WO2014014025A1 - 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置 - Google Patents

銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置 Download PDF

Info

Publication number
WO2014014025A1
WO2014014025A1 PCT/JP2013/069402 JP2013069402W WO2014014025A1 WO 2014014025 A1 WO2014014025 A1 WO 2014014025A1 JP 2013069402 W JP2013069402 W JP 2013069402W WO 2014014025 A1 WO2014014025 A1 WO 2014014025A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver sulfide
emitting device
sulfide prevention
film
Prior art date
Application number
PCT/JP2013/069402
Other languages
English (en)
French (fr)
Inventor
麻希 稲田
格 山浦
高根 信明
智子 東内
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US14/415,815 priority Critical patent/US20150175811A1/en
Priority to CN201380038664.0A priority patent/CN104508184A/zh
Priority to JP2014525846A priority patent/JP5954416B2/ja
Priority to KR1020157003746A priority patent/KR101690627B1/ko
Publication of WO2014014025A1 publication Critical patent/WO2014014025A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to a silver sulfide preventive material, and more particularly to a silver sulfide preventive material for preventing discoloration due to sulfuration of silver plating used in a light emitting device or the like.
  • the present invention also relates to a method for forming a silver sulfide prevention film using a silver sulfide prevention material and a method for manufacturing a light emitting device.
  • a light-emitting device including a light-emitting element such as a light-emitting diode is used in applications such as lighting equipment and automobile lights.
  • light extraction efficiency is improved by providing a light reflection film made of silver plating.
  • the reflectance is improved by providing a silver plating layer on the copper plating layer (see, for example, Patent Document 1 below).
  • the light emitting element and the light reflecting film are usually protected by sealing with a transparent resin.
  • a transparent resin In the LED package, the light emitting element and the light reflecting film are usually protected by sealing with a transparent resin.
  • hydrogen sulfide, sulfurous acid gas, and the like in the environment permeate the resin and sulfidize the silver plating, and the light reflectance of the silver plating decreases due to discoloration.
  • the amount of heat generated by the LED increases as the output of the LED increases, and the sulfidation of the silver plating tends to be further accelerated as the temperature increases.
  • the present invention has been made in view of the above circumstances, and a silver sulfide prevention material capable of sufficiently suppressing silver sulfide, a method for forming a silver sulfide prevention film using the same, and light emission excellent in silver sulfide prevention properties.
  • An object is to provide an apparatus and a method for manufacturing the same.
  • the present invention provides a silver sulfide preventive material containing clay and a binder.
  • a silver sulfide preventive film capable of sufficiently suppressing silver sulfide can be formed by applying to the surface of the metal layer containing silver and drying.
  • the step of forming the anti-silver sulfide film on the silver plating layer may be provided before or after mounting components such as a light emitting element and a reflector on the substrate. Conceivable.
  • the silver sulfide prevention film is heated in a process such as sealing, the silver sulfide prevention film is required to have heat resistance. Further, there is an influence of heat when the silver sulfide prevention film is formed and when the LED is turned on.
  • a resin having high heat resistance such as a silicone resin.
  • the silicone resin has a low gas barrier property, and sufficient silver sulfide prevention property cannot be obtained.
  • the method of forming an inorganic coating such as glass requires a high-temperature process of 300 ° C. or higher to melt glass and form a coating, and cannot be applied to an LED package.
  • a silver sulfide prevention film having sufficient heat resistance and silver sulfide prevention property and excellent crack resistance at a process temperature applicable to an LED package. Can be formed.
  • a higher level of silver sulfide prevention may be required.
  • cracks tend to occur when the film made of clay has a film thickness of 500 nm or more.
  • the silver sulfide preventive material of the present invention it is possible to form a clay film in which cracks hardly occur even when the film thickness is increased. As a result, the silver sulfide prevention film can be thickened to obtain high silver sulfide prevention.
  • the mass ratio of clay to binder is preferably 75/25 to 5/95.
  • the silver sulfide preventive material of the present invention preferably contains an aqueous binder as a binder.
  • the clay and the binder can be well mixed with water and / or a water-soluble liquid, and a silver sulfide prevention film with further improved film formability can be formed.
  • the aqueous binder refers to a binder that becomes uniform in a macroscopic view such as a solution, an aqueous solution, an emulsion and a solubilized product when mixed with water and / or a water-soluble liquid. .
  • the total content of clay and binder is preferably 80% by mass or more based on the total solid content of the silver sulfide prevention material.
  • the total solid content of the silver sulfide preventive material is a value obtained by the following method.
  • the silver sulfide prevention material is put on an aluminum dish and the mass after drying at 150 ° C. for 2 hours is measured.
  • the present invention also includes a coating step of coating the silver sulfide prevention material according to the present invention on the surface of the metal layer containing silver to form a coating film of the silver sulfide prevention material, and a drying step of drying the coating film.
  • a method for forming a silver sulfide preventive film is provided.
  • a silver sulfidation preventive film capable of sufficiently suppressing silver sulfidation can be formed by using the silver sulfidation preventive material according to the present invention.
  • the silver sulfide prevention material according to the present invention by using the silver sulfide prevention material according to the present invention, a silver sulfide prevention film having excellent heat resistance such as yellowing resistance can be formed. Furthermore, by using the silver sulfide preventive material according to the present invention, the occurrence of cracks can be suppressed even when a silver sulfide preventive film having a high silver sulfide preventive property is formed by increasing the film thickness.
  • the metal layer is preferably a silver plating layer. In this case, it can prevent that the light reflectance of a silver plating layer falls by sulfuration.
  • the present invention is also a method for manufacturing a light emitting device comprising a substrate having a silver plating layer and a light emitting element mounted on the substrate, wherein the silver sulfide prevention material according to the present invention is formed on the surface of the silver plating layer.
  • coating and the drying process which dries a coating film is provided.
  • a silver sulfide prevention film capable of sufficiently suppressing silver sulfidation can be formed on the surface of the silver plating layer, whereby the silver plating layer is unlikely to discolor.
  • a light emitting device excellent in prevention can be manufactured.
  • a silver sulfide prevention film having excellent heat resistance such as yellowing resistance can be formed by using the silver sulfide prevention material according to the present invention. Manufacturing problems due to coloring at temperature can be sufficiently suppressed. Moreover, in the light-emitting device obtained, since the silver sulfide prevention film which is hard to be yellowed even by heating at the time of lighting is formed, it is possible to sufficiently suppress a decrease in reflectance due to coloring.
  • a silver sulfidation preventive film that does not easily generate cracks can be formed even with a thick film by using the silver sulfidation preventive material according to the present invention. It is possible to manufacture a light emitting device having a high level of silver sulfide prevention property while sufficiently suppressing the manufacturing problems caused by the problem.
  • the present invention also includes a substrate having a silver plating layer, a light emitting element mounted on the substrate, and a silver sulfide prevention film provided on the surface of the silver plating layer, wherein the silver sulfide prevention film includes clay and a binder.
  • a light emitting device containing the above is provided.
  • the light-emitting device of the present invention has an excellent silver sulfide prevention property by including the above-described silver sulfide prevention film, and the silver plating layer is not easily discolored. Further, since the silver sulfide prevention film is excellent in heat resistance such as yellowing resistance, it is possible to sufficiently suppress a decrease in reflectance due to the silver sulfide prevention film being colored by heating during lighting.
  • the mass ratio of clay to binder in the silver sulfide prevention film is preferably 75/25 to 5/95.
  • the silver sulfide prevention film contains an aqueous binder as the binder.
  • the clay and the binder can be well mixed with water and / or a water-soluble liquid, thereby further improving the film formability of the silver sulfide preventive film.
  • the total concentration of clay and binder in the silver sulfide prevention film is preferably 80% by mass or more.
  • the silver sulfide prevention material which can fully suppress silver sulfidation, the formation method of the silver sulfide prevention film using the same, the light-emitting device excellent in silver sulfide prevention property, and its manufacturing method are provided. Can do.
  • FIG. 3 It is sectional drawing of a light-emitting device. It is a top view of the light-emitting device shown in FIG. 3 is a flowchart illustrating a method for manufacturing the light emitting device according to the first embodiment. It is sectional drawing of the light-emitting device after the application
  • the silver sulfide prevention material according to this embodiment includes clay and a binder.
  • This silver sulfide preventive material can contain a solvent for dispersing clay and a binder.
  • a silver sulfide preventive film that can sufficiently suppress silver sulfide can be formed by applying to the surface of a metal layer containing silver and drying. Examples of the metal layer include a silver plating layer and a silver paste layer.
  • clay natural clay, synthetic clay, and one of these modified products can be used alone or in combination of two or more.
  • the following layered silicate can be used.
  • Specific examples include kaolin, talc-pyrophyllite, smectite, vermiculite, mica (mica), brittle mica, and chlorite.
  • Typical species include lizardite, amicite, chrysotile, kaolinite, dickite, halloysite, talc, pyrophyllite, saponite, hectorite, montmorillonite, beidellite, trioctahedral vermiculite, octahedral vermiculite, phlogopite.
  • Examples of the synthetic clay include fluorine phlogopite, potassium tetrasilicon mica, sodium tetrasilicon mica, Na teniolite, Li teniolite, montmorillonite, saponite, hectorite, and stevensite.
  • Commercially available products include Micromica, Somasif (trade name, MEB-3, manufactured by Corp Chemical Co., Ltd.), Lucentite (trade name, SWN, manufactured by Corp Chemical Co., Ltd.), swelling mica sol (manufactured by Topy Industries, NTS) -10, NTS-5).
  • modified synthetic clay examples include Somasif (trade name, MAE, manufactured by Corp Chemical Co., Ltd.) and Lucentite (trade name, SPN, manufactured by Corp Chemical Co., Ltd.) as commercially available products.
  • montmorillonite as clay from the viewpoint of improving the silver sulfide prevention property of the silver sulfide prevention film to be formed.
  • the montmorillonite preferably has a shape with a thickness of 1 nm or less and a length in the diameter direction of 10 nm or more and 400 nm or less, and more preferably has an aspect ratio of 10 or more.
  • the aspect ratio here means the average long side length / average thickness of the crystal.
  • binder examples include urethane resin, polyamide resin, polyester resin, polyether resin, polycarbonate, diene polymer, polyvinyl alcohol, polyvinyl acetal, xanthan gum, and carboxymethyl cellulose.
  • the binder is preferably an aqueous binder.
  • aqueous binders include polyurethane, polyester, etc. emulsions, vinyl alcohol resin emulsions, vinyl acetal resin emulsions, acrylic resin emulsions, sulfonated emulsions of diene polymers, carboxymethyl cellulose, xanthan gum, epoxy emulsions, and polyamides. An emulsion is mentioned.
  • polyurethane, polyester and other emulsions, sulfonated emulsions of diene polymers, epoxy emulsions, polyamide emulsions, and vinyl acetal resins are preferred, polyurethane emulsions, vinyl acetals. More preferred is a resin.
  • the polyurethane emulsion is preferably a self-emulsifying polyether polyurethane emulsion, a self-emulsifying polyester polyurethane emulsion, or a self-emulsifying polycarbonate polyurethane emulsion.
  • the vinyl acetal resin which has the following structural unit which acetalized polyvinyl alcohol partially from a compatible viewpoint with a solvent and clay is preferable.
  • R represents an alkyl group having 1 to 10 carbon atoms.
  • a butyral resin in which R is a propyl group is more preferred.
  • the degree of acetalization of the vinyl acetal resin is preferably 5 mol% to 80 mol% in the vinyl acetal resin.
  • the mass ratio of clay to binder is preferably 75/25 to 5/95 from the viewpoint of improving the crack resistance of the silver sulfide prevention film to be formed. Further, from the viewpoint of achieving both crack resistance and silver sulfide prevention properties, the mass ratio of clay to binder is preferably 70/30 to 10/90, and from the viewpoint of achieving both heat resistance, 50 / More preferably, it is 50 to 15/85.
  • the total content of clay and binder is 80% by mass or more based on the total solid content of the silver sulfide prevention material from the viewpoint of improving the silver sulfide prevention performance of the silver sulfide prevention film. It is preferably 85% by mass or more, and more preferably 90% by mass or more.
  • the concentration of clay in the silver sulfide prevention material of the present embodiment is 0.05% by mass or more and 50% by mass or less based on the total amount of the silver sulfide prevention material from the viewpoint of improving the silver sulfide prevention performance of the silver sulfide prevention film. Is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.2% by mass or more and 10% by mass or less.
  • the silver sulfide prevention material of this embodiment is one in which clay and a binder are contained in separate liquid compositions, and these may be mixed in use. That is, the silver sulfide prevention material of this embodiment may be one liquid or two liquids or more.
  • Examples of the solvent include water and water-soluble liquid.
  • ultrapure water is water that contains a very small amount of ionic impurities, and has an electrical resistivity (specific resistance, M ⁇ ⁇ cm) (JIS K0552) as an index, water having a theoretical value of 15 M ⁇ ⁇ cm or more at 25 ° C., Preferably, water of 18 M ⁇ ⁇ cm or more can be used.
  • water-soluble liquid examples include polar solvents such as alcohol, and specifically include ethanol, methanol, isopropyl alcohol, n-propyl alcohol, dioxane, acetone, acetonitrile, diethylamine, n-butyl alcohol, t-butyl.
  • polar solvents such as alcohol, and specifically include ethanol, methanol, isopropyl alcohol, n-propyl alcohol, dioxane, acetone, acetonitrile, diethylamine, n-butyl alcohol, t-butyl.
  • Alcohol pyridine, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, propylene carbonate, ⁇ -butyrolactone, formamide, allyl alcohol, acrylic acid, acetic acid, ethylene glycol, propylene glycol, glycerin, methacrylic acid, butyric acid Liquids such as trimethylamine, triethylamine, ammonia and diethyl sulfite can be employed.
  • a water-soluble liquid refers to a liquid that maintains a uniform appearance even after the flow has subsided when gently mixed with pure water of the same volume at a temperature of 20 ° C. at 1 atm.
  • a water-soluble liquid can be used individually by 1 type or in mixture of 2 or more types.
  • the mass ratio of water to the water-soluble liquid is 99 / It is preferably 1 to 5/95, more preferably 95/5 to 20/80, and still more preferably 90/10 to 50/50.
  • additives can be added to the silver sulfide prevention material of the present embodiment as long as the effects of the present invention are not impaired.
  • the additive include an ion scavenger, a surfactant, a rust inhibitor, and a coupling agent.
  • Examples of the method for preparing the silver sulfide preventive material of the present embodiment include a method in which clay, a binder, and, if necessary, the above additives are added to a solvent containing water and dispersed and stirred.
  • a general method for dispersing powder in a liquid can be used. For example, using a rotating / revolving mixer, an ultrasonic method, a media dispersion method such as a bead mill and a ball mill, a homoxicer, an opposing collision method such as a Silverson stirrer and an artemizer, a propeller stirrer, a stirrer, a shaker, etc. Stirring can be performed. These dispersion methods can be used singly or in combination of two or more.
  • a silver sulfide preventive film capable of sufficiently suppressing silver sulfide is formed on the surface of the metal layer by applying and drying on the surface of the metal layer containing silver. can do.
  • the silver sulfide preventive material of the present embodiment it is possible to form a clay film in which cracks hardly occur even when the thickness is 0.3 nm or more.
  • the thickness of the silver sulfide prevention film it is possible to form a clay film in which cracks hardly occur even when the thickness is 0.3 nm or more.
  • the thickness of the silver sulfide prevention film it is possible to form a clay film in which cracks hardly occur even when the thickness is 0.3 nm or more.
  • the thickness of the silver sulfide prevention film to 0.01 to 1000 nm, preferably 0.05 to 100 nm, both crack resistance and excellent silver sulfide prevention performance can be achieved.
  • the present inventors consider the reason why a silver sulfide prevention film excellent in adhesion, crack resistance and silver sulfide prevention can be formed by the silver sulfide prevention material of the present embodiment as follows. That is, the binder adsorbed on the surface of the clay compound can be bonded between adjacent molecules by drying treatment, and thereby the adhesion between the clay compound layer and between the clay compound surface and silver. It can be considered that the above effect can be obtained. In the case of a reflector, it is considered that the adhesion between the surface of the clay compound and the reflector resin, the transparent sealing resin and the silver reflecting film constituting the reflector can be further enhanced.
  • FIG. 1 is a cross-sectional view of the light emitting device.
  • FIG. 2 is a plan view of the light-emitting device shown in FIG.
  • the light emitting device 1 according to the embodiment is generally classified as a “surface mount type”.
  • the light emitting device 1 includes a substrate 10, a blue LED 30 bonded to the surface of the substrate 10 as a light emitting element, a reflector 20 provided on the surface of the substrate 10 so as to surround the blue LED 30, and the reflector 20 filled with blue.
  • a transparent sealing resin 40 that seals the LED 30.
  • illustration of the transparent sealing resin 40 is abbreviate
  • a copper plating plate 14 is wired on the surface of an insulating base 12, and a silver plating layer 16 is formed on the surface of the copper plating plate 14.
  • the silver plating layer 16 is an electrode that is disposed on the surface of the substrate 10 and is electrically connected to the blue LED 30.
  • the silver plating layer 16 may have any composition as long as it is a plating layer containing silver.
  • the silver plating layer 16 may be formed by plating only silver, or the silver plating layer 16 may be formed by plating nickel and silver in this order.
  • the copper plating plate 14 and the silver plating layer 16 are insulated on the anode side and the cathode side.
  • the insulation between the copper plating plate 14 and the silver plating layer 16 on the anode side and the copper plating plate 14 and the silver plating layer 16 on the cathode side is, for example, the copper plating plate 14 and the silver plating layer 16 on the anode side and the cathode side.
  • the copper plating plate 14 and the silver plating layer 16 can be separated from each other, and an insulating layer such as a resin and ceramic can be appropriately inserted between them.
  • the blue LED 30 is die-bonded to one of the silver plating layer 16 on the anode side and the cathode side, and is electrically connected to the silver plating layer 16 through the die bonding material 32.
  • the blue LED 30 is wire-bonded to the silver plating layer 16 on either the anode side or the cathode side, and is electrically connected to the silver plating layer 16 via the bonding wire 34.
  • the reflector 20 fills the transparent sealing resin 40 for sealing the blue LED 30 and reflects the light emitted from the blue LED 30 to the surface side of the light emitting device 1.
  • the reflector 20 is erected from the surface of the substrate 10 so as to surround the blue LED 30. That is, the reflector 20 is formed with an inner space 22 that rises from the surface 10a of the substrate 10 so as to surround the blue LED 30 and accommodates the blue LED 30 inside, and has an inner circumference formed in a circle in plan view (see FIG. 2).
  • the shapes of the inner peripheral surface 20a and the outer peripheral surface 20c are not particularly limited, but from the viewpoint of improving the illuminance of the light emitting device 1, the inner peripheral surface 20a has a truncated cone shape (funnel shape) whose diameter increases as the distance from the substrate 10 increases.
  • the outer peripheral surface 20 c is preferably formed in a quadrangular shape perpendicular to the substrate 10 from the viewpoint of improving the degree of integration of the light emitting device 1.
  • the inner peripheral surface 20a As an example of forming the inner peripheral surface 20a, the lower part located on the substrate 10 side is perpendicular to the substrate 10, and the upper part located on the opposite side of the substrate 10 is separated from the substrate 10. An enlarged diameter is shown.
  • the reflector 20 is made of a cured product of a thermosetting resin composition containing a white pigment.
  • the thermosetting resin composition is preferably one that can be pressure-molded at room temperature (25 ° C.) before thermosetting.
  • thermosetting resin contained in the thermosetting resin composition various resins such as an epoxy resin, a silicone resin, a urethane resin, and a cyanate resin can be used.
  • an epoxy resin is preferable because of its excellent adhesion to various materials.
  • the white pigment alumina, magnesium oxide, antimony oxide, titanium oxide, or zirconium oxide can be used. Among these, titanium oxide is preferable from the viewpoint of light reflectivity.
  • Inorganic hollow particles may be used as the white pigment. Specific examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu.
  • the transparent sealing resin 40 is filled in the inner space 22 formed by the inner peripheral surface 20a of the reflector 20, and seals the blue LED 30.
  • the transparent sealing resin 40 is made of a transparent sealing resin having translucency.
  • the transparent sealing resin includes a translucent resin as well as a completely transparent resin.
  • the transparent sealing resin preferably has an elastic modulus of 1 MPa or less at room temperature (25 ° C.). In particular, it is preferable to employ a silicone resin or an acrylic resin from the viewpoint of transparency.
  • the transparent sealing resin may further contain an inorganic filler that diffuses light or a phosphor 42 that emits white light using blue light emitted from the blue LED 30 as an excitation source.
  • the silver plating layer 16 is covered with the silver sulfide prevention film 50, and the transparent sealing resin 40 and the reflector 20 are joined.
  • the silver sulfidation preventing film 50 suppresses sulfidation of the silver plating layer 16 by covering the silver plating layer 16, and is formed from the silver sulfidation preventing material of the present embodiment described above.
  • the silver sulfide prevention material contains montmorillonite as clay and a binder having a polar group
  • a film having a long gas path route and excellent gas barrier properties is formed as shown in FIG.
  • the hydroxyl group (—OH) possessed by the hydrogen bond with the polar group of the binder becomes stronger. Thereby, the effect which fills the clearance gap between clay, and the effect which the tolerance with respect to the crack by thermal expansion improves are acquired, and the silver sulfide prevention film
  • the film thickness of the silver sulfide prevention film 50 is preferably 0.01 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.05 ⁇ m or more and 100 ⁇ m or less, and further preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
  • this effect can be further improved by setting the film thickness of the silver sulfide prevention film 50 to 0.03 ⁇ m to 500 ⁇ m, 0.05 ⁇ m to 100 ⁇ m, 0.05 ⁇ m to 10 ⁇ m, 0.05 ⁇ m to 1 ⁇ m. Can do.
  • the silver sulfide prevention film 50 is formed of the silver sulfide prevention material of the present embodiment, cracks are hardly generated even in the above-described film thickness.
  • the film thickness can be adjusted, for example, by changing the content of the solvent in the silver sulfide preventive material and appropriately adjusting the concentrations of the clay and the binder. Further, the film thickness can be adjusted by the amount and the number of times the silver sulfide prevention material is dropped.
  • FIG. 3 is a flowchart showing a method for manufacturing the light emitting device according to the first embodiment.
  • a substrate preparation step step S ⁇ b> 101
  • an insulating base 12 having a copper plated plate 14 wired on the surface is prepared, and a silver plating layer formation step ( As step S102), the silver plating layer 16 is formed on the surface of the copper plating plate.
  • the reflector 20 is formed on the surface of the substrate 10 as a reflector forming step (step S103), and the blue LED 30 is mounted on the substrate 10 as a chip mounting step (step S104).
  • the blue LED 30 is mounted on the substrate 10 by die-bonding the blue LED 30 to the silver plating layer 16 on either the anode side or the cathode side in the inner space 22 surrounded by the reflector 20.
  • the blue LED 30 is electrically connected to the silver plating layer 16 on either the anode side or the cathode side through the die bonding material 32, and the blue LED 30 is surrounded by the reflector 20 and accommodated in the inner space 22.
  • step S105 As a silver sulfide prevention material application step (step S105), the silver sulfide prevention material of this embodiment is applied to the silver plating layer 16 and the silver plating layer 16 is covered with the silver sulfide prevention material.
  • the silver sulfide prevention material is applied in the silver sulfide prevention material application step (step S105) by, for example, dropping or spraying the silver sulfide prevention material into the inner space 22 from the surface side of the substrate 10.
  • the dripping amount or the spraying amount of the silver sulfide prevention material is adjusted so that at least the entire silver plating layer 16 is covered with the silver sulfide prevention material L.
  • the silver sulfide prevention material L is dropped or dispersed in the inner space 22 so that the silver plating layer 16 and the blue LED 30 are all covered with the silver sulfide prevention material L.
  • FIG. 4A the silver sulfide prevention material L is dropped or dispersed in the inner space 22 so that the silver plating layer 16 and the blue LED 30 are all covered with the silver sulfide prevention material L.
  • the silver plating layer 16 and the blue LED 30 and a part of the inner peripheral surface 20a of the reflector 20 are covered with the silver sulfide preventive material L so that the silver plating layer 16 and the blue LED 30 are covered.
  • the sulfurization preventive material L may be dropped or dispersed in the inner space 22.
  • the silver sulfide prevention film 50 is formed by drying the coating film of the silver sulfide prevention material applied to the silver plating layer 16.
  • the drying step can be performed at a temperature at which the solvent volatilizes.
  • the temperature is preferably 30 ° C. or higher and 80 ° C. or lower, and the temperature range is 30 ° C. or higher and 70 ° C. or lower. It is more preferable to set the temperature range to 30 ° C. or higher and 60 ° C. or lower.
  • the time for maintaining this temperature range can be, for example, 1 minute or more, and is preferably 5 minutes or more and 1 day or less from the viewpoint of obtaining excellent film formability. More preferably, the time is from 30 minutes to 30 minutes.
  • the drying step when the solvent contains water and alcohol is, for example, preferably a temperature range of 30 ° C. or more and 80 ° C. or less, more preferably a temperature range of 35 ° C. or more and 80 ° C. or less, It is even more preferable that the temperature range be from 0C to 80C.
  • the time for maintaining this temperature range can be, for example, 1 minute or longer, and is preferably 5 minutes or longer and 30 minutes or shorter from the viewpoint of obtaining excellent film formability. More preferably, the time is from 15 minutes to 15 minutes.
  • the clay diluent L shown in FIG. 4A becomes a silver covering all of the silver plating layer 16 and the blue LED 30 as shown in FIG. 5A.
  • the clay dilution liquid L shown in FIG. 4B becomes the sulfidation preventing film 50, and as shown in FIG. 5B, all of the silver plating layer 16 and the blue LED 30 and the inner peripheral surface 20a of the reflector 20 are formed.
  • the silver sulfide prevention film 50 covering a part is formed.
  • the silver sulfide prevention film 50 it is preferable to sufficiently dry the silver sulfide prevention film 50 under the conditions of 150 ° C. and 30 minutes after the drying step. Thereby, the effect of the further improvement of the silver sulfide prevention property by narrowing the interlayer of clay can be acquired.
  • step S107 the blue LED 30 and the silver plating layer 16 on either the anode side or the cathode side are then wire-bonded as a wire bonding process (step S107). To do. At this time, both ends of the wire are bonded to the blue LED 30 and the silver plating layer 16 so as to break through the silver sulfide prevention film 50 covered with the blue LED 30 and the silver plating layer 16. Is made conductive.
  • the breakage of the silver sulfidation preventing film 50 can be achieved, for example, by adjusting the layer thickness of the silver sulfidation preventing film 50, adjusting the load of the bonding head for wire bonding, or vibrating the bonding head. It can be carried out.
  • the transparent sealing resin filling step step S108
  • the inner space 22 formed by the inner peripheral surface 20a of the reflector 20 is filled with the transparent sealing resin 40 containing the phosphor 42.
  • blue LED30 and the silver plating layer 16 are sealed with the transparent sealing resin 40 (transparent sealing part).
  • the light emitting device 1 shown in FIG. 5A has all of the silver plating layer 16 and the blue LED 30 as shown in FIG.
  • the light-emitting device 1 in which the silver plating layer 16 and the blue LED 30 are sealed with the transparent sealing resin 40 in a state of being covered with the silver sulfide prevention film 50 is shown in FIG. 6 (b), the silver plating layer 16 and the blue LED 30 in a state where all of the silver plating layer 16 and the blue LED 30 and a part of the inner peripheral surface 20a of the reflector 20 are covered with the silver sulfide prevention film 50.
  • the LED 30 is the light emitting device 1 sealed with the transparent sealing resin 40.
  • the coating film of a silver sulfide prevention material is dried.
  • the silver sulfide prevention film 50 in which clay contained in the silver sulfide prevention material is laminated is formed, and the silver plating layer 16 is covered with the silver sulfide prevention film 50.
  • cover the silver plating layer 16 appropriately can be formed.
  • the silver sulfide prevention film which covers a silver plating layer can be easily formed by dripping or spraying the silver sulfide prevention material of this embodiment in the inner space 22 of the reflector 20 provided in the light emitting device 1.
  • the manufacturing method of the light emitting device according to the second embodiment is basically the same as the manufacturing method of the light emitting device according to the first embodiment, but the manufacturing of the light emitting device according to the first embodiment only in the order of the steps. It is different from the method. For this reason, in the following description, only a part different from the method for manufacturing the light emitting device according to the first embodiment will be described, and description of the same part as the method for manufacturing the light emitting device according to the first embodiment will be omitted. .
  • FIG. 8 is a flowchart showing a method for manufacturing the light emitting device according to the second embodiment.
  • FIG. 9 is a cross-sectional view of a light emitting device manufactured by the manufacturing method of FIG.
  • the substrate preparation step (step S201), the silver plating layer formation step (step S202), and the reflector formation step (step S203) are the substrate preparation step (step S101) and the silver plating layer formation step (steps) of the first embodiment. S102) and the reflector forming step (step S103).
  • step S204 the silver sulfide prevention material of this embodiment is applied to the silver plating layer 16 and the silver plating layer 16 is covered with the silver sulfide prevention material.
  • the silver sulfide prevention film 50 is formed by drying the coating film of the silver sulfide prevention material applied to the silver plating layer 16.
  • the drying process (step S205) can be performed in the same manner as the drying process (step S106) of the first embodiment.
  • the blue LED 30 is die-bonded to the silver plating layer 16 on either the anode side or the cathode side.
  • the blue LED 30 is bonded to the silver plating layer 16 so as to break through the silver sulfide prevention film 50 covered with the silver plating layer 16.
  • the blue LED 30 and the silver plating layer 16 are electrically connected.
  • step S207 the blue LED 30 and the silver plating layer 16 on either the anode side or the cathode side are wire bonded.
  • the silver plating layer 16 is covered with the silver sulfide prevention film 50
  • the silver sulfide prevention film covered with the silver plating layer 16 is the same as in the wire bonding step (step S107) of the first embodiment.
  • One end of the wire is bonded to the silver plating layer 16 so as to break through 50.
  • the blue LED 30 is not covered with the silver sulfide prevention film 50, the other end of the bonding wire 34 can be bonded to the blue LED 30 as usual. Thereby, blue LED30 and the silver plating layer 16 are conduct
  • step S208 a transparent sealing resin filling step is performed as step S208.
  • the chip mounting process is performed after the silver sulfide prevention material coating process and the drying process, and as shown in FIG.
  • the light emitting device 1 that is not covered with the silver sulfide prevention film 50 can be manufactured. Thereby, when bonding one end of the bonding wire 34 to the blue LED 30 in the wire bonding step, it is not necessary to break through the silver sulfide prevention film 50 as in the method for manufacturing the light emitting device according to the first embodiment.
  • the manufacturing method of the light emitting device according to the third embodiment is basically the same as the manufacturing method of the light emitting device according to the first embodiment, but only the order of the steps is the manufacturing of the light emitting device according to the first embodiment. It is different from the method. For this reason, in the following description, only a part different from the method for manufacturing the light emitting device according to the first embodiment will be described, and description of the same part as the method for manufacturing the light emitting device according to the first embodiment will be omitted. .
  • FIG. 10 is a flowchart showing a method for manufacturing a light emitting device according to the third embodiment.
  • FIG. 11 is a cross-sectional view of a light emitting device manufactured by the manufacturing method of FIG.
  • a substrate preparation step (step S301) and a silver plating layer formation step (step S302) are the same as the substrate preparation step (step S101) and the silver plating layer formation step (step S102) of the first embodiment.
  • the silver sulfide prevention material of this embodiment is applied to the silver plating layer 16, and the silver plating layer 16 is covered with the silver sulfide prevention material.
  • the silver sulfide prevention material it is preferable to apply the silver sulfide prevention material to the entire surface of the substrate 10 on which the silver plating layer 16 is formed, but the silver sulfide prevention material is covered so as to cover only the silver plating layer 16. It may be applied.
  • the silver sulfide prevention film 50 is formed by drying the coating film of the silver sulfide prevention material applied to the silver plating layer 16.
  • the drying process (step S304) can be performed in the same manner as the drying process (step S106) of the first embodiment.
  • the reflector 20 is formed on the surface of the substrate 10 as a reflector forming step (step S305).
  • the silver sulfide prevention material is applied to the entire surface of the substrate 10 in the silver sulfide prevention material application step (step S303)
  • the reflector 20 is applied to the surface of the silver sulfide prevention film 50 covering the surface of the substrate 10.
  • the blue LED 30 is die-bonded to the silver plating layer 16 on either the anode side or the cathode side.
  • the blue LED 30 is bonded to the silver plating layer 16 so as to break through the silver sulfide prevention film 50 covered with the silver plating layer 16.
  • the blue LED 30 and the silver plating layer 16 are electrically connected.
  • step S307 the blue LED 30 and the silver plating layer 16 on either the anode side or the cathode side are wire bonded.
  • the silver plating layer 16 is covered with the silver sulfide prevention film 50
  • the silver sulfide prevention film covered with the silver plating layer 16 is the same as in the wire bonding step (step S107) of the first embodiment.
  • One end of the wire is bonded to the silver plating layer 16 so as to break through 50.
  • the blue LED 30 is not covered with the silver sulfide prevention film 50, the other end of the bonding wire 34 can be bonded to the blue LED 30 as usual. Thereby, blue LED30 and the silver plating layer 16 are conduct
  • step S308 a transparent sealing resin filling step is performed as step S308.
  • the reflector forming step and the chip mounting step are performed after the silver sulfide prevention material coating step and the drying step, as shown in FIG. Furthermore, the light emitting device 1 in which the blue LED 30 is not covered with the silver sulfide prevention film 50 can be manufactured. Thereby, when bonding one end of the bonding wire 34 to the blue LED 30 in the wire bonding step, it is not necessary to break through the silver sulfide prevention film 50 as in the method for manufacturing the light emitting device according to the first embodiment.
  • wire bonding is performed after the silver sulfide prevention film is formed.
  • the silver sulfide prevention material of this embodiment is applied and dried to form a silver sulfide prevention film on the silver plating layer.
  • the silver sulfide preventive material of the present embodiment it is possible to sufficiently prevent the coating film of the silver sulfide preventive material from adhering to the wire of wire bonding and remaining in a curtain shape.
  • the drying temperature is preferably 40 ° C. or lower, and more preferably 25 ° C. or lower.
  • the blue LED 30 that generates blue light is used as the light emitting diode that is bonded to the light emitting device 1, but a light emitting diode that generates light other than blue may be used.
  • the light emitting device 1 of the above embodiment has been described as including the reflector 20 that surrounds the blue LED 30, it may not include such a reflector 20.
  • the silver sulfide preventive material of the present embodiment since a silver sulfide preventive film excellent in silver sulfide resistance can be formed, Y 2 O 2 S: Eu (red) conventionally used as a phosphor, Even a light emitting device using a sulfur-containing compound such as ZnS: Cu (green), ZnS: Ag (blue), or a compound disclosed in JP-A-8-085787 can obtain sufficient silver sulfide prevention properties. it can.
  • the silver sulfide preventive material of the present embodiment can be applied to, for example, a plasma display, a liquid crystal display, or the like equipped with an LED including a lead frame containing silver, in addition to the light emitting device described above.
  • Preparation Example 1 ⁇ Preparation of silver sulfide prevention material> (Preparation Example 1)
  • 55.1 g of ultrapure water and 0.16 g of powder of Kunipia F (Kunimine Kogyo Co., Ltd., product name) were placed, and the container was shaken by hand and stirred.
  • 36.74 g of isopropanol was added to this container, mixing was carried out at 2000 rpm for 20 minutes using a rotating / revolving mixer (ARE-310, manufactured by Shinky Corporation), followed by defoaming at 2200 rpm for 10 minutes.
  • ARE-310 rotating / revolving mixer
  • ESREC KX-1 manufactured by Sekisui Chemical Co., Ltd., product name, water / alcohol mixed solution of butyral resin having an acetalization degree of about 8 mol%, solid content of 8% by mass
  • ARE-310 manufactured by Shinky Corporation
  • the test sample was observed with an electron microscope to evaluate the presence or absence of cracks on the film.
  • the case where there was a crack was “ ⁇ ”, and the case where there was no crack was “ ⁇ ”.
  • test sample was observed with a magnifying glass, and “ ⁇ ” was given when yellowing occurred, and “X” was given when there was no yellowing.
  • the silver sulfide prevention materials of Preparation Examples 1 to 3 containing clay and a binder form a film having both sufficient crack resistance and yellowing resistance and excellent silver sulfide prevention ability. It was confirmed that it was possible.
  • SYMBOLS 1 Light-emitting device, 10 ... Board

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Led Device Packages (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 本発明の銀硫化防止剤は、粘土とバインダーとを含有する。

Description

銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
 本発明は、銀硫化防止材に関し、より詳細には発光装置等に使用される銀めっきの硫化による変色を防止するための銀硫化防止材に関する。また本発明は、銀硫化防止材を用いた銀硫化防止膜の形成方法及び発光装置の製造方法に関する。
 近年、蛍光灯又は白熱電球に替わる光源として発光ダイオード(LED)の需要が急速に増加している。発光ダイオード等の発光素子を備える発光装置は、照明機器、自動車用ライト等の用途に用いられている。このような発光装置では、銀めっきからなる光反射膜を設けることにより光の取り出し効率の向上が図られている。例えば、銅めっき基板等のリードフレームを備えるLEDパッケージでは、銅めっき層上に銀めっき層を設けることにより反射率を向上させている(例えば、下記特許文献1を参照)。
特開2009-239116号公報
 LEDパッケージでは、通常、透明樹脂による封止によって発光素子及び光反射膜等が保護されている。しかし、発光装置が屋外で使用される場合、環境中の硫化水素、亜硫酸ガス等が樹脂を透過して銀めっきを硫化し、変色により銀めっきの光反射率が低下するという問題が生じる。最近ではLEDの高出力化に伴ってLEDの発熱量が増加し、銀めっきの硫化が温度の上昇によって更に早まる傾向にある。
 本発明は、上記事情に鑑みてなされたものであり、銀の硫化を十分抑制することができる銀硫化防止材、それを用いた銀硫化防止膜の形成方法、銀硫化防止性に優れた発光装置及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は、粘土とバインダーとを含有する銀硫化防止材を提供する。
 本発明の銀硫化防止材によれば、銀を含有する金属層の表面に塗布し乾燥することにより、銀の硫化を十分抑制することができる銀硫化防止膜を形成することができる。
 ところで、LEDパッケージの銀めっき層に銀硫化防止材を適用する場合、銀めっき層に銀硫化防止膜を形成する工程は、基板に発光素子及びリフレクタ等の部品を搭載する前又は後に設けることが考えられる。いずれの場合においても封止等のプロセスにおいて銀硫化防止膜が加熱されるため、銀硫化防止膜には耐熱性が求められる。また、銀硫化防止膜を形成する際及びLEDの点灯時にも熱の影響がある。耐熱性に優れた膜を形成する方法としては、例えばシリコーン樹脂といった耐熱性の高い樹脂を用いることが考えられる。しかし、シリコーン樹脂は、ガスバリア性が低く、十分な銀硫化防止性が得られない。また、ガラスのような無機被膜を形成する方法では、ガラスを溶融し、被膜を形成するのに300℃以上の高温プロセスが必要となり、LEDパッケージには適用できない。
 これに対し、本発明の銀硫化防止材によれば、LEDパッケージに適用可能なプロセス温度で、十分な耐熱性及び銀硫化防止性を有し、なおかつ耐クラック性に優れた銀硫化防止膜を形成することができる。
 他方、更に高水準の銀硫化防止性が求められる場合がある。この場合には硫化防止膜の膜厚を大きくすることが考えられる。しかし、粘土から構成される膜は膜厚が500nm以上になるとクラックが発生しやすくなる。本発明の銀硫化防止材によれば、膜厚を大きくした場合であってもクラックが発生しにくい粘土膜を形成することができる。これにより、銀硫化防止膜を厚膜化して高い銀硫化防止性を得ることができる。
 形成する銀硫化防止膜の耐クラック性を更に高める観点から、粘土とバインダーとの質量比が75/25~5/95であることが好ましい。
 本発明の銀硫化防止材は、バインダーとして、水性バインダーを含むことが好ましい。この場合、水及び/又は水溶性液体によって粘土とバインダーとを良好に混合することができ、成膜性が更に向上した銀硫化防止膜を形成することができる。
 なお、本明細書において水性バインダーとは、水及び/又は水溶性液体と混合したときに、溶液、水溶液、乳化物及び可溶化物等の巨視的に見て一様な状態となるバインダーを指す。
 また、銀硫化防止性を更に高める観点から、粘土及びバインダーの合計含有量が銀硫化防止材の固形分全量を基準として80質量%以上であることが好ましい。
 銀硫化防止材の固形分の全質量は以下の方法で得られる値をいう。銀硫化防止材をアルミ皿に取り、150℃で2時間乾燥した後の質量を測定する。
 なお、銀硫化防止材の固形分濃度を求める場合は、銀硫化防止材をアルミ皿に取り、その質量を測定し、その後、150℃で2時間乾燥した後の質量を測定した値から下記式に従って固形分濃度を算出することができる。
固形分濃度=(乾燥後の質量)/(乾燥前の質量)×100
 本発明はまた、銀が含まれる金属層の表面に、上記本発明に係る銀硫化防止材を塗布して銀硫化防止材の塗膜を形成する塗布工程と、塗膜を乾燥する乾燥工程と、を備える銀硫化防止膜の形成方法を提供する。
 本発明の銀硫化防止膜の形成方法によれば、本発明に係る銀硫化防止材を用いることにより、銀の硫化を十分抑制することができる銀硫化防止膜を形成することができる。
 また、本発明に係る銀硫化防止材を用いることにより、耐黄変性等の耐熱性に優れた銀硫化防止膜を形成することができる。更に、本発明に係る銀硫化防止材を用いることにより、厚膜化によって高い銀硫化防止性を有する銀硫化防止膜を形成する場合であっても、クラックの発生を抑制することができる。
 上記金属層は銀めっき層であることが好ましい。この場合、硫化によって銀めっき層の光反射率が低下することを防止することができる。
 本発明はまた、銀めっき層を有する基板と、基板上に搭載された発光素子と、を備える発光装置の製造方法であって、銀めっき層の表面に、上記本発明に係る銀硫化防止材を塗布して銀硫化防止材の塗膜を形成する塗布工程と、塗膜を乾燥する乾燥工程と、を備える発光装置の製造方法を提供する。
 本発明の発光装置の製造方法によれば、銀めっき層の表面に銀の硫化を十分抑制することができる銀硫化防止膜の形成することができ、これにより銀めっき層が変色しにくい銀硫化防止性に優れた発光装置を製造することができる。
 また、本発明の発光装置の製造方法によれば、本発明に係る銀硫化防止材を用いることにより耐黄変性等の耐熱性に優れた銀硫化防止膜を形成できることから、封止等のプロセス温度での着色に起因する製造上の問題を十分抑制することができる。また、得られる発光装置においては、照明点灯時の加熱によっても黄変しにくい銀硫化防止膜を形成できることから、着色に起因する反射率の低下を十分抑制することができる。
 更に、本発明の発光装置の製造方法によれば、本発明に係る銀硫化防止材を用いることにより厚膜であってもクラックの発生しにくい銀硫化防止膜を形成できることから、膜のクラックに起因する製造上の問題を十分抑制しつつ高水準の銀硫化防止性を有する発光装置を製造することができる。
 本発明はまた、銀めっき層を有する基板と、基板上に搭載された発光素子と、銀めっき層の表面に設けられた銀硫化防止膜と、を備え、銀硫化防止膜が粘土とバインダーとを含有する発光装置を提供する。
 本発明の発光装置は、上記銀硫化防止膜を備えることにより優れた銀硫化防止性を有し、銀めっき層が変色しにくい。また、銀硫化防止膜が耐黄変性等の耐熱性に優れることから、照明点灯時の加熱によって銀硫化防止膜が着色することに起因する反射率の低下を十分抑制することができる。
 耐クラック性に優れる点で、上記銀硫化防止膜における粘土とバインダーとの質量比が75/25~5/95であることが好ましい。
 上記銀硫化防止膜が上記バインダーとして水性バインダーを含むことが好ましい。この場合、銀硫化防止膜を形成するときに水及び/又は水溶性液体によって粘土とバインダーとを良好に混合することができ、これにより銀硫化防止膜の成膜性が更に向上する。
 銀硫化防止性を更に高める観点から、上記銀硫化防止膜における粘土及びバインダーの合計濃度が80質量%以上であることが好ましい。
 本発明によれば、銀の硫化を十分抑制することができる銀硫化防止材、それを用いた銀硫化防止膜の形成方法、銀硫化防止性に優れた発光装置及びその製造方法を提供することができる。
発光装置の断面図である。 図1に示す発光装置の平面図である。 第1の実施形態に係る発光装置の製造方法を示したフローチャートである。 実施形態に係る銀硫化防止材の塗布工程後における発光装置の断面図である。 乾燥工程後における発光装置の断面図である。 透明封止樹脂充填工程後における発光装置の断面図である。 実施形態に係る銀硫化防止材から形成される銀硫化防止膜の構成を説明するための概念図である。 第2の実施形態に係る発光装置の製造方法を示したフローチャートである。 図8の製造方法により製造した発光装置の断面図である。 第3の実施形態に係る発光装置の製造方法を示したフローチャートである。 図10の製造方法により製造した発光装置の断面図である。
 本実施形態に係る銀硫化防止材は粘土及びバインダーを含む。この銀硫化防止材には、粘土及びバインダーを分散させるための溶媒を含有させることができる。本実施形態の銀硫化防止材によれば、銀を含有する金属層の表面に塗布し乾燥することにより、銀の硫化を十分抑制することができる銀硫化防止膜を形成することができる。上記金属層としては、例えば、銀めっき層、銀ペースト層が挙げられる。
 粘土としては、天然粘土及び合成粘土並びにこれらの変性物のうちの1種を単独で又は2種以上を組み合わせて用いることができる。
 天然粘土としては、例えば、以下の層状珪酸塩が用いることができる。具体例として、カオリン、タルク-パイロフィライト、スメクタイト、バーミキュライト、雲母(マイカ)、脆雲母、緑泥石が挙げられる。代表的な種としては、リザーダイト、アメサイト、クリソタイル、カオリナイト、ディッカイト、ハロイサイト、タルク、パイロフィライト、サポナイト、ヘクトライト、モンモリロナイト,バイデライト、3八面体型バーミキュライト、2八面体型バーミキュライト、金雲母、黒雲母、レピドライト、イライト、白雲母、パラゴナイト、クリントナイト、マーガライト、クリノクロア、シャモサイト、ニマイト、ドンバサイト、クッケアイト、スドーアイトが挙げられる。市販品としては、クニピア(クニミネ工業(株)製、商品名、クニピアF)、湿式粉砕雲母(ヤマグチマイカ製、Yシリーズ、SAシリーズ)が挙げられる。
 合成粘土としては、例えば、フッ素金雲母、カリウム四珪素雲母、ナトリウム四珪素雲母、Naテニオライト、Liテニオライト、モンモリロナイト、サポナイト、ヘクトライト、スチーブンサイトが挙げられる。市販品としては、ミクロマイカ、ソマシフ(コープケミカル(株)製、商品名、MEB-3)、ルーセンタイト(コープケミカル(株)製、商品名、SWN)、膨潤性マイカゾル(トピー工業製、NTS-10、NTS-5)が挙げられる。
 合成粘土の変性物としては、例えば、市販品として、ソマシフ(コープケミカル(株)製、商品名、MAE)、ルーセンタイト(コープケミカル(株)製、商品名、SPN)が挙げられる。
 本実施形態においては、形成する銀硫化防止膜の銀硫化防止性を向上させる観点から、粘土としてモンモリロナイトを含有することが好ましい。モンモリロナイトは、厚さが1nm以下、直径方向の長さが10nm以上400nm以下の形状を有するものが好ましく、更にアスペクト比が10以上であるものが好ましい。ここでのアスペクト比は、結晶の平均長辺長さ/平均厚みを意味する。
 バインダーとしては、例えば、ウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート、ジエン系ポリマー、ポリビニルアルコール、ポリビニルアセタール、キサンタンガム、カルボキシメチルセルロースが挙げられる。
 溶媒として水又は水溶性液体を用いた場合に粘土との混合が良好となる観点から、バインダーは水性バインダーであることが好ましい。水性バインダーとしては、例えば、ポリウレタン、ポリエステル等のエマルジョン、ビニルアルコール系樹脂エマルジョン、ビニルアセタール系樹脂エマルジョン、アクリル系樹脂エマルジョン、ジエン系ポリマーのスルホン化物エマルジョン、カルボキシメチルセルロース、キサンタンガム、エポキシ系エマルジョン、ポリアミド系エマルジョンが挙げられる。
 更に、バリア性、耐熱性及び耐クラック性の観点から、ポリウレタン、ポリエステル等のエマルジョン、ジエン系ポリマーのスルホン化物エマルジョン、エポキシ系エマルジョン、ポリアミド系エマルジョン、ビニルアセタール系樹脂が好ましく、ポリウレタンエマルジョン、ビニルアセタール系樹脂がより好ましい。ポリウレタンエマルジョンとしては、自己乳化型のポリエーテル系ポリウレタンエマルジョン、自己乳化型のポリエステル系ポリウレタンエマルジョン、自己乳化型のポリカーボネート系ポリウレタンエマルジョンが好ましい。
 また、ビニルアセタール系樹脂としては、溶媒及び粘土との相溶性の観点から、ポリビニルアルコールを部分的にアセタール化した下記構造単位を有するビニルアセタール樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
式中、Rは炭素数1~10のアルキル基を示す。Rがプロピル基であるブチラール樹脂がより好ましい。
 ビニルアセタール樹脂のアセタール化度は、ビニルアセタール樹脂中5モル%~80モル%が好ましい。このようなバインダーを用いることにより、銀硫化防止膜を形成する際の加熱による黄変を抑制することができ、形成された銀硫化防止膜の耐熱性を更に向上させることができる。
 本実施形態の銀硫化防止材は、形成する銀硫化防止膜の耐クラック性を高める観点から、粘土とバインダーとの質量比が75/25~5/95であることが好ましい。また、耐クラック性と銀硫化防止性とを両立させる観点から、粘土とバインダーとの質量比が70/30~10/90であることが好ましく、更に耐熱性との両立の観点から、50/50~15/85であることがより好ましい。
 本実施形態の銀硫化防止材は、銀硫化防止膜の銀硫化防止性能を向上させる観点から、粘土及びバインダーの合計含有量が銀硫化防止材の固形分全量を基準として80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましい。
 また本実施形態の銀硫化防止材における粘土の濃度は、銀硫化防止膜の銀硫化防止性能を向上させる観点から、銀硫化防止材全量基準で0.05質量%以上50質量%以下であることが好ましく、0.1質量%以上20質量%以下であることがより好ましく、0.2質量%以上10質量%以下であることがさらにより好ましい。
 なお、本実施形態の銀硫化防止材は、粘土及びバインダーがそれぞれ別の液状組成物に含有されたものであり、これらを使用に際して混合する形態であってもよい。すなわち、本実施形態の銀硫化防止材は1液であってもよく、2液以上であってもよい。
 溶媒としては、例えば、水、水溶性液体が挙げられる。
 水としては、例えば、超純水が使用される。超純水は、イオン性不純物が極微量含まれる水であって、電気抵抗率(比抵抗、MΩ・cm)(JIS K0552)を指標として、25℃における理論値が15MΩ・cm以上の水、好ましくは18MΩ・cm以上の水を用いることができる。
 水溶性液体としては、例えば、アルコール等の極性溶媒が挙げられ、具体的には、エタノール、メタノール、イソプロピルアルコール、n-プロピルアルコール、ジオキサン、アセトン、アセトニトリル、ジエチルアミン、n-ブチルアルコール、t-ブチルアルコール、ピリジン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、N-メチルピロリドン、炭酸プロピレン、γ-ブチロラクトン、ホルムアミド、アリルアルコール、アクリル酸、酢酸、エチレングリコール、プロピレングリコール、グリセリン、メタクリル酸、酪酸、トリメチルアミン、トリエチルアミン、アンモニア、ジエチルスルファイト等の液体を採用することができる。水溶性液体とは、1気圧において、温度20℃で同容量の純水と穏やかにかき混ぜた場合、流動が収まった後も当該混合液が均一な外観を維持するものをいう。水溶性液体は、1種を単独で又は2種以上を混合して用いることができる。
 本実施形態においては、水と水溶性液体との混合物を溶媒として用いる場合、形成する銀硫化防止膜の銀硫化防止性を向上させる観点から、水と水溶性液体との質量比は、99/1~5/95であることが好ましく、95/5~20/80であることがより好ましく、90/10~50/50であることがさらにより好ましい。
 本実施形態の銀硫化防止材には本発明の効果が損なわれない範囲で各種添加剤を加えることができる。添加剤としては、例えば、イオン捕足剤、界面活性剤、防錆剤、カップリング剤が挙げられる。
 本実施形態の銀硫化防止材の調製方法としては、例えば、水を含む溶媒に、粘土、バインダー、及び必要に応じて上記添加剤を加えて分散し、撹拌する方法が挙げられる。撹拌は、粉体を液体に分散する一般的な方法を用いることができる。例えば、自転・公転ミキサー、超音波法、ビーズミル及びボールミル等のメディア分散法、ホモキキサー、シルバーソン撹拌装置及びアルテマイザー等の対向衝突法、プロペラ式撹拌装置、撹拌子、振とう器等を用いて撹拌を行うことができる。これらの分散方法は、1種を単独で又は2種以上を組み合わせて使用することができる。
 本実施形態の銀硫化防止材によれば、銀を含有する金属層の表面上に塗布し乾燥することにより、金属層の表面に銀の硫化を十分抑制することができる銀硫化防止膜を形成することができる。
 また、本実施形態の銀硫化防止材によれば、厚みが0.3nm以上であってもクラックが発生しにくい粘土膜を形成することができる。特に、銀硫化防止膜の厚みを0.01~1000nm、好ましくは0.05~100nmとすることで、耐クラック性と優れた銀硫化防止性と両立することができる。
 本実施形態の銀硫化防止材によって、密着性、耐クラック性及び銀硫化防止性に優れた銀硫化防止膜を形成することができる理由について本発明者らは以下のとおり考えている。すなわち、粘土化合物の表面上に吸着したバインダーは、乾燥処理することで隣接する分子間を結着することができ、これにより、粘土化合物の層間、及び粘土化合物表面と銀との間の接着性を高めることができたことが上記効果の得られる理由として考えられる。リフレクタの場合には、粘土化合物表面と、リフレクタを構成するリフレクタ樹脂、透明封止樹脂及び銀反射膜との間の接着性を更に高めることができると考えられる。
 次に、本実施形態の銀硫化防止材を用いた銀硫化防止膜の形成方法及び発光素子の製造方法の好適な実施形態について図面を参照しつつ説明する。なお、全図中、同一又は相当部分には同一符号を付すこととする。
 [第1の実施形態]
 まず、第1の実施形態に係る発光装置の製造方法を説明する前に、図1及び図2を参照して、第1の実施形態に係る発光装置の製造方法により製造される発光装置の構成について説明する。
 図1は、発光装置の断面図である。図2は、図1に示す発光装置の平面図である。図1及び図2に示すように、実施形態に係る発光装置1は、一般に「表面実装型」に分類されるものである。この発光装置1は、基板10と、発光素子として基板10の表面にボンディングされた青色LED30と、青色LED30を取り囲むように基板10の表面に設けられたリフレクタ20と、リフレクタ20に充填されて青色LED30を封止する透明封止樹脂40と、を備えている。なお、図2では、透明封止樹脂40の図示を省略している。
 基板10は、絶縁性の基体12の表面に銅めっき板14が配線されており、銅めっき板14の表面に銀めっき層16が形成されている。銀めっき層16は、基板10の表面に配置されて青色LED30と導通される電極となっている。なお、銀めっき層16は、銀を含むめっき層であれば如何なる組成であってもよい。例えば、銀のみをめっきすることにより銀めっき層16を形成してもよく、ニッケル及び銀をこの順でめっきすることにより銀めっき層16を形成してもよい。銅めっき板14及び銀めっき層16は、アノード側とカソード側とに絶縁されている。アノード側の銅めっき板14及び銀めっき層16とカソード側の銅めっき板14及び銀めっき層16との間の絶縁は、例えば、アノード側の銅めっき板14及び銀めっき層16とカソード側の銅めっき板14及び銀めっき層16とを離間させ、適宜、その間に樹脂及びセラミックなどの絶縁層を挿入することにより行うことができる。
 青色LED30は、アノード側及びカソード側の何れか一方の銀めっき層16にダイボンドされており、ダイボンド材32を介して当該銀めっき層16と導通されている。また、青色LED30は、アノード側及びカソード側の何れか他方の銀めっき層16にワイヤボンドされており、ボンディングワイヤ34を介して当該銀めっき層16と導通されている。
 リフレクタ20は、青色LED30を封止するための透明封止樹脂40を充填させるとともに、青色LED30から発せられた光を発光装置1の表面側に反射させるものである。リフレクタ20は、青色LED30を取り囲むように基板10の表面から立設されている。すなわち、リフレクタ20には、青色LED30を取り囲むように基板10の表面10aから立ち上がって内側に青色LED30を収容する内側空間22を形成し、平面視(図2参照)において円形に形成された内周面20aと、内周面20aに隣接して内側空間22の外側に位置し、内周面20aの表側端縁から内側空間22の反対側に向けて広がる頂面20bと、頂面20bの外側端縁から基板10の表面10aに立ち下がり、平面視(図2参照)において矩形に形成された外周面20cと、を備えている。内周面20a及び外周面20cの形状は特に限定されるものではないが、発光装置1の照度向上の観点から、内周面20aは、基板10から離れるに従い拡径する円錐台形状(漏斗状)に形成することが好ましく、発光装置1の集積度向上の観点から、外周面20cは、基板10に対して垂直な四角形状に形成することが好ましい。なお、図面では、内周面20aの形成例として、基板10側に位置する下部分が基板10に対して垂直となっており、基板10の反対側に位置する上部分が基板10から離れるに従い拡径しているものを図示している。
 リフレクタ20は、白色顔料が含有された熱硬化性樹脂組成物の硬化物からなっている。熱硬化性樹脂組成物は、リフレクタ20の形成容易性の観点から、熱硬化前においては室温(25℃)で加圧成型可能なものが好ましい。
 熱硬化性樹脂組成物に含まれる熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、シアネート樹脂等種々のものを用いることができる。特に、エポキシ樹脂は、種々の材料に対する接着性が優れるため好ましい。
 白色顔料としては、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン又は酸化ジルコニウムを使用することができる。これらの中でも光反射性の点から酸化チタンが好ましい。白色顔料として無機中空粒子を使用してもよい。無機中空粒子の具体例として、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等が挙げられる。
 透明封止樹脂40は、リフレクタ20の内周面20aにより形成される内側空間22に充填されて、青色LED30を封止するものである。この透明封止樹脂40は、透光性を有する透明封止樹脂からなる。透明封止樹脂には、完全に透明な樹脂の他、半透明な樹脂も含まれる。透明封止樹脂としては、弾性率が室温(25℃)において1MPa以下のものが好ましい。特に、透明性の点からシリコーン樹脂又はアクリル樹脂を採用することが好ましい。透明封止樹脂は、光を拡散する無機充填材又は青色LED30から発せられる青色光を励起源として白色光とする蛍光体42を更に含有してもよい。
 そして、本実施形態に係る発光装置1は、銀めっき層16が銀硫化防止膜50により被覆されており、透明封止樹脂40とリフレクタ20とが接合されている。
 銀硫化防止膜50は、銀めっき層16を被覆することにより銀めっき層16の硫化を抑制するものであり、上述した本実施形態の銀硫化防止材から形成されている。銀硫化防止材が粘土としてモンモリロナイトと、極性基を有するバインダーとを含む場合には、図7に示すようにガスのパスルートが長くガスバリア性に優れる膜が形成され、更にこの膜は、粘土の表面に有する水酸基(-OH)がバインダーの極性基と水素結合してより強固なものとなる。これにより、粘土間の隙間を埋める効果、及び熱膨張によるクラックへの耐性が向上する効果が得られ、ガスバリア性に一層優れた銀硫化防止膜が得られる。
 銀硫化防止膜50の膜厚は、0.01μm以上1000μm以下であることが好ましく、0.05μm以上100μm以下であることがより好ましく、0.05μm以上10μm以下であることが更に好ましい。銀硫化防止膜50の膜厚を0.01μm以上1000μm以下とすることで、銀めっき層16に対するガスバリア性と銀硫化防止膜50の透明性とを両立させることができる。また、銀硫化防止膜50の膜厚を0.03μm以上500μm以下、0.05μm以上100μm以下、0.05μm以上10μm以下、0.05μm以上1μm以下とすることで、この効果を更に向上させることができる。
 また、銀硫化防止膜50は、本実施形態の銀硫化防止材から形成されていることにより、上記の膜厚においてもクラックが発生しにくい。
 膜厚の調整は、例えば、銀硫化防止材における溶媒の含有量を変更して粘土及びバインダーの濃度を適宜調整することにより行うことができる。また、銀硫化防止材の滴下量及び滴下回数によっても膜厚を調整することができる。
 次に、第1の実施形態に係る発光装置1の製造方法について説明する。
 図3は、第1の実施形態に係る発光装置の製造方法を示したフローチャートである。図3に示すように、発光装置の製造方法では、まず、基板準備工程(ステップS101)として、表面に銅めっき板14が配線された絶縁性の基体12を準備し、銀めっき層形成工程(ステップS102)として、銅めっき板14の表面に銀めっき層16を形成する。
 次に、リフレクタ形成工程(ステップS103)として、基板10の表面にリフレクタ20を形成し、チップ搭載工程(ステップS104)として、基板10に青色LED30を搭載する。青色LED30の基板10への搭載は、リフレクタ20で囲まれた内側空間22において、アノード側及びカソード側の何れか一方の銀めっき層16に青色LED30をダイボンディングすることにより行う。これにより、青色LED30がダイボンド材32を介してアノード側及びカソード側の何れか一方の銀めっき層16と導通されるとともに、青色LED30がリフレクタ20に取り囲まれて内側空間22に収容された状態となる。
 次に、銀硫化防止材の塗布工程(ステップS105)として、銀めっき層16に本実施形態の銀硫化防止材を塗布して銀めっき層16を銀硫化防止材で覆う。
 銀硫化防止材の塗布工程(ステップS105)における銀硫化防止材の塗布は、例えば、基板10の表面側から、銀硫化防止材を内側空間22に滴下又は散布することにより行う。このとき、少なくとも銀めっき層16の全てが銀硫化防止材Lで覆われるように、銀硫化防止材の滴下量又は散布量を調節する。この場合、例えば、図4の(a)に示すように、銀めっき層16及び青色LED30の全てが銀硫化防止材Lで覆われるように、銀硫化防止材Lを内側空間22に滴下又は散布してもよく、図4の(b)に示すように、銀めっき層16及び青色LED30の全てとリフレクタ20の内周面20aの一部とが銀硫化防止材Lで覆われるように、銀硫化防止材Lを内側空間22に滴下又は散布してもよい。
 次に、乾燥工程(ステップS106)として、銀めっき層16に塗布した銀硫化防止材の塗膜を乾燥させて銀硫化防止膜50を形成する。
 乾燥工程は、溶媒が揮発する温度で行うことができ、例えば、溶媒して水を用いる場合、30℃以上80℃以下の温度範囲とすることが好ましく、30℃以上70℃以下の温度範囲とすることがより好ましく、30℃以上60℃以下の温度範囲とすることがさらにより好ましい。この温度域を保つ時間は、例えば、1分以上とすることができ、優れた成膜性を得る観点から、5分以上1日以下とすることが好ましく、工程短時間化の観点から、5分以上30分以下とすることがより好ましい。
 また、溶媒が水とアルコールとを含む場合の乾燥工程は、例えば、30℃以上80℃以下の温度範囲とすることが好ましく、35℃以上80℃以下の温度範囲とすることがより好ましく、40℃以上80℃以下の温度範囲とすることがさらにより好ましい。この温度域を保つ時間は、例えば、1分以上とすることができ、優れた成膜性を得る観点から、5分以上30分以下とすることが好ましく、工程短時間化の観点から、5分以上15分以下とすることがより好ましい。
 このようにして乾燥工程を行うことで、図4の(a)に示した粘土希釈液Lは、図5の(a)に示すように、銀めっき層16及び青色LED30の全てを被覆する銀硫化防止膜50となり、図4の(b)に示した粘土希釈液Lは、図5の(b)に示すように、銀めっき層16及び青色LED30の全てとリフレクタ20の内周面20aの一部とを被覆する銀硫化防止膜50となる。
 本実施形態においては上記の乾燥工程の後に150℃、30分の条件で銀硫化防止膜50を十分に乾燥することが好ましい。これにより、粘土の層間を狭めることによる銀硫化防止性の更なる向上の効果を得ることができる。
 図3に示すように、乾燥工程(ステップS106)が終了すると、次に、ワイヤボンディング工程(ステップS107)として、青色LED30とアノード側及びカソード側の何れか他方の銀めっき層16とをワイヤボンディングする。このとき、青色LED30及び銀めっき層16に被覆されている銀硫化防止膜50を突き破るようにワイヤの両端を青色LED30と銀めっき層16とにボンディングすることで、青色LED30と銀めっき層16とを導通させる。なお、銀硫化防止膜50の突き破りは、例えば、銀硫化防止膜50の層厚を調節すること、ワイヤボンディングを行うボンディングヘッドの荷重を調節すること、又は、このボンディングヘッドを振動させることなどにより行うことができる。
 次に、透明封止樹脂充填工程(ステップS108)として、リフレクタ20の内周面20aにより形成される内側空間22に、蛍光体42が含有された透明封止樹脂40を充填する。これにより、青色LED30及び銀めっき層16が透明封止樹脂40(透明封止部)により封止される。
 このようにして透明封止樹脂充填工程を行うことで、図5の(a)に示した発光装置1は、図6の(a)に示すように、銀めっき層16及び青色LED30の全てが銀硫化防止膜50で被覆された状態で、銀めっき層16及び青色LED30が透明封止樹脂40により封止された発光装置1となり、図5の(b)に示した発光装置1は、図6の(b)に示すように、銀めっき層16及び青色LED30の全てとリフレクタ20の内周面20aの一部とが銀硫化防止膜50で被覆された状態で、銀めっき層16及び青色LED30が透明封止樹脂40により封止された発光装置1となる。
 このように、第1の実施形態に係る発光装置1の製造方法によれば、本実施形態の銀硫化防止材で銀めっき層16を覆ったのち、銀硫化防止材の塗膜を乾燥させることで、銀硫化防止材に含まれる粘土が積層した銀硫化防止膜50が形成され、銀めっき層16が銀硫化防止膜50で被覆される。これにより、銀めっき層16を適切に被覆できる銀硫化防止膜50を形成することができる。
 発光装置1に設けられたリフレクタ20の内側空間22に本実施形態の銀硫化防止材を滴下又は散布することで、容易に銀めっき層を覆う銀硫化防止膜を形成することができる。
 [第2の実施形態]
 次に第2の実施形態について説明する。第2の実施形態に係る発光装置の製造方法は、基本的に第1の実施形態に係る発光装置の製造方法と同様であるが、工程の順序のみ第1の実施形態に係る発光装置の製造方法と相違する。このため、以下の説明では、第1の実施形態に係る発光装置の製造方法と相違する部分のみを説明し、第1の実施形態に係る発光装置の製造方法と同様の部分の説明を省略する。
 図8は、第2の実施形態における発光装置の製造方法を示したフローチャートである。図9は、図8の製造方法により製造した発光装置の断面図である。
 図8に示すように、第2の実施形態に係る発光装置1の製造方法は、まず、第1の実施形態と同様に、基板準備工程(ステップS201)、銀めっき層形成工程(ステップS202)及びリフレクタ形成工程(ステップS203)をこの順序で行う。なお、基板準備工程(ステップS201)、銀めっき層形成工程(ステップS202)及びリフレクタ形成工程(ステップS203)は、第1の実施形態の基板準備工程(ステップS101)、銀めっき層形成工程(ステップS102)及びリフレクタ形成工程(ステップS103)と同様である。
 次に、銀硫化防止材の塗布工程(ステップS204)として、銀めっき層16に本実施形態の銀硫化防止材を塗布して銀めっき層16を銀硫化防止材で覆う。
 次に、乾燥工程(ステップS205)として、銀めっき層16に塗布した銀硫化防止材の塗膜を乾燥させて銀硫化防止膜50を形成する。なお、乾燥工程(ステップS205)は、第1の実施形態の乾燥工程(ステップS106)と同様に行うことができる。
 次に、チップ搭載工程(ステップS206)として、アノード側及びカソード側の何れか一方の銀めっき層16に青色LED30をダイボンディングする。このとき、第1の実施形態のワイヤボンディング工程(ステップS107)と同様に、銀めっき層16に被覆されている銀硫化防止膜50を突き破るように青色LED30を銀めっき層16にボンディングすることで、青色LED30と銀めっき層16とを導通させる。
 次に、ワイヤボンディング工程(ステップS207)として、青色LED30とアノード側及びカソード側の何れか他方の銀めっき層16とをワイヤボンディングする。このとき、銀めっき層16は銀硫化防止膜50で被覆されているため、第1の実施形態のワイヤボンディング工程(ステップS107)と同様に、銀めっき層16に被覆されている銀硫化防止膜50を突き破るようにワイヤの一端を銀めっき層16にボンディングする。一方、青色LED30は銀硫化防止膜50で被覆されていないため、ボンディングワイヤ34の他端は、通常通り青色LED30にボンディングすることができる。これにより、青色LED30と銀めっき層16とが導通される。
 次に、ステップS208として透明封止樹脂充填工程を行う。
 このように、第2の実施形態に係る発光装置の製造方法によれば、銀硫化防止材の塗布工程及び乾燥工程を経てからチップ搭載工程を行うことで、図9に示すように、青色LED30が銀硫化防止膜50で被覆されない発光装置1を製造することができる。これにより、ワイヤボンディング工程において、ボンディングワイヤ34の一端を青色LED30にボンディングする際に、第1の実施形態に係る発光装置の製造方法のように、銀硫化防止膜50を突き破る必要がなくなる。
 [第3の実施形態]
 次に第3の実施形態について説明する。第3の実施形態に係る発光装置の製造方法は、基本的に第1の実施形態に係る発光装置の製造方法と同様であるが、工程の順序のみ第1の実施形態に係る発光装置の製造方法と相違する。このため、以下の説明では、第1の実施形態に係る発光装置の製造方法と相違する部分のみを説明し、第1の実施形態に係る発光装置の製造方法と同様の部分の説明を省略する。
 図10は、第3の実施形態における発光装置の製造方法を示したフローチャートである。図11は、図10の製造方法により製造した発光装置の断面図である。
 図10に示すように、第3の実施形態に係る発光装置1の製造方法は、まず、第1の実施形態と同様に、基板準備工程(ステップS301)及び銀めっき層形成工程(ステップS302)をこの順序で行う。なお、基板準備工程(ステップS301)及び銀めっき層形成工程(ステップS302)は、第1の実施形態の基板準備工程(ステップS101)及び銀めっき層形成工程(ステップS102)と同様である。
 次に、銀硫化防止材の塗布工程(ステップS303)として、銀めっき層16に本実施形態の銀硫化防止材を塗布して銀めっき層16を銀硫化防止材で覆う。このとき、作業性の観点から、銀硫化防止材を銀めっき層16が形成されている基板10の表面全体に塗布することが好ましいが、銀めっき層16のみを覆うように銀硫化防止材を塗布してもよい。
 次に、乾燥工程(ステップS304)として、銀めっき層16に塗布した銀硫化防止材の塗膜を乾燥させて銀硫化防止膜50を形成する。なお、乾燥工程(ステップS304)は、第1の実施形態の乾燥工程(ステップS106)と同様に行うことができる。
 次に、リフレクタ形成工程(ステップS305)として、基板10の表面にリフレクタ20を形成する。このとき、銀硫化防止材の塗布工程(ステップS303)で基板10の表面全体に銀硫化防止材を塗布した場合は、基板10の表面を被覆している銀硫化防止膜50の表面にリフレクタ20を形成する。
 次に、チップ搭載工程(ステップS306)として、アノード側及びカソード側の何れか一方の銀めっき層16に青色LED30をダイボンディングする。このとき、第1の実施形態のワイヤボンディング工程(ステップS107)と同様に、銀めっき層16に被覆されている銀硫化防止膜50を突き破るように青色LED30を銀めっき層16にボンディングすることで、青色LED30と銀めっき層16とを導通させる。
 次に、ワイヤボンディング工程(ステップS307)として、青色LED30とアノード側及びカソード側の何れか他方の銀めっき層16とをワイヤボンディングする。このとき、銀めっき層16は銀硫化防止膜50で被覆されているため、第1の実施形態のワイヤボンディング工程(ステップS107)と同様に、銀めっき層16に被覆されている銀硫化防止膜50を突き破るようにワイヤの一端を銀めっき層16にボンディングする。一方、青色LED30は銀硫化防止膜50で被覆されていないため、ボンディングワイヤ34の他端は、通常通り青色LED30にボンディングすることができる。これにより、青色LED30と銀めっき層16とが導通される。
 次に、ステップS308として透明封止樹脂充填工程を行う。
 このように、第3の実施形態に係る発光装置の製造方法によれば、銀硫化防止材の塗布工程及び乾燥工程を経てからリフレクタ形成工程及びチップ搭載工程を行うことで、図11に示すように、青色LED30が銀硫化防止膜50で被覆されない発光装置1を製造することができる。これにより、ワイヤボンディング工程において、ボンディングワイヤ34の一端を青色LED30にボンディングする際に、第1の実施形態に係る発光装置の製造方法のように、銀硫化防止膜50を突き破る必要がなくなる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、上記実施形態では、銀硫化防止膜を形成した後にワイヤボンディングを行っているが、ワイヤボンディング後に本実施形態の銀硫化防止材の塗布及び乾燥を行って銀めっき層上に銀硫化防止膜を形成することができる。本実施形態の銀硫化防止材によれば、ワイヤボンディングのワイヤに銀硫化防止材の塗膜がカーテン状に付着して残留することを十分防止することができる。この場合、乾燥温度を40℃以下とすることが好ましく、25℃以下とすることがより好ましい。
 上記実施形態では、発光装置1にボンディングする発光ダイオードとして、青色の光を発生する青色LED30を採用するものとして説明したが、青色以外の光を発生する発光ダイオードを採用するものとしてもよい。
 また、上記実施形態の発光装置1は、青色LED30を取り囲むリフレクタ20を備えるものとして説明したが、このようなリフレクタ20を備えないものとしてもよい。
 本実施形態の銀硫化防止材によれば、銀の硫化防止性に優れた銀硫化防止膜を形成できることから、蛍光体として従来から使用されている、YS:Eu(赤)、ZnS:Cu(緑)、ZnS:Ag(青)、特開平8-085787号公報に示される化合物等の硫黄含有化合物が用いられた発光装置であっても十分な銀硫化防止性を得ることができる。
 本実施形態の銀硫化防止材は、上述した発光装置以外に、例えば、銀を含有するリードフレームを備えるLEDを搭載するプラズマディスプレイ、液晶ディスプレイ等にも適用することができる。
 以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<銀硫化防止材の調製>
(調製例1)
 容器内に、超純水55.1g及びクニピアF(クニミネ工業(株)製、製品名)の粉末0.16gを入れ、容器を手で振って撹拌した。この容器内にイソプロパノール36.74gを更に加えた後、自転・公転ミキサー(シンキー社製、ARE-310)を用いて2000rpmで20分混合し、次いで2200rpmで10分脱泡を行った。その後、バインダーとしてエスレックKX-1(積水化学工業株式会社製、製品名、アセタール化度が約8モル%であるブチラール樹脂の水/アルコール混合溶液、固形分8質量%)を8g入れ、再度、自転・公転ミキサー(シンキー社製、ARE-310)を用いて2000rpmで20分混合し、次いで2200rpmで10分脱泡を行い、粘土とバインダーとの混合液を銀硫化防止材として得た。
(調製例2)
 容器内に、超純水58.7g及びクニピアF(クニミネ工業(株)製、製品名)の粉末0.16gを入れ、容器を手で振って撹拌した。この容器内にイソプロパノール39.14gを更に加えた後、自転・公転ミキサーを用いて2000rpmで20分混合し、次いで2200rpmで10分脱泡を行った。その後、バインダーとしてエスレックKX-1を2g入れ、再度、自転・公転ミキサーを用いて2000rpmで20分混合し、次いで2200rpmで10分脱泡を行い、粘土とバインダーの混合液を銀硫化防止材として得た。
(調製例3)
 容器内に、超純水58.81g及びクニピアF(クニミネ工業(株)製、製品名)の粉末0.16gを入れ、容器を手で振って撹拌した。この容器内にイソプロパノール39.2gを更に加えた後、自転・公転ミキサーを用いて2000rpmで20分混合し、次いで2200rpmで10分脱泡を行った。その後、バインダーとしてスーパーフレックス130(第一工業製薬株式会社製、製品名、自己乳化型の水分散ポリエーテル系ポリウレタンエマルジョン、固形分35質量%)を1.83g入れ、再度、自転・公転ミキサーを用いて2000rpmで20分混合し、次いで2200rpmで10分脱泡を行い、粘土とバインダーの混合液を銀硫化防止材として得た。
(比較調製例1)
 セパラブルフラスコ内に、超純水99g及びバインダーとしてカルボキシメチルセルロース(和光純薬製、製品名)を1g入れ、撹拌プロペラをセットし、セパラブルフラスコを70℃のウォーターバス中に入れ、撹拌速度200rpmで撹拌しながら、30分加熱混合し、バインダーの水溶液を得た。
<耐クラック性、銀硫化防止性、耐黄変性の評価>
 上記で作製した銀硫化防止材について、以下の方法に従って耐クラック性、銀硫化防止性及び耐黄変性をそれぞれ評価した。
[耐クラック性の評価]
 銅板上に銀めっき層が設けられたLED用リードフレームである「TOP LED OP4」(エノモト(株)製)に、マイクロピペッターで銀硫化防止材を3μL滴下した。恒温槽内に銀硫化防止材を滴下したリードフレームを入れ、50℃で10分乾燥した。乾燥後、恒温槽の温度を150℃に上げて30分間加熱し、試験サンプルを得た。乾燥後の膜厚を表1に示す。
 試験サンプルを電子顕微鏡で観察し、膜上の割れの有無を評価した。割れがあった場合を「○」、割れがなかった場合を「×」とした。
[耐黄変性の評価]
 耐クラック性の評価と同様にして試験サンプルを得た。
 試験サンプルを拡大鏡で観察し、黄変があった場合を「○」、黄変がなかった場合を「×」とした。
[銀硫化防止性の評価]
 耐クラック性の評価と同様にして試験サンプルを得た。
 密閉可能なガラス瓶内に、硫黄粉末(0.5g)を入れたアルミ製カップを置き、このカップの上にステンレス製の金網を載せた。次に、試験サンプルを、金網の上に銀硫化防止材を滴下した側を上にしてサンプル同士が重ならないようにして置いた。ガラス瓶を密閉した後、100℃で2時間保存した。ガラス瓶から試験サンプルを取り出し、硫化防止性を光学顕微鏡で観察し、試験前後で銀めっき面の変色が全くない場合を「○」、硫化により銀めっき面が一部変色した場合を「△」、全部変色した場合を「×」とした。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、粘土及びバインダーを含有する調製例1~3の銀硫化防止材は、十分な耐クラック性及び耐黄変性と、優れた銀硫化防止性とを両立する膜を形成できることが確認された。
 1…発光装置、10…基板、10a…基板の表面、12…基体、14…銅めっき板、16…銀めっき層、20…リフレクタ(光反射部)、20a…内周面、20b…頂面、20c…外周面、22…内側空間、30…青色LED(青色発光ダイオード)、32…ダイボンド材、34…ボンディングワイヤ、40…透明封止樹脂(透明封止部)、42…蛍光体、50…銀硫化防止膜、L…銀硫化防止材。

Claims (11)

  1.  粘土と、バインダーと、を含有する、銀硫化防止材。
  2.  前記粘土と前記バインダーとの質量比が75/25~5/95である、請求項1に記載の銀硫化防止材。
  3.  前記バインダーとして、水性バインダーを含む、請求項1又は2に記載の銀硫化防止材。
  4.  前記粘土及び前記バインダーの合計含有量が、銀硫化防止材の固形分全量を基準として80質量%以上である、請求項1~3のいずれか一項に記載の銀硫化防止材。
  5.  銀が含まれる金属層の表面に、請求項1~4のいずれか一項に記載の銀硫化防止材を塗布して前記銀硫化防止材の塗膜を形成する塗布工程と、
     前記塗膜を乾燥する乾燥工程と、
    を備える、銀硫化防止膜の形成方法。
  6.  前記金属層が銀めっき層である、請求項5に記載の銀硫化防止膜の形成方法。
  7.  銀めっき層を有する基板と、前記基板上に搭載された発光素子と、を備える、発光装置の製造方法であって、
     前記銀めっき層の表面に、請求項1~4のいずれか一項に記載の銀硫化防止材を塗布して前記銀硫化防止材の塗膜を形成する塗布工程と、
     前記塗膜を乾燥する乾燥工程と、
    を備える、発光装置の製造方法。
  8.  銀めっき層を有する基板と、前記基板上に搭載された発光素子と、前記銀めっき層の表面に設けられた銀硫化防止膜と、を備え、
     前記銀硫化防止膜が、粘土と、バインダーと、を含有する、発光装置。
  9.  前記銀硫化防止膜における前記粘土と前記バインダーとの質量比が75/25~5/95である、請求項8に記載の発光装置。
  10.  前記銀硫化防止膜が前記バインダーとして水性バインダーを含む、請求項8又は9に記載の発光装置。
  11.  前記銀硫化防止膜における前記粘土及び前記バインダーの合計濃度が80質量%以上である、請求項8~10のいずれか一項に記載の発光装置。
PCT/JP2013/069402 2012-07-20 2013-07-17 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置 WO2014014025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/415,815 US20150175811A1 (en) 2012-07-20 2013-07-17 Silver-sulfidation-preventing material and method for forming silver-sulfidation-preventing film, and method for producing light-emitting device and light-emitting device
CN201380038664.0A CN104508184A (zh) 2012-07-20 2013-07-17 银硫化防止材料、银硫化防止膜的形成方法、发光装置的制造方法及发光装置
JP2014525846A JP5954416B2 (ja) 2012-07-20 2013-07-17 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
KR1020157003746A KR101690627B1 (ko) 2012-07-20 2013-07-17 은 황화 방지재, 은 황화 방지막의 형성 방법, 발광 장치의 제조 방법 및 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012161799 2012-07-20
JP2012-161799 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014014025A1 true WO2014014025A1 (ja) 2014-01-23

Family

ID=49948849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069402 WO2014014025A1 (ja) 2012-07-20 2013-07-17 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置

Country Status (6)

Country Link
US (1) US20150175811A1 (ja)
JP (1) JP5954416B2 (ja)
KR (1) KR101690627B1 (ja)
CN (1) CN104508184A (ja)
TW (1) TW201408758A (ja)
WO (1) WO2014014025A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763404B2 (en) 2015-10-05 2020-09-01 Maven Optronics Co., Ltd. Light emitting device with beveled reflector and manufacturing method of the same
TWI677114B (zh) * 2015-10-05 2019-11-11 行家光電股份有限公司 具導角反射結構的發光裝置
US10546979B2 (en) 2017-05-31 2020-01-28 Innolux Corporation Display device and lighting apparatus
US10497842B2 (en) 2017-05-31 2019-12-03 Innolux Corporation Display device and lighting apparatus
US20200105990A1 (en) * 2018-09-27 2020-04-02 Wuhan China Star Optoelectronics Technology Co., Ltd. Surface light source, method for manufacturing the same, and display device using the surface light source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178961A (ja) * 1987-01-21 1988-07-23 日本紙業株式会社 包装原紙
WO2002014458A1 (fr) * 2000-08-11 2002-02-21 Nihon Parkerizing Co., Ltd. Composition aqueuse permettant la formation d'une pellicule protectrice
JP2007238744A (ja) * 2006-03-08 2007-09-20 Kyocera Chemical Corp 耐熱性エポキシ樹脂組成物及び発光ダイオード部品
JP2008244260A (ja) * 2007-03-28 2008-10-09 Toyoda Gosei Co Ltd 発光装置
WO2011132419A1 (ja) * 2010-04-22 2011-10-27 日本化薬株式会社 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513815B2 (en) * 1999-12-23 2009-04-07 General Electric Company Optimal silicon dioxide protection layer thickness for silver lamp reflector
JP4695512B2 (ja) * 2003-06-05 2011-06-08 株式会社カネカ ホスファゼン化合物、及び感光性樹脂組成物並びにその利用
CN1227974C (zh) * 2003-06-19 2005-11-23 上海交通大学 具有杀菌消毒功能的载银泡沫金属的制备方法
JP5201981B2 (ja) * 2007-12-27 2013-06-05 太陽誘電株式会社 情報記録媒体
JP2009239116A (ja) 2008-03-27 2009-10-15 Sharp Corp 発光装置
CN101672460A (zh) * 2008-09-12 2010-03-17 鈤新科技股份有限公司 Led基板散热结构及包括该结构的led灯管
JP5348764B2 (ja) * 2009-07-07 2013-11-20 日本化薬株式会社 光半導体封止用硬化性樹脂組成物、及びその硬化物
US20110027576A1 (en) * 2009-07-28 2011-02-03 General Electric Company Sealing of pinholes in electroless metal coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178961A (ja) * 1987-01-21 1988-07-23 日本紙業株式会社 包装原紙
WO2002014458A1 (fr) * 2000-08-11 2002-02-21 Nihon Parkerizing Co., Ltd. Composition aqueuse permettant la formation d'une pellicule protectrice
JP2007238744A (ja) * 2006-03-08 2007-09-20 Kyocera Chemical Corp 耐熱性エポキシ樹脂組成物及び発光ダイオード部品
JP2008244260A (ja) * 2007-03-28 2008-10-09 Toyoda Gosei Co Ltd 発光装置
WO2011132419A1 (ja) * 2010-04-22 2011-10-27 日本化薬株式会社 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード

Also Published As

Publication number Publication date
KR20150036568A (ko) 2015-04-07
CN104508184A (zh) 2015-04-08
JP5954416B2 (ja) 2016-07-20
TW201408758A (zh) 2014-03-01
US20150175811A1 (en) 2015-06-25
JPWO2014014025A1 (ja) 2016-07-07
KR101690627B1 (ko) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5637322B2 (ja) 銀の表面処理剤及び発光装置
JP5954416B2 (ja) 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
TW201017933A (en) Light-emitting device
JP2011192959A (ja) 発光素子搭載用基板および発光装置
WO2010150830A1 (ja) 発光装置
JP6144001B2 (ja) 銀及び銀合金の表面処理剤、光反射膜付き基板並びに発光装置
WO2015087970A1 (ja) 光半導体装置及びその製造方法、並びに銀用表面処理剤及び発光装置
WO2014021354A1 (ja) 発光装置
JP6051820B2 (ja) 銀硫化防止材、銀硫化防止膜の形成方法及び発光装置の製造方法
JP6079025B2 (ja) 銀変色防止材、銀変色防止膜の形成方法、発光装置の製造方法及び発光装置
JP5939045B2 (ja) 銀硫化防止材、銀硫化防止膜の形成方法及び発光装置の製造方法
JP5939044B2 (ja) 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
JP6269284B2 (ja) 銀用表面処理剤及び発光装置
JPWO2014020897A1 (ja) 波長変換粒子、波長変換部材及び発光装置
JP6203479B2 (ja) 光半導体装置、その製造方法、その製造に用いる基体およびリフレクタ成型体
JP6085991B2 (ja) 銀又は銀合金の表面処理剤、光反射基板、発光装置及び発光装置の製造方法
JP6098215B2 (ja) 銀又は銀合金の表面処理剤、光反射基板、発光装置及び発光装置の製造方法
JP2015207634A (ja) 発光装置
CN201146194Y (zh) 可过滤紫外线波段的发光二极管
JP5949184B2 (ja) 光半導体装置の製造方法
JP2017022229A (ja) 光半導体装置
JP2011176032A (ja) 発光素子搭載用基板およびこの基板を用いた発光装置
JP2011192981A (ja) 発光素子搭載基板およびこの基板を用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14415815

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157003746

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13819281

Country of ref document: EP

Kind code of ref document: A1