WO2014010343A1 - 緩衝器の減衰バルブ - Google Patents

緩衝器の減衰バルブ Download PDF

Info

Publication number
WO2014010343A1
WO2014010343A1 PCT/JP2013/065624 JP2013065624W WO2014010343A1 WO 2014010343 A1 WO2014010343 A1 WO 2014010343A1 JP 2013065624 W JP2013065624 W JP 2013065624W WO 2014010343 A1 WO2014010343 A1 WO 2014010343A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piston
retainer
passage
shock absorber
Prior art date
Application number
PCT/JP2013/065624
Other languages
English (en)
French (fr)
Inventor
山田 秀樹
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to US14/405,163 priority Critical patent/US9410595B2/en
Priority to KR1020147032683A priority patent/KR101639506B1/ko
Priority to DE201311003506 priority patent/DE112013003506T5/de
Priority to CN201380027422.1A priority patent/CN104334912B/zh
Publication of WO2014010343A1 publication Critical patent/WO2014010343A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3484Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of the annular discs per se, singularly or in combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3481Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by shape or construction of throttling passages in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons

Definitions

  • the present invention relates to a damping valve for a shock absorber.
  • the shock absorber is attached to a building or a vehicle and used to suppress vibration.
  • a damping valve is provided in the piston portion of the shock absorber.
  • JP 2005-48912A discloses a damping valve for the shock absorber 100.
  • the damping valve includes a piston 101 that divides the cylinder S of the shock absorber 100 into an extension side chamber R1 and a compression side chamber R2 that are filled with a working fluid, and is formed in the piston 101 to form an extension side chamber R1.
  • a flow path 103c that communicates with the pressure side chamber R2, and a working fluid that is stacked on the pressure side chamber side (lower side in FIG. 5) of the piston 101 and moves from the expansion side chamber R1 to the pressure side chamber R2 through the flow path 103c.
  • a damping force generating element V to be applied.
  • the damping force generating element V includes a plurality of leaf valves including a choke forming leaf valve 104c composed of first to third leaf valves 140, 141, 142 formed in an annular plate shape.
  • the first leaf valve 140, the second leaf valve 141, and the third leaf valve 142 are arranged in this order from the piston side.
  • the first leaf valve 140 is formed in an arc shape along the circumferential direction inside and outside the outer peripheral portion 140 a that is attached to and detached from a valve seat (not shown) of the piston 101. And a through hole 140b.
  • the second leaf valve 141 has a through hole 141a formed in an arc shape along the circumferential direction, and a notch 141b formed from the arc shaped through hole 141a to the outer peripheral end.
  • the third leaf valve 142 is formed in a disc shape having no through hole or notch.
  • the through hole 140b of the first leaf valve 140 and the through hole 141a of the second leaf valve 141 are arranged so as to overlap vertically (FIG. 5A).
  • the upper and lower openings of the notch 141b in FIG. 5A are closed by the outer peripheral portion 140a of the first leaf valve 140 and the third leaf valve 142. Further, the lower opening of the through hole 141 a in FIG. 5A is closed by the third leaf valve 142.
  • the through hole 140b of the first leaf valve 140, the through hole 141a of the second leaf valve 141, and the notch 141b constitute a passage that connects the flow path 103c and the pressure side chamber R2, and this passage functions as a choke. be able to.
  • the outer peripheral portion 140a of the first leaf valve 140 does not move away from the valve seat of the piston 101, so the shock absorber 100 passes through the passage formed by the through hole 140b, the through hole 141a, and the notch 141b. It is possible to generate a damping force having a choke characteristic caused by resistance when the working fluid passes.
  • the damping characteristic (change in damping force with respect to the piston speed) in this case is a proportional characteristic as shown by the solid line f1 in FIG.
  • the outer peripheral portion of the leaf valve 104c constituting the damping force generating element V bends away from the piston 101, and the outer peripheral portion 140a of the first leaf valve 140 is separated from the valve seat of the piston 101. Take a seat.
  • the shock absorber 100 generates a damping force having a valve characteristic due to resistance when the working fluid passes between the first leaf valve 140 and the valve seat.
  • the damping characteristic (change in damping force with respect to the piston speed) in this case is a proportional characteristic as shown by the solid line f2 in FIG.
  • a shock absorber having a through hole functioning as an orifice in a valve seat or leaf valve generates a damping force of the orifice characteristic due to resistance when the working fluid passes through the through hole when the piston speed is in a low speed region.
  • the damping characteristic in this case is a square characteristic as shown by a broken line f3 in FIG.
  • the damping characteristic when the piston speed is in the low speed region becomes a proportional characteristic as shown by f1 in FIG. Insufficient damping force in the region can be suppressed.
  • JP2008-138696A discloses a damping valve that employs a split piston structure.
  • the damping valve has a piston that partitions the cylinder of the shock absorber into one chamber filled with a working fluid and another chamber, a retainer (separator) stacked on the other chamber side of the piston, and penetrates from the piston to the retainer.
  • a flow path in which the inlet always communicates with one chamber an annular leaf valve (extension-side disk valve) that is stacked on the opposite side of the retainer piston to open and close the flow path outlet, and a piston, a retainer, A piston rod penetrating the axial hole of the leaf valve.
  • the damping valve generates a damping force having a valve characteristic in the same manner as the shock absorber 100 disclosed in JP2005-48912A. Furthermore, in this damping valve, even if the flow path passes through the inner peripheral side of the piston, an annular valve seat on which the leaf valve is attached and detached can be formed on the retainer to increase the diameter. A diameter can be enlarged and it can be made easy to bend. Therefore, the damping coefficient (ratio of the damping force change amount to the piston speed change amount) when the piston speed is in the medium to high speed region can be further reduced.
  • the choke forming leaf valve and the retainer are provided in order to obtain a damping force with a choke characteristic when the piston speed is in the low speed region, and to reduce the damping coefficient when the piston speed is in the medium to high speed region. It is necessary to prepare both. However, in this case, since the number of stacked leaf valves is increased by providing the choke forming leaf valve, it is difficult to sufficiently reduce the damping coefficient when the piston speed is in the middle to high speed region.
  • An object of the present invention is to provide a damping valve for a shock absorber capable of suppressing a damping coefficient when a piston speed is in a medium to high speed region while generating a damping force having a choke characteristic when the piston speed is in a low speed region. Is to provide.
  • a damping valve for a shock absorber a valve disk that divides one chamber and the other chamber, a retainer that is stacked on the other chamber side of the valve disk, and a valve disk through the retainer.
  • a flow path in which the inlet always communicates with the one chamber, an annular plate-shaped leaf valve that is stacked on the opposite side of the retainer valve disk so as to close the outlet of the flow path, and shafts of the valve disk, the retainer, and the leaf valve A shaft member penetrating the core hole, a first outer peripheral groove formed on the outer periphery of the shaft member, and a passage formed as a choke between the first outer peripheral groove and the retainer, and one side of the passage is
  • a shock absorber damping valve is provided in communication with the flow path and the other side of the passage in communication with the other chamber.
  • FIG. 1 is a longitudinal sectional view showing a damping valve of a shock absorber according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view showing a part of FIG.
  • FIG. 3 is an enlarged longitudinal sectional view showing a part of the damping valve of the shock absorber according to the second embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a modification of the damping valve of the shock absorber according to the second embodiment of the present invention.
  • FIG. 5A is a longitudinal sectional view showing a part of a damping valve of a conventional shock absorber.
  • FIG. 5B is a plan view showing a first leaf valve in the damping valve of the conventional shock absorber.
  • FIG. 5C is a plan view showing a second leaf valve in the damping valve of the conventional shock absorber.
  • FIG. 5D is a plan view showing a third leaf valve in the damping valve of the conventional shock absorber.
  • FIG. 6 is a diagram illustrating a damping characteristic of a shock absorber equipped with a conventional damping valve.
  • FIG. 1 is a longitudinal sectional view showing a damping valve E of the shock absorber D according to the first embodiment of the present invention.
  • subjected through several drawing shows the same member or a corresponding member.
  • the damping valve E provided in the piston portion of the shock absorber D includes a piston (valve disk) 1 that partitions the expansion side chamber (one chamber) A and the pressure side chamber (other chamber) B, and the pressure side chamber side (other chamber) of the piston 1.
  • an annular plate-like leaf valve 4a that is laminated on the opposite side of the outlet side passage 3a so as to be openable and closable, and the shaft hole (not shown) of the piston 1, the retainer 2, and the leaf valve 4a.
  • the damping valve E further includes a first outer peripheral groove 5a formed on the outer periphery of the piston rod 5, and a passage T that is formed between the first outer peripheral groove 5a and the retainer 2 and functions as a choke.
  • One side of the passage T communicates with the expansion side flow path 3a, and the other side of the passage T communicates with the compression side chamber B.
  • the shock absorber D includes a cylinder S that contains a working fluid composed of a liquid such as oil, water, and an aqueous solution, a piston rod 5 that is removably inserted into the cylinder S, and a cylinder S that is held at the tip of the piston rod 5.
  • a piston 1 slidably in contact with the inner peripheral surface.
  • an extension side chamber A and a pressure side chamber B filled with a working fluid are partitioned by the piston 1, and the extension side chamber A is disposed on the piston rod side (upper side in FIG. 1) of the piston 1.
  • the pressure side chamber B is disposed on the opposite side (lower side in FIG. 1).
  • the shock absorber D further includes a well-known reservoir that is partitioned by the pressure side chamber B and the base member and accommodates the working fluid, and a well-known air chamber that is partitioned by the pressure side chamber B and the free piston and can be expanded and contracted.
  • These reservoirs or air chambers compensate for volume changes in the cylinder corresponding to the volume of the piston rod 5 that appears and disappears in the cylinder S, and compensate for volume changes in the working fluid due to temperature changes.
  • the damping valve E since the damping valve E is provided in the piston portion, the “one chamber” and the “other chamber” in the claims correspond to the extension side chamber A and the pressure side chamber B, respectively.
  • the “disk” corresponds to the piston 1.
  • the damping valve E is provided in the base member portion, the “one chamber” and the “other chamber” in the claims correspond to the pressure side chamber B and the reservoir, respectively, and the “valve disk” in the claims corresponds to the base It corresponds to a member.
  • a plurality of leaf valves 4b, spacers 6b, and valve stoppers 7 are stacked in order from the piston side on the extension side chamber side (upper side in FIG. 1) of the piston 1.
  • a retainer 2 On the pressure side chamber side (lower side in FIG. 1) of the piston 1, a retainer 2, a shim 8, a plurality of leaf valves 4a, and a spacer 6a are stacked in this order from the piston side.
  • the piston 1 and the retainer 2 are formed in an annular shape, and have axial holes (not shown) that penetrate the respective axial center portions.
  • the leaf valves 4a and 4b, the valve stopper 7, the shim 8 and the spacers 6a and 6b are formed in an annular plate shape and have axial holes (not shown) penetrating the respective axial center portions.
  • the piston rod 5 that is inserted into the cylinder S so as to be able to appear and retract is coaxial with the screw portion 50 that is disposed at the distal end and has a screw groove 5b formed on the outer periphery thereof, and the proximal end side (upper side in FIG. 1) of the screw portion 50. And an attachment portion 51 that is continuous in a shape.
  • the outer diameters of the screw portion 50 and the attachment portion 51 are formed smaller than the outer diameter of the portion 52 connected to the proximal end side (the upper side in FIG. 1) of the attachment portion 51, and an annular step surface 53 is formed at the boundary. .
  • Valve stopper 7, extension side chamber side spacer 6b, extension side chamber side leaf valve 4b, piston 1, retainer 2, shim 8, pressure side chamber side leaf valve 4a and pressure side chamber side spacer 6a (hereinafter referred to as "piston and the like")
  • the threaded portion 50 and the mounting portion 51 of the piston rod 5 are sequentially inserted into each axial hole of “P”.)
  • the nut 9 is screwed into the threaded portion 50 projecting from the piston or the like P, whereby the nut A piston or the like P is held between 9 and the step surface 53.
  • the inner peripheral sides of the plurality of leaf valves 4 a and 4 b disposed on the extension side chamber side (upper side in FIG. 1) and the pressure side chamber side (lower side in FIG. 1) of the piston 1 are formed between the step surface 53 and the nut 9. Although sandwiched between them and fixed to the piston rod 5, the outer peripheral sides of the leaf valves 4 a and 4 b can be bent in a direction away from the piston 1. Further, the leaf valve 4a disposed on the pressure side chamber side (lower side in FIG. 1) is given an initial deflection, and the amount of the deflection may be the use of shims 8 having different thicknesses or the lamination of the shims 8. It can be adjusted by changing the number of sheets.
  • the nut 9 that is screwed into the screw portion 50 of the piston rod 5 includes a nut main body 90 that is screwed to the outer periphery of the screw portion 50, and an annular upright portion 91 that stands up from the nut main body 90.
  • the inner diameter of the standing portion 91 is formed larger than the outer diameter of the screw portion 50 and the attachment portion 51. Therefore, when the nut main body 90 is screwed into the screw portion 50, the standing portion 91 reaches the attachment portion 51 beyond the screw portion 50.
  • the piston 1 includes a piston main body 10 in which two types of flow paths communicating the expansion side chamber A and the pressure side chamber B, that is, the expansion side flow path 3a and the pressure side flow path 3b, and the pressure side chamber side of the piston main body 10 (Bottom side in FIG. 1)
  • a cylindrical skirt portion 11 extending from the outer peripheral portion to the retainer side, and a sliding contact portion 12 attached from the outer periphery of the piston body 10 to the outer periphery of the skirt portion 11 and slidably contacting the inner peripheral surface of the cylinder S .
  • the extension-side flow path 3 a penetrates from the piston 1 to the retainer 2, and has a valve disk through-hole 30 formed on the inner peripheral side of the piston main body 10 and a retainer through-hole 31 formed in the retainer 2. .
  • the inlet of the extension side flow path 3 a is connected to an opening window 13 formed on the side of the extension side chamber (the upper surface in FIG. 1) of the piston body 10, and always communicates with the extension side chamber A through the opening window 13.
  • the outlet of the extension side channel 3a is connected to a window 20 formed on the pressure side chamber side surface (lower surface in FIG. 1) of the retainer 2, and the outer periphery of the window 20 is surrounded by an annular valve seat 21.
  • the leaf valve 4a on the pressure side chamber side can allow or block the communication of the extension side flow path 3a by allowing the outer periphery of the leaf valve 4a to be separated from the valve seat 21. That is, the outlet of the extension side flow passage 3a is closed by the leaf valve 4a on the compression side chamber so as to be opened and closed.
  • the pressure side flow path 3 b penetrates only the piston 1 and is formed on the outer peripheral side of the piston main body 10.
  • the inlet of the pressure side channel 3b opens to the inside of the skirt portion 11 and always communicates with the pressure side chamber B.
  • the outlet of the pressure side flow path 3b is connected to a window 14 formed on the side of the expansion side chamber (the upper surface in FIG. 1) of the piston body 10, and the opening window 13 (extension side) is formed by a petal-like valve seat 15 surrounding the outer periphery of the window 14. It is partitioned from the flow path 3a).
  • the leaf valve 4b on the extension side chamber side can allow or block communication of the pressure side flow path 3b by seating the outer peripheral portion on the valve seat 15. In other words.
  • the outlet of the pressure side channel 3b is closed so as to be opened and closed by a leaf valve 4b on the extension side chamber side.
  • the retainer 2 stacked on the pressure side chamber side (lower side in FIG. 1) of the piston 1 includes a small outer diameter portion 22 inserted on the inner peripheral side of the skirt portion 11 of the piston 1 and a piston 1 of the small outer diameter portion 22. And a large outer diameter portion 23 that is concentrically connected to the opposite side (lower side in FIG. 1) and has an outer diameter larger than that of the small outer diameter portion 22.
  • the axial length of the small outer diameter portion 22 of the retainer 2 is set so that a part of the small outer diameter portion 22 protrudes from the skirt portion 11 when the small outer diameter portion 22 is inserted inside the skirt portion 11. Is done. Furthermore, the outer diameter of the large outer diameter portion 23 is formed smaller than the inner diameter of the cylinder S. Accordingly, the working fluid can move between the outer periphery of the retainer 2 and the inner periphery of the cylinder S, and the inlet of the pressure side flow path 3b formed in the piston body 10 is not blocked by the retainer 2. . Furthermore, the outer diameter of the valve seat 21 formed in the retainer 2 can be increased, and the outer diameter of the leaf valve 4a on the pressure side chamber side can be increased.
  • annular groove 16 On the mating surface (the lower surface in FIG. 1) of the piston 1 facing the retainer 2, there are an annular groove 16 that continues to the valve disk through hole 30, and an annular inner peripheral seating surface 17 that rises along the inner periphery of the annular groove 16.
  • An annular outer peripheral seating surface 18 standing along the outer periphery of the annular groove 16 is formed.
  • annular groove 24 On the mating surface (upper surface in FIG. 1) of the retainer 2 that faces the piston 1, an annular groove 24 that continues to the retainer through-hole 31 and an annular inner peripheral seating surface 25 that stands up along the inner periphery of the annular groove 24.
  • annular outer peripheral seating surface 26 standing up along the outer periphery of the annular groove 24 is formed.
  • valve disk through hole 30 and the retainer through hole 31 communicate with each other through the annular grooves 16 and 24, even if the valve disk through hole 30 and the retainer through hole 31 are displaced in the circumferential direction, The hole 30 and the retainer through-hole 31 can be communicated with each other.
  • FIG. 2 is an enlarged view showing a part of FIG.
  • An attachment portion 51 of the piston rod 5 to which a piston or the like P is attached is located on the piston holding portion 510 connected to the step surface 53 (FIG. 1) and on the side opposite to the step surface 53 of the piston holding portion 510 (lower side in FIG. 2).
  • a small-diameter portion 511 that has a continuous outer diameter smaller than the piston holding portion 510 and a small-diameter portion 511 that is connected to the opposite side (lower side in FIG. 2) of the small-diameter portion 511 and has an outer diameter equal to that of the piston holding portion 510.
  • a non-screw part 513 provided between the retainer holding part 512 and the screw part 50 and having an outer diameter smaller than the outer diameter of the retainer holding part 512 and the screw part 50. Is done.
  • the piston 1, the extension side chamber side leaf valve 4b, the spacer 6b, and the valve stopper 7 are attached to the outer periphery of the piston holding portion 510 (FIG. 1), the retainer 2, the shim 8, the pressure side chamber side leaf valve 4a, and the spacer 6a. Is attached to the outer periphery of the retainer holding part 512 (FIGS. 1 and 2).
  • a first outer peripheral groove 5a is formed on the outer periphery of the attaching portion 51 of the piston rod 5 from the small diameter portion side end (upper end in FIG. 2) to the non-screw portion side end (lower end in FIG. 2) of the retainer holding portion 512.
  • a passage T that functions as a choke is formed between the first outer circumferential groove 5 a and the retainer 2.
  • the small-diameter portion 511 of the attachment portion 51 is disposed at a position facing both the mating surfaces of the piston 1 and the retainer 2, and an annular first communicating with the passage T between the small-diameter portion 511 and the piston 1 and the retainer 2.
  • a communication path t1 is formed.
  • a groove 2a is formed in the inner peripheral seat surface 17 of the retainer 2 along the radial direction. Between the groove 2a and the inner peripheral seat surface 17 of the piston 1, the first series passage t1 and the extension side flow passage 3a A second communication path t2 that communicates is formed. That is, one side of the passage T functioning as a choke communicates with the extension-side flow passage 3a via the first and second communication passages t1 and t2.
  • a third communication path t3 is formed.
  • an annular fourth communication path t4 communicating with the third communication path t3 is formed.
  • a second outer peripheral groove 5c is formed from the attachment side end (upper end in FIG. 2) to the front end (lower end in FIG. 2).
  • a fourth communication passage t4 and a fifth communication passage t5 communicating with the pressure side chamber B are formed. That is, the other side of the passage T functioning as a choke communicates with the pressure side chamber B through the third, fourth, and fifth communication passages t3, t4, and t5.
  • the third communication path t3 and the fifth communication path t5 communicate with each other via the annular fourth communication path t4, the third communication path t3 and the fifth communication path t5 are displaced in the circumferential direction. Also good.
  • the fourth communication passage t4 non-threaded portion 513 may be eliminated, and the third communication passage t3 and the fifth communication passage t5 may be formed continuously.
  • the damping valve E of the shock absorber D is configured as described above, and when the speed of the piston that moves up and down in FIG.
  • the outer peripheral portions of the leaf valves 4a and 4b on the side do not move away from the retainer 2 and the valve seats 21 and 15 of the piston 1, so that the working fluid passes through the passage T functioning as a choke and flows between the extension side chamber A and the pressure side chamber B. Move between. Therefore, the shock absorber D generates a damping force having a choke characteristic due to the resistance when the working fluid passes through the passage T.
  • the shock absorber D which moves the piston 1 to the lower side of FIG. 1, compresses the piston speed from the low speed region and reaches the middle high speed region, the working fluid in the pressure side chamber B pressurized by the piston 1 is expanded side chamber side.
  • the outer peripheral portion of the leaf valve 4b is bent to the opposite side to the piston 1 and passes through the compression side flow path 3b to move to the expansion side chamber A. Therefore, the shock absorber D generates a damping force having a valve characteristic due to resistance when the working fluid passes between the leaf valve 4b on the extension side chamber side and the valve seat 15.
  • the piston speed is divided into the low speed region and the medium / high speed region in order to explain the change in the damping characteristic, but the speed at the boundary between these divisions can be arbitrarily set.
  • the damping valve E of the shock absorber D includes a piston 1 that partitions the expansion side chamber A and the pressure side chamber B, a retainer 2 that is stacked on the pressure side chamber side of the piston 1, and a penetrating through the piston 1 to the retainer 2 so that the inlet always extends.
  • An extension side flow path 3a communicating with the side chamber A, an annular plate-like leaf valve 4a stacked on the opposite side of the retainer 2 from the piston 1 and closing the outlet of the extension side flow path 3a, and the piston 1 and the retainer 2 And a piston rod 5 that passes through the axial hole of the leaf valve 4a.
  • the damping valve E further includes a first outer peripheral groove 5a formed on the outer periphery of the piston rod 5, and a passage T that is formed between the first outer peripheral groove 5a and the retainer 2 and functions as a choke.
  • One side of the passage T communicates with the expansion side flow path 3a, and the other side of the passage T communicates with the compression side chamber B.
  • the retainer 2 is laminated on the piston 1 and the expansion side flow path 3a penetrates from the piston 1 to the retainer 2, so that the expansion side flow path 3a is formed on the inner peripheral side of the piston 1 and the pressure side flow path 3b is formed. Even if it is formed on the outer peripheral side of the piston 1, the outer diameter of the leaf valve 4 a that closes the outlet of the extension side flow passage 3 a so as to be openable and closable can be increased. Therefore, the damping coefficient when the piston speed is in the medium to high speed region can be reduced.
  • the shock absorber D can generate a damping force having a choke characteristic.
  • the leaf valve 4a that closes the outlet of the extension side passage 3a so as to be openable / closable does not have to be a conventional leaf valve 4c for choke formation, it is necessary to increase the number of stacked leaf valves 4a as in the conventional case. Absent. Therefore, even if the shock absorber D can generate the choke characteristic damping force when the piston speed is in the low speed region, the damping coefficient when the piston speed is in the medium to high speed region is suppressed. be able to.
  • the piston rod 5 is arranged at the distal end portion and is connected to the screw portion 50 in which the nut 9 is screwed on the outer periphery, and to the base end side (upper side in FIG. 1) of the screw portion 50, the piston 1, the retainer 2 and the pressure side on the outer periphery.
  • the attachment portion 51 is provided with a small diameter portion 511 disposed at a position facing each mating surface of the piston 1 and the retainer 2.
  • An annular first series passage t1 communicating with the passage T is formed between the small diameter portion 511 and the piston 1 and the retainer 2, and between the piston 1 and the retainer 2, a first series passage t1 is provided along the radial direction. And the 2nd communicating path t2 connected with the expansion side flow path 3a is formed.
  • one side of the passage T functioning as a choke communicates with the extension side flow passage 3a via the first and second communication passages t1 and t2, and the second communication passage t2 and the passage T are displaced in the circumferential direction.
  • the second communication passage t2 and the passage T can communicate with each other through the first series passage t1.
  • first outer circumferential groove 5a extends to a position facing the pressure valve on the pressure side chamber, and the passage T communicates with the pressure side chamber B between the first outer circumferential groove 5a and the leaf valve 4a on the pressure side chamber.
  • the third communication passage t3 is formed.
  • the passage T can be communicated with the pressure side chamber B by using the outer peripheral groove 5a for forming the passage T functioning as a choke without performing any special processing on the leaf valve 4a on the pressure side chamber.
  • a second outer peripheral groove 5c is formed on the outer periphery of the screw portion 50, and a fifth communication path t5 for communicating the passage T with the compression side chamber B is formed between the second outer peripheral groove 5c and the nut 9. Therefore, it is also possible to use the fifth communication path t5 as a second path that functions as a choke. In this case, the length of the choke can be increased.
  • the attaching portion 51 is disposed between the retainer holding portion 512 to which the retainer 2 and the pressure side chamber side leaf valve 4a are attached on the outer periphery, and between the retainer holding portion 512 and the screw portion 50, and has an outer diameter of the retainer holding portion 512 and And a non-screw part 513 formed smaller than the screw part 50.
  • the nut 9 includes a nut body 90 that is screwed into the screw part 50, and an annular standing part 91 that stands on the nut body 90.
  • An annular fourth communication passage t4 is formed between the non-screw portion 513 and the upright portion 91, and the third communication passage t3 and the fifth communication passage t5 communicate with each other via the fourth communication passage t4.
  • the third communication path t3 and the fifth communication path t5 are formed so as to be vertically separated and shifted in the circumferential direction, the third communication path t3 and the fifth communication path t5 are connected via the fourth communication path t4. Can communicate. Further, the depth and width of the first outer circumferential groove 5a and the second outer circumferential groove 5c can be freely set, and the damping force of the choke characteristic of the shock absorber D can be set more freely.
  • the retainer 2 is coaxially connected to the small outer diameter portion 22 and the opposite side of the small outer diameter portion 22 to the piston 1 (the opposite side to the valve disk), and has an outer diameter larger than that of the small outer diameter portion 22. Large outer diameter portion 23. Therefore, even if the pressure side flow path 3 b is formed on the outer peripheral side of the piston body 10, it is possible to easily prevent the inlet of the pressure side flow path 3 b from being blocked by the retainer 2.
  • valve seat 21 on which the leaf valve 4a on the pressure side chamber is attached and detached is formed in the large outer diameter portion 23 so that the outer diameter of the valve seat 21 can be easily increased so that the outside of the leaf valve 4a on the pressure side chamber side is increased. The diameter can be increased.
  • FIG. 3 is an enlarged longitudinal sectional view showing a part of the damping valve E of the shock absorber D according to the second embodiment of the present invention.
  • the damping valve E of the shock absorber D of the present embodiment has a structure for communicating one side of the passage T with the extension-side flow path 3a and a structure for communicating the other side of the passage T with the compression side chamber B.
  • the other structures are the same as those of the first embodiment. Therefore, the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the piston rod (shaft member) 5A includes a screw portion 50 that is disposed at the distal end portion and has a screw groove 5b formed on the outer periphery thereof, and a proximal end side of the screw portion 50 (upper side in FIG. 3). And a mounting portion 51A that is coaxially connected.
  • the outer diameters of the screw portion 50 and the attachment portion 51A are formed to be smaller than the portion 52 (FIG. 1) connected to the proximal end side of the attachment portion 51A, and an annular step surface 53 (FIG. 1) is formed at the boundary. .
  • the attaching portion 51A includes a piston holding portion 510 that is continuous with the step surface 53, a retainer holding portion 512 that is connected to the opposite side of the step surface 53 of the piston holding portion 510, and has an outer diameter equal to the outer diameter of the piston holding portion 510.
  • the retainer holding portion 512 and the screw portion 50 are provided between the retainer holding portion 512 and the non-screw portion 513 formed to be smaller than the screw portion 50.
  • the piston 1, the leaf valve 4b on the extension side chamber side, the spacer 6b, and the valve stopper 7 are attached to the outer periphery of the piston holding portion 510 (FIG. 1), and the retainer 2, shim 8, pressure side chamber are attached to the outer periphery of the retainer holding portion 512.
  • the side leaf valve 4a and the spacer 6a are attached (FIG. 3).
  • a first outer peripheral groove 5a is formed in the attaching portion 51A of the piston rod 5A.
  • the first outer peripheral groove 5a is provided from the retainer holding part side end (the lower end in FIG. 3) of the piston holding part 510 to the non-screw part side end (the lower end in FIG. 3) of the retainer holding part 512.
  • a sixth communication passage t6 is formed between the first outer circumferential groove 5a and the piston 1, and a passage T functioning as a choke is formed between the first outer circumferential groove 5a and the retainer 2, and the first outer circumferential groove 5a.
  • the shim 8, the leaf valve 4a on the pressure side chamber side, the spacer 6a, and the upright portion 91 of the nut 9 are formed with a third communication passage t3.
  • the inner peripheral seating surface 25 of the retainer 2 is disposed on the tip side (downward in FIG. 3) of the piston rod 5A from the outer peripheral seating surface 26. Thereby, even if the piston P or the like P is fixed to the outer periphery of the piston rod 5A and the outer peripheral seat surface 26 of the retainer 2 and the outer peripheral seat surface 18 of the piston 1 abut, the inner peripheral seat surface 25 of the retainer 2 is It does not contact the inner peripheral seating surface 17. Therefore, an annular seventh communication passage t7 that communicates with the extension-side flow path 3a is formed between the piston 1 and the retainer 2.
  • a groove 9a is formed along the radial direction on the piston side surface (upper surface in FIG. 3) of the upright portion 91 of the nut 9 that abuts the spacer 6a on the pressure side chamber side, and between the groove 9a and the spacer 6a. Is formed with an eighth communication passage t8 communicating with the third communication passage t3 and the other chamber B.
  • the passage T functioning as a choke has one side communicating with the expansion side flow passage 3a via the sixth and seventh communication passages t6 and t7, and the other side being the third and eighth communication passages. It communicates with the pressure side chamber B via t3 and t8.
  • the damping valve E of the shock absorber D is formed between the first outer circumferential groove 5a formed on the outer circumference of the piston rod (shaft member) 5A, and between the first outer circumferential groove 5a and the retainer 2, as in the first embodiment.
  • a passage T functioning as a choke.
  • One side of the passage T communicates with the extension-side flow path 3a, and the other side of the passage T communicates with the compression side chamber B.
  • a passage T functioning as a choke is formed between the piston rod 5A and the retainer 2, so that when the piston speed is in the low speed region, the working fluid passes through the passage T and the extension side chamber A and the compression side chamber. B can be moved between. Therefore, the shock absorber D can generate a damping force having a choke characteristic.
  • the leaf valve 4a that closes the outlet of the extension side passage 3a so as to be openable / closable does not have to be a conventional leaf valve 4c for choke formation, it is necessary to increase the number of stacked leaf valves 4a as in the conventional case. Absent. Therefore, even if the shock absorber D can generate the choke characteristic damping force when the piston speed is in the low speed region, the damping coefficient when the piston speed is in the medium to high speed region is suppressed. be able to.
  • the first outer circumferential groove 5 a extends to a position facing the piston 1, thereby forming a sixth communication passage t ⁇ b> 6 communicating with the passage T between the piston 1.
  • the sixth communication passage t6 and the annular seventh communication passage t7 communicating with the extension-side flow passage 3a are formed along the radial direction between the piston 1 and the retainer 2, the one side of the passage T is connected to the sixth communication passage t6. , And communicate with the expansion side flow path 3a through the seventh communication passages t6 and t7. Therefore, unlike the piston rod 5 of the first embodiment, there is no need to provide the small diameter portion 511.
  • the damping valve E includes an annular plate-shaped spacer 6a that is stacked on the pressure chamber side leaf valve 4a opposite to the piston 1 side.
  • the mounting portion 51A of the piston rod 5A is disposed between the retainer holding portion 512 to which the retainer 2, the leaf valve 4a on the pressure side chamber side and the spacer 6a are attached on the outer periphery, and between the retainer holding portion 512 and the screw portion 50. Includes a retainer holding portion 512 and a non-screw portion 513 formed smaller than the screw portion 50.
  • the first outer peripheral groove 5a extends to the end of the retainer holding part 512 on the non-screw part side.
  • the nut 9 includes a nut main body 90 that is screwed into the screw portion 50, and an annular upright portion 91 that stands up from the nut main body 90.
  • the inner diameter of the upright portion 91 is formed larger than the outer diameter of the retainer holding portion 512, and a groove 9 a is formed along the radial direction on the piston side surface of the upright portion 91.
  • a third communication passage t3 that communicates with the passage T is formed between the first outer circumferential groove 5a and the leaf valve 4a on the pressure side chamber side, the spacer 6a, and the upright portion 91, and between the groove 9a formed on the nut 9.
  • An eighth communication passage t8 communicating with the third communication passage t3 and the pressure side chamber B is formed between the seat 6a.
  • the communication state between the passage T and the pressure side chamber B can be maintained. Further, since an annular gap is formed between the retainer holding portion 512 and the upright portion 91 of the piston rod 5A, even if the first outer peripheral groove 5a and the groove 9a of the upright portion 91 are displaced in the circumferential direction, the third The communication path t3 and the eighth communication path t8 can be communicated.
  • the compression-side chamber-side spacer 6a is formed in a C-shape, and the joint portion communicates with the third communication passage t3 and the pressure-side chamber B.
  • Nine continuous passages t9 may be provided.
  • a groove is provided in the spacer 6a along the radial direction, and a communication path that communicates with the third communication path t3 and the pressure side chamber B between the groove and the leaf 9a stacked on the nut 9 or the spacer 6a. May be provided.
  • a groove is provided in the radial direction in any leaf valve 4a on the pressure side chamber side, and communicates with the third communication passage t3 and the pressure side chamber B between the groove and the spacer 6a or another leaf valve 4a.
  • a communication path may be provided.
  • the damping valve E of the shock absorber D is provided in the piston portion of the shock absorber D is illustrated, but may be provided in the base member portion of the shock absorber D.
  • the shock absorber D of the above embodiment is a hydraulic pressure buffer that uses a liquid as a working fluid, but may be a pneumatic pressure buffer that uses a gas as a working fluid.
  • the retainer 2 is laminated
  • extension of the buffer D is always connected with the expansion side chamber A through the flow path penetrated from the piston 1 to the retainer 2.
  • the retainer 2 is stacked on the extension side chamber side, and the pressure side through which the working fluid passes through the flow path that penetrates from the piston 1 to the retainer 2 always communicates with the pressure side chamber B. You may form as a flow path.
  • the structure for making it go is not limited to the above, and can be changed as appropriate.
  • channel 5c are provided with two or more along the axial direction of the piston rod 5
  • channel 5c are provided. Can be appropriately selected, and may be formed in a spiral shape, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

 ピストン速度が低速域のときにチョーク特性の減衰力を得ると共に、ピストン速度が中高速域のときに減衰力を低下させる。緩衝器の減衰バルブEは、伸側室Aと厚側室Bとを区画するピストン1と、ピストン1の圧側室側に積層されるリテーナ2と、ピストン1からリテーナ2にかけて貫通し入口が常に圧側室Aと連通する流路3aと、リテーナ2に積層され流路3aの出口を開閉可能に塞ぐリーフバルブ4aと、ピストンロッド5の外周に形成される第一外周溝5aとを備える。第一外周溝5aとリテーナ2との間で、チョークとして機能する通路Tが形成される。通路Tの一方側は流路3aと連通させ、通路Tの他方側は厚側室Bと連通させる。

Description

緩衝器の減衰バルブ
 本発明は、緩衝器の減衰バルブに関する。
 緩衝器は、建築物や車両等に取り付けられて振動を抑制するために利用される。緩衝器のピストン部には、減衰バルブが設けられる。
 JP2005-48912Aは、緩衝器100の減衰バルブを開示している。減衰バルブは、図5Aに示すように、緩衝器100のシリンダS内を作動流体が充填される伸側室R1と圧側室R2とに区画するピストン101と、ピストン101に形成されて伸側室R1と圧側室R2とを連通する流路103cと、ピストン101の圧側室側(図5における下側)に積層され流路103cを通過して伸側室R1から圧側室R2に移動する作動流体に抵抗を与える減衰力発生要素Vと、を備える。
 減衰力発生要素Vは、環板状に形成される第一~第三リーフバルブ140、141、142からなるチョーク形成用リーフバルブ104cを含む複数枚のリーフバルブを備える。第一リーフバルブ140、第二リーフバルブ141、第三リーフバルブ142は、ピストン側からこの順に配置される。
 第一リーフバルブ140は、図5Bに示すように、ピストン101の弁座(図示せず)に離着座する外周部140aと、外周部140aの内側に周方向に沿って円弧状に形成される貫通孔140bと、を有する。第二リーフバルブ141は、図5Cに示すように、周方向に沿って円弧状に形成される貫通孔141aと、円弧状の貫通孔141aから外周端にかけて形成される切欠き141bと、を有する。第三リーフバルブ142は、図5Dに示すように、貫通孔や切欠きを有しない円板状に形成される。第一リーフバルブ140の貫通孔140bと、第二リーフバルブ141の貫通孔141aと、は上下に重なるように配置される(図5A)。
 第一~第三リーフバルブ140、141、142を積層した場合、切欠き141bの図5Aにおける上下の開口は、第一リーフバルブ140の外周部140aと第三リーフバルブ142とによって塞がれる。また、貫通孔141aの図5Aにおける下側の開口は、第三リーフバルブ142によって塞がれる。これにより、第一リーフバルブ140の貫通孔140b、第二リーフバルブ141の貫通孔141a及び切欠き141bが流路103cと圧側室R2とを連通する通路を構成し、この通路をチョークとして機能させることができる。
 ピストン速度が低速領域にある場合、第一リーフバルブ140の外周部140aがピストン101の弁座から離座しないので、緩衝器100は、貫通孔140b、貫通孔141a及び切欠き141bからなる通路を作動流体が通過する際の抵抗に起因するチョーク特性の減衰力を発生することができる。この場合の減衰特性(ピストン速度に対する減衰力変化)は、図6の実線f1で示すように比例特性となる。
 ピストン速度が中高速領域にある場合、減衰力発生要素Vを構成するリーフバルブ104cの外周部がピストン101とは反対側に撓み、第一リーフバルブ140の外周部140aがピストン101の弁座から離座する。これにより、緩衝器100は、第一リーフバルブ140と弁座との間を作動流体が通過する際の抵抗に起因するバルブ特性の減衰力を発生する。この場合の減衰特性(ピストン速度に対する減衰力変化)は、図6の実線f2で示すように比例特性となる。
 ところで、弁座やリーフバルブにオリフィスとして機能する通孔を備える緩衝器は、ピストン速度が低速領域にある場合、通孔を作動流体が通過する際の抵抗に起因するオリフィス特性の減衰力を発生する。この場合の減衰特性(ピストン速度に対する減衰力変化)は、図6の破線f3で示すように二乗特性となる。このため、このような緩衝器では、ピストン速度が0から所定の範囲(以下、「微低速領域」という。)にある場合に、減衰係数(ピストン速度変化量に対する減衰力変化量の割合)が小さく、減衰力が不足する可能性がある。
 これに対して、図5に示すチョークとして機能する通路を備える緩衝器100では、ピストン速度が低速領域にある場合の減衰特性が、図6のf1で示すように比例特性となるので、微低速領域で減衰力が不足することを抑制できる。
 また、JP2008-138696Aは、分割ピストン構造を採用した減衰バルブを開示している。減衰バルブは、緩衝器のシリンダ内を作動流体が充填される一方室と他方室とに区画するピストンと、ピストンの他方室側に積層されるリテーナ(セパレータ)と、ピストンからリテーナにかけて貫通して入口が常に一方室と連通する流路と、リテーナのピストンとは反対側に積層されて流路の出口を開閉可能に塞ぐ環板状のリーフバルブ(伸側ディスクバルブ)と、ピストン、リテーナ及びリーフバルブの軸心孔を貫通するピストンロッドと、を備える。
 減衰バルブは、JP2005-48912Aに開示の緩衝器100と同様にバルブ特性の減衰力を発生する。さらに、この減衰バルブでは、流路がピストンの内周側を通っていたとしても、リーフバルブが離着座する環状の弁座をリテーナに形成して大径化することができるので、リーフバルブの径を大きくすることができ撓み易くすることができる。したがって、ピストン速度が中高速領域にある場合の減衰係数(ピストン速度変化量に対する減衰力変化量の割合)をより小さくすることができる。
 緩衝器において、ピストン速度が低速領域にある場合にチョーク特性の減衰力を得るとともに、ピストン速度が中高速領域にある場合の減衰係数を小さくするためには、チョーク形成用リーフバルブとリテーナとをともに備える必要がある。しかし、この場合、チョーク形成用リーフバルブを備えることでリーフバルブの積層枚数が増えるので、ピストン速度が中高速領域にある場合の減衰係数を十分に低下させることは困難である。
 この発明の目的は、ピストン速度が低速領域にある場合にチョーク特性の減衰力を発生しながら、ピストン速度が中高速領域にある場合の減衰係数を抑制することが可能な緩衝器の減衰バルブを提供することである。
 本発明のある態様によれば、緩衝器の減衰バルブであって、一方室と他方室とを区画するバルブディスクと、バルブディスクの他方室側に積層されるリテーナと、バルブディスクからリテーナにかけて貫通し入口が常に一方室と連通する流路と、リテーナのバルブディスクとは反対側に積層され流路の出口を開閉可能に塞ぐ環板状のリーフバルブと、バルブディスク、リテーナ及びリーフバルブの軸心孔を貫通する軸部材と、軸部材の外周に形成される第一外周溝と、第一外周溝とリテーナとの間に形成されてチョークとして機能する通路と、を備え、通路の一方側が流路と連通し、通路の他方側が他方室と連通する、緩衝器の減衰バルブが提供される。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の第1実施形態に係る緩衝器の減衰バルブを示す縦断面図である。 図2は、図1の一部を拡大して示す拡大図である。 図3は、本発明の第2実施形態に係る緩衝器の減衰バルブの一部を拡大して示す縦断面図である。 図4は、本発明の第2実施形態に係る緩衝器の減衰バルブの変形例を示す縦断面図である。 図5Aは、従来の緩衝器の減衰バルブの一部を示す縦断面図である。 図5Bは、従来の緩衝器の減衰バルブにおける第一リーフバルブを示す平面図である。 図5Cは、従来の緩衝器の減衰バルブにおける第二リーフバルブを示す平面図である。 図5Dは、従来の緩衝器の減衰バルブにおける第三リーフバルブを示す平面図である。 図6は、従来の減衰バルブが搭載された緩衝器の減衰特性を示す図である。
 初めに、第1実施形態について説明する。
 図1は、本発明の第1実施形態に係る緩衝器Dの減衰バルブEを示す縦断面図である。なお、以下の説明において、複数の図面を通して付された同一の符号は、同一の部材又は対応する部材を示す。
 緩衝器Dのピストン部に設けられる減衰バルブEは、伸側室(一方室)Aと圧側室(他方室)Bとを区画するピストン(バルブディスク)1と、ピストン1の圧側室側(他方室側)に積層されるリテーナ2と、ピストン1からリテーナ2にかけて貫通し入口が常に伸側室Aと連通する伸側流路(流路)3aと、リテーナ2のピストン1とは反対側(バルブディスクとは反対側)に積層されて伸側流路3aの出口を開閉可能に塞ぐ環板状のリーフバルブ4aと、ピストン1、リテーナ2及びリーフバルブ4aの軸心孔(図示せず)を貫通するピストンロッド(軸部材)5と、を備える。
 減衰バルブEはさらに、ピストンロッド5の外周に形成される第一外周溝5aと、第一外周溝5aとリテーナ2との間に形成されてチョークとして機能する通路Tと、を備える。通路Tの一方側は伸側流路3aと連通し、通路Tの他方側は圧側室Bと連通している。
 緩衝器Dは、油、水、水溶液等の液体からなる作動流体を収容するシリンダSと、シリンダS内に出没可能に挿入されるピストンロッド5と、ピストンロッド5の先端に保持されてシリンダSの内周面に摺接するピストン1と、を備える。シリンダS内には、作動流体が充填される伸側室Aと圧側室Bとがピストン1によって区画され、ピストン1のピストンロッド側(図1における上側)に伸側室Aが配置され、ピストンロッド5とは反対側(図1における下側)に圧側室Bが配置される。
 緩衝器Dはさらに、圧側室Bとベース部材で区画され作動流体を収容する周知のリザーバや、圧側室Bとフリーピストンで区画され膨縮可能な周知の気室を備える。これらリザーバ又は気室は、シリンダS内に出没するピストンロッド5の体積分に相当するシリンダ内の容積変化を補償したり、温度変化による作動流体の体積変化を補償したりする。
 なお、本実施形態では、減衰バルブEがピストン部に設けられるので、請求項の「一方室」と「他方室」とがそれぞれ伸側室Aと圧側室Bとに相当し、請求項の「バルブディスク」がピストン1に相当する。しかし、減衰バルブEがベース部材部分に設けられる構造であれば、請求項の「一方室」と「他方室」とがそれぞれ圧側室Bとリザーバに相当し、請求項の「バルブディスク」がベース部材に相当する。
 ピストン1の伸側室側(図1における上側)には、ピストン側から順に複数枚のリーフバルブ4bと、間座6bと、バルブストッパ7と、が積層される。ピストン1の圧側室側(図1における下側)には、ピストン側から順にリテーナ2と、シム8と、複数枚のリーフバルブ4aと、間座6aと、が積層される。ピストン1及びリテーナ2は環状に形成され、それぞれの軸心部を貫通する軸心孔(図示せず)を有する。また、リーフバルブ4a、4b、バルブストッパ7、シム8及び間座6a、6bは、環板状に形成され、それぞれの軸心部を貫通する軸心孔(図示せず)を有する。
 シリンダS内に出没可能に挿入されるピストンロッド5は、先端部に配置されて外周に螺子溝5bが形成される螺子部50と、螺子部50の基端側(図1における上側)に同軸状に連なる取り付け部51と、を備える。螺子部50及び取り付け部51の外径は、取り付け部51の基端側(図1における上側)に連なる部分52の外径よりも小さく形成され、その境界に環状の段差面53が形成される。
 バルブストッパ7、伸側室側の間座6b、伸側室側のリーフバルブ4b、ピストン1、リテーナ2、シム8、圧側室側のリーフバルブ4a及び圧側室側の間座6a(以下、「ピストン等P」という。)の各軸心孔には、ピストンロッド5の螺子部50及び取り付け部51が順に挿通され、ピストン等Pから突出させた螺子部50にナット9を螺合することで、ナット9と段差面53との間にピストン等Pが保持される。
 ピストン1の伸側室側(図1における上側)及び圧側室側(図1における下側)にそれぞれ配置される複数枚のリーフバルブ4a、4bの内周側は、段差面53とナット9との間に挟まれてピストンロッド5に固定されているが、各リーフバルブ4a、4bの外周側は、ピストン1から離れる方向に撓むことができる。また、圧側室側(図1における下側)に配置されるリーフバルブ4aには、初期撓みが与えられており、この撓み量は、厚さの異なるシム8を使用したり、シム8の積層枚数を変更したりすることにより調整することができる。
 ピストンロッド5の螺子部50に螺合するナット9は、螺子部50の外周に螺合するナット本体90と、ナット本体90から起立する環状の起立部91と、を備える。起立部91の内径は、螺子部50及び取り付け部51の外径よりも大きく形成される。したがって、ナット本体90を螺子部50に螺合した場合、起立部91が螺子部50を越えて取り付け部51に達する。
 ピストン1は、伸側室Aと圧側室Bとを連通する二種類の流路、即ち、伸側流路3aと圧側流路3bとが形成されるピストン本体10と、ピストン本体10の圧側室側(図1における下側)外周部からリテーナ側に延びる筒状のスカート部11と、ピストン本体10の外周からスカート部11の外周にかけて取り付けられシリンダSの内周面に摺接する摺接部12と、を備える。
 伸側流路3aは、ピストン1からリテーナ2にかけて貫通しており、ピストン本体10の内周側に形成されるバルブディスク通孔30と、リテーナ2に形成されるリテーナ通孔31と、を有する。伸側流路3aの入口は、ピストン本体10の伸側室側面(図1における上面)に形成される開口窓13に接続され、開口窓13を介して伸側室Aと常に連通している。伸側流路3aの出口は、リテーナ2の圧側室側面(図1における下面)に形成される窓20に接続され、窓20の外周が環状の弁座21で囲われている。圧側室側のリーフバルブ4aは、その外周部を弁座21に離着座させることで、伸側流路3aの連通を許容したり遮断したりすることができる。つまり、伸側流路3aの出口は、圧側室側のリーフバルブ4aによって開閉可能に塞がれている。
 圧側流路3bは、ピストン1のみを貫通し、ピストン本体10の外周側に形成される。圧側流路3bの入口は、スカート部11の内側に開口し、常に圧側室Bと連通する。圧側流路3bの出口は、ピストン本体10の伸側室側面(図1における上面)に形成される窓14に接続され、窓14の外周を囲う花弁状の弁座15によって開口窓13(伸側流路3a)と区画される。伸側室側のリーフバルブ4bは、その外周部を弁座15に離着座させることで、圧側流路3bの連通を許容したり遮断したりすることができる。つまり。圧側流路3bの出口は、伸側室側のリーフバルブ4bによって開閉可能に塞がれている。
 ピストン1の圧側室側(図1における下側)に積層されるリテーナ2は、ピストン1のスカート部11の内周側に挿入される小外径部22と、小外径部22のピストン1とは反対側(図1における下側)に同軸状に連なるとともに外径が小外径部22よりも大きく形成される大外径部23と、を備える。
 リテーナ2の小外径部22の軸方向長さは、小外径部22をスカート部11の内側に挿入した場合に、小外径部22の一部がスカート部11から突出するように設定される。さらに、大外径部23の外径は、シリンダSの内径よりも小さく形成される。これにより、リテーナ2の外周とシリンダSの内周との間を作動流体が移動することができるとともに、ピストン本体10に形成される圧側流路3bの入口がリテーナ2によって塞がれることはない。さらに、リテーナ2に形成される弁座21の外径を大きくして、圧側室側のリーフバルブ4aの外径を大きくすることができる。
 ピストン1においてリテーナ2と対向する合わせ面(図1における下面)には、バルブディスク通孔30に連なる環状溝16と、環状溝16の内周に沿って起立する環状の内周座面17と、環状溝16の外周に沿って起立する環状の外周座面18と、が形成される。また、リテーナ2においてピストン1と対向する合わせ面(図1における上面)には、リテーナ通孔31に連なる環状溝24と、環状溝24の内周に沿って起立する環状の内周座面25と、環状溝24の外周に沿って起立する環状の外周座面26と、が形成される。
 ピストンロッド5の取り付け部51をピストン等Pの軸心孔に挿通して螺子部50にナット9を螺合すると、両外周座面18、26が密着するので、伸側流路3aを通過する作動流体が両外周座面18、26の間から流出することはない。また、バルブディスク通孔30とリテーナ通孔31とは両環状溝16、24を介して連通するので、バルブディスク通孔30とリテーナ通孔31とが周方向にずれていても、バルブディスク通孔30とリテーナ通孔31とを連通させることができる。
 図2は、図1の一部を拡大して示す拡大図である。
 ピストン等Pが取り付けられるピストンロッド5の取り付け部51は、段差面53(図1)に連なるピストン保持部510と、ピストン保持部510の段差面53とは反対側(図2における下側)に連なり外径がピストン保持部510よりも小さく形成される小径部511と、小径部511のピストン保持部510とは反対側(図2における下側)に連なり外径がピストン保持部510と等しく形成されるリテーナ保持部512と、リテーナ保持部512と螺子部50との間に設けられ外径がリテーナ保持部512及び螺子部50の外径よりも小さく形成される非螺子部513と、から構成される。
 ピストン1、伸側室側のリーフバルブ4b、間座6b及びバルブストッパ7がピストン保持部510の外周に取り付けられ(図1)、リテーナ2、シム8、圧側室側のリーフバルブ4a及び間座6aがリテーナ保持部512の外周に取り付けられる(図1、2)。
 ピストンロッド5の取り付け部51の外周には、リテーナ保持部512の小径部側端(図2における上端)から非螺子部側端(図2における下端)にかけて第一外周溝5aが形成される。第一外周溝5aとリテーナ2との間にチョークとして機能する通路Tが形成される。
 取り付け部51の小径部511は、ピストン1とリテーナ2との両合わせ面に対向する位置に配置され、小径部511とピストン1及びリテーナ2との間に、通路Tと連通する環状の第一連通路t1が形成される。リテーナ2の内周座面17には、径方向に沿って溝2aが形成され、溝2aとピストン1の内周座面17との間に、第一連通路t1及び伸側流路3aと連通する第二連通路t2が形成される。つまり、チョークとして機能する通路Tの一方側が第一、第二連通路t1、t2を介して伸側流路3aと連通している。
 ピストンロッド5の取り付け部51の外周に形成された外周溝5aと、シム8、圧側室側のリーフバルブ4a、間座6a及びナットの起立部91と、の間には、通路Tと連通する第三連通路t3が形成される。取り付け部51の非螺子部513と、ナット9の起立部91との間には、第三連通路t3と連通する環状の第四連通路t4が形成される。ピストンロッド5の螺子部50の外周には、取り付け部側端(図2における上端)から先端(図2における下端)にかけて第二外周溝5cが形成される。第二外周溝5cとナット本体90との間には、第四連通路t4及び圧側室Bと連通する第五連通路t5が形成される。つまり、チョークとして機能する通路Tの他方側は、第三、第四、第五連通路t3、t4、t5を介して圧側室Bと連通している。
 なお、第三連通路t3と第五連通路t5とは環状の第四連通路t4を介して連通しているので、第三連通路t3と第五連通路t5とは周方向にずれていてもよい。また、第四連通路t4(非螺子部513)を廃して、第三連通路t3と第五連通路t5とを連続して形成してもよい。
 緩衝器Dの減衰バルブEは以上のように構成され、緩衝器Dの伸縮に伴ってシリンダS内を図1の上下に移動するピストンの速度が低速領域にある場合、伸側室側及び圧側室側のリーフバルブ4a、4bの外周部はリテーナ2及びピストン1の弁座21、15から離座しないので、作動流体はチョークとして機能する通路Tを通過して伸側室Aと圧側室Bとの間を移動する。よって、緩衝器Dは、通路Tを作動流体が通過する際の抵抗に起因するチョーク特性の減衰力を発生する。
 ピストン1が図1の上側に移動する緩衝器Dの伸長時、ピストン速度が低速領域を脱して中高速領域に達すると、ピストン1で加圧された伸側室Aの作動流体は圧側室側のリーフバルブ4aの外周部をピストン1とは反対側に撓ませ、伸側流路3aを通過して圧側室Bに移動する。よって、緩衝器Dは、圧側室側のリーフバルブ4aと弁座21との間を作動流体が通過する際の抵抗に起因するバルブ特性の減衰力を発生する。
 ピストン1が図1の下側に移動する緩衝器Dの圧縮時、ピストン速度が低速領域を脱して中高速領域に達すると、ピストン1で加圧された圧側室Bの作動流体は伸側室側のリーフバルブ4bの外周部をピストン1とは反対側に撓ませ、圧側流路3bを通過して伸側室Aに移動する。よって、緩衝器Dは、伸側室側のリーフバルブ4bと弁座15との間を作動流体が通過する際の抵抗に起因するバルブ特性の減衰力を発生する。
 なお、上記説明では、減衰特性の変化を説明するために、ピストン速度を低速領域と中高速領域とに区分したが、これらの区分の境の速度は任意に設定することができる。
 本実施形態における緩衝器Dの減衰バルブEの作用効果について説明する。
 緩衝器Dの減衰バルブEは、伸側室Aと圧側室Bとを区画するピストン1と、ピストン1の圧側室側に積層されるリテーナ2と、ピストン1からリテーナ2にかけて貫通し入口が常に伸側室Aと連通する伸側流路3aと、リテーナ2のピストン1とは反対側に積層され伸側流路3aの出口を開閉可能に塞ぐ環板状のリーフバルブ4aと、ピストン1、リテーナ2及びリーフバルブ4aの軸心孔を貫通するピストンロッド5と、を備える。
 減衰バルブEはさらに、ピストンロッド5の外周に形成される第一外周溝5aと、第一外周溝5aとリテーナ2との間に形成されてチョークとして機能する通路Tと、を備え、通路Tの一方側が伸側流路3aと連通し、通路Tの他方側が圧側室Bと連通している。
 つまり、ピストン1にリテーナ2が積層され、伸側流路3aがピストン1からリテーナ2にかけて貫通しているので、伸側流路3aをピストン1の内周側に形成し、圧側流路3bをピストン1の外周側に形成しても、伸側流路3aの出口を開閉可能に塞ぐリーフバルブ4aの外径を大きくすることができる。よって、ピストン速度が中高速領域にある場合の減衰係数を小さくすることができる。
 さらに、チョークとして機能する通路Tがピストンロッド5とリテーナ2との間に形成されるので、ピストン速度が低速領域にある場合に、作動流体が通路Tを通過して伸側室Aと圧側室Bとの間を移動することができる。よって、緩衝器Dはチョーク特性の減衰力を発生させることができる。
 さらに、伸側流路3aの出口を開閉可能に塞ぐリーフバルブ4aを、従来のようなチョーク形成用リーフバルブ4cとする必要がないので、リーフバルブ4aの積層枚数を従来のように増やす必要がない。よって、ピストン速度が低速領域にある場合に緩衝器Dがチョーク特性の減衰力を発生することを可能にしたとしても、ピストン速度が中高速領域にある場合の減衰係数が大きくなることを抑制することができる。
 さらに、ピストンロッド5は、先端部に配置されて外周にナット9が螺合する螺子部50と、螺子部50の基端側(図1における上側)に連なり外周にピストン1、リテーナ2及び圧側室側のリーフバルブ4aが取り付けられる取り付け部51と、を備え、取り付け部51はピストン1及びリテーナ2の各合わせ面と対向する位置に配置される小径部511を備える。
 小径部511とピストン1及びリテーナ2との間には通路Tと連通する環状の第一連通路t1が形成され、ピストン1とリテーナ2との間には径方向に沿って第一連通路t1及び伸側流路3aと連通する第二連通路t2が形成される。
 よって、チョークとして機能する通路Tの一方側が第一、第二連通路t1、t2を介して伸側流路3aと連通するとともに、第二連通路t2と通路Tとが周方向にずれていても、第二連通路t2と通路Tとが第一連通路t1を介して連通することができる。
 さらに、第一外周溝5aが圧側室側のリーフバルブ4aと対向する位置まで延び、第一外周溝5aと圧側室側のリーフバルブ4aとの間に、通路Tを圧側室Bに連通するための第三連通路t3が形成される。
 よって、圧側室側のリーフバルブ4aに特別な加工を施すことなく、チョークとして機能する通路Tを形成するための外周溝5aを利用して、通路Tを圧側室Bに連通させることができる。
 さらに、螺子部50の外周に第二外周溝5cが形成され、第二外周溝5cとナット9との間に通路Tを圧側室Bに連通するための第五連通路t5が形成される。よって、第五連通路t5をチョークとして機能する第二の通路として利用することも可能である。この場合、チョークの長さを長くすることができる。
 さらに、取り付け部51は、外周にリテーナ2及び圧側室側のリーフバルブ4aが取り付けられるリテーナ保持部512と、リテーナ保持部512と螺子部50との間に配置され外径がリテーナ保持部512及び螺子部50よりも小さく形成される非螺子部513と、を備える。
 ナット9は、螺子部50に螺合するナット本体90と、ナット本体90に起立する環状の起立部91と、を備える。非螺子部513と起立部91との間には環状の第四連通路t4が形成され、第三連通路t3と第五連通路t5とが第四連通路t4を介して連通している。
 よって、第三連通路t3と第五連通路t5とが上下に分かれて形成され周方向にずれていても、第三連通路t3と第五連通路t5とを第四連通路t4を介して連通させることができる。また、第一外周溝5aや第二外周溝5cの深さや幅をそれぞれ自由に設定することが可能となり、緩衝器Dのチョーク特性の減衰力をより自由に設定することができる。
 さらに、リテーナ2は、小外径部22と、小外径部22のピストン1とは反対側(バルブディスクとは反対側)に同軸に連なり外径が小外径部22よりも大きく形成される大外径部23と、を備える。よって、ピストン本体10の外周側に圧側流路3bが形成されていても、圧側流路3bの入口がリテーナ2によって塞がれることを容易に防ぐことができる。
 さらに、圧側室側のリーフバルブ4aが離着座する弁座21が大外径部23に形成されるので、弁座21の外径を容易に大きくして、圧側室側のリーフバルブ4aの外径を大きくすることができる。
 次に、第2実施形態について説明する。
 図3は、本発明の第2実施形態に係る緩衝器Dの減衰バルブEの一部を拡大して示す縦断面図である。本実施形態の緩衝器Dの減衰バルブEは、通路Tの一方側を伸側流路3aと連通させるための構造と、通路Tの他方側を圧側室Bと連通させるための構造と、が第1実施形態と異なっており、その他の構造については第1実施形態と同様である。したがって、第1実施形態と同一の部材については同一の符号を付して説明を省略する。
 ピストンロッド(軸部材)5Aは、第1実施形態と同様に、先端部に配置されて外周に螺子溝5bが形成される螺子部50と、螺子部50の基端側(図3における上側)に同軸に連なる取り付け部51Aと、を備える。螺子部50及び取り付け部51Aの外径は、取り付け部51Aの基端側に連なる部分52(図1)よりも小径に形成され、その境界に環状の段差面53(図1)が形成される。
 取り付け部51Aは、段差面53に連なるピストン保持部510と、ピストン保持部510の段差面53とは反対側に連なり外径がピストン保持部510の外径と等しく形成されるリテーナ保持部512と、リテーナ保持部512と螺子部50との間に設けられ外径がリテーナ保持部512及び螺子部50よりも小さく形成される非螺子部513と、から構成される。
 ピストン保持部510の外周にはピストン1、伸側室側のリーフバルブ4b、間座6b及びバルブストッパ7が取り付けられ(図1)、リテーナ保持部512の外周にはリテーナ2、シム8、圧側室側のリーフバルブ4a及び間座6aが取り付けられる(図3)。
 ピストンロッド5Aの取り付け部51Aには、第一外周溝5aが形成される。第一外周溝5aは、ピストン保持部510のリテーナ保持部側端部(図3における下端部)からリテーナ保持部512の非螺子部側端(図3における下端)にかけて設けられる。第一外周溝5aとピストン1との間には第六連通路t6が形成され、第一外周溝5aとリテーナ2との間にはチョークとして機能する通路Tが形成され、第一外周溝5aとシム8、圧側室側のリーフバルブ4a、間座6a及びナット9の起立部91との間には第三連通路t3が形成される。
 リテーナ2の内周座面25は外周座面26よりピストンロッド5Aの先端側(図3における下方)に配置される。これにより、ピストン等Pがピストンロッド5Aの外周に固定され、リテーナ2の外周座面26とピストン1の外周座面18とが当接しても、リテーナ2の内周座面25はピストン1の内周座面17に当接しない。したがって、ピストン1とリテーナ2との間に伸側流路3aと連通する環状の第七連通路t7が形成される。
 さらに、圧側室側の間座6aに当接するナット9の起立部91のピストン側面(図3における上面)には、径方向に沿って溝9aが形成され、溝9aと間座6aとの間には第三連通路t3及び他方室Bと連通する第八連通路t8が形成される。
 つまり、本実施形態では、チョークとして機能する通路Tは、一方側が第六、第七連通路t6、t7を介して伸側流路3aと連通しており、他方側が第三、第八連通路t3、t8を介して圧側室Bと連通している。
 本実施形態における緩衝器Dの減衰バルブEの作用効果について説明する。
 緩衝器Dの減衰バルブEは、第1実施形態と同様に、ピストンロッド(軸部材)5Aの外周に形成される第一外周溝5aと、第一外周溝5aとリテーナ2との間に形成されチョークとして機能する通路Tと、を備え、通路Tの一方側が伸側流路3aと連通し、通路Tの他方側が圧側室Bと連通している。
 これにより、チョークとして機能する通路Tがピストンロッド5Aとリテーナ2との間に形成されるので、ピストン速度が低速領域にある場合に、作動流体が通路Tを通過して伸側室Aと圧側室Bとの間を移動することができる。よって、緩衝器Dはチョーク特性の減衰力を発生させることができる。
 さらに、伸側流路3aの出口を開閉可能に塞ぐリーフバルブ4aを、従来のようなチョーク形成用リーフバルブ4cとする必要がないので、リーフバルブ4aの積層枚数を従来のように増やす必要がない。よって、ピストン速度が低速領域にある場合に緩衝器Dがチョーク特性の減衰力を発生することを可能にしたとしても、ピストン速度が中高速領域にある場合の減衰係数が大きくなることを抑制することができる。
 さらに、第一外周溝5aがピストン1と対向する位置まで延びることでピストン1との間に通路Tと連通する第六連通路t6が形成される。また、ピストン1とリテーナ2との間に径方向に沿って第六連通路t6及び伸側流路3aと連通する環状の第七連通路t7が形成されるので、通路Tの一方側が第六、第七連通路t6、t7を介して伸側流路3aと連通する。よって、第1実施形態のピストンロッド5のように、小径部511を設ける必要がない。
 さらに、減衰バルブEは、圧側室側のリーフバルブ4aのピストン1とは反対側に積層される環板状の間座6aを備える。
 ピストンロッド5Aの取り付け部51Aは、外周にリテーナ2、圧側室側のリーフバルブ4a及び間座6aが取り付けられるリテーナ保持部512と、リテーナ保持部512と螺子部50との間に配置され外径がリテーナ保持部512及び螺子部50よりも小さく形成される非螺子部513と、を備える。第一外周溝5aはリテーナ保持部512の非螺子部側端まで延びている。
 ナット9は、螺子部50に螺合するナット本体90と、ナット本体90から起立する環状の起立部91と、を備える。起立部91の内径はリテーナ保持部512の外径よりも大きく形成され、起立部91のピストン側面に径方向に沿って溝9aが形成される。
 第一外周溝5aと圧側室側のリーフバルブ4a、間座6a及び起立部91との間には通路Tと連通する第三連通路t3が形成され、ナット9に形成される溝9aと間座6aとの間には第三連通路t3及び圧側室Bと連通する第八連通路t8が形成される。
 よって、ナット9から突出するピストンロッド5Aの先端を加締めてナット9の抜け止めをしても、通路Tと圧側室Bとの連通状態を保つことができる。また、ピストンロッド5Aのリテーナ保持部512と起立部91との間に環状の隙間が形成されるので、第一外周溝5aと起立部91の溝9aとが周方向にずれていても第三連通路t3と第八連通路t8とを連通させることができる。
 なお、第八連通路t8を形成する代わりに、図4に示すように、圧側室側の間座6aをC環状に形成し、合口部に第三連通路t3及び圧側室Bと連通する第九連通路t9を設けてもよい。さらに、間座6aに径方向に沿って溝を設け、この溝とナット9若しくは間座6aに積層されたリーフバルブ4aとの間に、第三連通路t3及び圧側室Bと連通する連通路を設けてもよい。さらに、圧側室側の何れかのリーフバルブ4aに径方向に沿って溝を設け、この溝と間座6a若しくは他のリーフバルブ4aとの間に、第三連通路t3及び圧側室Bと連通する連通路を設けてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、緩衝器Dの減衰バルブEは、緩衝器Dのピストン部に設けられる場合を例示したが、緩衝器Dのベース部材部分に設けられていてもよい。
 さらに、上記実施形態の緩衝器Dは、作動流体として液体を使用する液圧緩衝器であるが、作動流体として気体を使用する空圧緩衝器であってもよい。
 さらに、上記実施形態では、リテーナ2が圧側室側に積層され、ピストン1からリテーナ2にかけて貫通する流路を、常に伸側室Aと連通して緩衝器Dの伸長時に作動流体が通過する伸側流路3aとして形成したが、リテーナ2が伸側室側に積層され、ピストン1からリテーナ2にかけて貫通する流路を、常に圧側室Bと連通して緩衝器Dの圧縮時に作動流体が通過する圧側流路として形成してもよい。
 さらに、ピストンロッド5の外周に形成される第一外周溝5aとリテーナ2との間に形成されチョークとして機能する通路Tを伸側流路3aと連通させるための構成や、圧側室Bと連通させるための構成は、上記の限りではなく、適宜変更することが可能である。
 さらに、上記実施形態では、第一外周溝5a及び第二外周溝5cがピストンロッド5の軸方向に沿って複数設けられているが、第一外周溝5aや第二外周溝5cの形状や本数は、適宜選択することが可能であり、例えば、螺旋状に形成されていても良い。
 本願は、2012年7月10日に日本国特許庁に出願された特願2012-154190に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  緩衝器の減衰バルブであって、
     一方室と他方室とを区画するバルブディスクと、
     前記バルブディスクの他方室側に積層されるリテーナと、
     前記バルブディスクから前記リテーナにかけて貫通し入口が常に前記一方室と連通する流路と、
     前記リテーナの前記バルブディスクとは反対側に積層され前記流路の出口を開閉可能に塞ぐ環板状のリーフバルブと、
     前記バルブディスク、前記リテーナ及び前記リーフバルブの軸心孔を貫通する軸部材と、
     前記軸部材の外周に形成される第一外周溝と、
     前記第一外周溝と前記リテーナとの間に形成されてチョークとして機能する通路と、
    を備え、
     前記通路の一方側が前記流路と連通し、前記通路の他方側が前記他方室と連通する、
    緩衝器の減衰バルブ。
  2.  請求項1に記載の緩衝器の減衰バルブであって、
     前記軸部材は、先端部に配置され外周にナットが螺合する螺子部と、前記螺子部の基端側に連なり外周に前記バルブディスク、前記リテーナ及び前記リーフバルブが取り付けられる取り付け部と、を有し、
     前記取り付け部は、前記バルブディスク及び前記リテーナの各合わせ面と対向する位置に配置される小径部を有し、
     前記小径部と前記バルブディスク及び前記リテーナとの間には、前記通路と連通する環状の第一連通路が形成され、
     前記バルブディスクと前記リテーナとの間には、径方向に沿って前記第一連通路及び前記流路と連通する第二連通路が形成される、
    緩衝器の減衰バルブ。
  3.  請求項1に記載の緩衝器の減衰バルブであって、
     前記第一外周溝は、前記リーフバルブと対向する位置まで延び、
     前記第一外周溝と前記リーフバルブとの間には、前記通路を前記他方室に連通させる第三連通路が形成される、
    緩衝器の減衰バルブ。
  4.  請求項2に記載の緩衝器の減衰バルブであって、
     前記螺子部の外周には、第二外周溝が形成され、
     前記第二外周溝と前記ナットとの間には、前記通路を前記他方室に連通させる第五連通路が形成される、
    緩衝器の減衰バルブ。
  5.  請求項1に記載の緩衝器の減衰バルブであって、
     前記リテーナは、小外径部と、前記小外径部の前記バルブディスクとは反対側に同軸に連なるとともに外径が前記小外径部の外径よりも大きく形成される大外径部と、を有する、
    緩衝器の減衰バルブ。
     
     
PCT/JP2013/065624 2012-07-10 2013-06-05 緩衝器の減衰バルブ WO2014010343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/405,163 US9410595B2 (en) 2012-07-10 2013-06-05 Damping valve for shock absorber
KR1020147032683A KR101639506B1 (ko) 2012-07-10 2013-06-05 완충기의 감쇠 밸브
DE201311003506 DE112013003506T5 (de) 2012-07-10 2013-06-05 Dämpfungsventil für einen Stoßdämpfer
CN201380027422.1A CN104334912B (zh) 2012-07-10 2013-06-05 缓冲器的阻尼阀

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012154190A JP5941359B2 (ja) 2012-07-10 2012-07-10 緩衝器のバルブ構造
JP2012-154190 2012-07-10

Publications (1)

Publication Number Publication Date
WO2014010343A1 true WO2014010343A1 (ja) 2014-01-16

Family

ID=49915816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065624 WO2014010343A1 (ja) 2012-07-10 2013-06-05 緩衝器の減衰バルブ

Country Status (6)

Country Link
US (1) US9410595B2 (ja)
JP (1) JP5941359B2 (ja)
KR (1) KR101639506B1 (ja)
CN (1) CN104334912B (ja)
DE (1) DE112013003506T5 (ja)
WO (1) WO2014010343A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150159726A1 (en) * 2013-12-09 2015-06-11 Mando Corporation Shock absorber
WO2017047526A1 (ja) * 2015-09-14 2017-03-23 Kyb株式会社 緩衝器
EP3171052A4 (en) * 2014-07-17 2018-04-11 KYB Corporation Damper

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5785510B2 (ja) * 2012-03-14 2015-09-30 カヤバ工業株式会社 緩衝器のバルブ構造
JP5787961B2 (ja) * 2013-10-31 2015-09-30 日立オートモティブシステムズ株式会社 緩衝器
JP5783646B2 (ja) * 2013-11-08 2015-09-24 カヤバ工業株式会社 バルブ
EP2913460B1 (en) * 2014-02-19 2017-08-23 Chihiro Sangyo Co., Ltd. Vibration control device for a building
JP6567267B2 (ja) * 2014-10-31 2019-08-28 千博産業株式会社 構造物の制振装置
JP6343685B2 (ja) * 2015-01-30 2018-06-13 日立オートモティブシステムズ株式会社 流体圧緩衝器
DE102015119820A1 (de) * 2015-11-17 2017-05-18 Stabilus Gmbh Verstelleinrichtung
US9845839B2 (en) * 2016-02-18 2017-12-19 Tenneco Automotive Operating Company Inc. Shock absorber having check disc for orifice passage
WO2018123735A1 (ja) * 2016-12-26 2018-07-05 日立オートモティブシステムズ株式会社 緩衝器
US11255399B2 (en) * 2018-03-14 2022-02-22 Zf Friedrichshafen Ag Damping valve for a vibration damper
JP7051543B2 (ja) * 2018-04-06 2022-04-11 Kyb株式会社 バルブ及び緩衝器
JP7002395B2 (ja) * 2018-04-06 2022-01-20 Kyb株式会社 バルブ及び緩衝器
US11143258B2 (en) * 2019-09-10 2021-10-12 Itt Manufacturing Enterprises Llc Spiral inertia track vibration absorber
WO2021195535A1 (en) * 2020-03-27 2021-09-30 DRiV Automotive Inc. Damper assembly
CN112128292B (zh) * 2020-10-21 2024-09-17 南阳淅减汽车减振器有限公司 一种减振器压缩阀总成结构
US11808323B2 (en) * 2021-02-15 2023-11-07 DRiV Automotive Inc. Open bleed-base valve
CN114934968B (zh) * 2022-03-23 2024-08-16 武汉鑫拓力工程技术有限公司 一种低指数粘滞阻尼器
US20230400081A1 (en) * 2022-06-13 2023-12-14 DRiV Automotive Inc. Damper assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231459A (ja) * 1992-02-20 1993-09-07 Tokico Ltd 油圧緩衝器
JPH08261268A (ja) * 1995-03-24 1996-10-08 Tokico Ltd 油圧緩衝器
JPH11182611A (ja) * 1997-12-19 1999-07-06 Unisia Jecs Corp 液圧緩衝器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327295A (en) * 1941-11-12 1943-08-17 Monroe Auto Equipment Co Double-acting velocity type shock absorber
US4867286A (en) * 1984-01-25 1989-09-19 Tayco Developments, Inc. Shock absorber having fluid amplified piston head with relief valve which provides second stage of fluid amplification
GB2226620B (en) * 1988-10-25 1992-11-04 Tokico Ltd Hydraulic damper
US5148897A (en) * 1991-07-18 1992-09-22 Monroe Auto Equipment Company Piston valving for shock absorbers
JPH07233840A (ja) * 1994-02-22 1995-09-05 Unisia Jecs Corp 減衰力可変型ショックアブソーバ
EP0792334B2 (en) * 1994-11-14 2013-08-14 Unichema Chemie B.V. Ester based lubricant and use in four-stroke engines
US6499572B2 (en) * 1996-04-10 2002-12-31 Kayaba Kogyo Kabushiki Kaisha Damping force generator
DE10013638C1 (de) * 2000-03-18 2001-09-20 Krupp Bilstein Gmbh Stoßdämpferkolben, bestehend aus zwei Kolbenhälften
KR100623276B1 (ko) * 2000-04-20 2006-09-12 주식회사 만도 감쇠력가변식 쇼크업소버
US6460664B1 (en) * 2000-05-22 2002-10-08 Tenneco Automotive Inc. Independently tunable variable bleed orifice
JP3978707B2 (ja) * 2001-11-29 2007-09-19 株式会社日立製作所 減衰力調整式油圧緩衝器
DE10305386B3 (de) * 2003-02-11 2004-09-02 Thyssenkrupp Bilstein Gmbh Blow-off-Ventil für einen hydraulischen Stoßdämpfer
JP2005048912A (ja) 2003-07-31 2005-02-24 Kayaba Ind Co Ltd バルブ構造
US7431135B2 (en) * 2004-10-27 2008-10-07 Tenneco Automotive Operating Company Inc. Stroke dependent damping
DE102006028745A1 (de) * 2005-06-21 2007-05-03 Tenneco Automotive Operating Company Inc., Lake Forest Vierteiliger Kolben
CN2859080Y (zh) 2005-12-31 2007-01-17 南阳金冠汽车减振器有限公司 液压减振器复原阻尼阀
JP2008138696A (ja) * 2006-11-30 2008-06-19 Showa Corp 油圧緩衝器の分割ピストン構造
JP4944676B2 (ja) * 2007-06-13 2012-06-06 カヤバ工業株式会社 油圧緩衝器の減衰力発生構造
JP4902470B2 (ja) * 2007-09-14 2012-03-21 株式会社ショーワ 油圧緩衝器の減衰力調整構造
EP2180206A1 (en) * 2008-10-21 2010-04-28 Honda Motor Co., Ltd Hydraulic shock absorber
KR101276867B1 (ko) * 2009-06-30 2013-06-18 주식회사 만도 쇽업소버의 피스톤 밸브 조립체
CN202007854U (zh) 2011-05-09 2011-10-12 重庆协成毕扬减振器有限公司 纯阀片式汽车减振器活塞阀
KR101254287B1 (ko) * 2011-06-09 2013-04-12 주식회사 만도 가변유로를 갖는 쇽업소버의 밸브 구조
JP5785510B2 (ja) * 2012-03-14 2015-09-30 カヤバ工業株式会社 緩衝器のバルブ構造
JP5833957B2 (ja) * 2012-03-14 2015-12-16 Kyb株式会社 緩衝器のバルブ構造
KR101374877B1 (ko) * 2012-06-13 2014-03-18 주식회사 만도 쇽업소버의 피스톤 어셈블리
KR101450309B1 (ko) * 2013-08-08 2014-10-22 주식회사 만도 쇽업소버의 피스톤 밸브 어셈블리
KR101876915B1 (ko) * 2013-10-28 2018-08-09 주식회사 만도 쇽업소버의 피스톤 밸브 어셈블리
KR101760908B1 (ko) * 2013-12-09 2017-07-24 주식회사 만도 쇽업소버

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231459A (ja) * 1992-02-20 1993-09-07 Tokico Ltd 油圧緩衝器
JPH08261268A (ja) * 1995-03-24 1996-10-08 Tokico Ltd 油圧緩衝器
JPH11182611A (ja) * 1997-12-19 1999-07-06 Unisia Jecs Corp 液圧緩衝器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150159726A1 (en) * 2013-12-09 2015-06-11 Mando Corporation Shock absorber
US9212719B2 (en) * 2013-12-09 2015-12-15 Mando Corporation Shock absorber
EP3171052A4 (en) * 2014-07-17 2018-04-11 KYB Corporation Damper
US10451138B2 (en) 2014-07-17 2019-10-22 Kyb Corporation Shock absorber
WO2017047526A1 (ja) * 2015-09-14 2017-03-23 Kyb株式会社 緩衝器
US10578185B2 (en) 2015-09-14 2020-03-03 Kyb Corporation Shock absorber

Also Published As

Publication number Publication date
KR101639506B1 (ko) 2016-07-13
CN104334912A (zh) 2015-02-04
US20150192184A1 (en) 2015-07-09
KR20150004391A (ko) 2015-01-12
JP2014015994A (ja) 2014-01-30
US9410595B2 (en) 2016-08-09
DE112013003506T5 (de) 2015-04-09
JP5941359B2 (ja) 2016-06-29
CN104334912B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2014010343A1 (ja) 緩衝器の減衰バルブ
JP5785510B2 (ja) 緩衝器のバルブ構造
JP4898563B2 (ja) ピストン
US11199241B2 (en) Damper
WO2017013960A1 (ja) 緩衝器
EP2034212B1 (en) Damping force generating mechanism for shock absorber
JP2008082491A (ja) 緩衝器のバルブ構造
JP2009074562A (ja) 緩衝器
US12038063B2 (en) Shock absorber
JP6339716B1 (ja) 圧力緩衝装置
JP6339717B1 (ja) 圧力緩衝装置
JP2014181757A (ja) 緩衝器
WO2014119397A1 (ja) 緩衝器
JP2007016880A (ja) 空圧緩衝器のバルブ構造
JP5284673B2 (ja) 緩衝器
JP2019183919A (ja) バルブ及び緩衝器
JP4955610B2 (ja) ロータリバルブ
JP5106347B2 (ja) 液圧緩衝器
JP5406672B2 (ja) バルブ
JP2010196798A (ja) バルブ構造
JP5220697B2 (ja) 緩衝器
JP6294678B2 (ja) バルブ及び緩衝器
JP5057394B2 (ja) ロータリバルブ
JP2013124672A (ja) 緩衝器
JP2009299769A (ja) 液圧緩衝器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380027422.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147032683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405163

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130035065

Country of ref document: DE

Ref document number: 112013003506

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817583

Country of ref document: EP

Kind code of ref document: A1