WO2014010555A1 - Complexe fluorescent - Google Patents

Complexe fluorescent Download PDF

Info

Publication number
WO2014010555A1
WO2014010555A1 PCT/JP2013/068642 JP2013068642W WO2014010555A1 WO 2014010555 A1 WO2014010555 A1 WO 2014010555A1 JP 2013068642 W JP2013068642 W JP 2013068642W WO 2014010555 A1 WO2014010555 A1 WO 2014010555A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
layer
fluorescent
fluororesin
tetrafluoroethylene
Prior art date
Application number
PCT/JP2013/068642
Other languages
English (en)
Japanese (ja)
Inventor
成教 田村
Original Assignee
中興化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中興化成工業株式会社 filed Critical 中興化成工業株式会社
Priority to CN201380036688.2A priority Critical patent/CN104428393B/zh
Publication of WO2014010555A1 publication Critical patent/WO2014010555A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/30Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by edge details of the ceiling; e.g. securing to an adjacent wall
    • E04B9/303Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by edge details of the ceiling; e.g. securing to an adjacent wall for flexible tensioned membranes

Definitions

  • the present invention relates to a fluorescent complex.
  • This optical ceiling membrane material does not require power when it is turned off or during a sudden power outage, and the membrane material itself emits light, temporarily replacing lighting, avoiding confusion, It can be a signpost.
  • Patent Document 1 discloses a core formed of a fiber material, a white resin layer formed on at least one surface thereof, a phosphorescent fluorescent resin layer formed on the white resin layer, and a phosphorescent fluorescent resin layer.
  • a phosphorescent phosphor film material having a photocatalyst layer formed thereon is disclosed.
  • the total light transmittance defined in JIS K7105 of the phosphorescent phosphor film material of Patent Document 1 is 50% or more.
  • a thermoplastic resin such as vinyl chloride resin is used for the phosphorescent fluorescent resin layer.
  • Patent Document 2 discloses obtaining a nonflammable optical ceiling film material that conforms to the cone calorimeter test (ASTM-E1354).
  • This optical ceiling film material contains phosphorescent phosphors containing 20 to 60% by mass of a phosphorescent phosphor material on the surface of a fiber fabric made of glass fiber yarns, silica fiber yarns, and mixed fiber yarns thereof.
  • the laminate is provided with a resin layer and has a visible light transmittance (JIS Z8722) of 20 to 60%. Further, a thermoplastic resin such as vinyl chloride resin is used for the phosphorescent fluorescent resin layer of Patent Document 2.
  • An object of the embodiment is to provide a fluorescent composite having excellent weather resistance.
  • a core including a heat resistant woven fabric and a fluororesin layer formed on both surfaces of the heat resistant woven fabric,
  • a phosphor composite comprising a phosphor and a phosphor layer containing an ethylene tetrafluoride resin is provided.
  • a fluorescent composite having excellent weather resistance can be provided.
  • a fluorescent composite including a core and a phosphor layer
  • the core includes a heat resistant woven fabric and a fluororesin layer formed on both surfaces of the heat resistant woven fabric.
  • the phosphor layer includes phosphor particles and tetrafluoroethylene resin (PTFE).
  • PTFE tetrafluoroethylene resin
  • this fluorescent substance layer is excellent in a phase meltability with the fluororesin layer of a core, the integrated intensity
  • the fluorescent composite according to the embodiment includes a core 1, a phosphor layer 2 formed on one surface of the core 1, and a first formed on the other surface of the core 1.
  • the core 1 includes a heat resistant woven fabric 1a and a fluororesin layer 1b formed on both surfaces of the heat resistant woven fabric 1a.
  • the fluorescent substance layer 2 contains fluorescent substance and tetrafluoroethylene resin.
  • Core body examples of the heat-resistant woven fabric include those containing at least one selected from the group consisting of glass fiber, carbon fiber, ceramic fiber, aramid fiber and metal fiber. These fibers are preferably long fibers. Here, the long fiber can be used as a yarn without spinning. Preferred as the heat resistant woven fabric is one containing glass fibers.
  • the woven structure of the heat resistant woven fabric can be a satin weave, a plain weave, a basket weave, a twill weave, or a modified twill weave.
  • fluororesin contained in the fluororesin layer examples include a tetrafluoroethylene resin (PTFE) that does not exhibit fluidity when melted, and a melt flowable fluororesin (for example, a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin).
  • PTFE tetrafluoroethylene resin
  • FEP ethylene tetrafluoride-propylene hexafluoride copolymer resin
  • the kind of fluororesin to be used can be 1 type or 2 types or more. Since the fluororesin layer containing PTFE has water repellency, it can suppress the intrusion of moisture into the phosphor particles, and can improve the phase meltability with the phosphor layer.
  • the fluororesin layer is formed by the following method, for example. First, an aqueous suspension containing fluororesin particles having a particle size of 0.1 to 0.4 ⁇ m and a suspension stabilizer (for example, an anionic surfactant or a nonionic surfactant) is used as a solvent. After being applied to both sides of the cloth by impregnation and drying at an ambient temperature of 100 ° C. or higher and 200 ° C. or lower, firing is performed at an ambient temperature of 330 ° C. or higher and 400 ° C. or lower. By repeating this coating, drying and baking a plurality of times, a fluororesin layer is obtained.
  • a suspension stabilizer for example, an anionic surfactant or a nonionic surfactant
  • the phosphor is not particularly limited, and examples thereof include a phosphorescent phosphor (long afterglow phosphor).
  • the phosphorescent phosphor include a sulfide, an oxysulfide, and an oxide (for example, aluminate).
  • sulfides include CaSrS: Bi (light emission color is blue), ZnS: Cu (light emission color is yellow-green), ZnS: Cu, Co (light emission color is yellow-green), CaS: Eu, Tm (light emission color is Red) etc. are included.
  • Examples of oxysulfides include Y 2 O 2 S: Eu, Mg, Ti (the emission color is yellow brown or red).
  • Examples of aluminates include CaAl 2 O 4 : Eu, Nd (the emission color is purple-blue), Sr 4 Al 14 O 25 : Eu, Dy (the emission color is blue-green), SrAl 2 O 4 : Eu, Dy (Emission color is yellow-green), SrAl 2 O 4 : Eu (emission color is yellow-green), a compound having a composition represented by the following formula (1) (emission color is green), and the like.
  • M is obtained by using as a mother crystal a compound comprising at least one metal element selected from the group consisting of Ca, Sr and Ba.
  • X is in the range of ⁇ 0.33 ⁇ X ⁇ 0.60.
  • Eu as an activator is added in an amount of 0.001% or more and 10% or less in terms of mol% with respect to the metal element represented by M.
  • at least one element of the group consisting of Nd, Sm, Dy, Ho, Er, Tm, Yb and Lu as a coactivator is a metal represented by M. 0.001% or more and 10% or less is added in mol% with respect to the element.
  • the kind of fluorescent substance to be used can be made into one type or two types or more.
  • Oxide phosphor particles such as M 1-X Al 2 O 4-X are excellent in dispersibility with respect to the PTFE aqueous suspension, and therefore can be uniformly dispersed in the phosphor layer.
  • the content of the phosphor particles in the phosphor layer is preferably in the range of 10 wt% to 25 wt%. Sufficient luminance can be obtained by setting the content of the phosphor particles to 10% by weight or more. In addition, by making the content of the phosphor particles 25% by weight or less, stress concentration in the vicinity of the phosphor particles due to bending can be reduced, and a decrease in bending strength can be suppressed. It is possible to avoid the occurrence of cracks or the like in the fluorescent composite when deformation such as bending is applied.
  • the phosphor layer may contain components other than phosphor particles and ethylene tetrafluoride resin.
  • the content of the ethylene tetrafluoride resin in the phosphor layer is preferably in the range of 75 wt% to 90 wt%.
  • the phosphor layer is formed by the following method, for example.
  • water is used as a dispersion liquid, and phosphor particles are dispersed in an aqueous suspension containing PTFE particles and a suspension stabilizer (for example, an anionic surfactant or a nonionic surfactant).
  • a suspension stabilizer for example, an anionic surfactant or a nonionic surfactant.
  • the obtained dispersion is applied by impregnation on at least one surface of a substrate (for example, a fluororesin layer or a protective layer of a core), dried at an ambient temperature of 100 ° C. or higher and 200 ° C. or lower, and then the ambient temperature is 330 ° C. Firing is performed at 400 ° C. or lower.
  • a phosphor layer is obtained by repeating this coating, drying, and baking a plurality of times.
  • a phosphor layer is obtained by repeating the steps of applying a suspension in which phosphor particles are uniformly dispersed to a substrate, drying, and firing.
  • a phosphor layer in which the dispersibility of the phosphor layer is maintained as it is can be realized, and sufficient luminance can be obtained even if the phosphor particle content in the phosphor layer is small.
  • stress concentration in the vicinity of the phosphor particles due to bending can be reduced, and a decrease in bending strength can be suppressed. Therefore, when the fluorescent composite is subjected to deformation such as bending, cracks etc. Can be avoided.
  • particles of oxide phosphors such as M 1-X Al 2 O 4-X have excellent dispersibility in PTFE aqueous suspensions. A phosphor layer in which particles are uniformly dispersed can be realized.
  • the protective layer contains a melt-flowable fluororesin.
  • the phosphor layer is a kind of sintered body because it is obtained by repeating the steps of applying a PTFE aqueous suspension to a substrate, drying, and firing. For this reason, water may enter the inside through the pinhole of the sintered body, and the phosphor particles may be hydrolyzed.
  • the protective layer contains a melt-flowable fluororesin, it is a highly dense molded body, and therefore it is possible to suppress the intrusion of moisture into the phosphor layer.
  • the arrangement of the protective layer is not particularly limited, but it is desirable that the protective layer is arranged on at least one surface of the phosphor layer or positioned on the outermost layer. Thereby, the weather resistance of the fluorescent composite can be further improved.
  • Fluorine resin other than tetrafluoroethylene resin can be used for the melt flowable fluororesin.
  • Preferred examples include ethylene tetrafluoride-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA), polyvinylidene fluoride (PVDF), and ethylene tetrafluoride ethylene copolymer.
  • FEP and PFA are excellent in phase meltability with PTFE, and FEP can keep the production cost of the fluorescent composite low.
  • the type of the melt flowable fluororesin used can be one type or two or more types.
  • the protective layer is formed by the following method, for example. First, an aqueous suspension containing a melt-flowable fluororesin and a suspension stabilizer (for example, an anionic surfactant or a nonionic surfactant) is provided on at least one surface of a substrate (for example, a core or a phosphor layer). After applying by impregnation and drying at an ambient temperature of 100 ° C. to 200 ° C., firing is performed at an ambient temperature of 300 ° C. to 400 ° C. A protective layer is obtained by repeating this coating, drying and baking a plurality of times.
  • a melt-flowable fluororesin and a suspension stabilizer for example, an anionic surfactant or a nonionic surfactant
  • the laminated structure of the fluorescent composite is not limited to that shown in FIG. 1, and any structure including a fluorescent layer and a core may be used. Specific examples are shown in FIGS.
  • the first protective layer 3 1 may be disposed between the fluororesin layer 1b of the phosphor layer 2 and the core 1.
  • three protective layers are provided, the first and second protective layers 3 1 and 3 2 are disposed on the outermost layers of both of the fluorescent composites, and the phosphor layer 2 and between the fluororesin layer 1b of the core body 1 may be a third protective layer 3 3 is arranged.
  • the number of phosphor layers is not limited to one, and can be two or more, for example. Examples of this are shown in FIGS. As shown in FIG. 4, first and second phosphor layers 2 1 and 2 2 are laminated on both fluororesin layers 1b of the core body 1 , and the first and second protective layers 3 1 are further formed on the outer sides thereof. , 3 2 may be arranged. Further, as shown in FIG. 5, third or placing a protective layer 3 3 between the first phosphor layer 2 1 and the core 1 of the fluororesin layer 1b, as shown in FIG. 6, the second the third protective layer 3 3 may be disposed between the phosphor layer 2 2 and core 1 of the fluororesin layer 1b.
  • the fluorescent composite is allowed to include layers other than the core, the phosphor layer, and the protective layer (for example, a light diffusion layer and an antifouling layer).
  • the fluorescent complex has a visible light transmittance of less than 20% as defined in JIS Z8722.
  • Fluorescent composite applications include membrane structures such as medium and large tents, and examples include membrane materials for optical ceilings for evacuation guidance during disaster prevention in dome-type stadiums.
  • phosphors other than phosphorescent phosphors (long-afterglow phosphors) (for example, black light)can be provided in the fluorescent composite.
  • a phosphorescent phosphor (long afterglow phosphor) is used, a function for adjusting the afterglow time can be provided in the fluorescent composite.
  • Example 1 A glass fiber woven fabric (manufactured by Nitto Boseki) with a thickness of 450 ⁇ m as a heat-resistant woven fabric and a woven structure made by Nitto Boseki. It was applied by impregnating with a tetrafluoroethylene resin fine particle aqueous dispersion (made by Daikin Industries) consisting of 6% by weight of the agent and 34% by weight of water, and dried for 5 minutes in a sealed oven with the atmospheric temperature adjusted to 100 ° C. After the moisture was blown off, the substrate was baked for 5 minutes in a sealed furnace whose atmospheric temperature was adjusted to 360 ° C. By repeating this step a plurality of times, a core body was obtained by obtaining an ethylene tetrafluoride ethylene resin layer having a total thickness of both surfaces of 130 ⁇ m.
  • a tetrafluoroethylene resin fine particle aqueous dispersion made by Daikin Industries consisting of 60% by weight of the tetrafluoroethylene resin fine particle, 6% by weight of the nonionic surfactant and 34% by weight of water.
  • 50 g of strontium aluminate phosphorescent phosphor represented by SrAl 2 O 4 : Eu, Dy is mixed and stirred, and the tetrafluoroethylene resin fine particles are mixed with phosphorescent phosphor powder.
  • An aqueous dispersion was prepared.
  • the mixing ratio of the phosphorescent phosphor powder at this time is 5% by weight with respect to 95% by weight of the tetrafluoroethylene resin fine particles.
  • a phosphor layer having a thickness of 200 ⁇ m was formed on one of the tetrafluoroethylene resin layers of the core by applying, drying and firing under the same production conditions as the above-described tetrafluoroethylene resin layer.
  • a protective layer having a thickness of 20 ⁇ m is formed on the phosphor layer and the other tetrafluoroethylene resin layer of the core body by coating, drying and firing under the same production conditions as above using a copolymer resin fine particle aqueous dispersion (manufactured by Dupont). (Outermost layer) was formed.
  • the obtained fluorescent composite had the laminated structure shown in FIG.
  • the visible light transmittance of the obtained fluorescent composite as defined in JIS Z8722 was less than 20%.
  • Example 2 A core body was produced in the same manner as in Example 1.
  • strontium aluminate-based phosphorescent phosphor powder having the same composition as that of Example 1 was applied to 1.5 kg of an ethylene tetrafluoride resin fine particle aqueous dispersion (manufactured by Daikin Industries) having the same composition as that of Example 1.
  • 100 g of the mixture was mixed and stirred to prepare an aqueous dispersion of ethylene tetrafluoride resin fine particles mixed with phosphorescent phosphor powder.
  • the mixing ratio of the phosphorescent phosphor powder at this time is 10% by weight with respect to 90% by weight of the tetrafluoroethylene resin fine particles.
  • a phosphor layer having a thickness of 200 ⁇ m was obtained on one of the tetrafluoroethylene resin layers of the core by application, drying and firing under the same production conditions as in Example 1.
  • the phosphor layer and the tetrafluoroethylene-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1 were coated, dried and fired under the same production conditions as above.
  • a protective layer (outermost layer) having a thickness of 20 ⁇ m was obtained on the other tetrafluoroethylene resin layer of the core.
  • the obtained fluorescent composite had the laminated structure shown in FIG.
  • the visible light transmittance of the obtained fluorescent composite as defined in JIS Z8722 was less than 20%.
  • Example 3 A core body was produced in the same manner as in Example 1.
  • a strontium aluminate-based phosphorescent phosphor powder having the same composition as that of Example 1 was applied to 1.33 kg of an ethylene tetrafluoride resin fine particle aqueous dispersion (made by Daikin Industries) having the same composition as that of Example 1.
  • An aqueous dispersion of fine tetrafluoroethylene resin particles mixed with 200 g of phosphorescent phosphor powder was prepared by mixing and stirring. The mixing ratio of the phosphorescent phosphor powder at this time is 20% by weight with respect to 80% by weight of the tetrafluoroethylene resin fine particles.
  • a phosphor layer having a thickness of 200 ⁇ m was produced on one of the tetrafluoroethylene resin layers of the core by application, drying and firing under the same production conditions as in Example 1.
  • the phosphor layer and the core were formed by coating, drying and firing under the same production conditions as described above using a tetrafluoroethylene-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1.
  • a protective layer (outermost layer) having a thickness of 20 ⁇ m was obtained on the other tetrafluoroethylene resin layer of the body.
  • the obtained fluorescent composite had the laminated structure shown in FIG.
  • the visible light transmittance of the obtained fluorescent composite as defined in JIS Z8722 was less than 20%.
  • Example 4 A core body was produced in the same manner as in Example 1.
  • strontium aluminate-based phosphorescent phosphor powder having the same composition as that of Example 1 was applied to 1.25 kg of an ethylene tetrafluoride resin fine particle aqueous dispersion (made by Daikin Industries) having the same composition as that of Example 1.
  • An aqueous dispersion of ethylene tetrafluoride resin fine particles mixed with 250 g of phosphorescent phosphor powder was prepared by mixing and stirring. The mixing ratio of the phosphorescent phosphor powder at this time is 25% by weight with respect to 75% by weight of the tetrafluoroethylene resin fine particles.
  • a phosphor layer having a thickness of 200 ⁇ m was obtained on one of the tetrafluoroethylene resin layers of the core by application, drying and firing under the same production conditions as in Example 1.
  • the phosphor layer and the tetrafluoroethylene-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1 were coated, dried and fired under the same production conditions as above.
  • a protective layer (outermost layer) having a thickness of 20 ⁇ m was obtained on the other tetrafluoroethylene resin layer of the core.
  • the obtained fluorescent composite had the laminated structure shown in FIG.
  • the visible light transmittance of the obtained fluorescent composite as defined in JIS Z8722 was less than 20%.
  • Example 1 The same kind of glass fiber fabric as in Example 1 (manufactured by Nitto Boseki) was applied by impregnating with a tetrafluoroethylene resin fine particle aqueous dispersion (manufactured by Daikin Industries) having the same composition as in Example 1. After drying for 5 minutes in a sealed furnace with the atmospheric temperature adjusted to 100 ° C. and removing the moisture, it was fired for 5 minutes in a sealed furnace with the atmospheric temperature adjusted to 360 ° C. By repeating this process a plurality of times, a core body was obtained by obtaining a tetrafluoroethylene resin layer having a total thickness of 330 ⁇ m on both sides.
  • a tetrafluoroethylene resin fine particle aqueous dispersion manufactured by Daikin Industries
  • a protective layer having a thickness of 20 ⁇ m is formed on both surfaces of the core by the same production method as above using an ethylene tetrafluoride-hexafluoropropylene copolymer resin fine particle aqueous dispersion (manufactured by Dupont) having the same composition as in Example 1. Formed. The obtained composite does not include a phosphor layer.
  • the core body 1 was produced in the same manner as in Example 1.
  • a PFA fine particle aqueous dispersion (made by Mitsui DuPont Fluorochemical Co., Ltd.) comprising 60% by weight of a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA), 6% by weight of a nonionic surfactant and 34% by weight of water. )
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin
  • the mixing ratio of the phosphorescent phosphor powder at this time is 20% by weight with respect to 80% by weight of the PFA fine particles.
  • the first and second phosphor layers 11 1 and 11 2 having a thickness of 200 ⁇ m were formed on both PFA 1b layers of the core 1 by coating, drying and firing under the same manufacturing conditions as in Example 1.
  • both phosphor layers were obtained by coating, drying and firing under the same production conditions as described above, using an aqueous dispersion of tetrafluoroethylene-hexafluoropropylene copolymer resin fine particles (manufactured by Dupont) having the same composition as in Example 1.
  • protective layers (outermost layers) 3 1 and 3 2 having a thickness of 20 ⁇ m were obtained.
  • the core 1 was produced in the same manner as in Example 1.
  • ethylene tetrafluoride-6 hexafluoride-hexafluoropropylene copolymer resin comprising 54% by weight, nonionic surfactant 5.5% by weight and water 40.5% by weight.
  • 200 g of strontium aluminate phosphorescent phosphor manufactured by Nemoto Special Chemical Co., Ltd.
  • propylene fluoride copolymer resin fine particle aqueous dispersion manufactured by Dupont
  • An FEP fine particle aqueous dispersion mixed with phosphorescent phosphor powder was prepared.
  • first and second phosphor layers 12 1 and 12 2 having a thickness of 200 ⁇ m were produced on both FEP layers 1b of the core 1 by coating, drying and firing under the same production conditions as in Example 1. .
  • Comparative Example 4 A fluorescent composite having a multilayer structure shown in FIG. 9 was produced in the same manner as in Comparative Example 2 except that the protective layers 3 1 and 3 2 were not provided on the outermost layer.
  • the fluorescent complexes of Examples 1 to 4 were stored in an environment where light was blocked for 24 hours.
  • the fluorescent composite after storage was irradiated with light having an illuminance of 5000 Lx for 1 hour. After irradiation, it was transferred to a dark room, and after 1 minute, afterglow luminance was measured from a distance of 0.2 m at an angle of 90 ° using an LS-100 luminance meter (manufactured by Konica Minolta). The measurement time was changed to 10 minutes, 30 minutes and 60 minutes after moving into the dark room, and the afterglow luminance was measured.
  • SYMBOLS 1 Core body, 1a ... Heat-resistant woven fabric, 1b ... Fluororesin layer, 2 1 to 2 2 , 11 1 to 11 2 , 12 1 to 12 2 ... Phosphor layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Complexe fluorescent caractérisé en ce qu'il contient : un cœur (1) contenant une étoffe tissée (1a) résistant à la chaleur et une couche de résine fluorée (1b) formée des deux côtés de ladite étoffe tissée (1a) résistant à la chaleur ; et une couche de matériau fluorescent (2) contenant une substance fluorescente et une résine polytétrafuoroéthylène.
PCT/JP2013/068642 2012-07-09 2013-07-08 Complexe fluorescent WO2014010555A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380036688.2A CN104428393B (zh) 2012-07-09 2013-07-08 荧光复合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153793A JP5972077B2 (ja) 2012-07-09 2012-07-09 蛍光複合体
JP2012-153793 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010555A1 true WO2014010555A1 (fr) 2014-01-16

Family

ID=49916009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068642 WO2014010555A1 (fr) 2012-07-09 2013-07-08 Complexe fluorescent

Country Status (3)

Country Link
JP (1) JP5972077B2 (fr)
CN (1) CN104428393B (fr)
WO (1) WO2014010555A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849311B2 (ja) * 2016-02-29 2021-03-24 デンカ株式会社 蓄光性蛍光体を含有するフッ素系樹脂シート、これを用いた積層物、蓄光性シート、屋外用蓄光標識
CN105644101A (zh) * 2016-03-03 2016-06-08 京东方科技集团股份有限公司 一种多功能面料、其制作方法及户外服饰
CN105985599B (zh) * 2016-06-17 2021-05-28 燕山大学 一种荧光高分子复合物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110918U (fr) * 1988-01-21 1989-07-26
JPH0612631U (ja) * 1991-02-19 1994-02-18 浩文 森山 発光性シート部材
JP2006282685A (ja) * 2005-03-31 2006-10-19 Okaya Electric Ind Co Ltd 蛍光体担持体
JP2008012901A (ja) * 2006-07-06 2008-01-24 Ez Bright Corp 蓄光性蛍光膜材料及びその製造方法
JP2009037080A (ja) * 2007-08-03 2009-02-19 Hiraoka & Co Ltd 屋外用内照式膜材及びそれを用いた施工物
JP2009263606A (ja) * 2008-04-30 2009-11-12 Hiraoka & Co Ltd 光天井用膜材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013812A (en) * 1973-07-20 1977-03-22 Geiger David H Laminated fabric
JP3091765B2 (ja) * 1990-11-08 2000-09-25 中興化成工業株式会社 弗素樹脂複合シート
JPH04187425A (ja) * 1990-11-20 1992-07-06 Taiyo Kogyo Kk 弗素樹脂被覆布の接合構造
JP3112564B2 (ja) * 1992-05-18 2000-11-27 中興化成工業株式会社 弗素樹脂被覆複合体
JPH09109325A (ja) * 1995-10-16 1997-04-28 Nkk Corp フッ素樹脂系フィルムラミネート鋼板
JP5297604B2 (ja) * 2007-06-25 2013-09-25 中興化成工業株式会社 耐透水性・柔軟性ホース

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110918U (fr) * 1988-01-21 1989-07-26
JPH0612631U (ja) * 1991-02-19 1994-02-18 浩文 森山 発光性シート部材
JP2006282685A (ja) * 2005-03-31 2006-10-19 Okaya Electric Ind Co Ltd 蛍光体担持体
JP2008012901A (ja) * 2006-07-06 2008-01-24 Ez Bright Corp 蓄光性蛍光膜材料及びその製造方法
JP2009037080A (ja) * 2007-08-03 2009-02-19 Hiraoka & Co Ltd 屋外用内照式膜材及びそれを用いた施工物
JP2009263606A (ja) * 2008-04-30 2009-11-12 Hiraoka & Co Ltd 光天井用膜材

Also Published As

Publication number Publication date
JP2014015539A (ja) 2014-01-30
JP5972077B2 (ja) 2016-08-17
CN104428393B (zh) 2017-05-31
CN104428393A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
JP2017016134A (ja) 波長変換シート及びバックライトユニット
WO2014010555A1 (fr) Complexe fluorescent
JP2016122213A (ja) 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット
CN107901539B (zh) 复合体
KR20180044895A (ko) 파장 변환 부재, 형광체 시트, 백색 광원 장치, 및 표시 장치
US11655415B2 (en) Nanophosphor-attached inorganic particles and wavelength conversion member
JP5900720B1 (ja) 量子ドット保護フィルム、それを用いた量子ドットフィルム及びバックライトユニット
KR101771446B1 (ko) 형광체 재료 및 발광장치
TWI594462B (zh) Light-emitting device
JP6343637B2 (ja) 膜構造物
CN108659638A (zh) 铝单板幕墙用防火氟碳粉末涂料及其制备方法
KR101689989B1 (ko) 잔광성이 우수한 축광안료의 제조방법
WO2014021353A1 (fr) Matière fluorescente et dispositif émettant de la lumière
WO2010143618A1 (fr) Matière fluorescente et dispositif luminescent
JP2017136737A (ja) 蛍光体用保護フィルム、及びそれを用いた波長変換シート
JP2008012901A (ja) 蓄光性蛍光膜材料及びその製造方法
JP6277297B2 (ja) 膜構造物
CN106497250A (zh) 发光膜制备方法
KR101804072B1 (ko) 가전제품의 표시장치에 사용되는 파장 변환 필름
JP5392445B1 (ja) 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物
KR101899309B1 (ko) 축광성을 함유한 재귀반사물질의 제조방법
KR101771448B1 (ko) 형광체 재료의 제조방법, 형광체 재료 및 발광장치
KR200475471Y1 (ko) 형광체 재료 및 발광장치
JP2011042702A (ja) 蛍光体と蛍光体の製造方法および蛍光ランプ
JP2023056388A (ja) 粘着テープ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015/00119

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: P42/2015

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816768

Country of ref document: EP

Kind code of ref document: A1