WO2012091394A2 - 고내식 마르텐사이트 스테인리스강 및 그 제조방법 - Google Patents

고내식 마르텐사이트 스테인리스강 및 그 제조방법 Download PDF

Info

Publication number
WO2012091394A2
WO2012091394A2 PCT/KR2011/010123 KR2011010123W WO2012091394A2 WO 2012091394 A2 WO2012091394 A2 WO 2012091394A2 KR 2011010123 W KR2011010123 W KR 2011010123W WO 2012091394 A2 WO2012091394 A2 WO 2012091394A2
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
martensitic stainless
high corrosion
steel
corrosion resistance
Prior art date
Application number
PCT/KR2011/010123
Other languages
English (en)
French (fr)
Other versions
WO2012091394A9 (ko
WO2012091394A3 (ko
Inventor
조기훈
채동철
손원근
김봉운
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201180063203.XA priority Critical patent/CN103298964B/zh
Priority to JP2013543113A priority patent/JP5696225B2/ja
Priority to US13/823,502 priority patent/US9731345B2/en
Priority to DE112011104603.0T priority patent/DE112011104603T5/de
Publication of WO2012091394A2 publication Critical patent/WO2012091394A2/ko
Publication of WO2012091394A9 publication Critical patent/WO2012091394A9/ko
Publication of WO2012091394A3 publication Critical patent/WO2012091394A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • the present invention relates to martensitic stainless steel, and more particularly to a high corrosion-resistant martensitic stainless steel used in the production of razor blades and a method for producing the same.
  • high hardness stainless steel is used in the manufacture of razor blades to secure corrosion resistance and machinability.
  • These steels are mainly steels containing more than 12% chromium and more than 0.6% carbon, which secures high hardness through solid solution of carbon after the final heat treatment and corrosion resistance in the wet environment due to the influence of chromium contained in the base material.
  • a method of manufacturing steel for blades is known by adding carbon to 0.65 to 0.7% and chromium to 12.7 to 13.7%.
  • the carbide formed inside the material is difficult to be completely employed in the heat treatment process, forming a chromium-deficient layer, which lowers the corrosion resistance of the material. I have a problem.
  • the carbon content is limited to 0.45 to 55 and molybdenum may be added to suppress residual carbide in the final heat treatment material and to improve the corrosion resistance of the base material.
  • these steels are characterized by containing high silicon in order to prevent the hardness decrease due to carbon degradation.
  • Steels containing high silicon have a problem in that the hardness of the hot rolled annealing material is increased, so that it is not easy to manufacture using a conventional stainless steel manufacturing process.
  • An object of the present invention is to provide a high-grade martensitic stainless steel with excellent corrosion resistance, which is devised to solve the above problems.
  • the present invention comprises, by weight, carbon: 0.45-0.60%, nitrogen: 0.02-0.08%, silicon: 0.2-0.4%, manganese: 0.3-0.6%, chromium: 12-15%, and molybdenum 0.1-1.5 % And the remainder provide a high corrosion-resistant martensitic stainless steel containing iron and other unavoidable impurities.
  • Another embodiment of the present invention by weight, carbon: 0.45-0.60%, nitrogen: 0.02-0.08%, silicon: 0.2-0.4%, manganese: 0.3-0.6%, chromium: 12-15%, It provides a high corrosion-resistant martensitic stainless steel containing 0.1 to 1.5% of tungsten and the remainder containing iron and other unavoidable impurities.
  • Another embodiment of the present invention by weight, carbon: 0.45-0.60%, nitrogen: 0.02-0.08%, silicon: 0.2-0.4%, manganese: 0.3-0.6%, chromium: 12-15%, It provides a high corrosion-resistant martensitic stainless steel containing molybdenum: 0.1-1.5% and tungsten: 0.1-1.5%, the remainder containing iron and other unavoidable impurities.
  • Final heat treatment hardness of the stainless steel in the present invention is in the range of 500 ⁇ 750 Hv.
  • the pitting corrosion index of the stainless steel in the present invention has a value of 15 or more by the following formula (1).
  • the Charpy impact energy of the hot rolled material may be 6J or more (thickness 4mm or more) through batch annealing.
  • a pair of rolls rotating in opposite directions, an edge dam installed to form molten steel pools on both sides thereof, and a meniscus shield for supplying inert nitrogen gas to the upper surface of the molten steel pool are provided.
  • a stripping apparatus comprising, in weight percent, carbon: 0.45-0.60%, nitrogen: 0.02-0.08%, silicon: 0.2-0.4%, manganese: 0.3-0.6%, chromium: 12-15%
  • molybdenum Stainless steel sheet is cast by supplying at least one of 0.1 to 1.5% or tungsten to 0.1 to 1.5%, and the remainder containing iron and other unavoidable impurities from a tundish to the molten steel pool through a nozzle. It provides a high corrosion resistance martensitic stainless steel manufacturing method for producing a hot-rolled strip by using the cast stainless steel sheet in-line roller.
  • FIG. 1 is a schematic diagram of a stripcasting process for applying the present invention.
  • Figure 2 is a photograph showing a comparison of the microstructure of the martensitic steel of the present invention produced by ingot casting and the martensite steel of the present invention cast using strip casting.
  • Figure 3 is a graph showing the hardness according to the silicon content of the hot rolled annealing material in the present invention.
  • Figure 4 is a graph showing the hardness of the final heat treatment material in the present invention.
  • Fig. 6 is a photograph showing the edge portion of a plate rolled at 80% reduction ratio for the inventive steel and the specific u steel.
  • FIG. 7 is a graph showing that the pitting resistance index due to the composite addition of molybdenum and tungsten according to the present invention is improved.
  • Martensitic stainless steel for high corrosion resistance blades is a weight%, carbon: 0.45 ⁇ 0.60%, nitrogen: 0.02 ⁇ 0.08% or less, silicon: 0.2 ⁇ 0.4%, manganese: 0.3 ⁇ 0.6%, chromium: 12 15% and Fe and other unavoidable impurities, the stainless steel may be added at least one of molybdenum: 0.1-1.5%, tungsten: 0.1-1.5%.
  • the characteristics of the alloy composition are designed from three viewpoints.
  • the first is improvement of operability
  • the second is improvement of corrosion resistance
  • the third is securing desirable hardness.
  • the silicon content is designed to ensure the ductility without sacrificing hardness.
  • the inventors have confirmed through various experiments that limiting the content of silicon in martensitic steel containing high carbon has significant advantages in the manufacturing process by securing the ductility of the hot-rolled annealing material.
  • silicon is known to be added to improve the hardness, but it has been found to contribute greatly to the hardness improvement of hot-rolled and annealed materials, but not to increase the hardness of the final heat treatment material.
  • molybdenum and tungsten are added, so that the solid-solution strengthening effect and tempering resistance during the heat treatment process are secured. Therefore, the hardness using silicon may be negligible.
  • molybdenum and tungsten can be added in combination to improve corrosion resistance. It was confirmed that the effect of molybdenum added to improve the corrosion resistance in the martensitic steel can be replaced by tungsten.
  • the carbon content was optimized to obtain carbide solidification effect while suppressing carbide production.
  • a final heat treatment hardness of 500 to 750 Hv can be obtained.
  • the present invention is based on the above alloy design, characterized in that the application of the strip casting process rather than the usual continuous casting method.
  • the carbon content is low, the hardness of martensite decreases, so that it is impossible to secure the machinability. Therefore, 0.45% or more is added. However, if the content is excessively high, the corrosion resistance of the material is reduced through carbide formation, so the upper limit is limited to 0.6%. Preferably, however, the carbon is added at least 0.5%.
  • nitrogen contributes to strength and corrosion resistance, it should be added more than 0.02%. However, if excessively added, there is a risk of pore caused by nitrogen during casting, so the upper limit is limited to 0.08%.
  • Silicon is one of the important elements in the alloy design of the present invention. 0.2% or more is added since it is an essential element for silicon deoxidation. However, the addition of a high content of silicon increases the hardness of the annealing material after hot rolling, thereby inhibiting manufacturability, thereby limiting the upper limit to 0.4%.
  • the content of silicon greatly contributes to the hardness improvement of the annealing material, but the contribution is not large to the hardness improvement of the final heat treatment material.
  • the annealing material most of the solid solution carbon precipitates in the form of carbide, and the hardness is increased by silicon, which is a representative reinforcing element.
  • silicon which is a representative reinforcing element.
  • the final heat treatment material most of the carbon is dissolved in the base material to cause the increase in hardness. Has the characteristic of being extinct.
  • FIGS. 3 and 4 are graph showing the hardness according to the silicon content of the hot rolled annealing material in the present invention
  • Figure 4 is a graph showing the hardness of the final heat treatment material in the present invention.
  • the hardness in the final heat treatment material is silicon content 0.3%, 0.5%. In the case of 1%, the change in hardness is not large.
  • the silicon content is reduced to 0.2% or more and 0.4% or less.
  • chromium is a basic element to ensure corrosion resistance, it is added at least 12%. However, the excessive limit increases the manufacturing cost and limits the upper limit to 15% because carbides can lower the dissolved carbon in the final heat treatment material.
  • Molybdenum is added at least 0.1% because it has an excellent effect on corrosion resistance.
  • excessive addition limits the upper limit to 1.5%, which leads to an increase in manufacturing cost.
  • Tungsten is added at least 0.1% to improve the corrosion resistance.
  • excessive addition impedes the increase in manufacturing costs and the operability, so the upper limit is limited to 1.5%.
  • the molybdenum and tungsten may be contained one or two.
  • molybdenum and tungsten are added in combination to improve corrosion resistance.
  • the present invention can obtain a high pitting index by slightly increasing the composite addition of molybdenum and tungsten and chromium slightly.
  • the pitting index PREN can be obtained by the following formula (1), and the preferred pitting index in the present invention is 15 or more.
  • the martensitic stainless steel is manufactured by the strip casting process shown in FIG. 1, and undergoes a heat treatment process of a unique method to obtain proper physical properties for use.
  • the strip casting process for applying the present invention is a process for producing a hot rolled strip of the thin directly from the molten stainless steel made of the above composition to omit the hot rolling process, manufacturing cost, equipment investment cost, energy It is a new steel processing process that can drastically reduce consumption and pollution gas emissions.
  • a twin roll sheet caster used in a general strip casting process receives molten steel in a ladle 1, flows into a tundish 2 along a nozzle, and flows into a tundish 2.
  • the silver is supplied through the molten steel injection nozzle 3 between the edge dams 5 provided at both ends of the casting roll 6, that is, between the casting rolls 6 to start solidification. At this time, the molten portion between the rolls to protect the molten surface with the meniscus shield (4) in order to prevent oxidation and inject the appropriate gas to properly control the atmosphere.
  • the thin plate 8 is manufactured and drawn while rolling out the roll nip 7 where both rolls meet, and then rolled through the rolling mill 9 and then wound up in the winding facility 10 through a cooling process.
  • the molten steel is supplied through the injection nozzle between the internal water-cooled twin rolls rotating in the opposite direction at a high speed to provide a thin plate of the desired thickness It is manufactured so that there is no crack and the error rate is improved.
  • hot-rolled annealing material was manufactured by BAF process simulation which maintains 20 hours at 850 °C for annealing of hot-rolled sheet. After blasting, the scale formed during the hot rolling process was removed, and it was pickled in a mixed solution of nitric acid and hydrofluoric acid. The final cold rolled material was fabricated by cold rolling at% rolling rate.
  • martensitic stainless steel containing high carbon is characterized by being manufactured by the ingot casting method.
  • the solidification time of the ingot is maintained for a long time, so that carbides may be segregated in the center part during solidification. Once the segregation is formed, it is difficult to remove the segregation in the post-process, which is a factor that inhibits the corrosion resistance or blade tip quality.
  • FIG. 2 is a photograph comparing the microstructure of the martensitic steel of the present invention manufactured by ingot casting and the martensitic steel of the present invention cast using strip casting. As shown in FIG. 2, ingot casting has severe carbide segregation in the center, and strip casting has little segregation. Through this, when the present invention is manufactured by applying the strip casting method, it can be seen that it is possible to manufacture martensitic steel having a uniform microstructure compared to the ingot manufacturing method.
  • the stainless steel having the composition of the present invention limiting the content of silicon in the martensitic steel containing high carbon has significant advantages in the manufacturing process using strip casting by securing the ductility of the hot-annealed material. It is known that silicon is added to improve the hardness, but it contributes greatly to the hardness improvement of hot-rolled and annealed materials, but it is confirmed that the degree is not large enough to improve the hardness of the final heat treatment material. In the case of high corrosion resistant steels, molybdenum and tungsten are added, so that the solid-solution strengthening effect and tempering resistance during the heat treatment process are secured. Therefore, the hardness using silicon may be negligible. This is as described with reference to FIGS. 3 and 4.
  • a test piece was prepared by performing a reinforcing heat treatment at 1100 ° C for 20 seconds.
  • razor blades are used in tap water at room temperature, but the experiment was conducted by immersing in 0.05% NaCl environment at 85 °C for accelerated experiment.
  • FIG. 5 is a photograph showing the presence of surface rust after the corrosion test for the invention steel 1 and comparative steel 1
  • Figure 6 shows the edge portion of the plate rolled at 80% reduction rate for the invention steel 1 and comparative steel 2. It is a photograph.
  • the comparative steel 1 has a very high degree of rust generation compared to the inventive steel 1. This can be seen that when the corrosion test is carried out as described above, in the case of the comparative steel outside the composition range of the present invention, a lot of rust occurs and the corrosion resistance is poor. However, in the case of the present invention steel rust hardly occurs, it is excellent in corrosion resistance compared to Comparative steel 1.
  • the invention steel which added molybdenum and tungsten concerning this invention can obtain high corrosion resistance compared with the steel which does not add these in chlorine atmosphere.
  • Figure 7 shows that the pitting resistance index due to the composite addition of molybdenum and tungsten according to the present invention is improved.
  • the present invention can obtain a high pitting index by slightly increasing the composite addition of molybdenum and tungsten and chromium slightly.
  • a higher pitting index of 17.8 can be obtained than the pitting index of 13.6.
  • the pitting index PREN can be obtained by the following formula (1), and the preferred pitting index in the present invention is 15 or more.
  • martensitic materials with a high carbon content have high hardness of the base material and a large amount of carbides, so that defects such as edge cracks or fracture of the material are more likely to occur during cold rolling and pickling processes. In other words, operability is a very important factor in the mass production process.
  • Table 3 shows the physical properties obtained through the above experiment.
  • the steel produced through the present invention which controls the content of silicon while lowering the content of carbon, shows that the Charpy impact energy property is superior to that of the comparative steel with high carbon content or high silicon content. Can be.
  • the present impact energy characteristics may vary depending on the thickness of the material and the reduction ratio, but in the present embodiment, a value of 6J or more may be obtained based on 4 mm thickness or 4 mm thickness or more.
  • Figure 8 is a graph showing that the elongation of the hot-rolled annealing material is improved when the content of silicon in the martensitic steel containing high carbon is limited.
  • the comparative steel 2 contained excessively more silicon than the inventive steel 1. Therefore, the present invention can be seen that the elongation is significantly improved compared to the comparative steel 2. Accordingly, it can be seen from the Table 3 and FIG. 8 that the inventive steel of the present invention does not generate edge cracks due to an improvement in elongation and impact toughness and thus greatly improves operability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 중량%로, 탄소: 0.50~0.60%, 질소: 0.02~0.08%, 실리콘: 0.1~0.4%, 망간: 0.3~0.6%, 크롬: 12~15 및 몰리브덴: 0.1~1.5% 텅스텐: 0.1~1.5%의 하나이상을 함유하고 나머지는 철 및 불가피한 불순물로 제조되는 스테인리스강에 관한 것으로 우수한 제조성과 내식성을 가지는 것을 특징으로 한다.

Description

고내식 마르텐사이트 스테인리스강 및 그 제조방법
본 발명은 마르텐사이트 스테인리스강에 관한 것으로 더욱 상세하게는 면도날의 제조에 사용되는 고내식 마르텐사이트 스테인리스강 및 그 제조방법에 관한 것이다.
통상 면도날의 제조에는 내식성과 절삭성을 동시에 확보하기 위하여 고경도의 스테인리스강재가 사용된다. 이들 강재는 주로 12%이상의 크롬과0.6%이상의 탄소를 함유한 강재로 최종 열처리 후 카본의 고용을 통해 높은 경도를 확보하고 모재에 함유된 크롬의 영향으로 인해 습식환경에서 내식성을 확보하게 된다. 종래에 면도날용 강재를 제조하기 위하여는 탄소의 함량을 0.65~0.7%로 하고 크롬의 함량을 12.7~13.7%첨가하여 면도날용 강재를 제조하는 방법이 알려져 있다. 그러나 위의 조성으로 제조할 경우 소재 내부에 형성된 카바이드가 열처리 공정에서 완전히 고용되기 힘들어 크롬 결핍층을 형성하여 소재의 내식성을 저하시키며 욕실등의 습식환경에 장시간 노출되면서 면도날의 표면이 부식되어 녹이 발생하는 등의 문제를 가지고 있다.
이러한 문제를 해결하기 위하여는 탄소의 함량을 0.45~55로 제한하고 몰리브덴을 첨가하여 최종 열처리 소재의 잔류 탄화물을 억제함과 동시에 모재의 내식성을 향상시킬 수 있다. 그러나 이러한 강은 탄소저하에 따른 경도저하를 방지하기 위해 높은 실리콘을 함유하는 것을 특징으로 하고 있다. 높은 실리콘을 함유한 강재는 열연 소둔재의 경도가 상승하여 통상적인 스테인리스 강의 제조 공정을 이용하여 제조하는 것이 용이하지 않은 문제점을 가지고 있다.
본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로 우수한 내식성을 구비한 고급 면도날용 마르텐사이트 스테인리스 강을 제공하는 것을 목적으로 한다.
또한, 본 발명은 내식성이 높고 동시에 우수한 생산성을 갖는 고급 면도날용 마르텐사이트 스테인리스 강의 제조방법을 제공하는 것을 목적으로 한다.
본 발명은 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 몰리브덴을 0.1~1.5% 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 고내식 마르텐사이트계 스테인리스강을 제공한다.
본 발명의 또 다른 실시예는 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 텅스텐을 0.1~1.5% 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 고내식 마르텐사이트계 스테인리스강을 제공한다.
본 발명의 또 다른 실시예는 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 몰리브덴 : 0.1~1.5% 및 텅스텐 : 0.1~1.5% 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 고내식 마르텐사이트계 스테인리스강을 제공한다.
본 발명에서 상기 스테인리스강의 최종 열처리 경도는 500~750Hv 범위 내이다.
또한, 본 발명에서 상기 스테인리스강의 내공식지수는 하기 식(1)에 의하여 15이상의 값을 갖는다.
식(1) : PREN = %Cr+3.3(%Mo + 0.5%W) + 16%N
또한, 본 발명에서 상기 스테인리스강은 상소둔(batch annealing)을 통하여 열연 소재의 챠르피 충격에너지가 6J이상(두께 4mm 이상)을 얻을 수 있다.
본 발명의 또 다른 실시예에 의하면, 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강풀을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 스트립캐스팅 장치에서, 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 몰리브덴 : 0.1~1.5% 또는 텅스텐 : 0.1~1.5% 의 1종 이상을 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 스테인리스 용강을 턴디쉬로부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주조된 스테인리스 박판을 인라인롤러를 이용하여 열연스트립을 제조하는 고내식 마르텐사이트계 스테인리스강 제조방법을 제공한다.
본 발명에 의하면 습식환경에서의 내식성이 우수하여 고급 면도날용으로 사용가능한 마르텐사이트 스테인리스 강재를 얻을 수 있다.
또한, 본 발명에 의하면 제조가 용이하고 고경도의 면도날용 마르텐사이트 스테인리스 강재를 생산 할 수 있다.
도 1은 본 발명을 적용하기 위한 스트립캐스팅 공정의 개략도이다.
도 2는 잉곳주조로 제조한 본 발명의 마르텐사이트 강과 스트립 캐스팅을 이용해 주조한 본 발명의 마르텐사이트 강의 미세조직을 비교한 사진도이다.
도 3은 본 발명에 있어서 열연 소둔소재의 실리콘 함량에 따른 경도를 나타내는 그래프도이다.
도 4는 본 발명에 있어서 최종 열처리 소재의 경도를 나타내는 그래프도이다.
도 5는 본 발명강과 비교강에 대하여 부식시험 후의 표면 녹발생 유무를 나타낸 사진도이다.
도 6은 본 발명강과 비 u강에 대하여 80%압하율로 압연한 판의 에지 부위를 나타낸 사진도이다.
도 7은 본 발명에 관한 몰리브덴과 텅스텐의 복합첨가로 인한 내공식지수가 향상되는 것을 도시한 그래프도이다.
도 8은 높은 탄소를 함유하는 마르텐사이트강에서 실리콘의 함량을 제한 할 경우 열연소둔소재의 연신율이 향상되는 것을 도시하는 그래프도이다.
이하 첨부한 도면들을 참조하여 본 발명의 실시예를 상세히 살펴보기로 한다. 상기한 본 발명의 목적, 특징 및 효과는 첨부된 도면과 관련된 실시예들을 통해서 용이하게 이해될 것이다. 다만, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다양한 형태로 응용되어 변형될 수도 있다. 오히려, 아래의 실시예들은 본 발명에 의해 개시된 기술 사상을 보다 명확히 하고 나아가 본 발명이 속하는 분야에서 평균적인 지식을 가진 당업자에게 본 발명의 기술 사상이 충분히 전달될 수 있도록 제공되는 것이다. 따라서, 본 발명의 특허청구범위가 아래에서 상술하는 실시예들로 인해 한정되는 것으로 해석되어서는 안 될 것이다. 한편, 하기 실시예와 함께 제시된 도면은 명확한 설명을 위해서 다소 간략화 되거나 과장된 것이며, 도면상에 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명에 따른 고내식 면도날용 마텐사이트 스테인리스강은 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%이하, 실리콘: 0.2~0.4%이하, 망간: 0.3~0.6%, 크롬: 12~15% 및 Fe 및 기타 불가피한 불순물을 포함하되, 상기 스테인리스강은 몰리브덴: 0.1~1.5%, 텅스텐: 0.1~1.5%중 어느 하나 이상을 첨가할 수 있다.
본 발명에서 상기의 합금조성의 특징은 세가지 관점에서 설계되었다. 첫번째는 조업성의 개선이고, 두번째는 내식성의 개선, 세번째는 바람직한 경도의 확보이다.
조업성의 개선을 위하여는 소둔재의 연성확보가 중요하므로 이를 위하여 실리콘의 함량을 경도는 저하되지 않으면서 연성을 최적으로 확보할 수 있도록 설계하였다.
특히 본 발명을 통해 발명자는 높은 탄소를 함유하는 마르텐사이트강에서 실리콘의 함량을 제한하는 것이 열연소둔소재의 연성을 확보하여 제조공정상에서 상당한 이점이 있는 것을 다양한 실험을 통하여 확인하였다.
보통 실리콘은 경도향상을 위해 첨가하는 것으로 알려져 있으나 열연소둔소재의 경도향상에는 크게 기여하나 최종열처리 소재의 경도향상에는 그 정도가 크지 않은 것으로 확인 되었다. 특히 고내식 강재의 경우 몰리브덴과 텅스텐등이 첨가되어 고용강화 효과와 함께 열처리 공정중의 템퍼링 저항성이 확보되므로 실리콘을 이용한 경도 확보는 무시할 수 있는 것으로 판단된다.
또한 내식성의 개선을 위하여 몰리브덴과 텅스텐이 복합첨가될 수 있도록 하였다. 이는 기존의 마르텐사이트강에서 내식성 개선을 위해 첨가하던 몰리브덴의 효과를 텅스텐을 첨가하여 대체 할 수 있는 것을 확인 하였다.
또한, 면도날용으로 사용하기 위한 최적의 경도를 확보하기 위하여 탄소의 함량을 최적화하여 탄화물 생성을 억제하면서 고용경화 효과를 최대로 얻을 수 있도록 하였다. 본 발명에 의하여 제조된 고탄소 마르텐사이트계 스테인리스강의 경우 500~750Hv의 최종 열처리 경도를 얻을 수 있다.
또한, 본 발명은 상기의 합금설계를 기초로 하되 통상의 연속주조 방식이 아닌 스트립캐스팅 공정을 적용하는 것을 특징으로 한다.
이하에서는 본 발명에 관한 각 성분함량의 역할과 그 첨가범위를 한정하는 이유에 관하여 서술하기로 한다. 아울러, 이하에서 설명되는 %는 모두 중량%이다.
탄소는 함량이 낮을 경우 마텐사이트의 경도가 저하되어 절삭성 확보가 불가능 하므로 0.45%이상을 첨가한다. 그러나 함량이 과도하게 많아지면 카바이드 형성을 통해 소재의 내식성이 저하되므로 상한을 0.6%로 제한한다. 그러나 바람직하기로는 상기 탄소는 0.5% 이상을 첨가한다.
질소는 강도와 내식성에 기여하므로 0.02%이상 첨가한다 그러나 과도하게 첨가될 경우 주조시 질소에 의한 포어의 발생 우려가 있으므로 상한을 0.08%로 제한한다.
실리콘은 본 발명의 합금설계에 있어서 중요한 원소중의 하나이다. 실리콘 탈산을 위해 필수적으로 첨가되는 원소이므로 0.2%이상을 첨가한다. 그러나 높은 함량의 실리콘 첨가는 열간압연 후 소둔한 소재의 경도를 높여 제조성을 저해하므로 상한을 0.4%로 제한한다.
일반적으로 경도상승을 목적으로 실리콘의 함량을 증가시키는 경향이 있으나 본 발명에서는 실리콘의 함량이 소둔재질의 경도향상에는 크게 기여하나 최종열처리 소재의 경도향상에는 그 기여가 크지 않음을 확인하였다. 이는 소둔재의 경우 대부분의 고용 탄소가 카바이드 형태로 석출되어 대표적인 강화 원소인 실리콘에 의해 경도가 증가하지만 최종열처리 재의 경우 대부분의 카본이 모재에 고용되어 경도 상승을 야기하므로 실리콘의 효과가 상대적으로 미미해지는 특징을 가진다.
실리콘의 함량과 관련하여 도 3 및 도 4를 참조할 수 있다. 도 3은 본 발명에 있어서 열연 소둔소재의 실리콘 함량에 따른 경도를 나타내는 그래프도이고, 도 4는 본 발명에 있어서 최종 열처리 소재의 경도를 나타내는 그래프도이다.
도 3의 경우 실리콘의 함량을 0.3%에서 0.5%, 1%로 각각 증가할 경우에 열연소둔재의 경도가 230Hv 이상으로 상승하게 된다. 이와 같이 열연소둔재의 경도가 상승할 경우에는 본원발명에 관한 스테인리스강 소둔재의 취화가 발생하여 통상적인 스트립캐스팅 제조설비에 의한 제조시 크랙등의 문제가 발생할 수 있다.
한편 도 4의 경우에는 최종 열처리 소재에서의 경도는 실리콘이함량이 0.3%, 0.5%. 1% 일 경우에 경도의 변화가 크지 않다. 이는 상술한 바와 같이 소둔재의 경우 대부분의 고용 탄소가 카바이드 형태로 석출되어 대표적인 강화 원소인 실리콘에 의해 경도가 증가하지만 최종열처리 재의 경우 대부분의 카본이 모재에 고용되어 경도 상승을 야기하므로 실리콘의 효과가 상대적으로 미미하기 때문이다. 따라서 본 발명에서는 실리콘의 함량을 0.2%이상 0.4%이하로 제한다.
망간은 탈산을 위해 필수적으로 첨가하는 원소이므로 0.3%이상을 첨가한다. 그러나 과도하게 첨가될경우 강의 표면품질을 저해하고 최종 열처리재의 잔류오스테나이트 형성을 통해 경도상승을 억제하므로 상한을 0.6%로 제한한다.
크롬은 내식성을 확보하는 기본 원소이므로 12%이상 첨가한다. 그러나 과도한 첨가 시 제조비용이 상승하며 카바이드 형성을 통해 최종열처리재의 고용 카본을 저하시킬 수 있기에 상한을 15%로 제한한다.
몰리브덴은 내식성향상에 우수한 효과가 있기에 0.1%이상을 첨가한다. 그러나 과도한 첨가는 제조비용의 상승을 초래하기에 상한을 1.5%로 제한한다.
텅스텐은 내식성 향상을 위해 0.1%이상을 첨가한다. 그러나 과도한 첨가시 제조비용의 상승과 조업성을 저해하므로 상한을 1.5%로 제한한다.
상기 몰리브덴과 텅스텐의 경우 본 발명에서는 1종 또는 2종을 함유하도록 할 수 있다. 바람직하기로는 몰리브덴과 텅스텐을 복합첨가하여 내식성을 개선하도록 한다.
또한, 본 발명은 몰리브덴과 텅스텐의 복합첨가 및 크롬을 조금 상향하여 높은 내공식지수를 얻을 수 있다. 본 발명에서 내공식지수 PREN은 하기 식(1)에 의하여 얻을 수 있고 본 발명에서의 바람직한 내공식지수는 15이상이다.
식(1) : PREN = %Cr+3.3(%Mo + 0.5%W) + 16%N
본 발명에서 상기 마르텐사이트계 스테인리스강은 도 1에 도시한스트립캐스팅 공정에 의하여 제조되고, 사용 용도에 맞는 적정 물성을 얻기 위해 고유한 방법의 열처리 과정을 거치게 된다.
이하 본 발명의 제조공정을 설명한다.
도 1은 본 발명을 적용하기 위한 스트립캐스팅 공정의 개략도이다. 도 1에서 알 수 있는 바와 같이 본 발명을 적용하기 위한 스트립캐스팅 공정은 상기의 조성으로 이루어진 스테인리스강 용강으로부터 직접 박물의 열연스트립을 생산하는 공정으로서 열간 압연공정을 생략하여 제조원가, 설비투자비용, 에너지 사용량, 공해가스 배출량등을 획기적으로 저감할 수 있는 새로운 철강공정 프로세스이다. 일반적인 스트립 캐스팅 공정에 사용되는 쌍롤형 박판주조기는 도 1에 도시된 바와 같이 용강을 래들(1)에 수용시키고, 노즐을 따라 턴디쉬(2)로 유입되며, 턴디쉬(2)로 유입된 용강은 주조롤(6) 양 끝단부에 설치된 에지댐(5)의 사이, 즉, 주조롤(6)의 사이로 용강 주입노즐(3)을 통해 공급되어 응고가 개시된다. 이때 롤 사이의 용탕부에는 산화를 방지하기 위해 메니스커스 쉴드(4)로 용탕면을 보호하고 적절한 가스를 주입하여 분위기를 적절히 조절하게 된다. 양 롤이 만나는 롤 닙(7)을 빠져나오면서 박판(8)이 제조되어 인발되면서 압연기(9)를 거쳐 압연이 된 후 냉각공정을 거쳐 권취 설비(10) 에서 권취된다. 이때, 용강으로부터 두께 10mm 이하의 박판을 직접 제조하는 쌍롤식 박판주조공정에 있어서 중요한 기술은, 빠른 속도로 반대방향으로 회전하는 내부 수냉식 쌍롤 사이에 주입 노즐을 통해 용강을 공급하여 원하는 두께의 박판을 균열이 없고 실수율이 향상되도록 제조하는 것이다.
이하 본 발명의 열처리 과정에 관하여 실시예를 통하여 더욱 자세히 설명하기로 한다.
(실시예)
본 실시예에서는 발명강 5종과 비교강 2종을 표 1의 화학식으로 제조하였다. 제조된 시편은 1200℃에서 2시간의 재가열을 거쳐 열간압연을 통해 4mm의 열연 판을 제조 하였다.
표 1
강종 C Si Mn Cr Mo W N
발명강1 0.50 0.2 0.3 12.8 0.2 0.8 0.062
발명강2 0.59 0.3 0.4 14.3 0.5 1.3 0.038
발명강3 0.56 0.4 0.3 14.2 1.2 0.4 0.040
발명강4 0.55 0.4 0.4 14.6 0.3 0.6 0.044
발명강5 0.51 0.3 0.5 13.7 0.4 0.6 0.033
발명강6 0.47 0.3 0.4 13.2 0.4 0.7 0.045
비교강1 0.71 0.3 0.7 13.2 - - 0.032
비교강2 0.50 0.8 0.7 12.5 1.3 - 0.031
또한 열연판의 소둔을 위해 850℃에서 20시간을 유지하는 BAF 공정 모사를 통해 열연 소둔 소재를 제작 하였으며 숏블라스팅 공정으로 열간압연 공정시 형성된 스케일을 제거하고 질산과 불산의 혼산용액에서 산세한 후 50% 압하율의 냉간압연을 통해 최종 냉연 소재를 제작 하였다.
일반적으로 높은 카본을 함유한 마르텐사이트 스테인리스강은 잉곳 주조법을 이용해 제조하는 것을 특징으로 한다. 이러한 주조법은 잉곳의 응고 시간이 장시간 유지되어 응고시 중심부에 탄화물이 편석될 수 있다. 한번 편석이 형성되면 후공정에서 편석을 제거하는 것이 어려워 내식성이나 날끝 품질을 저해하는 요소가 된다.
이러한 문제를 해결하기 위해 본 발명에 있어서는 용강 풀에서 급속한 냉각을 통해 박판을 제조하는 스트립 캐스팅 공정을 이용할 경우 응고시 발생하는 탄화물의 편석을 개선하여 우수한 품질의 마르텐사이트강을 제조 할 수 있다.
도 2는 잉곳주조로 제조한 본 발명의 마르텐사이트 강과 스트립 캐스팅을 이용해 주조한 본 발명의 마르텐사이트 강의 미세조직을 비교한 사진이다. 도 2에 도시된 바와 같이 잉곳주조의 경우 중심부에 탄화물 편석이 심하며 스트립캐스팅의 경우 편석이 거의 없는 것을 확인할 수 있다. 이를 통해 스트립캐스팅 공법을 적용하여 본 발명강을 제조할 경우 잉곳 제조방법에 비해 균일한 미세조직을 가지는 마르텐사이트 강의 제조가 가능함을 알 수 있다.
한편 본 발명의 조성을 가진 스테인리스강을 보면 높은 탄소를 함유하는 마르텐사이트강에서 실리콘의 함량을 제한하는 것이 열연소둔소재의 연성을 확보하여 스트립캐스팅을 이용한 제조공정상에서 상당한 이점이 있다. 실리콘은 경도향상을 위해 첨가하는 것으로 알려져 있으나 열연소둔소재의 경도향상에는 크게 기여하나 최종열처리 소재의 경도향상에는 그 정도가 크지 않은 것으로 확인 되었다. 특히 고내식 강재의 경우 몰리브덴과 텅스텐등이 첨가되어 고용강화 효과와 함께 열처리 공정중의 템퍼링 저항성이 확보되므로 실리콘을 이용한 경도 확보는 무시할 수 있는 것으로 판단된다. 이는 상기 도 3 및 도 4를 통하여 설명한 바와 같다.
또한 기존의 마르텐사이트강에서 내식성 개선을 위해 첨가하던 몰리브덴의 효과를 텅스텐을 첨가하여 대체 할 수 있는 것을 확인 하였다. 본 발명에 의한 스트립캐스팅 공정을 이용하여 제조된 고탄소 마르텐사이트계 스테인리스강의 경우 500~750Hv의 최종 열처리 경도를 얻을 수 있다.
다음은 본 발명에 있어서 내식성을 평가하기 위해 2mm두께로 냉간 압연한 후 1100℃에서 20초간 강화 열처리를 진행하여 시험편을 준비하였다. 일반적으로 면도날은 상온의 수도물 환경에서 사용되나 가속된 실험을 위해 85℃의 0.05%NaCl환경에서 침지하여 실험을 진행 하였다.
표 2에서는 2시간 침지한 후 표면에 녹발생 유무를 확인하여 표기하였다.
표 2
강종 녹발생 유무
발명강1 X
발명강2 X
발명강3 X
발명강4 X
발명강5 X
발명강6 X
비교강1 O
비교강2 X
도 5는 발명강1과 비교강1에 대하여 부식시험 후의 표면 녹발생 유무를 나타낸 사진도이고, 도 6는 발명강1과 비교강2에 대하여 80%압하율로 압연한 판의 에지 부위를 나타낸 사진도이다.
상기 도 5를 통하여 알 수 있는 바와 같이 발명강1에 비하여 비교강1은 녹발생 정도가 매우 심한 것을 알 수 있다. 이는 상기와 같은 부식시험을 실시할 경우 본 발명의 조성범위를 벗어나는 비교강의 경우 녹이 많이 발생하여 내식성이 열위한 것을 알 수 있다. 그러나 본 발명강종의 경우 녹이 거의 발생하지 않아 비교강1에 비하여 내식성이 우수한다.
한편 도 6의 경우 80%로 압연한 후의 비교강2의 에지주변에는 발명강1과 비교하여 내식성이 열위하고 크랙이 더 많이 발생하는 것을 보여주고 있다. 이는 본 발명의 조성으로 이루어진 발명강1의 경우 비교강2에 비하여 에지에 있어서 품질특성이 우수한 것을 보여주고 있다.
한편 본 발명에 관한 몰리브덴과 텅스텐을 첨가한 발명강은 염소 분위기 내에서 이들을 첨가하지 않은 강에 비해 높은 내식성을 얻을 수 있다.
도 7은 본 발명에 관한 몰리브덴과 텅스텐의 복합첨가로 인한 내공식지수가 향상되는 것을 도시하고 있다. 본 발명은 몰리브덴과 텅스텐의 복합첨가 및 크롬을 조금 상향하여 높은 내공식지수를 얻을 수 있다. 본 실시예에서는 비교강인 13.6의 내공식지수에 비하여 17.8의 높은 내공식지수를 얻을 수 있다.
본 발명에서 내공식지수 PREN은 하기 식(1)에 의하여 얻을 수 있고 본 발명에서의 바람직한 내공식지수는 15이상이다.
식(1) : PREN = %Cr+3.3(%Mo + 0.5%W) + 16%N
한편, 높은 탄소 함량을 가지는 마르텐사이트 소재는 모재의 경도가 높고 탄화물이 다량 석출되어 있어 냉간압연 및 산세 공정에서 소재의 에지부 크랙 또는 소재의 파단 등의 결함이 발생할 확률이 높아 통상의 스테인리스강과는 달리 조업성이 양산 과정에서는 아주 중요한 요소라고 할 수 있다.
본 발명강의 제조 용이성을 확인하기 위하여 4mm 두께의 열간압연판을 제작 한 후 통상의 마르텐사이트 제조 공정에서 적용되는 소둔 과정을 거쳐 시험편을 제작하였다. 여기서 제작된 시험편의 경도, 연신율, 충격치등을 비교해 보면 냉간압연 또는 산세 과정에서 조업용이성을 간접적으로 확인할 수 있다. 즉 열연 소둔소재의 연성이 확보되면 냉간압연과 산세 등 후 공정에서 조업이 용이해지며 열연 소둔 소재의 연성이 확보되지 않으면 그 반대의 조업성을 보이는 것을 예상할 수 있다.
표 3에 위의 실험을 통해 얻은 물성을 표기 하였다. 카본의 함량을 낮추면서 동시에 실리콘의 함량을 제어한 본 발명을 통해 제조된 강재는 카본의 함량이 높거나 실리콘의 함량이 높은 비교강에 비해 우수한 챠르피(Charpy) 충격에너지 특성을 보이는 것을 확인 할 수 있다. 다만, 본 충격에너지 특성의 경우 소재의 두께와 압하율에 따라 변화될 수 있으나 본 실시예에서는 4mm 두께를 또는 4mm 두께 이상을 기준으로 하여 6J 이상의 값을 얻을 수 있다.
표 3
강종 Charpy 충격에너지(J) (4mm기준) 상소둔시의 경도(Hv)
발명강1 6.6 208
발명강2 6.5 205
발명강3 6.3 206
발명강4 6.5 205
발명강5 7.1 202
발명강6 7.3 203
비교강1 2.8 213
비교강2 4.4 230
한편 도 8은 높은 탄소를 함유하는 마르텐사이트강에서 실리콘의 함량을 제한 할 경우 열연소둔소재의 연신율이 향상되는 것을 도시하는 그래프도이다. 도 8에서 알 수 있는 바와 같이 비교강 2의 경우에는 실리콘의 함량이 발명강 1에 비하여 과도하게 많이 함유된 것이다. 따라서 본 발명강의 경우 비교강 2에 비하여 연신율이 크게 향상된 것을 알 수 있다. 따라서 상기 표 3과 도 8에서 보면 본원발명의 발명강은 연신율 및 충격인성의 개선으로 에지크랙등이 발생되지 않아 조업성이 크게 향상될 수 있음을 알 수 있다.
상기의 실시 예는 본 발명의 기술적 사상을 표현하기 위해 제한된 조건을 설정한 것이며 이것이 본 발명의 적용에 있어 제약을 위한 것이 아님을 주지해야 한다. 또한 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (12)

  1. 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 몰리브덴을 0.1~1.5% 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 고내식 마르텐사이트계 스테인리스강.
  2. 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 텅스텐을 0.1~1.5% 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 고내식 마르텐사이트계 스테인리스강.
  3. 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 몰리브덴 : 0.1~1.5% 및 텅스텐 : 0.1~1.5% 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 고내식 마르텐사이트계 스테인리스강.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 스테인리스강의 최종 열처리 경도는 500~750Hv 범위내에 있는 고내식 마르텐사이트 스테인리스강.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 스테인리스강의 내공식지수는 하기 식(1)에 의하여 15이상의 값을 갖는 고내식 마르텐사이트 스테인리스강.
    식(1) : PREN = %Cr+3.3(%Mo + 0.5%W) + 16%N
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 스테인리스강은 중량%로 탄소가 0.5~0.60%를 함유하는 고내식 마르텐사이트계 스테인리스강.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 스테인리스강은 상소둔(batch annealing)을 통하여 열연 소재의 챠르피 충격에너지가 6J이상(두께 4mm 이상)인 고내식 마르텐사이트계 스테인리스강.
  8. 서로 반대방향으로 회전하는 한쌍의 롤과 그 양측면에 용강풀을 형성하도록 설치되는 에지댐과 상기 용강풀 상부면으로 불활성 질소가스를 공급하는 매니스커스 쉴드를 포함하는 스트립캐스팅 장치에서, 중량%로, 탄소: 0.45~0.60%, 질소: 0.02~0.08%, 실리콘: 0.2~0.4%, 망간: 0.3~0.6%, 크롬: 12~15%을 포함하고, 몰리브덴 : 0.1~1.5% 또는 텅스텐 : 0.1~1.5% 의 1종 이상을 함유하고, 나머지는 철 및 기타 불가피한 불순물을 포함하는 스테인리스 용강을 턴디쉬로부터 노즐을 통하여 상기 용강풀로 공급하여 스테인리스 박판을 주조하고, 상기 주조된 스테인리스 박판을 인라인롤러를 이용하여 열연스트립을 제조하는 고내식 마르텐사이트계 스테인리스강 제조방법.
  9. 제8항에 있어서,
    상기 스테인리스강은 중량%로 탄소가 0.5~0.60%를 함유하는 고내식 마르텐사이트계 스테인리스강 제조방법.
  10. 제8항에 있어서,
    상기 스테인리스강은 상소둔(batch annealing)을 통하여 열연 소재의 챠르피 충격에너지가 6J이상(두께 4mm 이상) 확보되는 것을 특징으로 하는 고내식 마르텐사이트계 스테인리스강 제조방법.
  11. 제8항에 있어서,
    상기 스테인리스강의 최종 열처리 경도는 500~750Hv 범위내에 있는 고내식 마르텐사이트 스테인리스강 제조방법.
  12. 제8항에 있어서,
    상기 스테인리스강의 내공식지수는 하기 식(1)에 의하여 15이상의 값을 갖도록 제어하는 고내식 마르텐사이트 스테인리스강 제조방법.
    식(1) : PREN = %Cr+3.3(%Mo + 0.5%W) + 16%N
PCT/KR2011/010123 2010-12-27 2011-12-26 고내식 마르텐사이트 스테인리스강 및 그 제조방법 WO2012091394A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180063203.XA CN103298964B (zh) 2010-12-27 2011-12-26 高度耐腐蚀的马氏体不锈钢及其制造方法
JP2013543113A JP5696225B2 (ja) 2010-12-27 2011-12-26 高耐食マルテンサイト系ステンレス鋼およびその製造方法
US13/823,502 US9731345B2 (en) 2010-12-27 2011-12-26 Martensitic stainless steel highly resistant to corrosion, and method for manufacturing same
DE112011104603.0T DE112011104603T5 (de) 2010-12-27 2011-12-26 Hochkorrosionsbeständiger martensitischer rostfreier Stahl und Verfahren zu dessen Herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0135470 2010-12-27
KR1020100135470A KR101239589B1 (ko) 2010-12-27 2010-12-27 고내식 마르텐사이트 스테인리스강 및 그 제조방법

Publications (3)

Publication Number Publication Date
WO2012091394A2 true WO2012091394A2 (ko) 2012-07-05
WO2012091394A9 WO2012091394A9 (ko) 2012-08-09
WO2012091394A3 WO2012091394A3 (ko) 2012-09-27

Family

ID=46383672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010123 WO2012091394A2 (ko) 2010-12-27 2011-12-26 고내식 마르텐사이트 스테인리스강 및 그 제조방법

Country Status (6)

Country Link
US (1) US9731345B2 (ko)
JP (1) JP5696225B2 (ko)
KR (1) KR101239589B1 (ko)
CN (1) CN103298964B (ko)
DE (1) DE112011104603T5 (ko)
WO (1) WO2012091394A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312776B1 (ko) * 2009-12-21 2013-09-27 주식회사 포스코 마르텐사이트계 스테인리스강 및 그 제조방법
KR101439607B1 (ko) * 2012-07-16 2014-09-11 주식회사 포스코 쌍롤식 박판 주조공정에 의해 제조된 마르텐사이트계 스테인리스강 및 그 제조방법
JP6002114B2 (ja) * 2013-11-13 2016-10-05 日本精工株式会社 マルテンサイト系ステンレス鋼による機構部品の製造方法および転がり軸受の製造方法
CN103866193A (zh) * 2014-03-24 2014-06-18 无锡宝顺不锈钢有限公司 8Cr15不锈钢带钢及其制造方法
KR101648271B1 (ko) * 2014-11-26 2016-08-12 주식회사 포스코 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 및 이의 제조방법
WO2016174500A1 (fr) * 2015-04-30 2016-11-03 Aperam Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
CN107699815B (zh) * 2017-11-27 2019-08-30 上海大学 高硬度高韧性刀具用不锈钢及其制备方法
CN108642391A (zh) * 2018-06-07 2018-10-12 成都先进金属材料产业技术研究院有限公司 马氏体不锈钢及其制备方法
PL3931362T3 (pl) * 2019-02-28 2023-04-17 Edgewell Personal Care Brands, Llc Ostrze maszynki do golenia oraz kompozycja do ostrza maszynki do golenia
CN112195419A (zh) * 2020-11-23 2021-01-08 浙江宝武钢铁有限公司 一种耐腐蚀高氮不锈钢的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161351A (ja) * 1997-08-25 1999-03-05 Daido Steel Co Ltd 加工性および耐食性に優れた高硬度マルテンサイト系ステンレス鋼
JP2001049399A (ja) * 1999-08-06 2001-02-20 Hitachi Metals Ltd 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
JP2001271144A (ja) * 2000-01-20 2001-10-02 Nippon Koshuha Steel Co Ltd ピストンリング用マルテンサイト系ステンレス鋼及びピストンリング用異形線
KR100356174B1 (ko) * 1998-12-12 2002-11-18 주식회사 포스코 쌍롤식 연속박판 주조설비의 탕면 밀봉장치 및 방법
JP2005206865A (ja) * 2004-01-21 2005-08-04 Matsushita Electric Works Ltd 結晶粒微細化マルテンサイト系ステンレス鋼の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336169A (en) * 1963-05-28 1967-08-15 Uddeholms Ab Method of heat treating high-carbon corrosion resistant steels
US3425877A (en) * 1965-10-22 1969-02-04 Wilkinson Sword Ltd Safety razor blades
EP0485641B1 (en) 1990-11-10 1994-07-27 Wilkinson Sword Gesellschaft mit beschränkter Haftung Razor blade steel having high corrosion resistance, razor blades and a process for manufacturing razor blades
FR2746333B1 (fr) 1996-03-22 1998-04-24 Usinor Sacilor Procede de coulee continue d'une bande d'acier inoxydable austenitique sur une ou entre deux parois mobiles dont les surfaces sont pourvues de fossettes, et installation de coulee pour sa mise en oeuvre
US6045633A (en) 1997-05-16 2000-04-04 Edro Engineering, Inc. Steel holder block for plastic molding
FR2792560B1 (fr) 1999-04-22 2001-06-01 Usinor Procede de coulee continue entre cylindres de bandes d'acier inoxydable austenitique d'excellente qualite de surface, et bandes ainsi obtenues
JP4724275B2 (ja) 2000-07-17 2011-07-13 株式会社リケン 耐スカッフィング性、耐クラッキング性及び耐疲労性に優れたピストンリング及びその製造方法
JP2003313612A (ja) * 2002-04-23 2003-11-06 Matsushita Electric Works Ltd 結晶粒微細化マルテンサイト系ステンレス鋼の製造方法、および同ステンレス鋼を用いた刃物
JP4290522B2 (ja) * 2003-10-21 2009-07-08 新日本製鐵株式会社 薄帯鋳片および薄帯鋳片製造方法
JP4857811B2 (ja) 2006-02-27 2012-01-18 Jfeスチール株式会社 刃物用鋼
JP4952888B2 (ja) * 2006-04-07 2012-06-13 大同特殊鋼株式会社 マルテンサイト鋼
DE602006007855D1 (de) 2006-09-26 2009-08-27 Eta Sa Mft Horlogere Suisse Uhrwerk, das eine Halteplatte für einen Anzeigering umfasst
KR101312776B1 (ko) * 2009-12-21 2013-09-27 주식회사 포스코 마르텐사이트계 스테인리스강 및 그 제조방법
KR101268800B1 (ko) 2009-12-21 2013-05-28 주식회사 포스코 고탄소 마르텐사이트계 스테인리스강 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161351A (ja) * 1997-08-25 1999-03-05 Daido Steel Co Ltd 加工性および耐食性に優れた高硬度マルテンサイト系ステンレス鋼
KR100356174B1 (ko) * 1998-12-12 2002-11-18 주식회사 포스코 쌍롤식 연속박판 주조설비의 탕면 밀봉장치 및 방법
JP2001049399A (ja) * 1999-08-06 2001-02-20 Hitachi Metals Ltd 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
JP2001271144A (ja) * 2000-01-20 2001-10-02 Nippon Koshuha Steel Co Ltd ピストンリング用マルテンサイト系ステンレス鋼及びピストンリング用異形線
JP2005206865A (ja) * 2004-01-21 2005-08-04 Matsushita Electric Works Ltd 結晶粒微細化マルテンサイト系ステンレス鋼の製造方法

Also Published As

Publication number Publication date
KR101239589B1 (ko) 2013-03-05
CN103298964B (zh) 2016-01-06
JP2014504332A (ja) 2014-02-20
JP5696225B2 (ja) 2015-04-08
US9731345B2 (en) 2017-08-15
WO2012091394A9 (ko) 2012-08-09
DE112011104603T5 (de) 2014-01-02
WO2012091394A3 (ko) 2012-09-27
CN103298964A (zh) 2013-09-11
KR20120073649A (ko) 2012-07-05
US20130309126A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2012091394A2 (ko) 고내식 마르텐사이트 스테인리스강 및 그 제조방법
WO2013100687A1 (ko) 고강도 오스테나이트계 스테인리스강 및 그 제조방법
WO2014014246A1 (ko) 마르텐사이트계 스테인리스강 및 그 제조방법
WO2020101227A1 (ko) 비자성 오스테나이트계 스테인리스강 및 그 제조방법
KR101312776B1 (ko) 마르텐사이트계 스테인리스강 및 그 제조방법
WO2011081331A2 (ko) 쌍롤식 박판 주조공정에 의해 제조된 마르텐사이트계 스테인리스강 및 그 제조방법
WO2018074743A1 (ko) 고강도 Fe-Cr-Ni-Al 멀티플렉스 스테인리스강 및 이의 제조방법
WO2020101226A1 (ko) 고강도 비자성 오스테나이트계 스테인리스강 및 그 제조방법
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
WO2019117430A1 (ko) 고온 내산화성이 우수한 페라이트계 스테인리스강 및 그 제조방법
KR101715086B1 (ko) 박판 열연 주조 스트립 제품 및 이를 제조하는 방법
WO2016111388A1 (ko) 인장강도 1300MPa 이상의 초고강도 도금강판 및 이의 제조방법
WO2018117477A1 (ko) 내식성 및 성형성이 우수한 듀플렉스 스테인리스강 및 이의 제조 방법
WO2019059660A1 (ko) 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법
WO2019124729A1 (ko) 열간가공성이 우수한 유틸리티 페라이트계 스테인리스강 및 그 제조방법
WO2017209431A1 (ko) 내식성 및 가공성이 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2019093786A1 (ko) 고질소 오스테나이트계 스테인리스 강 및 그 제조방법
WO2017082631A1 (ko) 오렌지필 저항성이 우수한 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2023210911A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2023210912A1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2024136238A1 (ko) 내덴트성이 우수한 강판 및 그 제조방법
WO2019124825A1 (ko) 표면 품질이 우수한 마르텐사이트계 스테인리스 강의 제조방법
WO2024135997A1 (ko) 구조용 페라이트계 스테인리스강 및 그 제조방법
KR101258764B1 (ko) 소입경도가 향상된 마르텐사이트계 스테인리스강 및 그 제조방법
WO2023090897A1 (ko) 내마모성이 우수한 열연강판, 강관 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853235

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13823502

Country of ref document: US

ENP Entry into the national phase in:

Ref document number: 2013543113

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011104603

Country of ref document: DE

Ref document number: 1120111046030

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853235

Country of ref document: EP

Kind code of ref document: A2