CN105985599B - 一种荧光高分子复合物及其制备方法 - Google Patents

一种荧光高分子复合物及其制备方法 Download PDF

Info

Publication number
CN105985599B
CN105985599B CN201610436082.3A CN201610436082A CN105985599B CN 105985599 B CN105985599 B CN 105985599B CN 201610436082 A CN201610436082 A CN 201610436082A CN 105985599 B CN105985599 B CN 105985599B
Authority
CN
China
Prior art keywords
dye
room temperature
polyvinyl alcohol
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610436082.3A
Other languages
English (en)
Other versions
CN105985599A (zh
Inventor
王丽秋
孙琪
刘洋
张晓博
刘学龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610436082.3A priority Critical patent/CN105985599B/zh
Publication of CN105985599A publication Critical patent/CN105985599A/zh
Application granted granted Critical
Publication of CN105985599B publication Critical patent/CN105985599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种荧光高分子复合物是由浓度为1×10‑8~1×10‑4mol/L的吲哚菁染料、质量分数为0.1‑10wt%的聚乙烯醇及加入量是聚乙烯醇质量分数0‑60%的其它水溶性高分子物质复合而制得的产物;物理制法是将吲哚菁染料、聚乙烯醇及其它水溶性高分子物质形成的水溶液超声处理后而获得;化学方法是将吲哚菁染料转化为该染料的琥珀酰亚胺活性酯,再与聚乙烯醇及其它水溶性高分子物质作用,或将聚乙烯醇制成薄膜,然后浸入到该染料的琥珀酰亚胺活性酯液中获得。本发明制备工艺简单、对环境友好、组分复合均匀,产品具有优良的荧光特性,有望在生物荧光传感器、纺织、医药及日常用品等方面得到广泛应用。

Description

一种荧光高分子复合物及其制备方法
技术领域
本发明涉及一种荧光高分子复合物及其制备方法,特别是染料和水溶性高分子化合物形成的荧光高分子复合物。
背景技术
荧光高分子材料因具有荧光、质轻、柔韧性、成膜性、黏结力以及易于加工成型等优点,作为一种功能材料,在生物荧光检测、传感器、药物包埋及废液治理等方面得到了广泛应用。
目前荧光高分子材料主要通过稀土离子如铕离子及其配合物为荧光发射物质,与聚芳醚腈、聚甲基丙烯酸甲酯及丙烯酰胺类等高分子基质结合而形成的。这些荧光发射物质绝大多数为无机物,在有机高分子基质中不易被分散,因此它们的复合效果较差、工艺复杂且成本高。另外,这些无机物的荧光发射波长短,复合后荧光强度减弱,降低了荧光检测的灵敏度,同时它们的掺杂会降低高分子复合物的光热稳定性和机械强度等,限制了其应用。
发明内容
本发明的目的在于提供一种制备工艺简单、组分复合均匀,具有优良的荧光、热稳定和机械性能的荧光高分子复合物及其制备方法。
一、本发明的荧光高分子复合物是由浓度为1×10-8~1×10-4mol/L的吲哚菁染料、质量分数为0.1-10wt%的聚乙烯醇(PVA)及加入量是PVA质量分数0-60%的其它水溶性高分子物质,通过物理或化学方法复合后获得的产物。其中,其它水溶性高分子物质为除了PVA以外的一种或一种以上的水溶性高分子物质,如聚乙烯吡咯烷酮(PVP),聚乙二醇(PEG)及海藻酸钠等;吲哚菁染料为ZL02102927.X中所述的对称性吲哚菁染料,主要涉及的吲哚菁染料结构如下:
Figure BDA0001020373700000021
二、本发明的制备方法具体如下:
(1)物理方法
1)将PVA溶于去离子水中,加热至85-100℃,充分溶解,得到0.1-10wt%的PVA水溶液。
2)将吲哚菁染料加入到0.1-10wt%PVA和加入量是PVA质量分数0-60%的其它水溶性高分子物质组成的水溶液中,形成吲哚菁染料浓度为1×10-8~1×10-4mol/L的水溶液,室温下避光超声1-2h,超声频率范围为20~100KHz。室温避光下,干燥24h,得到一种荧光高分子复合物。
(2)化学方法
将吲哚菁染料、N,N'-二环己基碳二亚胺(DCC)和N-羟基琥珀酰亚胺(NHS)以摩尔比为1:2:3加入到N,N-二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)溶剂中,在氮气保护下,于室温避光反应12-48h,得到浓度为1×10-8~1×10-4mol/L的染料的NHS活性酯液。通过如下两种方法,使染料的NHS活性酯与高分子物质发生作用。
方法一
将染料的NHS活性酯加入到0.1-10wt%PVA和加入量是PVA质量分数0-60%的其它水溶性高分子物质组成的水溶液中,形成染料的NHS活性酯浓度为1×10-8~1×10-4mol/L的水溶液,混合物在氮气保护下,室温避光反应36-54h,然后在室温避光下,干燥24h,得到相应荧光高分子复合物。
方法二
将0.1-10wt%PVA和加入量是PVA质量分数0-60%的其它水溶性高分子物质组成的水溶液,铺展到光滑、干净的表面皿上,在室温下干燥24h,制备得到一种薄膜。将该膜放入到浓度为1×10-8~1×10-4mol/L的染料的NHS活性酯中,在氮气保护下,室温避光反应36-54h。用无水乙醇清洗浸渍后的薄膜至洗液为无色,然后在室温避光下,干燥24h,得到相应荧光高分子复合物。
本发明与现有技术相比有如下优点:
1.本发明采用的一种吲哚菁染料(ZL02102927.X)具有良好的水溶性、荧光性能、热和光稳定性等,为具有良好开发前景的一类近红外荧光染料,广泛应用于生物荧光检测分析、电子照相、太阳能电池及光学非线性材料等领域。
2.基于其良好的水溶性,吲哚菁染料可在水溶液中与PVA及其它水溶性高分子物质均相复合,工艺简单、对环境友好,复合效果优异,避免了因荧光物质的掺杂及分布不匀对复合物性能造成的不良影响。
3.吲哚菁染料的分子中含有N-对羧苄基基团,通过其羧基的活化更易于与PVA中的羟基作用,进行化学键合,使它们之间的复合更加牢固。
4.所采用的吲哚菁染料的荧光发射波长较长(550-900nm),与高分子物质复合后荧光强度增强,因此可制得具有优良荧光特性的近红外荧光高分子复合物,因此具有更加广阔的应用前景。
5.所采用的吲哚菁染料为有机物,因此复合物仍然保有PVA良好的成膜性、柔韧性、黏结力和机械性能等。
6.本发明的荧光高分子复合物,有望应用于荧光传感器、荧光标示牌、光学非线性材料、纺织、医药及日常用品等方面。
附图说明
图1是本发明实施例1、4、7中所用的吲哚菁染料D1结构式图。
图2是本发明实施例2、5、8、10、11、12中所用的吲哚菁染料D2结构式图。
图3是本发明实施例3、6、9中所用的吲哚菁染料D3结构式图。
图4是本发明实施例6中荧光高分子复合物的红外光谱图。
图5是本发明实施例1中荧光高分子复合物的紫外-可见吸收光谱图。
图6是本发明实施例1中荧光高分子复合物的荧光光谱图。
图7是本发明实施例2中荧光高分子复合物的紫外-可见吸收光谱图。
图8是本发明实施例2中荧光高分子复合物的荧光光谱图。
图9是本发明实施例8中荧光高分子复合物的荧光光谱图。
图10是本发明实施例3中荧光高分子复合物的紫外-可见吸收光谱图。
图11是本发明实施例3中荧光高分子复合物的荧光光谱图。
图12是本发明实施例10中荧光高分子复合物的紫外-可见吸收光谱图。
图13是本发明实施例10中荧光高分子复合物的荧光光谱图。
图14是本发明实施例11中荧光高分子复合物的紫外-可见吸收光谱图。
图15是本发明实施例11中荧光高分子复合物的荧光光谱图。
图16是本发明实施例12中荧光高分子复合物物的紫外-可见吸收光谱图。
图17是本发明实施例12中荧光高分子复合物的荧光光谱图。
上面图中:图4为荧光高分子复合物的红外光谱图,图中有明显的PVA、吲哚菁染料D3的特征峰:1740cm-1为染料的NHS活性酯中羧酸酯的特征峰,1600~1450cm-1为所含的苯环特征峰,720cm-1为PVA的-[CH2]n-的特征峰,可以说明染料和PVA的复合;
图5、图7、图10、图12、图14、图16为荧光高分子复合物的紫外-可见光谱图,与吲哚菁染料D1、D2、D3水溶液相比,其最大紫外-可见波长略有红移,吸收峰变宽;
图6、图8、图9、图11、图13、图15、图17为荧光高分子复合物的荧光光谱图图,与吲哚菁染料D1、D2、D3水溶液相比,染料的荧光发射峰变宽,略有红移,染料的荧光性能明显增强。
具体实施方式
实施例1
取0.01g的PVA溶于9.99g去离子水中,加热至85℃,充分溶解,冷却至室温,得到10mL质量分数为0.1wt%的PVA水溶液。将吲哚菁染料D1(分子结构式见图1)加入到0.1wt%PVA和加入量是聚乙烯醇(PVA)质量分数0%的其它水溶性高分子物质组成的水溶液中,形成1×10-8mol/L吲哚菁染料的水溶液。将混合液于室温下避光超声1h,超声频率为20KHz。室温避光下,干燥24h,得到荧光高分子复合物。
实施例2
取0.5g的PVA溶于9.5g去离子水中,加热至90℃,充分溶解,冷却至室温,得到10mL质量分数为5wt%的PVA水溶液。将吲哚菁染料D2(分子结构式见图2)加入到5wt%PVA和加入量是聚乙烯醇(PVA)质量分数0.01%的聚乙烯吡咯烷酮(PVP)组成的水溶液中,形成1×10-6mol/L吲哚菁染料的水溶液。将混合液于室温下避光超声1h,超声频率为50KHz。室温避光下,干燥24h,得到荧光高分子复合物。
实施例3
取1.0g的PVA溶于9.0g去离子水中,加热至100℃,充分溶解,冷却至室温,得到10mL质量分数为10wt%的PVA水溶液。将吲哚菁染料D3(分子结构式见图3)加入到10wt%PVA和加入量是聚乙烯醇(PVA)质量分数0.1%的聚乙二醇(PEG)组成的水溶液中,形成1×10-4mol/L吲哚菁染料的水溶液。将混合液于室温下避光超声2h,超声频率为100KHz。室温避光下,干燥24h,得到荧光高分子复合物。
实施例4
将0.088g的吲哚菁染料D1(分子结构式见图1)、0.04g DCC和0.35g NHS同时加入到DMF溶剂中,在氮气保护下于室温避光反应12h,得到1×10-8mol/L该染料的NHS活性酯。然后将3wt%PVA和加入量是聚乙烯醇(PVA)质量分数0%的其它水溶性高分子物质组成的水溶液,铺展到光滑、干净的表面皿上,在室温下干燥24h后得到PVA膜。然后将PVA膜浸入浓度为1×10-8mol/L染料的NHS活性酯液中,在氮气保护下于室温避光复合36h。将复合后的PVA膜用无水乙醇洗涤至洗液为无色,然后在室温下避光干燥24h,得到相应荧光高分子复合物。
实施例5
将0.090g的吲哚菁染料D2(分子结构式见图2)、0.04g DCC和0.35g NHS同时加入到DMSO溶剂中,在氮气保护下于室温避光反应24h,得到1×10-6mol/L该染料的NHS活性酯。然后将4wt%PVA和加入量是聚乙烯醇(PVA)质量分数0.01%的聚乙烯吡咯烷酮(PVP)组成的水溶液,铺展到光滑、干净的表面皿上,在室温下干燥24h后得到薄膜。然后将该膜浸入浓度为1×10-6mol/L染料的NHS活性酯液中,在氮气保护下于室温避光复合48h。将复合后的薄膜用无水乙醇洗涤至洗液为无色,然后在室温下避光干燥24h,得到相应荧光高分子复合物。
实施例6
将0.089g的吲哚菁染料D3(分子结构式见图3)、0.04g DCC和0.35g NHS同时加入到DMF溶剂中,在氮气保护下于室温避光反应48h,得到1×10-4mol/L该染料的NHS活性酯。然后将5wt%PVA和加入量是聚乙烯醇(PVA)质量分数0.1%的聚乙二醇(PEG)组成的水溶液,铺展到光滑、干净的表面皿上,在室温下干燥24h后得到薄膜。然后将该膜浸入浓度为1×10-4mol/L染料的NHS活性酯液中,在氮气保护下于室温避光复合54h。将复合后的薄膜用无水乙醇洗涤至洗液为无色,然后在室温下避光干燥24h,得到相应荧光高分子复合物。
实施例7
将0.088g的吲哚菁染料D1(分子结构式见图1)、0.04g DCC和0.35g NHS同时加入到DMSO溶剂中,在氮气保护的条件下,于室温避光反应24h,生成染料的NHS活性酯。将染料的NHS活性酯加入到0.1wt%的PVA和加入量是聚乙烯醇(PVA)质量分数0%的其它水溶性高分子物质组成的水溶液中,得到1×10-8mol/L染料的NHS活性酯的水溶液,在氮气保护下于室温避光反应36h,然后在室温下避光干燥24h,得到相应荧光高分子复合物。
实施例8
将0.090g的吲哚菁染料D2(分子结构式见图2)、0.04g DCC和0.35g NHS同时加入到DMF溶剂中,在氮气保护的条件下,于室温避光反应12h,生成染料的NHS活性酯。将染料的NHS活性酯加入到5wt%的PVA和加入量是聚乙烯醇(PVA)质量分数0.01%的聚乙烯吡咯烷酮(PVP)组成的水溶液中,得到1×10-6mol/L染料的NHS活性酯的水溶液,在氮气保护下于室温避光反应48h。然后在室温下避光干燥24h,得到相应荧光高分子复合物。
实施例9
将0.089g的吲哚菁染料D3(分子结构式见图3)、0.04g DCC和0.35g NHS同时加入到DMF溶剂中,在氮气保护的条件下,于室温避光反应24h,生成染料的NHS活性酯。将染料的NHS活性酯加入到10wt%的PVA和加入量是聚乙烯醇(PVA)质量分数0.1%的聚乙二醇(PEG)组成的水溶液中,得到1×10-4mol/L染料的NHS活性酯的水溶液,在氮气保护下于室温避光反应54h,然后在室温下避光干燥24h,得到相应荧光高分子复合物。
实施例10
取0.3g的PVA溶于9.7g去离子水中,加热至85℃,充分溶解,冷却至室温,得到10mL质量分数为3wt%的PVA水溶液。将吲哚菁染料D2(分子结构式见图2)加入到3wt%PVA和加入量是聚乙烯醇(PVA)质量分数1%的聚乙烯吡咯烷酮(PVP)组成的水溶液中,形成1×10- 8mol/L吲哚菁染料的水溶液。将混合液于室温中超声1h,超声频率为20KHz,然后室温干燥24h,得到荧光高分子复合物。
实施例11
取0.4g的PVA溶于9.6g去离子水中,加热至90℃,充分溶解,冷却至室温,得到10mL质量分数为4wt%的PVA水溶液。将吲哚菁染料D2(分子结构式见图2)加入到4wt%PVA和加入量是聚乙烯醇(PVA)质量分数60%的聚乙二醇(PEG)组成的水溶液中,形成1×10-6mol/L吲哚菁染料的水溶液。将混合液于室温中超声2h,超声频率为50KHz,然后室温干燥24h,得到荧光高分子复合物。
实施例12
取0.5g的PVA溶于9.5g去离子水中,加热至95℃,充分溶解,冷却至室温,得到10mL质量分数为5wt%的PVA水溶液。将吲哚菁染料D2(分子结构式见图2)加入到5wt%PVA和加入量是聚乙烯醇(PVA)质量分数20%的海藻酸钠、加入量是聚乙烯醇(PVA)质量分数40%的聚乙二醇(PEG)组成的水溶液中,形成1×10-4mol/L吲哚菁染料的水溶液。将混合液于室温中超声2h,超声频率为100KHz,然后室温干燥24h,得到荧光高分子复合物。

Claims (2)

1.一种荧光高分子复合物,其特征在于:其是由吲哚菁染料、聚乙烯醇及加入量是聚乙烯醇质量分数0-60%的其它水溶性高分子物质,通过物理或化学方法复合后获得的产物;
所述物理方法为:
1)将聚乙烯醇溶于去离子水中,加热至85-100℃,充分溶解,得到0.1-10wt%的聚乙烯醇水溶液,
2)将吲哚菁染料加入到0.1-10wt%聚乙烯醇和加入量是聚乙烯醇质量分数0-60%的其它水溶性高分子物质组成的水溶液中,形成吲哚菁染料浓度为1×10-8~1×10-4mol/L的水溶液,室温下避光超声1-2h,超声频率范围为20~100KHz,室温避光下,干燥24h,得到荧光高分子复合物;
所述化学方法为:
将吲哚菁染料、N,N'-二环己基碳二亚胺和N-羟基琥珀酰亚胺以摩尔比为1:2:3加入到N,N-二甲基甲酰胺或二甲基亚砜溶剂中,在氮气保护下,于室温避光反应12-48h,得到浓度为1×10-8~1×10-4mol/L的染料的N-羟基琥珀酰亚胺活性酯液;将染料的N-羟基琥珀酰亚胺活性酯加入到0.1-10wt%聚乙烯醇和加入量是聚乙烯醇质量分数0-60%的其它水溶性高分子物质组成的水溶液中,形成染料的N-羟基琥珀酰亚胺活性酯浓度为1×10-8~1×10-4mol/L的水溶液,混合物在氮气保护下,室温避光反应36-54h,然后在室温避光下,干燥24h,得到荧光高分子复合物;或者
将吲哚菁染料、N,N'-二环己基碳二亚胺和N-羟基琥珀酰亚胺以摩尔比为1:2:3加入到N,N-二甲基甲酰胺或二甲基亚砜溶剂中,在氮气保护下,于室温避光反应12-48h,得到浓度为1×10-8~1×10-4mol/L的染料的N-羟基琥珀酰亚胺活性酯液;将0.1-10wt%聚乙烯醇和加入量是聚乙烯醇质量分数0-60%的其它水溶性高分子物质组成的水溶液铺展到光滑、干净的表面皿上,在室温下干燥24h,制备得到一种薄膜,将该膜放入到上述浓度为1×10-8~1×10-4mol/L的染料的N-羟基琥珀酰亚胺活性酯液中,在氮气保护下,室温避光反应36-54h,用无水乙醇清洗浸渍后的薄膜至洗液为无色,然后在室温避光下,干燥24h,得到荧光高分子复合物;
其中,所述其它水溶性高分子物质为除了聚乙烯醇以外的一种水溶性高分子物质,所述吲哚菁染料的分子结构式选自如下之一:
Figure FDA0002930488240000021
2.根据权利要求1所述的荧光高分子复合物,其特征在于:所述水溶性高分子物质选自聚乙烯吡咯烷酮,聚乙二醇及海藻酸钠。
CN201610436082.3A 2016-06-17 2016-06-17 一种荧光高分子复合物及其制备方法 Active CN105985599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610436082.3A CN105985599B (zh) 2016-06-17 2016-06-17 一种荧光高分子复合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610436082.3A CN105985599B (zh) 2016-06-17 2016-06-17 一种荧光高分子复合物及其制备方法

Publications (2)

Publication Number Publication Date
CN105985599A CN105985599A (zh) 2016-10-05
CN105985599B true CN105985599B (zh) 2021-05-28

Family

ID=57044274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610436082.3A Active CN105985599B (zh) 2016-06-17 2016-06-17 一种荧光高分子复合物及其制备方法

Country Status (1)

Country Link
CN (1) CN105985599B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112972705A (zh) * 2021-02-23 2021-06-18 南京诺源医疗器械有限公司 一种吲哚菁绿水凝胶荧光标定板及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159385C (zh) * 2002-01-30 2004-07-28 大连理工大学 水溶性3h-吲哚菁染料
CN101914232A (zh) * 2010-08-27 2010-12-15 上海交通大学 一种具有荧光性能的高分子复合材料的制备方法
CN104428393A (zh) * 2012-07-09 2015-03-18 中兴化成工业株式会社 荧光复合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012305327B2 (en) * 2011-09-05 2016-07-14 Hiroshi Maeda Polymer-type fluorescent molecule probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159385C (zh) * 2002-01-30 2004-07-28 大连理工大学 水溶性3h-吲哚菁染料
CN101914232A (zh) * 2010-08-27 2010-12-15 上海交通大学 一种具有荧光性能的高分子复合材料的制备方法
CN104428393A (zh) * 2012-07-09 2015-03-18 中兴化成工业株式会社 荧光复合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Large Edge-Excitation Red Shift For a Merocyanine Dye In Poly(vinyl Alcohol) Polymer Matrix;KHADER A. AL-HASSAN et al.;《Journal of Polymer Science Part B: Polymer Physics》;19870331;第25卷(第3期);第495-500页 *
花菁染料聚乙烯醇延伸膜的三阶非线性光学极化率的各向异性;金朝辉等;《吉林化工学院学报》;20100215;第27卷(第1期);第1-3页 *

Also Published As

Publication number Publication date
CN105985599A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
Long et al. Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor
Cakmak et al. Phenylethynyl-BODIPY oligomers: bright dyes and fluorescent building blocks
Jin et al. Facile access to solid-state carbon dots with high luminescence efficiency and excellent formability via cellulose derivative coatings
CN105153864A (zh) 一种光热致形状记忆复合材料及其制备方法
CN107903893B (zh) 一种具有近红外吸收和近红外发光特性的改性碳纳米点、其制备方法及其应用
CN105820499B (zh) 一种聚苯胺复合型导电塑料
Hu et al. Synthesis of novel fluorescent cellulose derivatives and their applications in detection of nitroaromatic compounds
Sottile et al. Epoxy resin doped with Coumarin 6: Example of accessible luminescent collectors
CN108586741A (zh) 荧光性聚酰胺酸聚合物、制备方法及其在荧光多刺激响应方面的应用
CN104086927B (zh) 一种柔性稀土透明发光薄膜及其制备方法
CN105985599B (zh) 一种荧光高分子复合物及其制备方法
CN113462380B (zh) 一种在空气状态下实现三重态湮灭光子上转换有机凝胶及其制备方法和应用
Hu et al. In Situ Generation of N-Heteroaromatic Polymers: Metal-Free Multicomponent Polymerization for Photopatterning, Morphological Imaging, and Cr (VI) Sensing
CN106244138A (zh) 一种凹土基复合荧光材料及其制备方法和应用
CN105061403A (zh) 一种多功能基哒嗪酮类化合物,其作为橙色有机发光材料的应用及其制备方法
CN102627783B (zh) 一种交联聚乙烯吡咯烷酮基荧光复合薄膜及其制备方法
CN103145984B (zh) 一种具有近红外光学吸收的方酸菁聚三唑及其制备方法
Bao et al. Study on the synthesis and photothermal conversion property of polyaniline
CN105985598B (zh) 一种染料-石墨烯-聚乙烯醇三元荧光复合物及制备方法
CN105622967A (zh) 一种单分散聚乙烯醇微球的制备方法
CN108794738A (zh) 具有聚集诱导发光特性的两亲性发光分子及制备方法
CN104371043A (zh) 光引发剂硫杂蒽酮乙酰芴及其制备方法
Acelas et al. The oligomer approach: An effective strategy to assess phenylene vinylene systems as organic heterogeneous photocatalysts in the degradation of aqueous indigo carmine dye
CN109336893B (zh) 萘酞菁-氨基化氧化石墨烯复合非线性光学材料及其制备方法
Gemeay et al. Application of polyaniline/manganese dioxide composites for degradation of acid blue 25 by hydrogen peroxide in aqueous media

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant