WO2014010387A1 - 拡管用プラグ - Google Patents

拡管用プラグ Download PDF

Info

Publication number
WO2014010387A1
WO2014010387A1 PCT/JP2013/067064 JP2013067064W WO2014010387A1 WO 2014010387 A1 WO2014010387 A1 WO 2014010387A1 JP 2013067064 W JP2013067064 W JP 2013067064W WO 2014010387 A1 WO2014010387 A1 WO 2014010387A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tube
pipe
expansion
plug
Prior art date
Application number
PCT/JP2013/067064
Other languages
English (en)
French (fr)
Inventor
上田 薫
友貴 戸谷
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to JP2014524711A priority Critical patent/JP6173317B2/ja
Publication of WO2014010387A1 publication Critical patent/WO2014010387A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • B21D41/021Enlarging by means of tube-flaring hand tools

Definitions

  • the present invention relates to a tube-expanding plug used when expanding an aluminum (including pure aluminum and aluminum alloy) tube.
  • a copper heat transfer tube having a spiral groove formed on the inner surface is used.
  • studies have been made to change the heat transfer tube from copper to aluminum alloy.
  • aluminum has a lower hardness than copper, it is difficult to form a spiral groove like a copper heat transfer tube. Therefore, in the heat transfer tube made of aluminum alloy, a linear groove extending in the axial direction of the tube, that is, a straight groove, is formed instead of a spiral groove.
  • the assembly of the heat exchanger is generally performed as follows. First, the heat radiation fin material in which the predetermined collar portion is formed is laminated, and the heat transfer tube is passed through the cylindrical collar portion. Next, the heat transfer tube and the radiating fin are fixed by performing a tube expansion process of forcibly inserting a tube expansion plug having an outer diameter larger than the inner diameter of the heat transfer tube to expand the outer diameter of the heat transfer tube. .
  • lubricating oil When expanding the tube, lubricating oil is used to reduce friction between the expansion plug and the heat transfer tube and to suppress or prevent the occurrence of seizure. After pipe expansion, it is desired to reduce the remaining amount of unnecessary lubricating oil as much as possible and to reduce the amount of residual oil. Further, from the viewpoint of cost reduction, there is a demand for a reduction in the amount of lubricating oil used during pipe expansion.
  • lubricating oil is supplied to the inner surface of the aluminum tube in advance, and the pipe expansion plug is inserted into the aluminum pipe in a state where the lubricating oil is present on the inner surface.
  • the introduced lubricating oil easily flows out through the straight grooves. For this reason, it is difficult to perform expansion by sufficiently supplying lubricating oil between the aluminum tube and the expansion plug.
  • the lubricating oil supplied to the inner surface of the aluminum tube exists along the straight groove. Therefore, the lubricating oil present in the convex portion of the straight groove is reduced, and the friction between the convex portion of the groove and the pipe for expanding the tube tends to increase. As a result, there is a risk of causing seizure.
  • the present invention has been made in view of such a background, and can be expanded with a small amount of lubricating oil, and also for an aluminum tube in which a straight groove extending in the axial direction is formed on the inner surface. It is an object of the present invention to provide a pipe expansion plug that can be expanded by sufficiently supplying lubricating oil between the pipe and the pipe expansion pipe.
  • One aspect of the present invention is a pipe for expanding a tube that is used to expand the aluminum pipe by being relatively advanced in the axial direction of the aluminum pipe while being inserted into an aluminum pipe supplied with lubricating oil on the inner surface.
  • a line-shaped groove is formed on the surface of the tube for expanding the tube, at least in a contact area where the plug for expanding the tube contacts the aluminum tube,
  • the groove is formed at an angle of 45 to 135 ° with respect to the advancing direction of the pipe for expansion in the aluminum pipe,
  • the groove width W ⁇ m and the groove depth D ⁇ m in the traveling direction satisfy the relationship of 10 ⁇ W ⁇ 100, 1 ⁇ D ⁇ 100, and W / D ⁇ 1;
  • the side surface of the groove has a front convex curve adjacent to the front end of the groove opening on the surface of the tube expansion plug, and a rear convex curve adjacent to the rear end of the opening. It is in the plug for pipe expansion characterized by having made.
  • a line-shaped groove is formed on the surface of the tube expansion plug with the predetermined angle, width, and depth.
  • channel has the front side convex curved surface adjacent to the said front side edge part, and the back side convex curved surface adjacent to the said back side edge part. Therefore, when the pipe for expanding pipe is advanced into the aluminum pipe at the time of pipe expansion, the lubricating oil existing on the inner surface of the aluminum pipe enters the groove from the front end and is discharged from the groove to the rear end. Smooth oil flow. Therefore, the lubricating oil can be easily held in the contact area even with a small amount of supply. Therefore, the occurrence of image sticking during tube expansion can be sufficiently suppressed.
  • lubricating oil can be hold
  • FIG. 1 which shows a mode that the pipe for a pipe expansion is advanced in the aluminum pipe in Example 1 and 2, and a pipe expansion process is performed.
  • FIG. Explanatory drawing which shows the expanded cross section of the groove
  • FIG. The elements on larger scale of the surface of the plug for pipe expansion in Example 1 and 2.
  • FIG. Explanatory drawing which shows the expanded cross section of the groove
  • the pipe for expanding the tube is used for expanding the aluminum tube by being inserted into the aluminum tube and relatively moving in the axial direction of the aluminum tube.
  • the plug for pipe expansion has a slope or a curved surface on the surface for increasing the diameter of the aluminum pipe.
  • the plug for tube expansion generally has a region where the outer diameter increases from the front end side in the traveling direction toward the rear in the contact region with the inner surface of the aluminum tube.
  • the tube expansion plug can be formed in, for example, a spherical shape, an elliptical spherical shape, a bullet shape, a triangular pyramid shape, or a cylindrical shape in which a tapered region is provided in at least a part of the outer shape.
  • the maximum diameter of the pipe for expansion is the inner diameter of the expanded aluminum pipe. Therefore, the maximum diameter of the pipe expansion plug can be appropriately set according to the inner diameter of the aluminum pipe, but can be set within a range of 3 to 12 mm, for example.
  • the aluminum tube may be made of either pure aluminum or an aluminum alloy.
  • the aluminum tube In expanding the tube, the aluminum tube can be arranged horizontally, diagonally, or vertically. In the case where the expansion is performed by arranging the aluminum tube obliquely or vertically, it is preferable that the expansion plug is advanced from above to below.
  • the pipe expansion plug is preferably used for expansion of an aluminum pipe in which a linear groove extending in the axial direction is formed on the inner surface.
  • a linear groove extending in the axial direction is formed on the inner surface.
  • the number of linear grooves (straight grooves) formed on the inner surface of the aluminum tube may be one, or a plurality of grooves may be formed.
  • a line-shaped groove is formed on the surface of the tube expansion plug.
  • the grooves can be formed in a spiral shape, but a plurality of ring-shaped grooves that go around the outer periphery of the pipe for expanding the tube can also be formed at a predetermined interval.
  • the groove is formed in a contact area with the inner surface of the aluminum tube on the surface of the tube for expanding the tube.
  • the groove is preferably formed over the entire contact area.
  • the groove is formed not only in the contact area but also in the contact area from the front end in the traveling direction to 1 mm or more forward.
  • the lubricating oil can be sufficiently retained in front of the contact area during the pipe expansion process.
  • the groove is formed at an angle of 45 to 135 ° with respect to the traveling direction of the tube expansion plug.
  • the groove forming angle with respect to the advancing direction of the tube expansion plug deviates from the predetermined range, the groove forming direction approaches parallel to the advancing direction of the tube expanding plug, so that lubricating oil is supplied into the groove. Lubricating oil is easily discharged from the groove with the progress of the pipe expansion plug.
  • the groove is more preferably formed at an angle of 60 to 120 ° with respect to the traveling direction of the pipe expansion plug in the aluminum pipe.
  • the width W ⁇ m of the groove in the traveling direction and the depth D ⁇ m of the groove satisfy the relationship of 10 ⁇ W ⁇ 100, 1 ⁇ D ⁇ 100, and W / D ⁇ 1.
  • W ⁇ 10 the groove may be filled with aluminum wear powder.
  • W> 100 the lubricating oil tends to stay in the groove, and it may be difficult to sufficiently supply the lubricating oil to the surface of the pipe for expansion, which originally needs the lubricating oil. .
  • the change in the outer diameter of the pipe expansion plug before and after the groove in the traveling direction becomes large, it may be difficult to smooth the inner surface of the aluminum pipe after the pipe expansion. More preferably 10 ⁇ W ⁇ 50.
  • the groove when D ⁇ 1, the groove may be filled with aluminum wear powder.
  • D> 100 the depth of the groove becomes too large, and the strength of the tube expansion plug itself may be reduced. Therefore, there is a possibility that breakage starting from the groove may occur during tube expansion processing.
  • a groove having a large depth exceeding 100 ⁇ m is formed, there is a possibility that the lubricating oil is stored at the bottom of the groove. Therefore, it may be necessary to increase the supply amount of the lubricating oil in order to sufficiently supply the lubricating oil to the surface of the pipe expansion plug that originally needs the lubricating oil.
  • the width W ⁇ m of the groove in the traveling direction and the pitch P ⁇ m between the grooves in the traveling direction satisfy the relationship of W ⁇ P ⁇ 10 ⁇ W.
  • P ⁇ W the contact area between the surface of the tube for expanding the tube and the inner surface of the aluminum tube is reduced, and the surface pressure may be increased.
  • P> 10 ⁇ W it may be difficult to supply sufficient lubricating oil in the grooves between the pitches. More preferably 2 ⁇ P ⁇ W ⁇ 5 ⁇ P.
  • the width W is a width at the opening of the groove in the traveling direction.
  • the pitch P is the shortest distance in the traveling direction between the openings between adjacent grooves.
  • the depth D is the depth of the deepest portion in the cross section of the groove in the traveling direction.
  • the width W, depth D, and pitch P of the groove are values in the traveling direction of the tube expansion plug. That is, the width, depth, and pitch of the cross section of the groove in the traveling direction of the pipe expansion plug.
  • W, D, and P can be measured by, for example, microscopic observation.
  • the shortest distance C A , the shortest distance C B , the radius of curvature R A , and the radius of curvature R B described later are values in the traveling direction of the above-described tube for expanding the tube. Can be measured.
  • the shortest distance C A ⁇ m in the advancing direction between the front end of the opening of the groove and the deepest part of the groove on the surface of the pipe for expansion tube, and the rear end of the opening and the groove preferably satisfies the relationship C A ⁇ C B.
  • the lubricating oil flows into the groove from the front side end portion and is further discharged from the groove to the rear side end portion. It can be smooth.
  • the shortest distance C A is the shortest distance in the traveling direction of the deepest portion of the front end portion and the groove of the opening of the groove.
  • the shortest distance C B is the shortest distance in the traveling direction between the rear side end of the opening of the groove and the deepest part of the groove. Therefore, the shortest distance C A and the shortest distance C B can be defined based on the cross-sectional shape of the groove in the traveling direction of the tube expansion plug.
  • the side surface extending from the opening of the groove to the bottom surface may be perpendicular to the traveling direction or may be tapered with an inclination with respect to the traveling direction. Further, the side surface may be constituted by a curved surface.
  • the side surface of the groove has a front convex curved surface adjacent to the front end and a rear convex curved surface adjacent to the rear end. Therefore, during the pipe expansion process in which the pipe expansion plug is advanced into the aluminum pipe, as described above, the lubricating oil flows into the groove from the front end and is discharged from the groove to the rear end. Become smooth.
  • the curvature radius R A ⁇ m of the front convex curved surface, the curvature radius R B ⁇ m of the rear convex curved surface, and the depth D of the groove are 0 ⁇ R A ⁇ D and 1/2 ⁇ D ⁇ R B ⁇ . It is preferable to satisfy the relationship of 5 ⁇ D. In this case, at the time of pipe expansion processing, the lubricating oil flows into the groove from the front side end portion and is further smoothly discharged from the groove to the rear side end portion. More preferably, R A ⁇ R B is good.
  • the curvature radii R A and R B and the later-described curvature radii R A ′ and R B ′ the smallest curvature radii on the target curved surface can be used.
  • the groove In the cross section in the traveling direction of the groove, the groove has a flat bottom surface at the bottom, and the front side surface of the groove has a vertical surface extending vertically from the bottom surface toward the opening, and the vertical surface. And the front convex curved surface that smoothly curves toward the front end of the opening, and the rear side surface of the groove extends from the bottom to the rear end of the opening. It is preferable to have the above-mentioned back side convex curved surface in which the whole side surface curves smoothly toward.
  • the groove In the cross section in the traveling direction of the groove, the groove has a concave curved surface between the front convex curved surface and the rear convex curved surface, and the deepest portion of the groove is located on the concave curved surface. Preferably it is. In these cases, during the pipe expansion process in which the pipe expansion plug is advanced into the aluminum pipe, the lubricating oil flows into the groove from the front end and is discharged from the groove to the rear end. It becomes even smoother
  • the curvature radius R A ' ⁇ m on the front side of the concave surface and the curvature radius R B ' ⁇ m on the rear side of the concave surface are R A '.
  • ⁇ it is preferable to satisfy the relationship of R B '. More preferably, the relationship of R A ′ ⁇ R A and R B ′ ⁇ R B is further satisfied.
  • the material for the pipe expansion plug examples include cemented carbide, tool steel, and ceramics. Cemented carbide or tool steel is preferable.
  • the surface of the above-mentioned pipe for expanding pipe may be untreated, but may be subjected to a hard film treatment.
  • swelling can be used for the assembly of the heat exchanger which expands the heat exchanger tube which consists of aluminum pipes, for example, and is assembled
  • Example 1 Next, an embodiment of the pipe expansion plug will be described.
  • the tube expansion plug 1 of this example is expanded into the aluminum tube 2 by being relatively advanced in the axial direction of the aluminum tube 2 while being inserted into the aluminum tube 2 supplied with lubricating oil to the inner surface 21.
  • a cross section of the aluminum tube 2 is shown, and a side surface of the pipe for expanding the tube is shown.
  • the tube expansion plug 1 has a bullet shape made of cemented carbide and has a maximum diameter of 6 mm.
  • a shaft rod 3 for advancing the tube expansion plug 1 in the aluminum tube 2 is connected to the rear of the tube expansion plug 1 in the traveling direction X.
  • This example is an example in which the aluminum pipe 2 is fixed in the vertical direction, and the pipe expansion plug 1 is advanced from the upper side to the lower side in the vertical direction to perform the pipe expansion.
  • the aluminum tube 2 a tube in which a plurality of straight grooves 25 extending in the axial direction are formed on the inner surface 21 is used.
  • a contact region 11 where the pipe expansion plug 1 contacts the aluminum pipe 2 exists on the surface of the pipe expansion plug 1.
  • the contact area 11 is an area represented by dot hatching.
  • a linear groove 12 is formed in the contact region 11 over the entire region.
  • the groove 12 is formed not only from the contact region 11 but also from the front end 110 of the contact region 11 in the advancing direction X to 1 mm or more forward.
  • the groove 12 is formed in a spiral shape on the surface of the tube expansion plug 1.
  • the side surfaces 126 and 127 of the groove 12 have curved surfaces 124 and 125 at least on the front side end 121 side and the rear side end 123 side, respectively.
  • the front side surface 126 of the groove 12 has a front convex curved surface 124 adjacent to the front end portion 121
  • the rear side surface 127 is rearward convex adjacent to the rear side end portion 122. It has a curved surface 125.
  • the curvature radius R A of the front convex curved surface 124 is 25 ⁇ m
  • the curvature radius R B of the rear convex curved surface 125 is 75 ⁇ m.
  • the groove 12 in this example has a flat bottom surface 123 at the bottom in the cross section in the traveling direction X.
  • the side surface 126 on the front side in the traveling direction of the groove 12 extends vertically from the bottom surface 123 toward the surface and curves forward in the vicinity of the opening 120. That is, the side surface 126 on the front side of the groove 12 is smooth from the bottom surface 123 to the vertical surface 128 extending toward the opening 120 of the groove 12 and from the vertical surface 128 to the front end 121 of the opening 120. And a front-side convex curved surface 124 that curves in a straight line.
  • the rear side surface 127 in the traveling direction X of the groove 12 is curved as a whole from the bottom surface 123 toward the surface.
  • the rear side surface 127 of the groove 12 has a rear-side convex curved surface 125 whose entire side surface smoothly curves from the bottom surface 123 toward the rear-side end portion 122 of the opening 120.
  • the groove 12 is widened toward the opening 120 as a whole.
  • the radius of curvature R B , the shortest distance C A , and the shortest distance C B are shown in Table 1 described later.
  • the groove forming angle ⁇ (°), width W ( ⁇ m), depth D ( ⁇ m), pitch P ( ⁇ m), W / D, radius of curvature R A , radius of curvature R B , shortest Twenty-two types of tube expansion plugs were prepared in which at least one of the distance C A and the shortest distance C B was different from that of the sample 1 described above. Also for these samples 2 to 23, the groove formation angle ⁇ (°), width W ( ⁇ m), depth D ( ⁇ m), pitch P ( ⁇ m), W / D, radius of curvature R A , radius of curvature R B The shortest distance C A and the shortest distance C B are shown in Table 1 described later.
  • Samples 13 to 16 a hard film is formed on the surface of the pipe for expansion.
  • the materials are also shown in Table 1.
  • DLC in the table means Diamond Like Carbon.
  • a tube expansion plug without a groove was prepared. This was designated as Sample 24.
  • the sample 24 is a tube expansion tube similar to the sample 1 except that the groove is not formed.
  • Other configurations of the samples 2 to 24 are the same as those of the sample 1 described above.
  • a commercially available lubricating oil for aluminum processing (“RF530” manufactured by NSL Bricantz Co., Ltd., kinematic viscosity 2.2 cSt at a temperature of 40 ° C.) is supplied downward from above in the vertical direction. Lubricating oil is supplied to the inner surface 21.
  • the tube expansion plug 1 (samples 1 to 24) is inserted into the aluminum tube 2, and a predetermined load is applied to the shaft rod 3 so that the tube expansion plug 1 is advanced from the vertical direction downward to the axial direction by 500 mm.
  • pipe expansion processing of the aluminum pipe 2 is performed.
  • the moving speed (tube expansion speed) of the pipe expansion plug 1 in the aluminum pipe 2 is 50 mm / min.
  • Tube expansion load evaluation test In the same manner as the tube expansion load evaluation test, tube expansion is performed using the tube expansion plugs (samples 1 to 24). At this time, a predetermined amount of lubricating oil is dropped with a pipette along the inner surface of the aluminum tube, and tube expansion is performed. And the required amount of lubricating oil when the pipe expansion load can be expanded to 500 mm without increasing the pipe expansion load to a value of 1.5 times or more compared to the pipe expansion load when the pipe expansion plug is advanced by 100 mm is 0.5 ml or less. The case of was evaluated as ⁇ .
  • the tube-expansion plugs 1 of the samples 1 to 16 have grooves 12 formed on the surface at an angle ⁇ of 45 to 135 ° with respect to the traveling direction X, and 10 ⁇ W ⁇ 100,
  • the groove 12 satisfies the relationship of ⁇ D ⁇ 100 and W / D ⁇ 1 (see FIGS. 1 to 4).
  • the tube expansion plug 1 of the samples 1 to 16 has a front convex surface 124 adjacent to the front end 121 and a rear convex surface 125 adjacent to the rear end 122. Therefore, as shown in FIG. 1 and FIG.
  • the lubricating oil present on the inner surface 21 of the aluminum pipe 2 flows from the front end 121 into the groove 12.
  • the lubricating oil flows smoothly as it enters and is discharged from the groove 12 to the rear end 122. Therefore, the lubricating oil can be easily held in the contact region 11 even with a small amount of supply. Therefore, the occurrence of image sticking during tube expansion can be sufficiently suppressed.
  • the lubricating oil can be held in the groove 12, the lubricating oil is discharged even when applied to the aluminum pipe 2 in which the straight groove 25 extending in the axial direction is formed on the inner surface 21. Can be suppressed.
  • the lubricating oil can be sufficiently supplied to the contact region 11 with a small amount of supply even to the aluminum pipe 2 in which the straight groove 25 is formed. Therefore, the occurrence of image sticking or the like can be sufficiently suppressed.
  • the pipe expansion plugs of Samples 1 to 16 show excellent results in the pipe expansion load and oil amount evaluation tests.
  • the relationship of 60 ⁇ ⁇ ⁇ 120, 10 ⁇ W ⁇ 50, W ⁇ P ⁇ 10 ⁇ W, C A ⁇ C B , 0 ⁇ R A ⁇ D, 1/2 ⁇ D ⁇ R B ⁇ 5 ⁇ D By satisfying further, the above-described lubricating oil flow becomes even smoother.
  • Tables 1 and 2 more excellent results are shown in the pipe expansion load and the oil amount evaluation test.
  • the groove forming angle with respect to the traveling direction of the tube expansion plug is too small. Therefore, it becomes difficult to sufficiently retain the lubricating oil in the contact area. As a result, if the amount of lubricating oil is not increased, the tube expansion load will increase. Moreover, as for the sample 18, the width
  • the depth of the groove is too small. Furthermore, C A > C B. Therefore, it becomes difficult to sufficiently supply the lubricant to the contact area. Also, aluminum wear powder tends to fill the groove. As a result, the pipe expansion load and the amount of lubricating oil necessary for pipe expansion also increase. Moreover, the depth of the groove
  • channel of the sample 21 is too large. As a result, the lubricating oil is easily stored at the bottom of the groove. As a result, the required amount of lubricating oil increases. Further, the sample 22 and the sample 23 do not have the front convex curved surface 124 adjacent to the front end 121 or the rear convex curved surface 125 adjacent to the rear end 122.
  • the sample 24 is a tube expansion plug in which no groove is formed on the surface. Since there is no groove on the surface, the lubricating oil cannot be sufficiently retained in the contact area between the aluminum tube and the plug when expanding the tube. As a result, the pipe expansion load and the amount of lubricating oil necessary for pipe expansion also increase.
  • the tube expansion plug (samples 1 to 16)) 1 of this example has a flat bottom surface at the bottom in the cross section in the traveling direction X of the groove 12, and the groove 12
  • the side surface 126 on the front side in the traveling direction X has a vertical surface 128 that extends vertically from the bottom surface 123 toward the opening 120, and a front that curves smoothly from the vertical surface 128 toward the front end 121 of the opening 120.
  • the rear side surface 127 in the traveling direction X of the groove 12 has a rear-side convex curved surface 127 whose entire side surface curves smoothly from the bottom surface 123 toward the rear side end portion 122 of the opening 120.
  • the lubricating oil enters the groove 12 from the front side end portion 121 and the rear side from the groove 12 during the pipe expansion process in which the pipe expansion plug 1 is advanced into the aluminum pipe 2.
  • the flow of the lubricating oil that is discharged to the end portion 122 becomes even smoother.
  • Tables 1 and 2 excellent results are shown in the pipe expansion load and the oil amount evaluation test.
  • Example 2 In Example 1, a tube expansion plug having a cross-sectional groove as shown in FIG. 3 was employed. This example shows examples of other cross-sectional shapes (samples 25 to 47) (see FIG. 5).
  • FIG. 5 shows a cross section of the groove 42 in the traveling direction X of the tube expansion plug 4 of this example, as in FIG. 3 described above.
  • the side surface 426 on the front side of the groove 42 has a front convex surface 424 adjacent to the front side end 421, as in the first embodiment.
  • the side surface 427 has a rear-side convex curved surface 425 adjacent to the rear-side end 422.
  • the curvature radius R A of the front convex surface 424 is 25 ⁇ m
  • the curvature radius R B of the rear convex surface 425 is 75 ⁇ m.
  • the groove 42 is formed by a curved surface from the front side end 421 of the opening 420 to the deepest part 423 of the groove 42, and from the rear side end 422 to the groove 42.
  • the deepest part 423 is formed with a curved surface.
  • the groove 42 is a concave curved surface between the front convex curved surface 424 and the rear convex curved surface 425. 428, and the deepest portion 423 of the groove 42 is located on the concave curved surface 428.
  • the curvature radii are different between the front side and the rear side of the concave curved surface 428.
  • the groove forming angle ⁇ (°), width W ( ⁇ m), depth D ( ⁇ m), pitch P ( ⁇ m), W / D, radius of curvature R A , Curvature radius R B , curvature radius R A ′, curvature radius R B ′, shortest distance C A , and shortest distance C B are shown in Table 3 to be described later.
  • the groove forming angle ⁇ (°), width W ( ⁇ m), depth D ( ⁇ m), pitch P ( ⁇ m), W / D, radius of curvature R A , radius of curvature R B , Curvature radius R A ′, curvature radius R B ′, shortest distance C A , and shortest distance C B are shown in Table 3 to be described later.
  • a hard film is formed on the surface of the pipe for expanding the tube. The materials are also shown in Table 3.
  • DLC in the table means Diamond Like Carbon.
  • the expansion plug 4 of the samples 25 to 40 has grooves 42 formed on the surface at an angle ⁇ of 45 to 135 ° with respect to the traveling direction X, and 10 ⁇ W ⁇ 100, It has the groove
  • the tube expansion plug 4 of the samples 25 to 40 has a front convex curved surface 424 adjacent to the front end 421 and a rear convex curved surface 425 adjacent to the rear end 422. Therefore, the tube expansion plug 4 (samples 25 to 40) of this example has the same effects as the samples 1 to 16 of the first embodiment.
  • the pipe expansion plugs of Samples 25 to 40 show superior results in the pipe expansion load and oil amount evaluation tests as compared with Sample 24 and Samples 41 to 47.
  • the tube expansion plug 4 of this example has a concave curved surface 428 between the front convex curved surface 424 and the rear convex curved surface 425 in the cross section in the traveling direction X of the groove 42.
  • the deepest portion 423 of the groove 42 is located on the concave curved surface 428. Therefore, during the pipe expansion process in which the pipe expansion plug 4 is advanced into the aluminum pipe 2, the lubricating oil enters the groove 42 from the front end 421 and is discharged from the groove 42 to the rear end 422.
  • the flow becomes even smoother (see FIGS. 1 and 5).
  • Table 3 excellent results are shown in the tube expansion load and the oil amount evaluation test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Silencers (AREA)
  • Metal Extraction Processes (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

 内面21に潤滑油を供給したアルミニウム管2を拡管させるために用いられる拡管用プラグ1である。拡管用プラグ1の表面には、アルミニウム管との接触領域にライン状の溝12が形成されている。溝12は、拡管用プラグ1の進行方向Xに対して所定の角度で形成されている。進行方向Xにおける溝12の幅Wμmと深さDμmは、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足する。溝12の側面126、127は、前方側端部121に隣接する前方側凸曲面124と、後方側端部122に隣接する後方側凸曲面125とを有している。

Description

拡管用プラグ
 本発明は、アルミニウム(純アルミニウム及びアルミニウム合金を含む)管を拡管加工する際に用いられる拡管用プラグに関する。
 例えば熱交換器においては、内面にらせん状の溝が形成された銅製の伝熱管が用いられている。近年、銅価格の高騰から、伝熱管を銅製からアルミニウム合金製に変更する検討がなされている。
 ところが、アルミニウムは、銅に比較して硬度が低いため、銅製の伝熱管のように、らせん状の溝を形成することが困難である。そこで、アルミニウム合金製の伝熱管においては、らせん状の溝ではなく、管の軸方向に伸びるライン状の溝、即ちストレート溝が形成されている。
 熱交換器の組立は、一般的に次のようにして行われている。
 まず、所定のカラー部が形成された放熱フィン材を積層し、円筒状のカラー部内に伝熱管を通す。次いで、伝熱管の内側にその内径よりも大きな外径を有する拡管用プラグを強制的に挿入して伝熱管の外径を拡張させるという拡管加工を行うことにより、伝熱管と放熱フィンを固定する。
 拡管の際には、拡管用プラグと伝熱管との摩擦を低減し、焼き付きの発生を抑制又は防止するために、潤滑油が用いられている。拡管後には、不必要な潤滑油の残存をできる限り減らし、残油量を小さくすることが望まれている。また、コストの低減という観点から、拡管時に使用される潤滑油量の低減が求められている。
 これまでに、面粗度が低いセラミックスからなる拡管用プラグが開発されている(特許文献1参照)。また、拡管プラグを固定する芯金の貫通孔に潤滑材を供給する方法が開発されている(特許文献2参照)。
特開平2-182330号公報 特開平10-263713号公報
 しかしながら、芯金に潤滑油を流す方法を採用すると、潤滑油の粘度などの性状が制限されてしまう。また、芯金に潤滑油が付着するため、コスト的に不利である。
 また、セラミックスからなる拡管用プラグを用いると摩擦の低減を図ることが可能であるが、さらなる改良が求められている。
 拡管加工においては、一般に、潤滑油を予めアルミニウム管の内面に供給し、潤滑油が内面に存在する状態において、拡管用プラグをアルミニウム管内に挿入させる。
 ストレート溝が形成されたアルミニウム管に対して、潤滑油を供給して拡管用プラグにより拡管を行うと、導入された潤滑油がストレート溝を伝わって流れ出やすくなる。そのため、アルミニウム管と拡管用プラグとの間に潤滑油を十分に供給させて拡管を行うことが困難になる。また、アルミニウム管の内面に供給された潤滑油は、ストレート溝内に沿って存在する。そのため、ストレート溝の凸部に存在する潤滑油が少なくなり、溝の凸部と拡管用プラグとの摩擦が大きくなりやすい。その結果、焼き付きを引き起こすおそれがある。
 本発明は、かかる背景に鑑みてなされたものであって、少量の潤滑油により拡管を行うことができると共に、軸方向に伸びるストレート溝が内面に形成されたアルミニウム管に対しても、アルミニウム管と拡管用プラグとの間に十分に潤滑油を供給して拡管を行うことができる拡管用プラグを提供しようとするものである。
 本発明の一態様は、内面に潤滑油を供給したアルミニウム管内に挿入しつつ、該アルミニウム管の軸方向に相対的に進行させて上記アルミニウム管を拡管させるために用いられる拡管用プラグであって、
 該拡管用プラグの表面には、少なくとも上記拡管用プラグが上記アルミニウム管に接触する接触領域に、ライン状の溝が形成されており、
 上記溝は、上記アルミニウム管における上記拡管用プラグの進行方向に対して45~135°の角度で形成されており、
 上記進行方向における上記溝の幅Wμmと上記溝の深さDμmは、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足し、
 上記溝の側面は、上記拡管用プラグの表面における上記溝の開口部の前方側端部に隣接する前方側凸曲面と、上記開口部の後方側端部に隣接する後方側凸曲面とを有していることを特徴とする拡管用プラグにある。
 上記拡管用プラグの表面には、上記所定の角度、幅、及び深さでライン状の溝が形成されている。そして、上記溝の側面は、上記前方側端部に隣接する前方側凸曲面と、上記後方側端部に隣接する後方側凸曲面とを有している。
 そのため、拡管時にアルミニウム管内に拡管用プラグを進行させると、アルミニウム管の内面に存在する潤滑油が、前方側端部から溝内へ浸入すると共に、溝から後方側端部へ排出されるという潤滑油の流れが円滑になる。そのため、少量の供給量でも、上記潤滑油を上記接触領域に保持し易くなる。それ故、拡管時における焼き付きの発生を十分に抑制することができる。また、潤滑油を溝内に保持することができるため、内面に軸方向に伸びるストレート溝が形成されたアルミニウム管に対して適用しても、潤滑油が排出されてしまうことを抑制できる。また、潤滑油が上記拡管用プラグの溝内に保持されるため、アルミニウム管のストレート溝の凸部にも潤滑油を供給することができる。そのため、ストレート溝が形成されたアルミニウム管に対しても、少量の供給量で潤滑油を上記接触領域に十分に供給することができる。それ故、焼き付き等の発生を十分に抑制することができる。
 このように、上記拡管用プラグを用いると、少量の潤滑油により拡管を行うことができると共に、軸方向に伸びるストレート溝が内面に形成されたアルミニウム管においても、アルミニウム管の内面と拡管用プラグの表面との間に十分に潤滑油を供給することが可能になる。
実施例1及び2における、アルミニウム管内に拡管用プラグを進行させて拡管加工を行う様子を示す説明図。 実施例1及び2における、拡管用プラグの斜視図。 実施例1における、拡管用プラグの進行方向における溝の拡大断面を示す説明図。 実施例1及び2における、拡管用プラグの表面の部分拡大図。 実施例2における、拡管用プラグの進行方向における溝の拡大断面を示す説明図。
 次に、上記拡管用プラグの好ましい実施形態について説明する。
 上記拡管用プラグは、アルミニウム管内に挿入しつつ、該アルミニウム管の軸方向に相対的に進行させて上記アルミニウム管を拡管させるために用いられる。拡管用プラグは、表面に、上記アルミニウム管の径を大きくするための斜面又は曲面を有している。具体的には、拡管用プラグは、アルミニウム管の内面との接触領域において、一般に、進行方向の先端側から後方に向けて外径が大きくなるよう領域を有する。より具体的には、拡管用プラグは、例えば球形状、楕円球形、弾丸形状、三角錐形状、又は外形の少なくとも一部にテーパ領域を設けた円柱形状等により構成することができる。一般に、拡管用プラグの最大径が拡管後のアルミニウム管の内径となる。したがって、拡管用プラグの最大径は、アルミニウム管の内径に応じて適宜設定することができるが、例えば3~12mmの範囲に設定することができる。
 アルミニウム管は、純アルミニウム、又はアルミニウム合金のいずれからなるものであってもよい。
 拡管にあたっては、アルミニウム管は、水平、斜め、又は鉛直方向に配置することができる。アルミニウム管を斜め又は鉛直方向に配置して拡管を行う場合には、上方から下方へ向けて上記拡管用プラグを進行させることが好ましい。
 上記拡管用プラグは、軸方向に伸びるライン状の溝が内面に形成されたアルミニウム管の拡管に用いられることが好ましい。
 この場合には、上記拡管用プラグの表面に形成された溝内に潤滑油を保持できるという上述の利点を十分にいかすことができる。
 アルミニウム管の内面に形成されるライン状の溝(ストレート溝)は、1つでもよいが、複数形成されていてもよい。
 また、上記拡管用プラグの表面には、ライン状の溝が形成されている。溝は、らせん状に形成することもできるが、拡管用プラグの外周を回るリング状の溝を所定の間隔で複数形成することもできる。
 上記溝は、上記拡管用プラグの表面における上記アルミニウム管の内面との接触領域に形成されている。溝は、上記接触領域の全域にわたって形成されていることが好ましい。
 好ましくは、上記溝は、上記接触領域だけでなく、該接触領域における上記進行方向の前端からさらに1mm以上前方まで形成されていることがよい。
 この場合には、拡管加工時に上記接触領域の前方に十分に潤滑油を保持させることができる。
 上記溝は、上記拡管用プラグの上記進行方向に対して45~135°の角度で形成されている。
 拡管用プラグの進行方向に対する溝の形成角度が上記所定の範囲から外れる場合には、溝の形成方向が上記拡管用プラグの進行方向と平行に近づくため、溝内に潤滑油が供給されても拡管用プラグの進行と共に潤滑油が溝から排出されやすくなる。同様の観点から上記溝は、上記アルミニウム管内における上記拡管用プラグの上記進行方向に対して60~120°の角度で形成されていることがより好ましい。
 また、上記進行方向における上記溝の幅Wμmと、上記溝の深さDμmは、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足する。
 W<10の場合には、溝がアルミ摩耗粉で埋まってしまうおそれがある。一方、W>100の場合には、溝内に潤滑油が入り込んだままとどまり易くなり、本来潤滑油が必要な拡管用プラグの表面に潤滑油を十分に供給することが困難になるおそれがある。また、この場合には、進行方向における溝の前後の拡管用プラグの外径の変化が大きくなるため、拡管後のアルミニウム管の内面を滑らかにすることが困難になるおそれがある。より好ましくは10≦W≦50がよい。
 また、D<1の場合には、溝がアルミ摩耗粉で埋まってしまうおそれがある。一方、D>100の場合には、溝の深さが大きくなりすぎて、拡管用プラグ自体の強度が低下するおそれがある。そのため、拡管加工中に溝を起点とした破断が発生するおそれがある。また、100μmを超える大きな深さの溝を形成すると、潤滑油が溝の底に貯まってしまうおそれがある。そのため、本来潤滑油が必要な拡管用プラグの表面に潤滑油を十分に供給するために、潤滑油の供給量を増やす必要性が生じるおそれがある。
 また、W/D<1の場合には、開口部の大きさに対して深さが大きくなり、潤滑油が溝の底に貯まってしまい、潤滑油の流れが悪くなりやすい。そのため、潤滑油の供給量を増やす必要性が生じるおそれがある。
 また、上記進行方向における上記溝の幅Wμmと、上記進行方向における上記溝間のピッチPμmは、W≦P≦10×Wの関係を満足することが好ましい。
 P<Wの場合には、拡管用プラグの表面とアルミニウム管の内面との接触面積が少なくなり、かえって面圧が大きくなってしまうおそれがある。一方、P>10×Wの場合には、ピッチ間の溝内十分な潤滑油を供給することが困難になるおそれがある。より好ましくは2×P≦W≦5×Pがよい。
 上記幅Wは、上記進行方向における溝の開口部における幅である。
 また、上記ピッチPは、隣り合う溝間の開口部同士の進行方向における最短距離である。
 また、上記深さDは、上記進行方向における溝の断面における最深部の深さである。
 上記溝の幅W、深さD、及びピッチPは、上記拡管用プラグの進行方向における値である。即ち、拡管用プラグの進行方向における溝の断面についての幅、深さ、及びピッチである。W、D、及びPは、例えば顕微鏡観察により測定することができる。後述の最短距離CA、最短距離CB、曲率半径RA、及び曲率半径RBについても、同様に、上記拡管用プラグの進行方向における値であり、進行方向における溝の断面の顕微鏡観察により測定することができる。
 また、上記拡管用プラグの表面における上記溝の開口部の前方側端部と上記溝の最深部との上記進行方向における最短距離CAμm、及び上記開口部の後方側端部と上記溝の最深部との上記進行方向における最短距離CBμmは、CA<CBの関係を満足することが好ましい。
 この場合には、アルミニウム管内に拡管用プラグを進行させる拡管加工時に、潤滑油が前方側端部から溝内へ浸入すると共に、溝から後方側端部へ排出されるという潤滑油の流れをより円滑にすることができる。
 最短距離CAは、溝の開口部の前方側端部と溝の最深部との上記進行方向における最短距離である。一方、最短距離CBは、溝の開口部の後方側端部と溝の最深部との上記進行方向における最短距離である。したがって、最短距離CA及び最短距離CBは、上記拡管用プラグの進行方向における溝の断面形状に基づいて規定することができる。
 上記溝の開口部から底面まで伸びる側面は、上記進行方向に対して垂直であってもよいし、進行方向に対して傾きをもったテーパ状であってもよい。また、側面は、曲面により構成されていてもよい。
 上記溝の側面は、上記前方側端部に隣接する前方側凸曲面と、上記後方側端部に隣接する後方側凸曲面とを有している。
 そのため、アルミニウム管内に拡管用プラグを進行させる拡管加工時に、上述のごとく潤滑油が前方側端部から溝内へ浸入すると共に、溝から後方側端部へ排出されるという潤滑油の流れがより円滑になる。
 上記前方側凸曲面の曲率半径RAμm、上記後方側凸曲面の曲率半径RBμm、及び上記溝の深さDは、0<RA≦D、及び1/2×D≦RB≦5×Dという関係を満足することが好ましい。
 この場合には、拡管加工時に、潤滑油が前方側端部から溝内へ浸入すると共に、溝から後方側端部へ排出されるという潤滑油の流れがさらに一層円滑になる。また、より好ましくはRA<RBがよい。
 なお、上記曲率半径RA、RB及び後述の曲率半径RA’及RB’としては、対象とする曲面における最も小さい曲率半径を用いることができる。
 上記溝の進行方向における断面において、上記溝は、底に平坦な底面を有し、上記溝の前方側の側面は、上記底面から上記開口部に向けて垂直に伸びる垂直面と、該垂直面から上記開口部の上記前方側端部に向けて滑らかにカーブする上記前方側凸曲面とを有しており、上記溝の後方側の側面は、上記底面から上記開口部の上記後方側端部に向けて側面全体が滑らかにカーブする上記後方側凸曲面を有していることが好ましい。
 また、上記溝の進行方向における断面において、上記溝は、上記前方側凸曲面と上記後方側凸曲面との間に凹曲面を有し、該凹曲面に上記溝の上記最深部が位置していることが好ましい。
 これらの場合には、アルミニウム管内に拡管用プラグを進行させる拡管加工時に、潤滑油が前方側端部から溝内へ浸入すると共に、溝から後方側端部へ排出されるという潤滑油の流れがより一層円滑になる。
 また、上述の潤滑油の流れをより一層円滑にするという観点から、上記凹曲面の前方側の曲率半径RA’μmと、凹曲面の後方側の曲率半径RB’μmとがRA’<RB’の関係を満足することが好ましい。より好ましくは、さらにRA’<RA、RB’<RBの関係を満足することがよい。
 上記拡管用プラグの材質としては、例えば超硬合金、工具鋼、セラミックスなどがある。好ましくは、超硬合金又は工具鋼がよい。
 また、上記拡管用プラグの表面は、無処理でもよいが、硬質皮膜処理が施されていてもよい。
 また、上記拡管用プラグは、例えばアルミニウム管よりなる伝熱管を拡管させて放熱フィンに組み付けるという熱交換器の組立に用いることができる。
(実施例1)
 次に、拡管用プラグの実施例について、説明する。
 図1に示すごとく、本例の拡管用プラグ1は、内面21に潤滑油を供給したアルミニウム管2内に挿入しつつ、アルミニウム管2の軸方向に相対的に進行させてアルミニウム管2を拡管させるために用いられる。なお、図1においては、説明の便宜のため、アルミニウム管2についてはその断面を示し、拡管用プラグについてはその側面を示している。
 図1及び図2に示すごとく、拡管用プラグ1は、超硬合金製の弾丸形状であり、その最大径は6mmである。拡管用プラグ1の進行方向Xの後方には、アルミニウム管2内において拡管用プラグ1を進行させるための軸棒3が連結されている。
 本例は、アルミニウム管2を鉛直方向に固定し、拡管用プラグ1を鉛直方向の上方から下方へ進行させて拡管を行う例である。アルミニウム管2としては、軸方向に伸びる複数のストレート溝25が内面21に形成された管を用いる。
 図1及び図2に示すごとく、拡管用プラグ1の表面には、拡管用プラグ1がアルミニウム管2に接触する接触領域11が存在する。図1において、接触領域11は、ドットハッチングを付けて表した領域である。接触領域11には、その全域にわたってライン状の溝12が形成されている。本例において、溝12は、接触領域11だけでなく、進行方向Xにおける接触領域11の前端110からさらに1mm以上前方にまで形成されている。
 図1、図2、及び図4に示すごとく、溝12は、拡管用プラグ1の進行方向Xに対して所定の角度αで形成されている。本例においては、角度α=45°である。また、本例において、溝12は、拡管用プラグ1の表面にらせん状に形成されている。
 また、本例の拡管用プラグ1においては、図3及び図4に示すごとく、進行方向Xにおける溝12の幅W=50μm、進行方向Xにおける溝12間のピッチP=250μm、溝の深さD=25μm、W/D=2である。
 図3に示すごとく、溝12の進行方向Xにおける断面において、溝12の側面126、127は、少なくとも前方側端部121側及び後方側端部123側にそれぞれ曲面124、125を有している。具体的には、溝12の前方側の側面126は、前方側端部121に隣接する前方側凸曲面124を有し、後方側の側面127は、後方側端部122に隣接する後方側凸曲面125を有している。本例において、前方側凸曲面124の曲率半径RA=25μmであり、後方側凸曲面125の曲率半径RB=75μmである。
 また、本例における溝12は、進行方向Xにおける断面において、底に平坦な底面123を有している。溝12の進行方向における前方側の側面126は、底面123から表面に向けて垂直に伸びつつ、開口部120付近において前方側にカーブしている。即ち、溝12の前方側の側面126は、底面123から溝12の開口部120に向けて垂直に伸びる垂直面128と、この垂直面128から開口部120の前方側端部121に向けて滑らかにカーブする前方側凸曲面124とを有している。一方、溝12の進行方向Xにおける後方側の側面127は、底面123から表面に向けてその全体がカーブしている。即ち、溝12の後方側の側面127は、底面123から開口部120の後方側端部122に向けて側面全体が滑らかにカーブする後方側凸曲面125を有している。溝12は、全体として開口部120に向かって幅が広がっている。
 図3に示すごとく、拡管用プラグ1の表面における溝12の開口部120の前方側端部121と溝12の最深部123との進行方向Xにおける最短距離CAμmは、CA=15であり、開口部120の後方側端部122と溝12の最深部123との進行方向Xにおける最短距離CBμmは、CB=35である。
 本例の拡管用プラグ1(試料1)について、その溝の形成角度α(°)、幅W(μm)、深さD(μm)、ピッチP(μm)、W/D、曲率半径RA、曲率半径RB、最短距離CA、及び最短距離CBを後述の表1に示す。
 また、本例においては、溝の形成角度α(°)、幅W(μm)、深さD(μm)、ピッチP(μm)、W/D、曲率半径RA、曲率半径RB、最短距離CA、及び最短距離CBの少なくともいずれかが、上述の試料1とは異なる22種類の拡管用プラグ(試料2~試料23)をさらに準備した。これらの試料2~23についても、溝の形成角度α(°)、幅W(μm)、深さD(μm)、ピッチP(μm)、W/D、曲率半径RA、曲率半径RB、最短距離CA、及び最短距離CBの後述の表1に示す。
 なお、試料13~16においては、拡管用プラグの表面に硬質皮膜を形成してある。その材質を表1に併記する。表中のDLCは、ダイヤモンド・ライク・カーボン(Diamond Like Carbon)を意味する。
 また、本例においては、溝が形成されてない拡管用プラグを準備した。これを試料24とした。試料24は、溝が形成されていない点を除いては、試料1と同様の拡管用プラグである。
 また、表1中の曲率半径RA=0は、拡管プラグの進行方向における溝の断面において、溝の前方側端部側の側面に曲面が存在せず、前方側端部側において拡管用プラグの表面と溝の側面とが直角になっていることを表す。同様に、曲率半径RB=0は、拡管プラグの進行方向における溝の断面において、溝の後方側端部側の側面に曲面が存在せず、後方側端部側において拡管用プラグの表面と溝の側面とが直角になっていることを表す。
 試料2~24のその他の構成は、上述の試料1と同様である。
Figure JPOXMLDOC01-appb-T000001
 次に、各試料の拡管用プラグを用いて、拡管荷重及び油量の評価試験を行った。
「拡管荷重評価試験」
 最大径φ6mmの拡管用プラグ(試料1~24)を用いて、外径:7.0mm、内面ストレート溝付のJIS A3003のアルミニウム合金管(アルミニウム管)を作製する。アルミニウム管は、溝深さ(フィン高さ):300μm、底肉厚(溝底から外周面までの肉厚):475μmである。
 具体的には、図1に示すごとく、軸方向に伸びる複数のストレート溝25が内面21に形成されたアルミニウム管2をその軸方向が鉛直方向になるように固定する。そして、市販のアルミニウム加工用の潤滑油(エヌ・エス ルブリカンツ(株)製の「RF530」、温度40℃における動粘度2.2cSt)を鉛直方向の上方から下方へ向けて供給し、アルミニウム管2の内面21に潤滑油を供給する。次いで、アルミニウム管2内に拡管用プラグ1(試料1~24)を挿入し、軸棒3に所定の荷重をかけて拡管用プラグ1を鉛直方向の上方から下方へ軸方向に500mm進行させて、アルミニウム管2の拡管加工を行う。アルミニウム管2内における拡管用プラグ1の移動速度(拡管速度)は、50mm/minとする。
 拡管荷重の評価にあたっては、5mlの潤滑油を用いて上述の拡管加工を行い、アルミニウム管内において拡管用プラグを100~500mmの範囲で移動させるときに必要な平均荷重(拡管荷重:N)を測定した。その結果を表2に示す。
「油量評価試験」
 拡管荷重の評価試験と同様にして、拡管用プラグ(試料1~24)を用いて拡管加工を行う。このとき、所定量の潤滑油をアルミニウム管の内面に沿ってピペットで滴下し、拡管加工を行う。そして、拡管用プラグを100mm進行させた時における拡管荷重と比較して拡管荷重が1.5倍以上の値に上昇することなく500mmまで拡管できたときの必要な潤滑油量が0.5ml以下の場合を◎として評価した。一方、必要な潤滑油量が0.5mlを超えかつ1ml未満の場合には○として評価し、1ml以上の場合には×として評価した。その結果を表2に示す。なお、拡管加工にあたっては、潤滑油量を0.1mlずつ増加させることにより、必要な潤滑油量を決定した。
Figure JPOXMLDOC01-appb-T000002
 表1より知られるごとく、試料1~16の拡管用プラグ1は、その進行方向Xに対して45~135°の角度αで表面に溝12が形成されており、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足する溝12を有する(図1~図4参照)。さらに、試料1~16の拡管用プラグ1は、前方側端部121に隣接する前方側凸曲面124と、後方側端部122に隣接する後方側凸曲面125とを有している。
 そのため、図1及び図3に示すごとく、拡管時にアルミニウム管2内に拡管用プラグ1を進行させると、アルミニウム管2の内面21に存在する潤滑油が、前方側端部121から溝12内へ浸入すると共に、溝12から後方側端部122へ排出されるという潤滑油の流れが円滑になる。そのため、少量の供給量でも、潤滑油を接触領域11に保持し易くなる。それ故、拡管時における焼き付きの発生を十分に抑制することができる。また、潤滑油を溝12内に保持することができるため、内面21に軸方向に伸びるストレート溝25が形成されたアルミニウム管2に対して適用しても、潤滑油が排出されてしまうことを抑制できる。そのため、ストレート溝25が形成されたアルミニウム管2に対しても、少量の供給量で潤滑油を接触領域11に十分に供給することができる。それ故、焼き付き等の発生を十分に抑制することができる。
 実際に、表2より知られるごとく、試料1~16の拡管用プラグは、拡管荷重及び油量の評価試験において優れた結果を示している。また、60≦α≦120、10≦W≦50、W≦P≦10×W、CA<CB、0<RA≦D、1/2×D≦RB≦5×Dという関係をさらに満足することにより、上述の潤滑油の流がより一層円滑になる。その結果、表1及び表2より知られるごとく、拡管荷重及び油量の評価試験においてより優れた結果を示す。
 一方、試料17は、拡管用プラグの進行方向に対する溝の形成角度が小さすぎる。そのため、接触領域に潤滑油を十分に保持することが困難になる。その結果、潤滑油量を多くしなければ拡管荷重が大きくなってしまう。
 また、試料18は、進行方向における溝の幅が小さすぎる。そのため、接触領域に十分に潤滑油を供給することが困難になる。また、アルミニウム摩耗粉が溝を埋めてしまい易くなる。その結果、拡管荷重も拡管に必要な潤滑油量も増大してしまう。
 また、試料19は、進行方向における溝の幅が大きすぎる。そのため、拡管用プラグの表面とアルミニウム管の内面との間で面圧が増大してしまう。その結果、拡管荷重が増大してしまう。
 また、試料20は、溝の深さが小さすぎる。さらに、CA>CBとなっている。そのため、接触領域に十分に潤滑油を供給することが困難になる。また、アルミニウム摩耗粉が溝を埋めてしまい易くなる。その結果、拡管荷重も拡管に必要な潤滑油量も増大してしまう。
 また、試料21は、溝の深さが大きすぎる。そのため、潤滑油が溝の底に貯まりやすくなる。その結果、必要な潤滑油量が増大してしまう。
 また、試料22及び試料23は、前方側端部121に隣接する前方側凸曲面124や、後方側端部122に隣接する後方側凸曲面125を有していない。そのため、潤滑油が前方側端部から溝内へ浸入すると共に、溝から後方側端部へ排出されるという潤滑油の流れを円滑に行うことができなくなる。その結果、拡管荷重も拡管に必要な潤滑油量も増大してしまう。
 試料24は、表面に溝が形成されていない拡管プラグである。表面に溝がないため、拡管時に潤滑油をアルミニウム管とプラグとの接触領域に十分に保持することができない。その結果、拡管荷重も拡管に必要な潤滑油量も増大してしまう。
 また、本例の拡管用プラグ(試料1~16))1は、図3に示すごとく、溝12の進行方向Xにおける断面において、溝12は、底に平坦な底面を有し、溝12の進行方向Xにおける前方側の側面126は、底面123から開口部120に向けて垂直に伸びる垂直面128と、この垂直面128から開口部120の前方側端部121に向けて滑らかにカーブする前方側凸曲面124とを有している。一方、溝12の進行方向Xにおける後方側の側面127は、底面123から開口部120の後方側端部122に向けて側面全体が滑らかにカーブする後方側凸曲面127を有している。そのため、本例の拡管用プラグ1においては、アルミニウム管2内に拡管用プラグ1を進行させる拡管加工時に、潤滑油が前方側端部121から溝12内へ浸入すると共に、溝12から後方側端部122へ排出されるという潤滑油の流れがより一層円滑になる。その結果、表1及び表2に示すごとく、拡管荷重及び油量の評価試験において優れた結果を示す。
(実施例2)
 実施例1においては、図3に示すような断面形状の溝を有する拡管用プラグを採用した。本例は、その他の断面形状の例(試料25~47)を示す(図5参照)。図5は、上述の図3と同様に、本例の拡管用プラグ4の進行方向Xにおける溝42の断面を示す。図5に示すごとく、本例の拡管プラグ4においては、実施例1と同様に、溝42の前方側の側面426は、前方側端部421に隣接する前方側凸曲面424を有し、後方側の側面427は、後方側端部422に隣接する後方側凸曲面425を有している。例えば試料25の拡管プラグ4においては、前方側凸曲面424の曲率半径RA=25μmであり、後方側凸曲面425の曲率半径RB=75μmである。
 図5に示すごとく、本例の拡管用プラグ4において、溝42は、開口部420の前方側端部421から溝42の最深部423までを曲面で形成し、後方側端部422から溝42の最深部423までを曲面で形成してある。この場合においても、拡管用プラグの進行方向に対して45~135°の角度で、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足すれば、実施例1の試料1~16の拡管用プラグと同様の結果を示すことができる。
 具体的には、図5に示すごとく、本例の拡管用プラグ4の溝42の進行方向Xにおける断面において、溝42は、前方側凸曲面424と後方側凸曲面425との間に凹曲面428を有し、この凹曲面428に溝42の最深部423が位置している。本例の拡管用プラグ4においては、凹曲面428の前方側と後方側において曲率半径が異なっている。凹曲面428において前方側の曲率半径をRA’μmとし、後方側の曲率半径をRB’μmとすると、試料25においては、RA’=12.5μmであり、RB’=37.5μmである。本例の拡管用プラグ4のその他の構成は、実施例1と同様である(図1、図2、図4、及び図5参照)。
 本例の拡管用プラグ4(試料25)について、その溝の形成角度α(°)、幅W(μm)、深さD(μm)、ピッチP(μm)、W/D、曲率半径RA、曲率半径RB、曲率半径RA’、曲率半径RB’、最短距離CA、及び最短距離CBを後述の表3に示す。
 また、本例においては、溝の形成角度α(°)、幅W(μm)、深さD(μm)、ピッチP(μm)、W/D、曲率半径RA、曲率半径RB、曲率半径RA’、曲率半径RB’、最短距離CA、及び最短距離CBの少なくともいずれかが、上述の試料25とは異なる22種類の拡管用プラグ(試料26~試料47)をさらに準備した。これらの試料26~47についても、溝の形成角度α(°)、幅W(μm)、深さD(μm)、ピッチP(μm)、W/D、曲率半径RA、曲率半径RB、曲率半径RA’、曲率半径RB’、最短距離CA、及び最短距離CBの後述の表3に示す。
 なお、試料37~40においては、拡管用プラグの表面に硬質皮膜を形成してある。その材質を表3に併記する。表中のDLCは、ダイヤモンド・ライク・カーボン(Diamond Like Carbon)を意味する。
 次に、各試料の拡管用プラグ4を用いて、実施例1と同様にして拡管荷重及び油量の評価試験を行った。その結果を表3に示す。なお、表3には、比較用として、実施例1においても使用した、溝が形成されてない拡管用プラグ(試料24)の結果を併記する。
Figure JPOXMLDOC01-appb-T000003
 表3より知られるごとく、試料25~40の拡管用プラグ4は、その進行方向Xに対して45~135°の角度αで表面に溝42が形成されており、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足する溝42を有する(図1、図2、図3、及び図5参照)。さらに、試料25~40の拡管用プラグ4は、前方側端部421に隣接する前方側凸曲面424と、後方側端部422に隣接する後方側凸曲面425とを有している。そのため、本例の拡管用プラグ4(試料25~40)は、実施例1の試料1~16と同様の作用効果を奏する。実際に、表3より知られるごとく、試料25~40の拡管用プラグは、試料24、及び試料41~47に比べて、拡管荷重及び油量の評価試験において優れた結果を示している。
 また、本例の拡管用プラグ4(試料25~40)においては、60≦α≦120、10≦W≦50、W≦P≦10×W、CA<CB、0<RA≦D、1/2×D≦RB≦5×D、RA’<RB’、RA’<RA、RB’<RBというさらに関係を満足することにより、上述の潤滑油の流がより一層円滑になる。その結果、表3より知られるごとく、拡管荷重及び油量の評価試験においてより優れた結果を示す。
 また、本例の拡管用プラグ4は、図5に示すごとく、溝42の進行方向Xにおける断面において、溝42は、前方側凸曲面424と後方側凸曲面425との間に凹曲面428を有し、この凹曲面428に溝42の最深部423が位置している。そのため、アルミニウム管2内に拡管用プラグ4を進行させる拡管加工時に、潤滑油が前方側端部421から溝42内へ浸入すると共に、溝42から後方側端部422へ排出されるという潤滑油の流れがより一層円滑になる(図1及び図5参照)。その結果、表3に示すごとく、拡管荷重及び油量の評価試験において優れた結果を示す。

Claims (10)

  1.  内面に潤滑油を供給したアルミニウム管内に挿入しつつ、該アルミニウム管の軸方向に相対的に進行させて上記アルミニウム管を拡管させるために用いられる拡管用プラグであって、
     該拡管用プラグの表面には、少なくとも上記拡管用プラグが上記アルミニウム管に接触する接触領域に、ライン状の溝が形成されており、
     上記溝は、上記アルミニウム管内における上記拡管用プラグの進行方向に対して45~135°の角度で形成されており、
     上記進行方向における上記溝の幅Wμmと上記溝の深さDμmは、10≦W≦100、1≦D≦100、及びW/D≧1という関係を満足し、
     上記溝の側面は、上記拡管用プラグの表面における上記溝の開口部の前方側端部に隣接する前方側凸曲面と、上記開口部の後方側端部に隣接する後方側凸曲面とを有していることを特徴とする拡管用プラグ。
  2.  請求項1に記載の拡管用プラグにおいて、軸方向に伸びるライン状のストレート溝が内面に形成された上記アルミニウム管の拡管に用いられることを特徴とする拡管用プラグ。
  3.  請求項1又は2に記載の拡管用プラグにおいて、上記溝は、上記アルミニウム管内における上記拡管用プラグの上記進行方向に対して60~120°の角度で形成されていることを特徴とする拡管用プラグ。
  4.  請求項1~3のいずれか一項に記載の拡管用プラグにおいて、上記進行方向における上記溝の幅Wμmと、上記進行方向における上記溝間のピッチPμmは、W≦P≦10×Wの関係を満足することを特徴とする拡管用プラグ。
  5.  請求項1~4のいずれか一項に記載の拡管用プラグにおいて、上記溝は、上記接触領域だけでなく、該接触領域における上記進行方向の前端からさらに1mm以上前方まで形成されていることを特徴とする拡管用プラグ。
  6.  請求項1~5のいずれか一項に記載の拡管用プラグにおいて、上記前方側端部と上記溝の最深部との上記進行方向における最短距離CAμm、及び上記後方側端部と上記溝の最深部との上記進行方向における最短距離CBμmは、CA<CBの関係を満足することを特徴とする拡管用プラグ。
  7.  請求項1~6のいずれか一項に記載の拡管用プラグにおいて、上記前方側凸曲面の曲率半径RAμm、上記後方側凸曲面の曲率半径RBμm、及び上記溝の深さDは、0<RA≦D、及び1/2×D≦RB≦5×Dという関係を満足することを特徴とする拡管用プラグ。
  8.  請求項1~7のいずれか一項に記載の拡管用プラグにおいて、上記溝の進行方向における断面において、上記溝は、底に平坦な底面を有し、上記溝の前方側の側面は、上記底面から上記開口部に向けて垂直に伸びる垂直面と、該垂直面から上記開口部の上記前方側端部に向けて滑らかにカーブする上記前方側凸曲面とを有しており、上記溝の後方側の側面は、上記底面から上記開口部の上記後方側端部に向けて側面全体が滑らかにカーブする上記後方側凸曲面を有していることを特徴とする拡管用プラグ。
  9.  請求項1~7のいずれか一項に記載の拡管用プラグにおいて、上記溝の進行方向における断面において、上記溝は、上記前方側凸曲面と上記後方側凸曲面との間に凹曲面を有し、該凹曲面に上記溝の上記最深部が位置していることを特徴とする拡管用プラグ。
  10.  請求項9に記載の拡管用プラグにおいて、上記凹曲面の前方側の曲率半径RA’μmと、上記凹曲面の後方側の曲率半径RB’μmとがRA’<RB’の関係を満足することを特徴とする拡管用プラグ。
PCT/JP2013/067064 2012-07-13 2013-06-21 拡管用プラグ WO2014010387A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524711A JP6173317B2 (ja) 2012-07-13 2013-06-21 拡管用プラグ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012157047 2012-07-13
JP2012-157047 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010387A1 true WO2014010387A1 (ja) 2014-01-16

Family

ID=49915855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067064 WO2014010387A1 (ja) 2012-07-13 2013-06-21 拡管用プラグ

Country Status (3)

Country Link
JP (1) JP6173317B2 (ja)
CN (2) CN103537572B (ja)
WO (1) WO2014010387A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139811A (ja) * 2014-01-29 2015-08-03 三桜工業株式会社 熱交換器の製造方法及び拡径治具
JP2015150566A (ja) * 2014-02-10 2015-08-24 三菱アルミニウム株式会社 拡管プラグ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173317B2 (ja) * 2012-07-13 2017-08-02 株式会社Uacj 拡管用プラグ
US11440072B2 (en) 2019-03-28 2022-09-13 Carrier Corporation Tube bending mandrel and system using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768230A (en) * 1980-10-14 1982-04-26 Kawasaki Heavy Ind Ltd Method and apparatus pipe expanding
JPS6056413A (ja) * 1983-09-06 1985-04-02 Sumitomo Metal Ind Ltd 内面溝付管の製造方法
JPH02182330A (ja) * 1989-01-10 1990-07-17 Mitsubishi Metal Corp セラミックス製拡管用プラグ
JPH10263713A (ja) * 1997-03-19 1998-10-06 Aisin Seiki Co Ltd パイプ曲げ加工装置およびパイプ曲げ加工方法
JP2000117362A (ja) * 1998-10-12 2000-04-25 Hitachi Cable Ltd 金属管の拡管用マンドレル及び拡管方法
JP2007105762A (ja) * 2005-10-13 2007-04-26 Jfe Steel Kk 金属管端部の拡管加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700562B2 (ja) * 2000-08-31 2005-09-28 松下電器産業株式会社 熱交換器の製造方法
EP1799374B1 (en) * 2004-09-21 2008-08-20 Sumitomo Metal Industries, Ltd. Plug, method of expanding inside diameter of metal pipe or tube using such plug, method of manufacturing metal pipe or tube, and metal pipe or tube
CN102016482B (zh) * 2008-04-24 2012-11-14 三菱电机株式会社 热交换器以及使用该热交换器的空调机
JP6173317B2 (ja) * 2012-07-13 2017-08-02 株式会社Uacj 拡管用プラグ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768230A (en) * 1980-10-14 1982-04-26 Kawasaki Heavy Ind Ltd Method and apparatus pipe expanding
JPS6056413A (ja) * 1983-09-06 1985-04-02 Sumitomo Metal Ind Ltd 内面溝付管の製造方法
JPH02182330A (ja) * 1989-01-10 1990-07-17 Mitsubishi Metal Corp セラミックス製拡管用プラグ
JPH10263713A (ja) * 1997-03-19 1998-10-06 Aisin Seiki Co Ltd パイプ曲げ加工装置およびパイプ曲げ加工方法
JP2000117362A (ja) * 1998-10-12 2000-04-25 Hitachi Cable Ltd 金属管の拡管用マンドレル及び拡管方法
JP2007105762A (ja) * 2005-10-13 2007-04-26 Jfe Steel Kk 金属管端部の拡管加工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139811A (ja) * 2014-01-29 2015-08-03 三桜工業株式会社 熱交換器の製造方法及び拡径治具
WO2015114888A1 (ja) * 2014-01-29 2015-08-06 三桜工業株式会社 熱交換器の製造方法及び拡径治具
CN105939797A (zh) * 2014-01-29 2016-09-14 三樱工业株式会社 热交换器的制造方法以及扩径治具
JP2015150566A (ja) * 2014-02-10 2015-08-24 三菱アルミニウム株式会社 拡管プラグ

Also Published As

Publication number Publication date
JP6173317B2 (ja) 2017-08-02
CN203578595U (zh) 2014-05-07
CN103537572B (zh) 2017-05-10
JPWO2014010387A1 (ja) 2016-06-20
CN103537572A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
JP6173317B2 (ja) 拡管用プラグ
CN1044279C (zh) 由销形部分和箱形部分构成的管的螺纹接头
JP4728897B2 (ja) リターンベンド管およびフィンアンドチューブ型熱交換器
JP2007271123A (ja) 内面溝付伝熱管
WO2013153972A1 (ja) アルミニウム合金製内面溝付き伝熱管
JP2009243715A (ja) 漏洩検知管および熱交換器
KR101892379B1 (ko) 확관기
JP6106171B2 (ja) 拡管用プラグ
JP2009242837A (ja) 工具磨耗低減銅合金鋳塊及び銅合金管
JP2015150566A (ja) 拡管プラグ
KR20140067868A (ko) 열 교환기 제조 방법
JP5618616B2 (ja) オープンラック型気化装置用フィンチューブ
JP2008190858A (ja) 漏洩検知管
JP5006155B2 (ja) 伝熱管
JP2007283351A (ja) 管の引抜加工用プラグ及びこれを用いた管の製造方法
JP6288581B2 (ja) アルミニウムまたはアルミニウム合金製伝熱管の拡管方法
JP6238063B2 (ja) 拡管プラグ
JP2007271238A (ja) 熱交換器
JP2016087675A (ja) 拡管プラグおよび拡管プラグの設計方法
US10478877B2 (en) Die for drawing metal wire rod, and method for manufacturing same
JP5607294B2 (ja) 伝熱管
JP2005046906A (ja) 内面溝付管の製造装置及び内面溝付管の製造方法
JP6084245B2 (ja) ランスパイプ
JP2007218566A (ja) 内面溝付き管及びその製造方法並びに溝付きプラグ
JP2021107092A (ja) 継目無鋼管製造用プラグ、継目無鋼管製造用ピアッシングミルおよび継目無鋼管の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816358

Country of ref document: EP

Kind code of ref document: A1