 50㎛ 깊이 이하의 지점에서 비커스 경도계로 측정한 경도 값일 수 있고, 핫 스탬핑 부품(1)의 평균 경도(Hv(avg.))는 핫 스탬핑 부품(1)의 판 두께 방향으로 약 1/4 지점에서 비커스 경도계로 측정한 경도 값일 수 있다.
표 3에서 VDA 굽힘각은 VDA 규격(VDA238-100)을 활용하여 평가하였고, 균열 깊이는 주사전자현미경을 통해 측정하였다. 이때, 균열 깊이는 주사전자현미경을 통해 측정된 가장 깊은 균열 깊이에 해당한다.
본 발명에서 요구되는 핫 스탬핑 부품의 VDA 굽힘각은 60° 이상이다. 또한, 핫 스탬핑 부품 내의 균열 깊이가 크면 핫 스탬핑 부품의 VDA 굽힘각이 작아질 수 있고 핫 스탬핑 부품의 인성이 저하될 수 있다. 따라서, 본 발명에서 요구되는 핫 스탬핑 부품 내의 균열 깊이는 10 ㎛ 이하이다. 전술한 범위를 벗어나는 경우 요구되는 조건을 만족하지 못한 경우에 해당한다.
실시예 1 및 실시예 2의 경우 관계식 1((A / B) ≤ 0.7) 및 관계식 2(C≤5)를 모두 만족하는 경우에 해당하고, 비교예 1은 관계식 2(C≤5)를 만족하지 않는 경우에 해당하며, 비교예 2는 관계식 1((A / B) ≤ 0.7)을 만족하지 않는 경우에 해당한다. 실시예 1, 실시예 2, 비교예 1, 및 비교예 2는 도 1에서 전술한 조성을 만족하는 모재(100, 또는, 강판)를 핫 스탬핑 부품의 제조 방법에 따라 제조한 시편들에 해당한다. 다만, 비교예 1 및 비교예 2는 공정 제어 조건의 차이로 관계식 1((A / B) ≤ 0.7) 및/또는 관계식 2(C≤5)를 불만족한 시편들이다.
관계식 1((A / B) ≤ 0.7) 및 관계식 2(C≤5)를 모두 만족하는 경우, VDA 굽힘각 및 균열 깊이가 요구되는 조건을 만족하는 것을 확인할 수 있다. 구체적으로, 관계식 1((A / B) ≤ 0.7) 및 관계식 2(C≤5)를 모두 만족하는 경우, VDA 굽힘각이 60° 이상이고 균열 깊이가 10 ㎛ 이하인 것을 확인할 수 있다.
하지만, 관계식 2(C≤5)를 만족하지 않는 경우, VDA 굽힘각 및 균열 깊이가 요구되는 조건을 만족하지 않는 것을 확인할 수 있다. 구체적으로, 관계식 2(C≤5)를 만족하지 않는 경우, VDA 굽힘각이 60° 미만이고 균열 깊이가 10 ㎛ 초과인 것을 확인할 수 있다.
또한, 관계식 1((A / B) ≤ 0.7)을 만족하지 않는 경우, VDA 굽힘각이 요구되는 조건을 만족하지 않는 것을 확인 할 수 있다. 구체적으로, 관계식 1((A / B) ≤ 0.7)을 만족하지 않는 경우, VDA 굽힘각이 60° 미만인 것을 확인할 수 있다.
따라서, 핫 스탬핑 부품(1)이 관계식 1((A / B) ≤ 0.7) 및 관계식 2(C≤5)를 모두 만족하는 경우, 핫 스탬핑 부품(1)의 요구되는 VDA 굽힘각을 가질 수 있고, 핫 스탬핑 부품(1) 내의 균열의 깊이가 미리 설정된 값 이하로 형성될 수 있다. 즉, 핫 스탬핑 부품(1)이 관계식 1((A / B) ≤ 0.7) 및 관계식 2(C≤5)를 모두 만족하는 경우, 핫 스탬핑 부품(1)의 인성과 고온 성형성이 모두 우수할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (13)

  1. 핫 스탬핑 부품으로서,
    모재;
    상기 모재 상에 배치된 탈탄층; 및
    상기 탈탄층 상에 배치된 내부 산화물층;
    을 포함하고,
    상기 핫 스탬핑 부품은 1350 MPa 내지 1680 MPa의 인장강도(TS)를 가지며,
    상기 핫 스탬핑 부품의 표면에서 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도와 상기 핫 스탬핑 부품의 평균 경도는 하기 관계식 1을 만족하는, 핫 스탬핑 부품.
    <관계식 1>
    (A / B) ≤ 0.7
    (상기 관계식 1에서 상기 A는 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도(Hv(≤50㎛))이고, 상기 B는 상기 핫 스탬핑 부품의 평균 경도(Hv(avg.))이다.)
  2. 제1항에 있어서,
    상기 내부 산화물층의 깊이는 하기 관계식 2를 만족하는, 핫 스탬핑 부품.
    <관계식 2>
    C ≤5㎛
    (상기 관계식 2에서 상기 C는 상기 핫 스탬핑 부품의 판 두께 방향으로 상기 내부 산화물층의 깊이이다.)
  3. 제1항에 있어서,
    상기 핫 스탬핑 부품은 60° 이상의 VDA 굽힘각을 갖는, 핫 스탬핑 부품.
  4. 제1항에 있어서,
    상기 핫 스탬핑 부품은 900 MPa 내지 1300 MPa의 항복응력(YP) 및 4% 내지 10%의 연신율(EL)을 갖는, 핫 스탬핑 부품.
  5. 제1항에 있어서,
    상기 핫 스탬핑 부품은 마르텐사이트(martensite) 분율 90% 이상을 포함하는 미세조직을 갖는, 핫 스탬핑 부품.
  6. 제1항에 있어서,
    상기 내부 산화물층 상에 배치된 도금층을 더 포함하는, 핫 스탬핑 부품.
  7. 제6항에 있어서,
    상기 도금층의 두께는 10㎛ 내지 30㎛ 인, 핫 스탬핑 부품.
  8. 핫 스탬핑 부품의 제조 방법으로서,
    모재의 적어도 일면 상에 도금층이 형성된 도금강판을 재단하여 블랭크를 형성하는 단계; 및
    서로 다른 온도 범위를 갖는 복수의 구간을 구비한 가열로 내에서 상기 블랭크를 가열하는 단계;를 포함하고,
    상기 블랭크를 가열하는 단계는,
    상기 블랭크를 단계적으로 가열하는 다단 가열 단계; 및
    상기 다단 가열된 블랭크를 Ac1 내지 910℃의 온도로 가열하는 균열 가열 단계;를 포함하며,
    상기 핫 스탬핑 부품의 표면에서 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도와 상기 핫 스탬핑 부품의 평균 경도는 하기 관계식 3을 만족하는, 핫 스탬핑 부품의 제조 방법.
    <관계식 3>
    (A / B) ≤0.7
    (상기 관계식 3에서 상기 A는 상기 핫 스탬핑 부품의 판 두께 방향으로 50㎛ 깊이 내의 경도(Hv(≤50㎛))이고, 상기 B는 상기 핫 스탬핑 부품의 평균 경도(Hv(avg.))이다.)
  9. 제8항에 있어서,
    상기 모재의 소둔로의 이슬점 온도는 -15℃ 내지 +15℃인, 핫 스탬핑 부품의 제조 방법.
  10. 제8항에 있어서,
    상기 모재의 소둔 온도는 750℃ 내지 900℃인, 핫 스탬핑 부품의 제조 방법.
  11. 제8항에 있어서,
    상기 블랭크를 가열하는 단계 이후에,
    상기 가열된 블랭크를 이송하는 단계;
    상기 이송된 블랭크를 금형으로 가압하여 성형체를 성형하는 단계; 및
    상기 성형된 성형체를 냉각하는 단계;
    를 더 포함하는, 핫 스탬핑 부품의 제조 방법.
  12. 제11항에 있어서,
    상기 모재 상에 형성된 탈탄층; 및
    상기 탈탄층 상에 형성된 내부 산화물층;
    을 더 포함하는, 핫 스탬핑 부품의 제조 방법.
  13. 제12항에 있어서,
    상기 내부 산화물층의 깊이는 하기 관계식 4를 만족하는, 핫 스탬핑 부품의 제조 방법.
    <관계식 4>
    C ≤ 5㎛
    (상기 관계식 4에서 상기 C는 상기 핫 스탬핑 부품의 판 두께 방향으로 상기 내부 산화물층의 깊이이다.)
PCT/KR2022/020564 2022-05-31 2022-12-16 핫 스탬핑 부품 및 이의 제조 방법 WO2023234508A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0067234 2022-05-31
KR1020220067234A KR20230166780A (ko) 2022-05-31 2022-05-31 핫 스탬핑 부품 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023234508A1 true WO2023234508A1 (ko) 2023-12-07

Family

ID=89025132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020564 WO2023234508A1 (ko) 2022-05-31 2022-12-16 핫 스탬핑 부품 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20230166780A (ko)
WO (1) WO2023234508A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043331A (ko) * 2015-10-02 2018-04-27 가부시키가이샤 고베 세이코쇼 열간 프레스용 아연도금 강판 및 열간 프레스 성형품의 제조 방법
KR20190001493A (ko) * 2017-06-27 2019-01-04 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법
US20200016866A1 (en) * 2017-02-20 2020-01-16 Nippon Steel Corporation Hot stamped body
EP3611288A1 (en) * 2018-04-28 2020-02-19 Ironovation Materials Technology Co., Ltd. Hot stamped component, pre-coated steel plate for hot stamping, and hot stamping process
KR20210120477A (ko) * 2020-03-27 2021-10-07 현대제철 주식회사 테일러 롤드 블랭크, 테일러 롤드 블랭크를 이용한 핫스탬핑 부품 제조방법 및 이에 의해 제조된 핫스탬핑 부품

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102336757B1 (ko) 2020-04-21 2021-12-07 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043331A (ko) * 2015-10-02 2018-04-27 가부시키가이샤 고베 세이코쇼 열간 프레스용 아연도금 강판 및 열간 프레스 성형품의 제조 방법
US20200016866A1 (en) * 2017-02-20 2020-01-16 Nippon Steel Corporation Hot stamped body
KR20190001493A (ko) * 2017-06-27 2019-01-04 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법
EP3611288A1 (en) * 2018-04-28 2020-02-19 Ironovation Materials Technology Co., Ltd. Hot stamped component, pre-coated steel plate for hot stamping, and hot stamping process
KR20210120477A (ko) * 2020-03-27 2021-10-07 현대제철 주식회사 테일러 롤드 블랭크, 테일러 롤드 블랭크를 이용한 핫스탬핑 부품 제조방법 및 이에 의해 제조된 핫스탬핑 부품

Also Published As

Publication number Publication date
KR20230166780A (ko) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2012067379A2 (ko) 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 DP강의 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2016105115A1 (ko) 표면품질, 도금밀착성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2017051998A1 (ko) 도금 강판 및 이의 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2021125581A1 (ko) 핫 스탬핑 부품, 및 이의 제조 방법
WO2023234508A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2023234509A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2021125724A2 (ko) 내열성과 성형성이 우수한 냉연강판 및 그 제조방법
WO2023210912A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2023210911A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2024080657A1 (ko) 강판 및 이의 제조방법
WO2019039774A1 (ko) 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
WO2021125579A1 (ko) 핫 스탬핑용 블랭크, 이의 제조 방법, 핫 스탬핑 부품, 및 이의 제조 방법
WO2022131635A1 (ko) 강도, 성형성 및 표면 품질이 우수한 도금강판 및 이의 제조방법
WO2023048449A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2022245064A1 (ko) 내수소취성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2023048450A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945045

Country of ref document: EP

Kind code of ref document: A1