WO2014013707A1 - 溶銑予備処理方法及び溶銑予備処理用攪拌体 - Google Patents

溶銑予備処理方法及び溶銑予備処理用攪拌体 Download PDF

Info

Publication number
WO2014013707A1
WO2014013707A1 PCT/JP2013/004306 JP2013004306W WO2014013707A1 WO 2014013707 A1 WO2014013707 A1 WO 2014013707A1 JP 2013004306 W JP2013004306 W JP 2013004306W WO 2014013707 A1 WO2014013707 A1 WO 2014013707A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
hot metal
rotating shaft
stirring
molten iron
Prior art date
Application number
PCT/JP2013/004306
Other languages
English (en)
French (fr)
Inventor
雄亮 石垣
西名 慶晃
亮治 橋谷
菊池 直樹
章敏 松井
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201380037805.7A priority Critical patent/CN104471082B/zh
Priority to BR112015001168-3A priority patent/BR112015001168B1/pt
Priority to IN11261DEN2014 priority patent/IN2014DN11261A/en
Priority to KR1020157000220A priority patent/KR101662017B1/ko
Priority to JP2013557694A priority patent/JP5505580B1/ja
Publication of WO2014013707A1 publication Critical patent/WO2014013707A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/06Constructional features of mixers for pig-iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0083Means for stirring the charge

Definitions

  • the present invention relates to a hot metal pretreatment method and a hot metal pretreatment stirrer.
  • an additive for removing impurities by reacting with impurities (refining agent)
  • the hot metal is agitated and mixed to promote the reaction between the additive and impurities. This is because the refining reaction takes place at the interface between the hot metal and the additive, so that the additive is involved in the hot metal by stirring the hot metal, thereby increasing the reaction interface area between the hot metal and the additive.
  • the additive generally floats on the surface of the hot metal simply by adding a smaller specific gravity than the hot metal. Therefore, it is necessary to stir the hot metal in order to react the hot metal with the additive.
  • a gas blowing stirring method (gas-bubbling method) performed by blowing gas into the hot metal
  • a mechanical stirring method for mechanically stirring the hot metal by immersing a rotating stirrer such as an impeller in the hot metal stirrer method
  • the mechanical agitation method is more efficient in refining reaction because it is easy to repeat the additive that floated on the hot metal surface after being entrained in the hot metal surface. Can be advanced. Therefore, at present, the mechanical stirring method is mainstream.
  • an impeller also called “rotary blade”
  • a mechanical stirring type desulfurization method in which a desulfurizing agent is added to the hot metal in the smelting vessel to desulfurize the hot metal is widely performed.
  • Patent Document 2 discloses a stirring device that supports the lifting mechanism of the impeller using a spring.
  • this stirring device it is possible to suppress a certain level of vibration with a spring.
  • the centrifugal force due to mass imbalance and the stirring reaction force from the hot metal increase, and therefore the vibration increases rapidly.
  • the force that can be supported by the spring is limited. Therefore, it is difficult to suppress vibration during high-speed rotation even with this stirring device.
  • the rotation speed of the impeller is It cannot be raised above a certain level.
  • the present invention has been made in view of the above circumstances.
  • the object of the present invention is to rotate the impeller in order to improve the reaction efficiency in the hot metal preliminary treatment performed while stirring the hot metal by rotating the impeller immersed in the hot metal using the stirring body composed of the rotating shaft and the impeller. It is to provide a hot metal preliminary treatment method that can reduce the vibration of the stirring device even if the speed is increased.
  • Another object of the present invention is an agitator comprising a rotating shaft and an impeller attached to the tip of the rotating shaft, and an agitator for hot metal pretreatment capable of reducing vibration of the agitator even when rotated at a high speed. Is to provide.
  • the present inventors have intensively studied to solve the above problems.
  • the resonance frequency of the primary bending of the rotating shaft is larger than the rotating frequency of the impeller that stirs the molten iron (the value obtained by dividing the number of revolutions of the impeller by 60).
  • the vibration of the stirring device does not increase even when the rotational speed of the impeller is increased, and the molten iron can be stirred more strongly.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the impeller attached to the tip of the rotating shaft is immersed in the hot metal in the refining vessel, and the hot metal and the additive are stirred by rotating the impeller soaked,
  • the hot metal preliminary treatment method in which the resonance frequency of the primary bending of the rotating shaft is larger than the rotational frequency of the impeller for stirring the hot metal.
  • the resonance frequency of the primary bending of the rotary shaft is higher than the rotational frequency of the impeller that stirs the hot metal. Since a large stirrer is used, an increase in vibration due to resonance of the stirrer can be avoided, so that the stirrer can be rotated at high speed. Thereby, it is realized that the additive supplied to the hot metal is efficiently dispersed in the hot metal, and the hot metal is stirred with a higher reaction efficiency than in the past. As a result, for example, in the case of desulfurization treatment of hot metal, reduction of the desulfurizing agent basic unit and reduction of the amount of generated slag associated therewith are achieved, and an industrially beneficial effect is brought about.
  • FIG. 1 is a schematic view when hot metal is pretreated while stirring the hot metal using the stirrer according to the present invention.
  • FIG. 2 is a schematic cross-sectional view when the stirring body shown in FIG. 1 is cut along a plane passing through the center line of the rotation axis.
  • FIG. 3 is a schematic cross-sectional view of another example when the stirrer shown in FIG. 1 is cut along a plane passing through the center line of the rotation axis.
  • 4 is a schematic cross-sectional view taken along arrow X-X ′ shown in FIG.
  • FIG. 5 is a schematic view showing an example of a refining vessel in which the bottom refractory is inclined and the inner shape of the bottom is non-axisymmetric with respect to the central axis of the refining vessel.
  • FIG. 6 is a diagram showing the relationship between the rotation frequency and the vibration acceleration with respect to the rotation frequency in a normal pan and an inclined pan.
  • FIG. 1 is a schematic view showing an example in which hot metal is pretreated while the hot metal is stirred by applying the present invention.
  • a stirrer 1 for hot metal preliminary treatment comprises a metal rotating shaft 2 and an impeller 3 that is attached to the tip of the rotating shaft 2 and that projects in the radial direction of the rotating shaft 2.
  • a flange 2 a is installed at the upper end of the rotating shaft 2.
  • the flange 2a is connected to a rotating device (not shown) including an electric motor, a speed reducer, a turning shaft, and the like. By driving this rotating device, the rotating shaft 2 and the impeller 3 rotate at an arbitrary number of rotations.
  • the rotating shaft 2 and the impeller 3 are lowered together with the rotating device, and the impeller 3 is immersed in the hot metal 5 accommodated in the refining vessel 4 from above.
  • the impeller 3 is rotated via the rotation shaft 2.
  • the hot metal 5 is stirred.
  • additive 6 desulfurizing agent in this case supplied on the bath surface of hot metal 5 and hot metal 5 are stirred and mixed, reaction of sulfur in hot metal and additive 6 proceeds, and hot metal 5 Is subjected to desulfurization treatment.
  • FIG. 2 and 3 are schematic cross-sectional views when the stirrer 1 shown in FIG. 1 is cut along a plane passing through the center line of the rotating shaft 2.
  • 4 is a schematic cross-sectional view taken along arrow X-X ′ shown in FIG.
  • FIG. 2 shows a case where the rotating shaft 2 is a solid cylinder
  • FIG. 3 shows a case where the rotating shaft 2 is a hollow circular tube.
  • a plurality of metal plates 3 a serving as a core metal of a stirring blade of the impeller 3 are connected to the lower end portion of the metal rotating shaft 2 by welding or the like.
  • An impeller 3 is formed by covering the periphery of the metal plate 3a with a refractory 7.
  • the rotating shaft 2 is also covered with a refractory 7.
  • the hot metal 5 is hot, and the impeller 3 when immersed in the hot metal 5 is protected by the refractory 7.
  • the reason why the rotary shaft 2 is covered with the refractory 7 is to protect the rotary shaft 2 from the heat of the hot metal 5.
  • the refractory 7 for example, Al 2 O 3 , MgO, SiO 2 and compounds or mixtures thereof are used.
  • the rotating shaft 2 and the metal plate 3a may be made of steel.
  • the impeller 3 has four stirring blades, but any number of stirring blades may be used as long as there are two or more stirring blades.
  • the rotating shaft 2 is designed so that the resonance frequency of the primary bending of the rotating shaft 2 is higher than the rotating frequency of the impeller 3 (the value obtained by dividing the number of rotations by 60). As a result, high-speed rotation at a predetermined rotation speed is possible without generating large vibrations, and an effective stirring effect can be obtained.
  • the resonance frequency of the primary bending indicates the primary resonance frequency in the frequency response of the rotating shaft 2.
  • the following method is used to control the resonance frequency of the primary bending of the rotating shaft 2 to be higher than the rotation frequency of the impeller 3.
  • the resonance frequency f of the primary bending of the rotating shaft 2 can be expressed by the following equation (1).
  • E is the Young's modulus (Pa) of the rotating shaft 2
  • is the density (kg / m 3 ) of the rotating shaft 2
  • L is the length (m) of the rotating shaft 2
  • I is the rotating shaft 2.
  • A is the cross-sectional area (m 2 ) of the rotating shaft 2.
  • M is a concentrated mass (kg) acting on the tip of the rotary shaft 2 and is the total mass of the refractory and the metal or slag adhering during stirring.
  • the rotating shaft 2 to be used is a solid cylinder
  • the cross-sectional secondary moment I of the rotating shaft 2 is obtained using the equation (2).
  • the rotary shaft 2 to be used is a hollow circular tube
  • the secondary moment I of the cross section of the rotary shaft 2 is obtained using the equation (3), and the calculated secondary moment I of the cross section is substituted into the equation (1) for rotation.
  • the resonance frequency f of the primary bending of the shaft 2 is obtained.
  • the rotating shaft 2 is designed so that the resonance frequency f of the primary bending obtained by the equation (1) is higher than the rotating frequency of the impeller 3.
  • the rotation of the impeller 3 is performed so that the rotation speed of the impeller 3 is smaller than the resonance frequency f of the primary bending of the rotation shaft 2 obtained by the equation (1). Vibration can be suppressed by adjusting the number.
  • the vibration of the stirring body 1 during the hot metal pretreatment is surely suppressed. It becomes possible.
  • the vibration acceleration of the rotating shaft 2 increases as the rotation frequency increases, and becomes maximum at the resonance point.
  • the resonance frequency f of the primary bending of the rotating shaft 2 is set to 1.2 times or more the rotation frequency of the impeller 3. do it.
  • the vibration acceleration at the rotation frequency at 1.2 times or less of the resonance frequency is 1/8 or less of the vibration acceleration at the resonance frequency, and is at a level that causes no problem in operation.
  • the rotation speed of the impeller 3 is less than 100 rpm, the stirring intensity is weak and the desired reaction efficiency cannot be obtained. This is because when the rotational speed of the impeller 3 exceeds 200 rpm, the reaction efficiency is saturated and not only the effect of increasing the reaction efficiency is small, but also the disadvantages due to the increase in load power increase.
  • the present inventors have examined what difference occurs in the vibration of the stirrer 1 depending on whether the rotating shaft 2 is formed of a solid cylinder or a hollow circular tube.
  • the cross-sectional area A of the rotating shaft 2 in the equation (1) is expressed by the following equation (4).
  • the resonance phenomenon of the rotating shaft 2 can be easily prevented when the rotating shaft 2 is formed of a hollow circular tube.
  • the resonance frequency f of the primary bending of the rotating shaft 2 can be increased by about 20% or more compared to the solid structure, and an efficient stirring effect can be obtained.
  • L is usually from 2 m to 7 m, more preferably from 4 m to 7 m.
  • the hot metal preliminary treatment targeted in the present invention is desiliconization and dephosphorization in addition to the above desulfurization treatment.
  • the desiliconization process means that iron oxide is added to the hot metal 5 in the smelting vessel, or oxygen gas is blown, or both are used together, and the hot metal is made of oxygen in the iron oxide or oxygen in the oxygen gas. It is a refining process that removes oxidized silicon. If silicon is present in the hot metal, the dephosphorization reaction of the hot metal is impaired. Therefore, in order to efficiently perform the dephosphorization process, the desiliconization process is performed at a stage prior to the dephosphorization process.
  • the desiliconization treatment may be performed by adding a CaO-based solvent to the hot metal container in order to dilute the generated silicon oxide (SiO 2 ).
  • the dephosphorization treatment means that iron oxide is added to the hot metal 5 in the smelting vessel, or oxygen gas is blown, or both are used in combination with oxygen in the iron oxide or oxygen in the oxygen gas.
  • the phosphorous oxide (P 2 O 5 ) produced by oxidizing the phosphorus is fixed with a CaO-based medium solvent added to the refining vessel to remove phosphorus in the hot metal.
  • the impeller 3 immersed in the molten iron 5 is rotated to stir the molten iron 5 to promote the reaction between the added iron oxide or oxygen gas and the molten iron.
  • FIG. 5 is a schematic view showing an example of a refining vessel in which the bottom refractory surface is inclined by an angle ⁇ with respect to the bottom surface of the refining vessel 4A. That is, FIG. 5 shows an example of a refining vessel in which the inner shape of the bottom portion is inclined.
  • the angle ⁇ is in the range of 0 ° to 10 °, more preferably 2 ° to 7 °. Further, the inclination may not be uniform.
  • the vortex generated by the rotation of the impeller 3 is eccentrically disturbed by using the refining vessel 4A whose inner shape at the bottom is inclined as shown in FIG.
  • the stirring of the hot metal 5 is strengthened, the stirring / mixing of the additive 6 such as a desulfurizing agent added on the hot metal and the hot metal 5 is improved, and the dispersion of the additive 6 in the hot metal is promoted, resulting in a high reaction.
  • Pretreatment with efficiency (desulfurization rate or dephosphorization rate) is realized.
  • the resonance frequency f of the primary bending of the rotary shaft 2 is increased.
  • the stirring body 1 that is larger than the rotational frequency of the impeller 3 that stirs the molten iron 5 is used. Therefore, since the increase in the vibration by the resonance of the stirring body 1 can be avoided, the stirring body 1 can be rotated at high speed. As a result, it is possible to efficiently disperse the additive 6 added to the hot metal 5 in the hot metal, and to achieve a stirring treatment of the hot metal with higher reaction efficiency than in the past.
  • the hot metal desulfurization process was performed using the equipment shown in FIG.
  • the rotation speed of the impeller is 110 rpm (rotation frequency 1.8 Hz) and the rotation axis is a solid cylinder, in order to make the resonance frequency f of the primary bending of the rotation axis larger than the rotation frequency of the impeller
  • the degree to which the outer diameter d 0 of the rotating shaft should be made was examined using the equations (1) and (2).
  • the Young's modulus E of the rotating shaft made of carbon steel is 2.1 ⁇ 10 11 Pa
  • the rotating shaft density ⁇ is 7800 kg / m 3
  • the rotating shaft length L is 6.3 m, and it acts on the tip of the rotating shaft.
  • the concentrated mass M to be set was 8000 kg.
  • the outer diameter of the rotating shaft may be set to 0.343 m or more. all right. Therefore, a hot metal desulfurization process was performed using an agitator having a resonance frequency of 2.2 Hz and an outer diameter of the rotating shaft of 0.343 m and an impeller rotating speed of 110 rpm (Invention Example 1).
  • the condition for the resonance frequency f of the primary bending of the rotating shaft to be larger than 1.2 times the rotating frequency of the impeller when the rotating shaft is constituted by a hollow circular pipe is: This was investigated using the formulas (1) and (3).
  • the Young's modulus E of the rotating shaft, the density ⁇ of the rotating shaft, the length L of the rotating shaft, and the concentrated mass M acting on the tip of the rotating shaft were the same as described above.
  • the rotational speed of the impeller was set to 110 rpm (rotational frequency 1.8 Hz) as in the first example of the present invention.
  • the resonance frequency f of the primary bending of the rotating shaft becomes 2.2 Hz or more by setting the outer diameter d 1 of the rotating shaft made of carbon steel pipe to 0.350 m or more and the inner diameter d 2 to 0.200 m.
  • desulfurization treatment of the hot metal was performed using a stirrer having a resonance frequency of 2.2 Hz, an outer diameter d 1 of the rotating shaft of 0.350 m, and an inner diameter d 2 of 0.200 m (example of the present invention). 2).
  • this desulfurization treatment it was possible to avoid a vibration increase due to a resonance phenomenon and stably stir at an impeller rotation number of 110 rpm.
  • Example 1 and Invention Example 2 have the same rotational speed of the impeller during desulfurization.
  • the masses of the rotating shafts of Invention Example 1 and Invention Example 2 are 4512 kg and 3164 kg, respectively.
  • the mass of the stirrer could be reduced by about 30% compared to Example 1 of the present invention by making the rotating shaft have a hollow structure.
  • the rotating shaft can be reduced in weight compared to a solid structure, so that the load on the motor can be reduced and equipment can be realized at lower cost.
  • the hot metal desulfurization treatment was performed under various conditions by applying the present invention.
  • the resonance frequency f of the primary bending of the rotating shaft of the solid structure made of carbon steel having an outer diameter of 0.300 m and a length of 4.5 m was calculated using the equations (1) and (2).
  • the Young's modulus E of the rotating shaft made of carbon steel was 2.1 ⁇ 10 11 Pa
  • the density ⁇ of the rotating shaft was 7800 kg / m 3
  • the concentrated mass M acting on the tip of the rotating shaft was 7650 kg.
  • the rotating shaft was changed to a rotating shaft made of carbon steel pipe.
  • the rotation shaft has an outer diameter d 1 of 0.346 m, an inner diameter d 2 of 0.173 m, and a length of 4.3 so that the mass of the rotation shaft is equivalent to that of the rotation shaft used in Example 3 of the present invention.
  • a 5 m hollow structure was adopted.
  • the resonance frequency f of the primary bending of the rotating shaft was 3.7 Hz.
  • the resonance frequency f could be increased 1.3 times without changing the mass of the rotating shaft.
  • the resonance frequency f 3.7 Hz of this rotating shaft corresponds to 222 rpm when converted to the rotation speed of the impeller. Therefore, the hot metal in the hot metal ladle was desulfurized by setting 185 rpm to the upper limit of the rotational speed of the impeller so that the resonance frequency f of the primary bending of the rotating shaft was 1.2 times or more of the rotational frequency of the impeller (Example 4 of the present invention). . As a result, it was possible to rotate 1.3 times faster than Example 3 of the present invention, an effective stirring effect was obtained, and the desulfurization speed and desulfurization rate were improved.
  • tilt pan The refining vessel shown in FIG. 5 (hereinafter referred to as “tilting pan”) having a bottom inclined as a refining vessel and having an angle ⁇ of 5 ° is used as the refining vessel using the stirring body used in Example 3 of the present invention.
  • the hot metal was subjected to desulfurization treatment (Invention Example 5).
  • FIG. 6 is a diagram showing the relationship between the rotation frequency of the rotating shaft and the resonance acceleration with respect to the frequency of the normal pan and the tilt pan.
  • the solid line shows the relationship between the rotation frequency in the case of a normal pan and the resonance acceleration with respect to the frequency
  • the dotted line shows the relationship between the rotation frequency and the resonance acceleration with respect to the frequency in the case of an inclined pan with an angle ⁇ of 5 °. This relationship does not change whether it is a solid rotating shaft or a hollow rotating shaft.
  • FIG. 6 shows the case where the resonance frequency is 2.9 Hz. However, even when the resonance frequency is changed, only the frequency at which the vibration acceleration is maximized is changed while maintaining the shape of the entire frequency response.
  • the vibration acceleration of the stirrer in the tilting pan is usually based on FIG. 6 when the pan is used.
  • the impeller was operated at a rotational speed of 125 rpm which was equivalent to the vibration acceleration at a rotational speed of 145 rpm.
  • Example 5 of the present invention an improvement in the desulfurization reaction efficiency can be expected due to the effect of the tilting pan, while the stirring body using a solid rotating shaft increases vibration, and it is difficult to increase the rotation speed of the impeller.
  • the effect of the tilting pan could not be fully enjoyed.
  • Example 6 of the present invention an inclined pan is used, and for the purpose of increasing the number of rotations of the impeller, the stirring body having the rotating shaft of the hollow structure used in Example 4 of the present invention is used. Hot metal desulfurization treatment was performed.
  • the resonance frequency f of the primary bending of the rotating shaft of the hollow structure having the outer diameter d 1 of 0.346 m, the inner diameter d 2 of 0.173 m, and the length of 4.5 m used in Example 4 of the present invention. Is 3.7 Hz.
  • the impeller can be rotated at a high speed 1.3 times compared to Example 5 of the present invention, and an effective stirring effect can be obtained. And the desulfurization rate could be greatly improved.
  • this invention is not limited to an Example, For example, it can use not only for a desulfurization process but for a dephosphorization and a denitrification process. It goes without saying that the resonance frequency is not limited to the embodiment, and can be appropriately set according to the stirring equipment.
  • the shape of the refining vessel has been described as an example in which the bottom surface is horizontal as shown in FIG. 1 and the bottom surface is inclined as shown in FIG.
  • the shape of the smelting vessel is not limited to the above example.
  • the bottom surface of the refining vessel may be formed in a spherical shape.
  • the bottom surface of the smelting vessel may be formed by combining two or more of a horizontal portion, an inclined portion, and a spherical portion.
  • the bottom surface of the refining vessel may be formed in a convex shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 回転軸とインペラとからなる攪拌体を用い、溶銑中に浸漬させたインペラを回転させることによって溶銑を攪拌しながら行う溶銑予備処理において、反応効率を向上させるべくインペラの回転数を高速化しても、攪拌装置の振動を少なくする。本発明に係る溶銑予備処理方法は、回転軸(2)の先端部に取り付けられたインペラ(3)を精錬容器(4)内の溶銑(5)に浸漬させ、浸漬させたインペラを回転させることによって溶銑と添加剤(6)とを攪拌して行う溶銑予備処理方法であって、回転軸の1次曲げの共振周波数を、溶銑を攪拌するインペラの回転周波数よりも大きくして攪拌する。

Description

溶銑予備処理方法及び溶銑予備処理用攪拌体
 本発明は、溶銑予備処理方法及び溶銑予備処理用攪拌体に関する。
 従来、溶銑中の不純物を除去する精錬(「溶銑予備処理(molten iron preliminary treatment)」という)では、不純物と反応して不純物を除去するための添加剤(精錬剤(a refining agent))を溶銑に添加し、この溶銑を攪拌(agitate)・混合して添加剤と不純物との反応を促進させている。これは、精錬反応は溶銑と添加剤との界面で起こるので、溶銑を攪拌することによって添加剤を溶銑中に巻き込ませ、溶銑と添加剤との反応界面積を増大させるためである。添加剤は、一般的に溶銑に比べて比重が小さく添加しただけでは溶銑の表面に浮いてしまう。したがって、溶銑と添加剤とを反応させる上でも溶銑の攪拌が必要となっている。
 溶銑を攪拌する方法としては、溶銑に気体を吹き込んで行う気体吹き込み攪拌方式(gas bubbling method)と、溶銑にインペラなどの回転する攪拌子を浸漬させて溶銑を機械的に攪拌する機械攪拌方式(stirrer method)とが行われている。気体吹き込み攪拌方式と機械攪拌方式とを比較すると、機械攪拌方式の方が、溶銑に巻き込まれた後に溶銑表面に浮上した添加剤を繰返して溶銑中に巻き込ませやすいので、より効率的に精錬反応を進行させることができる。そのため、現在、機械攪拌方式が主流となっている。
 例えば、溶銑予備処理の1つである溶銑の脱硫処理(desulfurization)では、精錬容器に収容された溶銑中にインペラ(「回転翼」とも呼ぶ)を浸漬させ、このインペラを回転させて溶銑を攪拌しながら精錬容器内の溶銑に脱硫剤を添加し、溶銑を脱硫する機械攪拌式脱硫法が広く行なわれている。
 インペラを用いた溶銑の機械攪拌式脱硫法では、処理時間の短縮や脱硫剤原単位の削減などを目的として、効率的な脱硫処理を実現するべく種々の提案がなされている。基本的には、非特許文献1に記載されるとおり、インペラの回転数を大きくして溶銑と添加剤との反応界面の面積を大きくすることにより、反応効率を向上させる。したがって、インペラをより高速に回転させることが効果的である。
 しかしながら、インペラの回転を高速化させると攪拌装置(インペラ及びインペラの駆動装置)の振動が大きくなり、攪拌装置の損傷につながる。したがって、例えば特許文献1に開示されるように、インペラを高速回転する際には、攪拌動力の上限値を制限し、振動による過剰な力が攪拌装置に作用しないようにすることが行われてきた。但し、この方法では、攪拌動力の上限値を制限しているので、攪拌能力が十分とはいえず、反応効率を十分に向上させることはできない。
 一方、インペラの回転による振動を抑制するべく、特許文献2には、インペラの昇降機構をバネを用いて支持した攪拌装置が開示されている。この攪拌装置では、或る程度の振動をバネで抑制することは可能である。しかしながら、回転数が高くなってくると質量のアンバランスによる遠心力や、溶銑からの攪拌反力が大きくなることから振動が急激に大きくなる。バネで支えることができる力は限られており、従って、この攪拌装置でも高速回転時の振動を抑えることは困難である。
 このように、インペラを用いた溶銑の予備処理において、反応効率の向上の観点からはインペラの回転数を増大させることは効果的であるが、設備の損傷防止の観点から、インペラの回転数は或る一定以上に高めることができない。
特開2005-290434号公報 特開2005-48226号公報
鉄と鋼、vol.90(2004)No.6.p.322-328
 本発明は上記事情に鑑みてなされたものである。本発明の目的は、回転軸とインペラとからなる攪拌体を用い、溶銑中に浸漬させたインペラを回転させることによって溶銑を攪拌しながら行う溶銑予備処理において、反応効率を向上させるべくインペラの回転を高速化しても、攪拌装置の振動を少なくすることのできる溶銑予備処理方法を提供することである。また、本発明の目的は、回転軸とその先端部に取り付けられたインペラとからなる攪拌体であって、高速回転させても攪拌装置の振動を少なくすることのできる溶銑予備処理用攪拌体を提供することである。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、回転軸とインペラとからなる攪拌体において、回転軸の1次曲げの共振周波数が溶銑を攪拌するインペラの回転周波数(インペラの回転数を60で割った値))よりも大きくなるように、回転軸の形状を制御することで、インペラの回転数を高めても攪拌装置の振動が大きくならず、より強力に溶銑を攪拌できることを見出した。
 本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]回転軸の先端部に取り付けられたインペラを精錬容器内の溶銑に浸漬させ、浸漬させたインペラを回転させることによって溶銑と添加剤とを攪拌し、
 前記回転軸の1次曲げの共振周波数は、溶銑を攪拌するインペラの回転周波数よりも大きい溶銑予備処理方法。
[2]前記1次曲げの共振周波数はインペラの回転周波数の1.2倍以上である[1]に記載の溶銑予備処理方法。
[3]前記回転軸は中空構造である上記[1]または上記[2]に記載の溶銑予備処理方法。
[4]前記インペラの回転数は100rpm以上200rpm以下である上記[1]ないし上記[3]のいずれか1項に記載の溶銑予備処理方法。
[5]前記精錬容器は、底部の内面形状が該精錬容器の中心軸に対して非軸対称となるように、底部の耐火物が施工されている上記[1]ないし上記[4]のいずれか1項に記載の溶銑予備処理方法。
[6]回転軸と、この回転軸の先端部に取り付けられたインペラとを有し、前記回転軸及び前記インペラが回転することで溶銑を攪拌する溶銑予備処理用攪拌体であって、前記回転軸の1次曲げの共振周波数が2.0~4.0Hzである溶銑予備処理用攪拌体。
[7]前記回転軸は中空構造である[6]に記載の溶銑予備処理用攪拌体。
 本発明によれば、回転軸とインペラとからなる溶銑予備処理用攪拌体を用いて溶銑を攪拌する際に、回転軸の1次曲げの共振周波数が、溶銑を攪拌するインペラの回転周波数よりも大きい攪拌体を用いるので、攪拌体の共振による振動の増大を回避できることから攪拌体の高速回転が可能となる。これにより、溶銑に供給された添加剤を溶銑中に効率良く分散させることが実現され、従来に比べて高い反応効率で溶銑を攪拌処理することが達成される。その結果、例えば溶銑の脱硫処理の場合には、脱硫剤原単位の削減、これに伴う発生スラグ量の削減などが達成され、工業上有益な効果がもたらされる。
図1は、本発明に係る攪拌体を用いて溶銑を攪拌しながら溶銑を予備処理する場合の概略図である。 図2は、図1に示す攪拌体を回転軸の中心線を通る面で切断したときの概略断面図である。 図3は、図1に示す攪拌体を回転軸の中心線を通る面で切断したときの他の例の概略断面図である。 図4は、図2に示すX-X’矢視による概略断面図である。 図5は、底部の耐火物が傾斜した、底部の内面形状が精錬容器の中心軸に対して非軸対称となった精錬容器の例を示す概略図である。 図6は、回転周波数と回転周波数に対する振動加速度との関係を通常鍋と傾斜鍋とで比較して示す図である。
 以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明を適用して溶銑を攪拌しながら溶銑を予備処理する例を示す概略図である。
 本発明に係る溶銑予備処理用の攪拌体1は、金属製の回転軸2と、この回転軸2の先端部に一体化して取り付けられた、回転軸2の径方向に突出するインペラ3とを有している。回転軸2の上端部にはフランジ2aが設置されている。フランジ2aが、電動機、減速機、旋回軸などからなる回転装置(図示せず)と連結されている。この回転装置を駆動させることで、回転軸2及びインペラ3が任意の回転数で回転する。
 溶銑予備処理として溶銑5を脱硫処理する際には、回転装置とともに回転軸2及びインペラ3を下降させて、精錬容器4に収容された溶銑5にインペラ3を上方から浸漬させる。その状態で、回転軸2を介してインペラ3を回転させる。インペラ3が回転することで溶銑5が攪拌される。この攪拌によって溶銑5の浴面上に供給された添加剤6(この場合は脱硫剤)と溶銑5とが攪拌・混合され、溶銑中の硫黄と添加剤6との反応が進行し、溶銑5に脱硫処理が施される。溶銑5の脱硫処理では、添加剤6として、つまり、脱硫剤として、生石灰(CaO)単独、CaO-CaF2脱硫剤、CaO-Al23脱硫剤などが使用される。
 このようにして使用される溶銑予備処理用の攪拌体1の詳細な構造を説明する。図2及び図3は、図1に示す攪拌体1を回転軸2の中心線を通る面で切断したときの概略断面図である。図4は、図2に示すX-X’矢視による概略断面図である。図2は、回転軸2が中実円柱の場合を示し、図3は、回転軸2が中空円管の場合を示している。
 図2~図4に示すように、金属製の回転軸2の下端部に、インペラ3の攪拌羽根の芯金となる複数個の金属板3aが溶接などによって接続されている。金属板3aの周囲を耐火物7で被覆してインペラ3が形成されている。回転軸2も、耐火物7で被覆されている。溶銑5は高温であり、溶銑5に浸漬した際のインペラ3が耐火物7によって保護される。回転軸2を耐火物7で被覆する理由は、回転軸2を溶銑5の熱から保護するためである。耐火物7としては、例えばAl23、MgO、SiO2及びこれらの化合物または混合物を使用する。回転軸2及び金属板3aは鋼製とすればよい。図4では、インペラ3は4枚の攪拌羽根を有しているが、攪拌羽根は2枚以上である限り幾つであっても構わない。
 溶銑5に浸漬させたインペラ3を回転させると、遠心力及び攪拌反力により、インペラ3の攪拌羽根部において径方向の力、即ち、回転軸2を曲げる方向に力が働く。攪拌時にはインペラ3の回転数に応じて周期的に力が発生するので、インペラ3の回転周波数と回転軸2の1次曲げの共振周波数とが一致すると、共振現象が発生して大きな振動が発生する。従って、回転軸2の1次曲げの共振周波数をインペラ3の回転周波数(回転数を60で割った値)よりも大きくなるように回転軸2を設計する。これにより、大きな振動を発生させることなく、所定の回転数での高速回転が可能となり、効果的な攪拌効果を得ることができる。ここで、一次曲げの共振周波数とは、回転軸2の周波数応答において、1次の共振周波数を示すものとする。
 具体的には以下の手法を用いて、回転軸2の1次曲げの共振周波数がインペラ3の回転周波数よりも大きくなるように制御する。
 回転軸2の曲げは、集中質量が在る梁の曲げ振動としてモデル化することができることから、回転軸2の1次曲げの共振周波数fは下記の(1)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 (1)式において、Eは回転軸2のヤング率(Pa)、ρは回転軸2の密度(kg/m3)、Lは回転軸2の長さ(m)、Iは回転軸2の断面2次モーメント(m4)、Aは回転軸2の横断面積(m2)である。Mは回転軸2の先端に作用する集中質量(kg)で、耐火物及び攪拌時に付着する地金やスラグの総質量である。
 図2に示すように、回転軸2が外径d0の中実円柱で構成される場合には、回転軸2の断面2次モーメントIは、下記の(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 一方、図3に示すように、回転軸2が外径d1、内径d2の中空円管で構成される場合には、回転軸2の断面2次モーメントIは、下記の(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 使用する回転軸2が中実円柱の場合には、(2)式を用いて回転軸2の断面2次モーメントIを求める。使用する回転軸2が中空円管の場合には、(3)式を用いて回転軸2の断面2次モーメントIを求め、求めた断面2次モーメントIを(1)式に代入して回転軸2の1次曲げの共振周波数fを求める。(1)式で求められる1次曲げの共振周波数fがインペラ3の回転周波数よりも大きくなるように、回転軸2を設計する。攪拌体1を新たに設計することができない場合には、(1)式で求められる回転軸2の1次曲げの共振周波数fよりもインペラ3の回転数が小さくなるように、インペラ3の回転数を調整することで振動を抑制することができる。
 この場合、回転軸2の1次曲げの共振周波数fがインペラ3の回転周波数の1.2倍以上となるように調整することで、溶銑予備処理中の攪拌体1の振動を確実に抑制することが可能となる。図6の例に示すように、回転軸2の振動加速度は、回転周波数の増加とともに大きくなり共振点で最大となる。ここで撹拌時の振動加速度が十分に小さい、すなわち操業時の振動を十分に小さくするためには、回転軸2の1次曲げの共振周波数fをインペラ3の回転周波数の1.2倍以上とすればよい。共振周波数の1.2倍以下での回転周波数における振動加速度は、共振周波数における振動加速度の1/8以下となり、操業上問題がないレベルとなる。インペラ3の回転数は、攪拌を強化させて反応効率を向上させる観点から、100rpm(回転周波数=1.7Hz)以上200rpm(回転周波数=3.3Hz)以下の範囲とすることが好ましい。インペラ3の回転数が100rpm未満では、攪拌強度が弱く、所望する反応効率を得ることができない。インペラ3の回転数が200rpmを超えると反応効率は飽和して反応効率の上昇効果が少ないのみならず、負荷動力の増加よるデメリットが増大するからである。
 インペラ3の最大回転数に対応して、回転軸2の1次曲げの共振周波数fは2.0Hz(=100rpm×1.2/60sec)以上4.0Hz(=200rpm×1.2/60sec)以下の範囲に設定することが好ましい。また、回転軸2の1次曲げの共振周波数fが4.0Hzを超えると、攪拌体1が設備的に大きくなることから、回転軸2の1次曲げの共振周波数fは、4.0Hz以下であることが好ましい。しかしながら、回転軸の1次曲げの共振周波数fが4.0Hzを超えても構わない。
 また、本発明者らは、回転軸2が中実円柱で構成される場合と中空円管で構成される場合とで、攪拌体1の振動にどのような差異が生じるかを検討した。
 回転軸2が外径d1、内径d2の中空円管の場合、(1)式における回転軸2の横断面積Aは下記の(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
 外径d1に対する内径d2の比率d2/d1をαとおくと、(3)式で示す断面2次モーメントIは下記の(5)式で表される。
Figure JPOXMLDOC01-appb-M000005
 (5)式からも明らかなように、回転軸2の質量が一定、つまり、回転軸2の横断面積Aが一定の条件では、回転軸2が中実円柱の場合(α=0)に比較して、回転軸2が中空円管の場合(0<α<1)の方が、断面2次モーメントIは大きくなることがわかる。αが大きいほど、具体的には回転軸2が大径薄肉になるほど断面2次モーメントIは大きくなる。断面2次モーメントIが大きくなるほど、(1)式で求められる1次曲げの共振周波数fは大きくなり、共振現象が発生するインペラ3の回転数が高くなるので、高速回転が可能となる。即ち、回転軸2を中空円管で構成した方が、回転軸2の共振現象を防止しやすくなることがわかる。特に、αが0.4以上の場合には、回転軸2の1次曲げの共振周波数fを中実構造に比較して約20%以上大きくすることができ、効率的な攪拌効果を得ることができる。Lは通常2m~7mであり、より好ましくは4m~7mの範囲である。
 本発明で対象とする溶銑予備処理は、上述の脱硫処理の他に、脱珪処理(desiliconization)、脱燐処理(dephosphorization)である。ここで、脱珪処理とは、精錬容器内の溶銑5に、酸化鉄を添加する、または、酸素ガスを吹き付ける、或いは、両者を併用し、酸化鉄中の酸素または酸素ガス中の酸素で溶銑中の珪素を酸化除去する精錬である。溶銑中に珪素が存在すると、溶銑の脱燐反応が損なわれるので、脱燐処理を効率的に行うために、脱燐処理の前段階で脱珪処理が行われる。脱珪処理では、生成する酸化珪素(SiO2)を希釈するために、溶銑容器内にCaO系媒溶剤を添加して行う場合もある。
 また、脱燐処理とは、精錬容器内の溶銑5に、酸化鉄を添加する、または、酸素ガスを吹き付ける、或いは、両者を併用し、酸化鉄中の酸素または酸素ガス中の酸素で溶銑中の燐を酸化し、生成した燐酸化物(P25)を、精錬容器内に添加したCaO系媒溶剤で固定して溶銑中の燐を除去する精錬である。
 脱珪処理及び脱燐処理のいずれの予備処理も、溶銑5に浸漬させたインペラ3を回転させて溶銑5を攪拌し、添加される酸化鉄や酸素ガスと溶銑との反応を促進させる。
 溶銑5を収容する精錬容器は、図1に示すように、精錬容器の底部が水平方向に平坦である精錬容器4を用いても何ら問題はない。溶銑5の攪拌効率をより一層高めるために、図5に示すような、精錬容器4Aの底部の内面形状が傾斜している、または曲面で形成されるように、底部の耐火物が施工されている精錬容器4Aを用いることができる。図5は、底部の耐火物表面が、精錬容器4Aの底面に対して角度θだけ傾斜した精錬容器の例を示す概略図である。すなわち、図5は、底部の内面形状が傾斜している精錬容器の例を示す。角度θは、0°~10°の範囲であり、より好ましくは、2°~7°である。また傾斜は一様でなくてもよい。
 図5のような底部の内面形状が傾斜している精錬容器4Aを用いることで、インペラ3の回転によって生成する渦流が偏心して乱れる。これにより、溶銑5の攪拌が強化され、溶銑上に添加した脱硫剤などの添加剤6と溶銑5との攪拌・混合が向上して添加剤6の溶銑中への分散が促進され、高い反応効率(脱硫率や脱燐率)での予備処理が実現される。
 以上説明したように、本発明によれば、回転軸2とインペラ3を有する溶銑予備処理用攪拌体1を用いて溶銑5を攪拌する際に、回転軸2の1次曲げの共振周波数fが、溶銑5を攪拌するインペラ3の回転周波数よりも大きい攪拌体1を用いる。これにより、攪拌体1の共振による振動の増大を回避できることから攪拌体1の高速回転が可能となる。これにより、溶銑5に投入した添加剤6を溶銑中に効率良く分散させることが達成され、従来に比べて高い反応効率で溶銑を攪拌処理することが実現される。
 図1に示した設備を用いて、溶銑の脱硫処理を実施した。
 インペラの回転数が110rpm(回転周波数1.8Hz)のときに、回転軸を中実円柱で構成した場合、回転軸の1次曲げの共振周波数fをインペラの回転周波数よりも大きくするためには回転軸の外径d0をどの程度の大きさにすべきかを、(1)式及び(2)式を用いて検討した。検討にあたり、炭素鋼製の回転軸のヤング率Eは2.1×1011Pa、回転軸の密度ρは7800kg/m3、回転軸の長さLは6.3m、回転軸の先端に作用する集中質量Mは8000kgとした。
 その結果、回転軸の1次曲げの共振周波数fをインペラの回転周波数の1.2倍である2.2Hz以上とするには、回転軸の外径を0.343m以上とすればよいことがわかった。そこで、共振周波数が2.2Hzであり、回転軸の外径が0.343mである攪拌体を使用し、インペラの回転数を110rpmとして溶銑の脱硫処理を実施した(本発明例1)。
 この脱硫処理では、インペラの回転数110rpmにおいて、共振現象による振動増大を回避して安定的に攪拌することが可能であった。
 また、上記の脱硫処理条件において、回転軸を中空円管で構成する場合の回転軸の1次曲げの共振周波数fがインペラの回転周波数の1.2倍よりも大きくなるための条件を、(1)式及び(3)式を用いて検討した。回転軸のヤング率E、回転軸の密度ρ、回転軸の長さL、回転軸の先端に作用する集中質量Mは上記と同一とした。また、インペラの回転数は本発明例1と同様、110rpm(回転周波数1.8Hz)とした。
 その結果、炭素鋼鋼管からなる回転軸の外径d1を0.350m以上、内径d2を0.200mにすることで、回転軸の1次曲げの共振周波数fが2.2Hz以上となることがわかった。そこで、共振周波数が2.2Hzであり、回転軸の外径d1を0.350m、内径d2を0.200mとする攪拌体を使用して、溶銑の脱硫処理を実施した(本発明例2)。この脱硫処理では、インペラの回転数110rpmにおいて、共振現象による振動増大を回避して安定的に攪拌することが可能であった。
 上記の本発明例1と本発明例2とで、脱硫時のインペラの回転数は同一である。本発明例1と本発明例2の回転軸の質量は、それぞれ4512kg、3164kgである。本発明例2では、回転軸を中空構造とすることで、攪拌体の質量を本発明例1に比べて約30%低減することができた。このように、回転軸を中空構造とした場合、中実構造の場合に比べて回転軸を軽量化できることから、電動機の負荷が軽減して、より低コストで設備を実現することができる。
 本発明を適用して種々の条件で溶銑の脱硫処理を実施した。
 外径が0.300m、長さが4.5mの炭素鋼製の中実構造の回転軸の1次曲げの共振周波数fを(1)式及び(2)式を用いて算出した。計算にあたり、炭素鋼製の回転軸のヤング率Eは2.1×1011Pa、回転軸の密度ρは7800kg/m3、回転軸の先端に作用する集中質量Mは7650kgとした。
 その結果、上記回転軸の1次曲げの共振周波数fは2.9Hzであった。この値は、インペラの回転数に換算すると、174rpmに相当する。そこで、回転軸の1次曲げの共振周波数f=2.9Hzがインペラの回転周波数の1.2倍以上となるように、145rpmをインペラ回転数の上限に設定して脱硫処理を実施した(本発明例3)。
 ここで、インペラの回転数を更に大きくすることを目的として、回転軸を炭素鋼鋼管製の回転軸に変更した。この場合、回転軸の質量が本発明例3で使用した回転軸と同等となるように、回転軸を、外径d1が0.346m、内径d2が0.173m、長さが4.5mの中空構造とした。この回転軸の1次曲げの共振周波数fは3.7Hzであった。比d2/d1=0.5の中空構造にすることで、回転軸の質量を変えずに共振周波数fを1.3倍に大きくすることができた。
 この回転軸の共振周波数f=3.7Hzは、インペラの回転数に換算すると、222rpmに相当する。そこで、回転軸の1次曲げの共振周波数fがインペラの回転周波数の1.2倍以上となるように、185rpmをインペラの回転数の上限として溶銑鍋の溶銑を脱硫した(本発明例4)。その結果、本発明例3に比べて1.3倍の高速回転が可能となり、効果的な攪拌効果を得ることができ、脱硫速度及び脱硫率が向上した。
 本発明例3で使用した攪拌体を使用し、精錬容器として、底部が傾斜しており、その角度θが5°である、図5に示す精錬容器(以下、「傾斜鍋」と記す)を用いて溶銑の脱硫処理を実施した(本発明例5)。
 この傾斜鍋を使用することで乱れた渦流が溶銑中に生成され、平坦な底部を有する容器(以下、「通常鍋」と記す)に比べて、脱硫剤の反応効率を2倍程度向上することができた。一方、乱れた渦流が生成される影響で、攪拌体の振動が大きくなり、傾斜鍋の場合には、図6に示すように通常鍋に比べて攪拌体の振動加速度が約1.9倍になることを本発明者らは確認している。
図6は、回転軸の回転周波数と周波数に対する共振加速度との関係を通常鍋と傾斜鍋とで比較して示す図である。実線は通常鍋の場合の回転周波数と周波数に対する共振加速度との関係を、点線は角度θが5°の傾斜鍋の場合の回転周波数と周波数に対する共振加速度との関係を示す。この関係は、中実の回転軸であっても中空の回転軸であっても変わらない。また、図6は共振周波数が2.9Hzの場合を示したが、共振周波数が変わった場合でも、周波数応答全体の形状は維持したままで、振動加速度が最大となる周波数が変わるだけである。
 前記の本発明例3では、回転軸の1次曲げの共振周波数f=2.9Hzがインペラの回転周波数の1.2倍以上となるように、インペラの回転数の上限を145rpm(回転周波数2.4Hz相当)としていたのに対し、本発明例5では、本発明例3と同等の振動加速度に抑えるために、図6に基づいて、傾斜鍋における攪拌体の振動加速度が、通常鍋使用時のインペラの回転数145rpmにおける振動加速度と同等となる回転数125rpmで操業した。この125rpmの値から、傾斜鍋では回転軸の1次曲げの共振周波数f=2.9Hzに相当するインペラの回転数174rpmの0.72倍以下の回転数とすればよいことがわかる。
 従って、本発明例5では、傾斜鍋の効果によって脱硫反応効率の向上が期待できる一方で、中実の回転軸を使用した攪拌体では振動が大きくなり、インペラの回転数を上げることが難しく、傾斜鍋の効果を十分に享受することはできなかった。
 この結果から、本発明例6として、傾斜鍋を使用し、且つ、インペラの回転数を増大させることを目的として、本発明例4で使用した中空構造の回転軸を有する攪拌体を使用して溶銑の脱硫処理を実施した。
 前記のように、本発明例4で使用した、外径d1が0.346m、内径d2が0.173m、長さが4.5mの中空構造の回転軸の1次曲げの共振周波数fは3.7Hzである。本発明例6では、傾斜鍋での振動増大を考慮して、共振周波数f=3.7Hzに相当する回転数222rpmの0.72倍にあたる160rpmをインペラ回転数の上限として脱硫処理を行った。その結果、本発明例6では、本発明例5に比べて1.3倍のインペラの高速回転が可能となり、効果的な攪拌効果を得ることができるとともに、傾斜鍋の効果も加わり、脱硫速度及び脱硫率を大きく向上させることができた。
 なお、本発明は実施例に限定されるものではなく、例えば脱硫処理に限らず脱燐、脱硅処理にも使用できる。共振周波数も、実施例に限られることは無く、撹拌設備に応じて適宜設定できることは言うまでも無い。
 上記の説明では、精錬容器の形状は、図1に示すように底面が水平となっている形状や、図5に示すように底面が傾斜した形状のものを例として説明したが、本発明において、精錬容器の形状は、上記の例に限られるものではない。例えば、精錬容器の底面は、球面状に形成してもよい。また、精錬容器の底面は、水平な部分、傾斜部分、球面状の部分のうち2以上を組み合わせて形成してもよい。また、精錬容器の底面を凸形状に形成してもよい。
 1 攪拌体
 2 回転軸
 2a フランジ
 3 インペラ
 3a 金属板
 4 精錬容器
 4A 精錬容器
 5 溶銑
 6 添加剤
 7 耐火物

Claims (7)

  1.  回転軸の先端部に取り付けられたインペラを精錬容器内の溶銑に浸漬させ、浸漬させたインペラを回転させることによって溶銑と添加剤とを攪拌し、
     前記回転軸の1次曲げの共振周波数は、溶銑を攪拌するインペラの回転周波数よりも大きい溶銑予備処理方法。
  2.  前記1次曲げの共振周波数はインペラの回転周波数の1.2倍以上である請求項1に記載の溶銑予備処理方法。
  3.  前記回転軸は中空構造である請求項1または請求項2に記載の溶銑予備処理方法。
  4.  前記インペラの回転数は100rpm以上200rpm以下である請求項1ないし請求項3のいずれか1項に記載の溶銑予備処理方法。
  5.  前記精錬容器は、底部の内面形状が該精錬容器の中心軸に対して非軸対称となるように、底部の耐火物が施工されている請求項1ないし請求項4のいずれか1項に記載の溶銑予備処理方法。
  6.  回転軸と、この回転軸の先端部に取り付けられたインペラとを有し、前記回転軸及び前記インペラが回転することで溶銑を攪拌する溶銑予備処理用攪拌体であって、前記回転軸の1次曲げの共振周波数が2.0~4.0Hzである溶銑予備処理用攪拌体。
  7.  前記回転軸は中空構造である請求項6に記載の溶銑予備処理用攪拌体。
     
PCT/JP2013/004306 2012-07-20 2013-07-12 溶銑予備処理方法及び溶銑予備処理用攪拌体 WO2014013707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380037805.7A CN104471082B (zh) 2012-07-20 2013-07-12 铁水预处理方法以及铁水预处理用搅拌体
BR112015001168-3A BR112015001168B1 (pt) 2012-07-20 2013-07-12 Método de tratamento preliminar de ferro gusa líquido e agitador para tratamento preliminar de ferro gusa líquido
IN11261DEN2014 IN2014DN11261A (ja) 2012-07-20 2013-07-12
KR1020157000220A KR101662017B1 (ko) 2012-07-20 2013-07-12 용선 예비 처리 방법 및 용선 예비 처리용 교반체
JP2013557694A JP5505580B1 (ja) 2012-07-20 2013-07-12 溶銑予備処理方法及び溶銑予備処理用攪拌体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012161429 2012-07-20
JP2012-161429 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013707A1 true WO2014013707A1 (ja) 2014-01-23

Family

ID=49948550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004306 WO2014013707A1 (ja) 2012-07-20 2013-07-12 溶銑予備処理方法及び溶銑予備処理用攪拌体

Country Status (7)

Country Link
JP (1) JP5505580B1 (ja)
KR (1) KR101662017B1 (ja)
CN (1) CN104471082B (ja)
BR (1) BR112015001168B1 (ja)
IN (1) IN2014DN11261A (ja)
TW (1) TWI515042B (ja)
WO (1) WO2014013707A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435085B (zh) * 2017-07-17 2019-03-15 武汉钢铁有限公司 铁水脱硫用高效混合搅拌器
CN113801976A (zh) * 2020-06-17 2021-12-17 宝山钢铁股份有限公司 高效kr脱硫铁水罐

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348358A (ja) * 1999-06-08 2000-12-15 Sanyo Electric Co Ltd 光ピックアップ
JP2011042815A (ja) * 2009-08-19 2011-03-03 Jfe Steel Corp 溶銑の脱硫方法
JP2011220264A (ja) * 2010-04-12 2011-11-04 Honda Motor Co Ltd 遠心型圧縮機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040053602A (ko) * 2002-12-17 2004-06-24 주식회사 포스코 용선 탈류효율 향상을 위한 탈류제 투입방법
JP4211524B2 (ja) 2003-07-28 2009-01-21 Jfeスチール株式会社 機械攪拌式脱硫装置
KR20050052151A (ko) * 2003-11-29 2005-06-02 엘지전자 주식회사 냉장고용 축류팬
JP4986383B2 (ja) * 2004-03-31 2012-07-25 Jfeスチール株式会社 溶銑の脱硫方法
JP4635672B2 (ja) * 2005-03-24 2011-02-23 Jfeスチール株式会社 溶融金属の精錬方法
JP5691207B2 (ja) * 2009-06-26 2015-04-01 Jfeスチール株式会社 溶銑の脱硫処理用精錬容器及び脱硫処理方法
BR112012015280A8 (pt) * 2009-12-23 2018-02-06 Koninklijke Philips Nv Escova de dente elétrica

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348358A (ja) * 1999-06-08 2000-12-15 Sanyo Electric Co Ltd 光ピックアップ
JP2011042815A (ja) * 2009-08-19 2011-03-03 Jfe Steel Corp 溶銑の脱硫方法
JP2011220264A (ja) * 2010-04-12 2011-11-04 Honda Motor Co Ltd 遠心型圧縮機

Also Published As

Publication number Publication date
TWI515042B (zh) 2016-01-01
JP5505580B1 (ja) 2014-05-28
IN2014DN11261A (ja) 2015-10-09
KR101662017B1 (ko) 2016-10-04
KR20150018623A (ko) 2015-02-23
BR112015001168A2 (pt) 2017-06-27
CN104471082A (zh) 2015-03-25
BR112015001168B1 (pt) 2019-09-24
CN104471082B (zh) 2016-09-07
JPWO2014013707A1 (ja) 2016-06-30
TW201404462A (zh) 2014-02-01

Similar Documents

Publication Publication Date Title
JP5194678B2 (ja) 溶銑の脱硫方法
JP5862738B2 (ja) 溶銑の脱硫処理用精錬容器
JP5457945B2 (ja) 溶銑の脱硫方法
JP5505580B1 (ja) 溶銑予備処理方法及び溶銑予備処理用攪拌体
JP5418058B2 (ja) 溶銑の脱硫方法
JP5978850B2 (ja) 溶銑予備処理方法及び溶銑予備処理用攪拌体
JP4635672B2 (ja) 溶融金属の精錬方法
JP4986383B2 (ja) 溶銑の脱硫方法
JP5130663B2 (ja) 溶融鉄の精錬方法
JP6119954B2 (ja) 溶銑の脱硫処理方法
JP2015218390A (ja) 機械式攪拌とガス攪拌とを併用した溶銑の脱硫方法
JP5347817B2 (ja) 溶銑の脱硫方法
JP2014177674A (ja) 精錬用攪拌体及び溶融鉄の精錬方法
JP5358987B2 (ja) 機械攪拌式脱硫装置のインペラー
CN111944941A (zh) 一种kr脱硫方法及其脱硫设备
KR101277675B1 (ko) 탈황제 분산용 임펠러
JP2001220620A (ja) インペラーによる溶融金属の攪拌方法
KR20160031262A (ko) 용융금속 정련장치
KR101602835B1 (ko) 용융금속 정련장치 및 그 정련방법
WO2017018263A1 (ja) 脱硫剤、溶銑脱硫方法および溶銑の製造方法
JP7548256B2 (ja) 撹拌羽根及び溶銑の脱硫方法
JP5078319B2 (ja) 連続精錬方法
WO2016142970A1 (ja) 溶銑の脱硫処理方法及び溶銑の脱硫処理装置
WO2004013358A1 (ja) 溶銑の脱燐方法
JP2020045505A (ja) 溶銑の脱硫処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013557694

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000220

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001168

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13819408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015001168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150119