WO2014007382A1 - 溶着方法及び溶着体 - Google Patents

溶着方法及び溶着体 Download PDF

Info

Publication number
WO2014007382A1
WO2014007382A1 PCT/JP2013/068551 JP2013068551W WO2014007382A1 WO 2014007382 A1 WO2014007382 A1 WO 2014007382A1 JP 2013068551 W JP2013068551 W JP 2013068551W WO 2014007382 A1 WO2014007382 A1 WO 2014007382A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
container part
layer
laser
Prior art date
Application number
PCT/JP2013/068551
Other languages
English (en)
French (fr)
Inventor
大賀 齋藤
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to US14/411,650 priority Critical patent/US20150183155A1/en
Priority to CN201380034424.3A priority patent/CN104395059A/zh
Priority to KR1020147036449A priority patent/KR20150024853A/ko
Priority to JP2014523810A priority patent/JP5976803B2/ja
Priority to KR1020177028058A priority patent/KR20170116249A/ko
Priority to EP13812538.0A priority patent/EP2871040A4/en
Publication of WO2014007382A1 publication Critical patent/WO2014007382A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/0093Making filtering elements not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/0095Flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/28Strainers not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3034Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
    • B29C66/30341Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes non-integral with the parts to be joined, e.g. making use of extra elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/304Joining through openings in an intermediate part of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/541Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms
    • B29C66/5416Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms said substantially flat extra element being perforated, e.g. a screen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3412Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3444Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3444Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip
    • B29C65/3448Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint being a ribbon, band or strip said ribbon, band or strip being perforated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • B29C65/348Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8246Pressure tests, e.g. hydrostatic pressure tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • B29C66/30326Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined in the form of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/20Inserts
    • B29K2105/206Meshes, lattices or nets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/06Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels

Definitions

  • the present invention relates to a welding method and a welded body for welding a first resin layer and a second resin layer.
  • a container used for an oil strainer or the like for filtering oil there is a container in which a resin mesh member is sandwiched between a pair of resin containers.
  • This conventional container forms an internal space between the upper member formed with an inlet into which oil is introduced and the upper member and is joined to the upper member, and the oil introduced from the inlet is discharged. And a mesh member sandwiched between the joint surface of the upper member and the joint surface of the lower member.
  • a flange portion through which a bolt is inserted is formed on the outer peripheral portion of the upper member and the lower member, and by bolting the flange portion, a space between the joint surface of the upper member and the joint surface of the lower member is formed. The joint surface of the upper member and the joint surface of the lower member are joined together with the mesh member sandwiched therebetween.
  • the conventional container has a limit in achieving space saving because it is necessary to enlarge the flange portion in order to bolt the upper member and the lower member.
  • Patent Document 1 discloses that a resin filter element is sandwiched between the flange portion of the upper member and the flange portion of the lower member, and the flange portion of the upper member and the lower member are bonded by laser welding. The technique which welds the flange part of this is described.
  • Patent Document 1 the technique described in Patent Document 1 is further improved in this respect because the welding speed is not sufficient when a resin filter element is sandwiched between the flange portion of the upper member and the flange portion of the lower member. There is room for improvement.
  • an object of the present invention is to provide a welding method and a welded body capable of improving the welding speed.
  • the welding method according to the present invention is a welding method in which a first resin layer and a second resin layer are welded, and a void is formed between the first resin layer and the second resin layer.
  • the metal layer is sandwiched, at least one of the first resin layer and the second resin layer is irradiated with laser, and the molten resin penetrates the metal layer to weld the first resin layer and the second resin layer. To do.
  • the welding method of the present invention at least one of the first resin layer and the second resin layer is used to sandwich the metal layer in which a void is formed between the first resin layer and the second resin layer.
  • the molten resin enters the voids of the metal layer, and the molten resin penetrates the metal layer, so that the first resin layer and the second resin layer are welded.
  • the metal layer generates Joule heat by absorbing a part of the irradiated laser.
  • the heating rate of the first resin layer and the second resin layer is increased and the melting of the resin is promoted, the welding rate between the first resin layer and the second resin layer can be improved. it can.
  • the void is formed in the metal layer, the irradiated laser can pass through the metal layer without being totally reflected by the metal layer. For this reason, it can suppress that melting of resin is inhibited by a metal layer.
  • the present invention can be a method in which the porosity of the metal layer is 10% or more and 85% or less.
  • the porosity of the metal layer is 10% or more and 85% or less.
  • the melted resin can easily penetrate the metal layer, so that the first resin layer and the second resin layer can be easily welded.
  • the metal layer can secure a metal amount sufficient to promote heating of the first resin layer and the second resin layer. The heating rate of the resin layer and the second resin layer can be increased.
  • the present invention can be a method in which the metal layer is a mesh member in which a mesh is formed.
  • the mesh member as the metal layer, when welding the first resin layer and the second resin layer, while increasing the heating rate of the first resin layer and the second resin layer, The molten resin can be easily passed through the metal layer.
  • the present invention can be a method in which the metal layer contains a metal having a light absorption property. In this manner, by using a metal layer containing a metal having a light absorptivity, heat generation of the metal layer can be promoted when laser irradiation is performed.
  • the present invention provides a laser beam in which the metal layer is subjected to surface treatment with iron, aluminum, copper, titanium, nickel, tin, zinc, chromium, lead-free solder, at least an alloy containing these, or other metals or alloys. It is possible to use a method including at least one selected from a metal material that absorbs water and a material that has been provided with a metal film. By using such a metal layer containing a metal, the metal layer can appropriately generate heat when irradiated with a laser.
  • the resin layer has a styrene resin, an olefin resin, a polyester resin, a polycarbonate resin, an acrylic resin, a polyamide resin, an ABS resin, a modified PPE resin, a fluorine resin, and a thermoplastic polyimide resin. , An aromatic polyether ketone, and a method including at least one selected from rubber-based resins.
  • either one of the first resin layer and the second resin layer is made of a light-transmitting resin, and one of the first resin layer and the second resin layer is light-absorbing. It is possible to use a method made of a functional resin. By forming the first resin layer and the second resin layer with such a resin, the light-absorbing resin side is melted by irradiating laser light from the light-transmitting resin side. The resin layer and the second resin layer can be welded.
  • the present invention can be a method in which the first resin layer and the second resin layer are made of a light-transmitting resin. Even if the first resin layer and the second resin layer are formed of such a resin, the first resin layer and the second resin layer can be welded by heat generation of the metal layer.
  • the present invention can be a method in which the first resin layer and the second resin layer further include a laser absorber.
  • the first resin layer and the second resin layer By irradiating at least one of the first resin layer and the second resin layer from the outside with the laser, not only the outer part of the first resin layer and / or the second resin layer irradiated with the laser but also the first resin layer
  • the inside of the resin layer and / or the second resin layer can also be sufficiently melted. Thereby, the welding strength of a 1st resin layer and a 2nd resin layer can further be raised.
  • the first resin layer and the second resin layer can be laser-welded without forming a flange for welding to the first resin layer and the second resin layer, space saving is achieved. Can be achieved.
  • the first resin layer is a first container part in which an inflow port into which a liquid flows is formed
  • the second resin layer forms an internal space between the first container part and the first container part.
  • the second container part is formed with a discharge port through which the liquid flowing in from the inlet is discharged
  • the metal layer is a mesh member that partitions the internal space into the inlet side and the outlet side.
  • the welded body according to the present invention includes the first resin layer and the second resin in a state where the metal layer is sandwiched between the first resin layer and the second resin layer by any one of the above-described welding methods.
  • the layers are welded.
  • the welded body according to the present invention is a welded body in which the first resin layer and the second resin layer are welded, and the first resin layer, the second resin layer, and the first resin A metal layer sandwiched between the layer and the second resin layer, the metal layer has a gap, and the first resin layer and the second resin layer are interposed via the metal layer.
  • the welded portion that welds the first resin layer and the second resin layer penetrates the metal layer.
  • the welding speed can be improved.
  • FIG. 3 is a cross-sectional view of an oil strainer taken along line III-III shown in FIGS. 1 and 2.
  • FIG. 4 is a cross-sectional view of the oil strainer along line IV-IV shown in FIG. 3.
  • FIG. 4 is a partially enlarged view of the oil strainer shown in FIG. 3.
  • FIG. 5 is a partially enlarged view of the oil strainer shown in FIG. 4.
  • It is a figure which shows the structure of a mesh member. It is a figure for demonstrating the closest distance of metal powder.
  • It is a bottom view of the 1st container part and the 2nd container part in an example.
  • It is a top view of the mesh member in an Example.
  • FIG. 1 is a front view of an oil strainer according to the embodiment.
  • FIG. 2 is a plan view of the oil strainer according to the embodiment.
  • FIG. 3 is a cross-sectional view of the oil strainer taken along the line III-III shown in FIGS.
  • FIG. 4 is a cross-sectional view of the oil strainer taken along the line IV-IV shown in FIG.
  • FIG. 5 is a partially enlarged view of the oil strainer shown in FIG. 3.
  • FIG. 6 is a partially enlarged view of the oil strainer shown in FIG.
  • the oil strainer 1 includes a first container part 2 constituting a first resin layer, a second container part 3 constituting a second resin layer, And a mesh member 4 constituting a metal layer.
  • the oil strainer 1 laser welds the first container part 2 and the second container part 3 with a metal layer having a gap formed between the first container part 2 and the second container part 3. It is manufactured by doing.
  • the first container part 2 is joined to the second container part 3 to form an internal space filled with fluid oil between the first container part 2 and the second container part 3.
  • the 1st container part 2 is a resin-made container, and is formed in the substantially bowl shape which the surface joined to the 2nd container part 3 opened.
  • the first container part 2 is formed with an inlet 21 for allowing oil to flow into the internal space.
  • the formation position of the inflow port 21 is not particularly limited, and can be set to an arbitrary position of the first container part 2. In the drawing, an inlet 21 is formed at a position facing the opening of the first container portion 2.
  • a joint part 22 is formed that forms an opening and is joined to the second container part 3.
  • a joining surface 23 to be joined to the second container part 3 is formed in the joining part 22.
  • the joint surface 23 is formed in a substantially planar shape from the viewpoint of improving the bondability with the second container part 3.
  • the junction part 22 does not necessarily need to be formed in a flange shape.
  • the second container part 3 is joined to the first container part 2 to form an internal space filled with fluid oil between the first container part 2.
  • the 2nd container part 3 is a resin-made container, and is formed in the substantially bowl shape which the surface joined to the 1st container part 2 opened.
  • the second container part 3 is formed with a discharge port 31 for discharging the oil flowing into the internal space.
  • the formation position of the discharge port 31 is not particularly limited, and can be set at an arbitrary position of the second container part 3. In the drawing, a discharge port 31 is formed at a position facing the opening of the second container portion 3.
  • a joint part 32 is formed to form an opening and be joined to the first container part 2.
  • a joining surface 33 that is joined to the joining surface 23 of the first container part 2 is formed in the joining part 32.
  • the joining surface 33 is formed in a substantially planar shape from the viewpoint of improving the joining property with the first container part 2.
  • the junction part 32 does not necessarily need to be formed in a flange shape.
  • the resin forming the first container part 2 and the second container part 3 is not particularly limited as long as it has thermoplasticity. Moreover, the resin which forms the 1st container part 2 and the 2nd container part 3 may be the same, and may differ, but from a viewpoint of laser welding, the 1st container part 2 and the 2nd container part Preferably, any one of 3 is a light-transmitting resin, and any one of the first container part 2 and the second container part 3 is a light-absorbing resin. However, both the first container part 2 and the second container part 3 may be made of a light transmissive resin.
  • the resin forming the first container part 2 and the second container part 3 is not particularly limited as long as it has thermoplasticity.
  • styrene resin, olefin resin, polyester resin, polycarbonate resin, acrylic resin It may include at least one selected from acid resins, polyamide resins, ABS resins, modified PPE resins, fluorine resins, thermoplastic polyimide resins, aromatic polyether ketones, rubber resins, and the like.
  • polyamide-based resins and polyolefin-based resins are preferable from the viewpoints of economy and versatility.
  • Specific examples of the styrene resin include polystyrene.
  • the olefin resin include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer.
  • the polyester-based resin include polyethylene terephthalate, polymethylene terephthalate, polybutylene terephthalate, and the like.
  • Specific examples of the polycarbonate resin include polycarbonate and polycarbonate-ABS alloy resin.
  • Specific examples of the acrylic resin include polymethyl methacrylate and acrylic acid-acrylic acid ester copolymers.
  • Specific examples of the polyamide-based resin include polyamide (PA) 6, PA11, PA12, PA66, PA610, PA6T, PA6I, PA9T, and the like.
  • modified PPE resin examples include a polymer alloy of PPE and any one selected from the group consisting of polystyrene, polyamide and polypropylene.
  • fluorine-based resins include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, perfluoroalkoxy fluororesin, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer Examples include coalescence.
  • the rubber-based resin examples include styrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, thermoplastic polyurethane elastomers, and the like.
  • a resin or material colored with a pigment or dye such as carbon black or nigrosine can be used.
  • the mesh member 4 is disposed between the first container part 2 and the second container part 3, and the oil flowing in from the inlet 21 of the first container part 2 is removed. It is filtered and discharged from the outlet 31 of the second container part 3.
  • the mesh member 4 is formed in a mesh structure with metal (metal wire). For this reason, as shown in FIG. 7, the mesh member 4 has gaps 4b formed in the mesh of the metal wires 4a arranged in a lattice pattern.
  • the mesh member 4 is formed in a shape that covers all of the opening of the first container part 2 and the opening of the second container part 3, and the peripheral part thereof is the joint surface 23 of the first container part 2 and the second container part 3. Are sandwiched between the joint surface 33 and the joint surface 33. For this reason, the mesh member 4 is in contact with the joint surface 23 of the first container part 2 on one side (front side) of the peripheral part, and the second side (back side) of the peripheral part is second. It is in contact with the joint surface 33 of the container part 3.
  • the mesh member 4 when the mesh member 4 is sandwiched between the first container part 2 and the second container part 3 and the laser is irradiated from the light-transmitting resin side of the first container part 2 and the second container part 3, Of the first container part 2 and the second container part 3, the light-absorbing resin side melts. The melted resin enters the voids (mesh) of the mesh member 4 and the melted resin penetrates the mesh member 4 so that the first container part 2 and the second container part 3 are welded. At this time, the mesh member 4 generates Joule heat by absorbing a part of the irradiated laser.
  • the heating rate of the 1st container part 2 and the 2nd container part 3 becomes high, and melting of resin is accelerated
  • the gap is formed in the mesh member 4, the irradiated laser can pass through the mesh member 4 without being totally reflected by the mesh member 4. For this reason, it is possible to prevent the mesh member 4 from inhibiting the melting of the resin.
  • the porosity of the voids formed in the mesh of the mesh member 4 is preferably 10% or more and 85% or less, more preferably 15% or more and 65% or less, and further 20% or more and 40% or less. Is preferred.
  • This porosity is a ratio of the area of the gap 4b to the area of the mesh member 4 including the metal wire 4a and the gap 4b (see FIG. 7).
  • the mesh member 4 can be secured with a metal amount sufficient to promote heating of the first container part 2 and the second container part 3,
  • the heating rate of the 1 container part 2 and the 2nd container part 3 can be made high. In this case, this effect is enhanced by setting the porosity to 65% or less and 40% or less.
  • the metal forming the mesh member 4 is preferably a light-absorbing metal, such as iron, aluminum, copper, titanium, nickel, tin, zinc, chromium, lead-free solder, or an alloy containing at least these ( (Stainless steel, brass, aluminum alloy, phosphor bronze, etc.), metal materials that are surface-treated with other metals or alloys and absorb laser light, and materials with metal films (plating, vapor deposition film, etc.) are selected. At least one kind may be included. In this case, it is preferable that the metal which forms the mesh member 4 or is contained in the mesh member 4 is a metal which absorbs a laser to be irradiated when laser welding the first container part 2 and the second container part 3.
  • a light-absorbing metal such as iron, aluminum, copper, titanium, nickel, tin, zinc, chromium, lead-free solder, or an alloy containing at least these (Stainless steel, brass, aluminum alloy, phosphor bronze, etc.), metal materials that are surface-treated with other metals or alloys and
  • the wavelength of the laser irradiated at the time of laser welding is 500 nm or more and 1500 nm or less, it is preferable to use SUS having a high light absorption rate in this wavelength band as the material of the mesh member 4.
  • High light absorption means that the light absorption is 0.35 or more.
  • the thickness of the mesh member 4 is not particularly limited, and can be, for example, 0.005 mm or more and 0.800 mm or less. In this case, the thickness of the mesh member 4 is preferably 0.01 mm or more and 0.50 mm or less, and more preferably 0.05 mm or more and 0.30 mm or less.
  • the mesh structure and the mesh size of the mesh member 4 are not particularly limited, and can be appropriately set depending on the use of the oil strainer 1 and the like.
  • the joining surface 23 of the first container part 2 and the joining surface 33 of the second container part 3 are welded on the mesh member 4. That is, the peripheral edge of the mesh member 4 is sandwiched between the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3, and the joint surface 23 of the first container part 2 and the second container
  • the welding part 5 which welds the joining surface 33 of the part 3 penetrates the mesh member 4, whereby the joining surface 23 of the first container part 2 and the joining surface 33 of the second container part 3 are welded.
  • the weld part 5 is cooled and cured by the resin melted (melted) from at least one of the first container part 2 and the second container part 3. It is a thing.
  • the welding of the first container part 2 and the second container part 3 is preferably performed continuously on the mesh member 4 along the entire periphery of the mesh member 4. That is, it is preferable that the weld portion 5 penetrating the mesh member 4 is continuously formed along the entire periphery of the mesh member 4.
  • welding with the 1st container part 2 and the 2nd container part 3 does not necessarily need to be performed continuously, and may be performed intermittently. That is, the welding part 5 does not necessarily need to be formed continuously, and may be formed intermittently.
  • a first container part 2, a second container part 3, and a mesh member 4 are prepared.
  • the periphery of the mesh member 4 is sandwiched between the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3, and the joint surface 23 of the first container part 2 and the second container part 3 are sandwiched.
  • the bonding surface 33 is abutted.
  • the joining surface 23 of the first container part 2 and the joining surface 33 of the second container part 3 are laser-welded.
  • laser welding first, the first container portion 2 is irradiated with a laser so that the laser is focused in the vicinity of the joint surface 23 with which the mesh member 4 is in contact. Then, the resin near the focal point is melted, and the melted resin flows out from the joint surface 23 of the first container part 2 to the joint surface 33 of the second container part 3 through the mesh member 4. Thereafter, when the melted resin reaches the bonding surface 33, the laser irradiation is stopped and the melted resin is cooled and cured.
  • the mesh member 4 is penetrated to join the joint surface 23 of the first container part 2 and the second container part 3.
  • a welded portion 5 welded to the surface 33 is formed.
  • the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3 are welded on the mesh member 4, and the first container part 2
  • the weld portion 5 that welds the joint surface 23 and the joint surface 33 of the second container portion 3 penetrates the mesh member 4.
  • the first container part 2 and the second container part are used in order to sandwich the mesh member 4 in which a gap is formed between the first container part 2 and the second container part 3.
  • the mesh member 4 When at least one of the three is irradiated with a laser, the melted resin enters the gap of the mesh member 4 and the melted resin penetrates the mesh member 4 so that the first container part 2 and the second container part 3 are Welded.
  • the mesh member 4 generates Joule heat by absorbing a part of the irradiated laser.
  • the heating rate of the 1st container part 2 and the 2nd container part 3 becomes high, and melting of resin is accelerated
  • the gap is formed in the mesh member 4, the irradiated laser can pass through the mesh member 4 without being totally reflected by the mesh member 4. For this reason, it is possible to prevent the mesh member 4 from inhibiting the melting of the resin.
  • the second embodiment is basically the same as the first embodiment, but only the material of the first container part 2 and the second container part 3 and the laser welding method are different from the first embodiment. To do. For this reason, in the following description, only differences from the first embodiment will be described, and description similar to that of the first embodiment will be omitted.
  • the 1st container part 2 and the 2nd container part 3 are ACW (Absorbance). Control Welding) It is made of a light translucent resin used in the construction method.
  • the ACW method is a laser welding method proposed by Orient Chemical Industry Co., Ltd. (see Japanese Patent No. 4142424). Specifically, a light semi-transparent resin having an absorbance of 0.07 to 3.0 is prepared by adding a laser absorber or the like to the thermoplastic resin, and laser light is transmitted to the light semi-transparent resin. This is a method of laser welding a semi-transparent resin of the same material by absorbing at least a part.
  • a light translucent resin for forming the first container part 2 and the second container part 3 for example, a polyamide resin composition composed of one or more kinds of polyamide resins and a laser absorbing material or the like. Is mentioned.
  • polyamide resin composition examples include polyamide 66 (polyhexamethylene adipamide), polyamide 6, polyamide MXD6 (polymetaxylene adipamide), polyamide 6I, polyamide 6T, polyamide 9T, polyamide M5T, and the like. You may use these in mixture of 2 or more types.
  • the laser absorber examples include azine compounds, nigrosine, aniline black, phthalocyanine, naphthalocyanine, porphyrin, cyanine compounds, perylene, quaterylene, metal complexes, azo dyes, anthraquinones, squaric acid derivatives, and immonium dyes.
  • the content of the laser absorbing material in the thermoplastic material is preferably 0.001 to 0.8 parts by mass, more preferably 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the polyamide resin composition. It is. When the content of the laser absorbing material is less than 0.001 part by mass, the amount of heat generated at the time of laser welding is small and the bonding strength of the welded part 5 tends to be insufficient. The amount of heat generated is too large and burns and voids are likely to occur.
  • the above thermoplastic material may be a polyamide resin composition and a laser absorber that are blended with the following additives as required.
  • the types of additives include, for example, reinforcing materials (for example, glass fillers), colorants, fillers, UV absorbers, light stabilizers, antioxidants, antibacterial / antifungal agents, flame retardants, color aids, and dispersions. Agents, stabilizers, plasticizers, modifiers, antistatic agents, lubricants, mold release agents, crystal accelerators and crystal nucleating agents. These additives may be used individually by 1 type, and may use 2 or more types together.
  • the content of the glass filler can be about 20 to 100 parts by mass with respect to 100 parts by mass of the polyamide resin composition.
  • the total amount of other additives can be about 0.1 to 50 parts by mass with respect to 100 parts by mass of the total mass of the polyamide resin composition.
  • the polyamide resin composition is 100% by mass. If the low melting point polyamide is contained at least 40% by mass, a sufficiently high bonding strength can be achieved by melting the polyamide resin by laser irradiation.
  • the 1st member 1 and the 2nd member 2 consist of thermoplastic materials of the same composition
  • the composition of both polyamide resin compositions is the same, the compounding quantity of a laser absorber and / Or the kind and compounding quantity of an additive may differ.
  • the first container part 2, the second container part 3, and the mesh member 4 are prepared, and the joining surface 23 of the first container part 2 and the second container part 3 are prepared.
  • the periphery of the mesh member 4 is sandwiched between the joint surface 33 and the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3 are abutted.
  • the joining surface 23 of the first container part 2 and the joining surface 33 of the second container part 3 are laser welded.
  • laser welding for example, a method described in Japanese Patent No. 4142424 can be performed.
  • the focal point of the laser is focused from the outside of the first container part 2 and the second container part 3 to the vicinity of the joint surface 23 of the first container part 2 with which the mesh member 4 is in contact. Irradiate the laser to fit.
  • the laser irradiation conditions are set so that the first container part 2 irradiated with the laser generates sufficient heat and the melting spreads sufficiently in the range where the first container part 2 irradiated with the laser does not burn or void.
  • Laser irradiation conditions include laser output and laser irradiation time (irradiation speed).
  • the irradiation time (irradiation speed) of a laser can be set with the rotational speed of the 1st container part 2 and the 2nd container part 3. it can.
  • an infrared ray having a wavelength of 800 nm to 1600 nm, preferably a laser beam having an oscillation wavelength of 800 nm to 1100 nm can be used.
  • a solid-state laser Nd: YAG excitation, semiconductor laser excitation, etc.
  • a semiconductor laser a tunable diode laser, or a titanium sapphire laser (Nd: YAG excitation) can be used.
  • the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3 are welded on the mesh member 4, and the first container part 2
  • the weld portion 5 that welds the joint surface 23 and the joint surface 33 of the second container portion 3 penetrates the mesh member 4.
  • the 1st container part 2 and the 2nd container part 3 are made into the semi-transparent resin which made the polyamide resin composition contain the laser absorber etc. from the 1st container part 2 and the 2nd container part 3. Even if it is in the state which matched, the outer side of the 1st container part 2 to which the laser was irradiated by irradiating a laser to the 1st container part 2 from the outer side of the 1st container part 2 and the 2nd container part 3 Not only the part but also the inside of the first container part 2 can be sufficiently melted.
  • strength with the 1st container part 2 and the 2nd container part 3 can further be raised.
  • the first container part 2 and the second container part 3 can be welded to the first container part 2 and the second container part 3 without forming a flange for welding to the first container part 2 and the second container part 3. Therefore, space saving can be achieved.
  • a metal layer in which a gap is formed is sandwiched between the first resin layer and the second resin layer, and the first resin layer and the second resin layer are welded. Is the method.
  • the same resin as the first container part 2 and the second container part 3 of the first embodiment or the second embodiment can be used for the first resin layer and the second resin layer.
  • the metal layer may have any shape as long as voids are formed.
  • a metal wire or metal powder can be used in addition to the mesh member such as the mesh member 4 of the first embodiment and the second embodiment.
  • the metal powder When using metal powder as the metal layer, the metal powder is mixed in a medium such as paint, and the medium is applied to the first resin layer and / or the second resin layer, so that the first resin layer and the second resin layer are coated. It becomes easy to sandwich the metal layer between the resin layer.
  • the average value of the closest distance of the metal powder mixed in the medium is preferably 0.001 to 300 ⁇ m, more preferably 0.005 to 200 ⁇ m, and further 0.01 ⁇ m.
  • the thickness is preferably 100 ⁇ m or less.
  • the closest distance of the metal powder means a separation distance (spatial distance) from one metal powder to another metal powder at the closest position, as shown in FIG.
  • the closest distance of the metal powder can be measured by, for example, SEM.
  • this effect is enhanced by further setting the average value of the closest distances to 0.005 ⁇ m or more and 0.01 ⁇ m or more.
  • the metal layer can secure a metal amount sufficient to promote heating of the first resin layer and the second resin layer. The heating rate of the resin layer and the second resin layer can be increased. In this case, this effect is enhanced by further setting the average value of the closest distances to 200 ⁇ m or less and 100 ⁇ m or less.
  • a first resin layer, a second resin layer, and a metal layer are prepared, and a metal layer is provided between the first resin layer and the second resin layer. And the first resin layer and the second resin layer are butted together.
  • the first resin layer and the second resin layer are laser welded.
  • Laser welding can be performed by the same method as in the first embodiment or the second embodiment.
  • the first resin layer irradiated with the laser is melted, and the melted resin flows out from the first resin layer to the second resin layer through the gap between the metal layers. Thereafter, when the melted resin reaches the second resin layer, laser irradiation is stopped and the melted resin is cooled and cured. Then, a welded portion that penetrates the metal layer and is welded to the first resin layer and the second resin layer is formed between the first resin layer and the second resin layer.
  • the welded portion for welding the first resin layer and the second resin layer penetrates the metal layer, so that the first resin layer and the second resin layer are separated from each other. It becomes what was welded through the metal layer.
  • the oil strainer has been described as an application example of the present invention.
  • the present invention is not limited to the oil strainer, and is applied to various other members. be able to.
  • the fluid is not limited to oil, and various other liquids and gases can be employed.
  • FIG. 9 is a front view of the first container portion and the second container portion in the embodiment.
  • FIG. 10 is a bottom view of the first container part and the second container part in the example.
  • FIG. 11 is a plan view of the mesh member in the embodiment.
  • the first container part 2 and the second container part 3 have a shape in which a long thin capsule is halved along the longitudinal direction.
  • the joint surface 33 of the two container parts 3 was made into the shape provided with a pair of linear surface part Z arrange
  • the joint surface 23 and the joint surface 33 have a width A of the linear surface portion Z and the semicircular surface portion Y of 5.0 mm, an interval B between the pair of linear surface portions Z of 55.0 mm, and a pair of linear surface portions.
  • the outer space C of Z was 65.0 mm
  • the inner radius D of the semicircular surface portion Y was 27.5 mm
  • the outer radius E of the semicircular surface portion Y was 32.5 mm
  • the 1st container part 2 and the 2nd container part 3 shall be thickness F3.5mm of a connection part
  • the height G from the connection part to the top part of the 1st container part 2 and the 2nd container part 3 is 27.5mm. did.
  • the material of the first container part 2 and the second container part 3 was made of the same material of polyamide 66 (PA66), one was made light transmissive, and the other was colored with nigrosine as a light absorbing material to make it light absorbent.
  • PA66 polyamide 66
  • the mesh member 4 has a shape including a rectangular portion X and a pair of semicircular portions W connected to both ends of the rectangular portion X in the short direction, and two types of large and small are prepared.
  • the large mesh member 4 has a width H in the short direction of the rectangular portion X of 66.0 mm, a length I in the longitudinal direction of the rectangular portion X of 195.0 mm, and a radius J of the semicircular portion W of 33.0 mm. And the thickness was 0.1 mm.
  • the small mesh member 4 has a width H in the short direction of the rectangular portion X of 59.0 mm, a length I in the longitudinal direction of the rectangular portion X of 188.0 mm, and a radius J of the semicircular portion W of 29.5 mm. And the thickness was 0.1 mm. Both the large and small mesh members 4 were made of stainless steel (SUS).
  • the large mesh member 4 is sandwiched between the joining surface 23 of the first container part 2 and the joining surface 33 of the second container part 3, and the first container part 2 and the second container part 3 are lasered. Welded.
  • the laser welding conditions are as follows: the laser output is 100 W, the laser scanning speed is 20.0 mm / s, the laser focal diameter (diameter) is ⁇ 3.2 mm, and the first container part 2 and the second container part 3 are attached. The number of laser irradiations was set to one.
  • Example 2 the large mesh member 4 is sandwiched between the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3, and the first container part 2 and the second container part 3 are lasered. Welded.
  • the laser welding conditions are as follows: the laser output is 100 W, the laser scanning speed is 20.0 mm / s, the laser focal diameter (diameter) is ⁇ 3.2 mm, and the first container part 2 and the second container part 3 are attached.
  • the laser irradiation frequency was set to two.
  • Example 3 a small mesh member 4 is sandwiched between the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3, and the first container part 2 and the second container part 3 are lasered. Welded.
  • the laser welding conditions are as follows: the laser output is 100 W, the laser scanning speed is 20.0 mm / s, the laser focal diameter (diameter) is ⁇ 3.2 mm, and the first container part 2 and the second container part 3 are attached. The number of laser irradiations was set to one.
  • Example 4 a small mesh member 4 is sandwiched between the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3, and the first container part 2 and the second container part 3 are lasered. Welded.
  • the laser welding conditions are as follows: the laser output is 100 W, the laser scanning speed is 20.0 mm / s, the laser focal diameter (diameter) is ⁇ 3.2 mm, and the first container part 2 and the second container part 3 are attached.
  • the laser irradiation frequency was set to two.
  • the first container part 2 and the second container part 3 are lasered without sandwiching the mesh member 4 between the joint surface 23 of the first container part 2 and the joint surface 33 of the second container part 3.
  • the laser welding conditions are as follows: the laser output is 100 W, the laser scanning speed is 20.0 mm / s, the laser focal diameter (diameter) is ⁇ 3.2 mm, and the first container part 2 and the second container part 3 are attached. The number of laser irradiations was set to one.
  • Examples 1 to 4 and Comparative Example 1 Thereafter, destructive inspection was performed on Examples 1 to 4 and Comparative Example 1.
  • the discharge port 31 of the second container part 3 was closed and water was introduced from the inlet 21 of the first container 2, and the pressure when the container 1 was broken or leaked was measured as the burst strength. .
  • Example 5 As shown in Table 1, none of the Examples was inferior to Comparative Example 1. From this result, also in the Example, it was confirmed that the first container part 2 and the second container part 3 were reliably welded.
  • Example 5 As the first resin layer, a half-dome-shaped first member having an opening formed at the top is produced, and as the second resin layer, a flat plate-like second member is produced, and as a metal layer A mesh member sandwiched between the first member and the second member was produced.
  • the first member and the second member were made of a translucent resin used in the ACW method.
  • polyamide 66 pellets were prepared.
  • a 400% autoclave was charged with 3% by mass of potassium iodide and 0.1% by mass of copper iodide in a 40% AH salt (equimolar salt of adipic acid and hexamethylenediamine) solution.
  • Heat melt polymerization was performed under a pressure of 8 MPa. The obtained polymer was cooled and solidified and granulated to obtain polyamide 66 pellets.
  • thermoplastic material pellets are introduced into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., trade name: SE130) set at a cylinder temperature of 290 ° C., and molded at a mold temperature of 80 ° C. to form a first member. And the 2nd member was obtained.
  • SE130 injection molding machine
  • the mesh member was made of SUS (stainless steel) mesh 200 count.
  • the porosity of the mesh member was 35.
  • a mesh member was sandwiched between the first member and the second member, and the first member and the second member were laser-welded by the ACW method to produce a hollow part.
  • the laser output was 130 W
  • the WD distance from the laser irradiation optical system to the first member irradiation side surface
  • the welding speed was 35 mm / s.
  • Example 6 As Example 6, the 1st member of the same shape as Example 5, the 2nd member, and the mesh member were produced.
  • the first member was made of a light-absorbing resin
  • the second member was made of a light-transmitting resin.
  • polyamide 66 pellets were prepared.
  • a 400% autoclave was charged with 3% by mass of potassium iodide and 0.1% by mass of copper iodide in a 40% AH salt (equimolar salt of adipic acid and hexamethylenediamine) solution.
  • Heat melt polymerization was performed under a pressure of 8 MPa. The obtained polymer was cooled and solidified and granulated to obtain polyamide 66 pellets.
  • thermoplastic material pellets are introduced into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., trade name: SE130) set at a cylinder temperature of 290 ° C., and molded at a mold temperature of 80 ° C. to form a first member.
  • SE130 injection molding machine
  • polyamide 66 pellets were prepared.
  • a 400% autoclave was charged with 3% by mass of potassium iodide and 0.1% by mass of copper iodide in a 40% AH salt (equimolar salt of adipic acid and hexamethylenediamine) solution.
  • Heat melt polymerization was performed under a pressure of 8 MPa. The obtained polymer was cooled and solidified and granulated to obtain polyamide 66 pellets.
  • thermoplastic material pellets are introduced into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., trade name: SE130) set at a cylinder temperature of 290 ° C., and molded at a mold temperature of 80 ° C. to form a second member.
  • SE130 injection molding machine
  • the mesh member was made of SUS (stainless steel) mesh 200 count.
  • the porosity of the mesh member was 35%.
  • the first member and the second member are laser welded by irradiating the laser with the laser transmitted through the second member to the first member, Hollow parts were produced.
  • the laser output was 130 W
  • the WD distance from the laser irradiation optical system to the first member irradiation side surface
  • the laser output was 130 W
  • the welding speed was 35 mm / s.
  • Comparative Example 2 As Comparative Example 2, a first member, a second member, and a mesh member having the same shape as in Example 5 were produced.
  • the first member and the second member were both made of an aluminum alloy that is a metal.
  • the mesh member was made of SUS (stainless steel) mesh 200 count.
  • the porosity of the mesh member was 35%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

 第一の樹脂層と第二の樹脂層とを溶着する溶着方法であって、第一の樹脂層と第二の樹脂層との間に、空隙が形成された金属層を挟み込み、第一の樹脂層及び第二の樹脂層の少なくとも一方にレーザーを照射して、融解した樹脂を金属層に貫通させて第一の樹脂層と第二の樹脂層とを溶着する。

Description

溶着方法及び溶着体
 本発明は、第一の樹脂層と第二の樹脂層とを溶着する溶着方法及び溶着体に関する。
 従来、オイルを濾過するオイルストレーナ等に用いられる容器として、樹脂製のメッシュ部材を一対の樹脂容器に挟み込んだものがある。
 この従来の容器は、オイルが流入される流入口が形成された上部部材と、上部部材と接合されて上部部材との間に内部空間を形成して、流入口から流入されたオイルが排出される排出口が形成された下部部材と、上部部材の接合面と下部部材の接合面との間に挟み込まれたメッシュ部材と、を備えている。この容器は、上部部材及び下部部材の外周部にボルトが挿通されるフランジ部が形成されており、このフランジ部をボルト締めすることで、上部部材の接合面と下部部材の接合面との間にメッシュ部材を挟み込んだ状態で、上部部材の接合面と下部部材の接合面とを接合している。
 しかしながら、従来の容器は、上部部材と下側部材とをボルト締めするためにフランジ部を大きくする必要があるため、省スペース化を図るには限界があった。
 この点、上部部材と下部部材とを振動溶着により接合することも考えられる。しかしながら、振動溶着するために上部部材及び下部部材を振動させると、上部部材の接合面と下部部材の接合面との間に挟み込まれているメッシュ部材が撚れるという問題がある。しかも、上部部材及び下部部材を振動させて上部部材と下部部材とを溶着させようとしても、メッシュ部材により上部部材の接合面及び下部部材の接合面が削れるだけで、上部部材の接合面と下部部材の接合面とを溶着することができない。
 このため、このような上部部材と下部部材との間にメッシュ部材が挟み込まれた容器において、上部部材と下部部材とを溶着することは極めて難しかった。
 このような問題に対して、特許文献1には、上側部材のフランジ部と下側部材のフランジ部との間に樹脂製のフィルタエレメントを挟み込み、レーザー溶着により上側部材のフランジ部と下側部材のフランジ部とを溶着する技術が記載されている。
特開2006-231875号公報
 しかしながら、特許文献1に記載の技術は、上側部材のフランジ部と下側部材のフランジ部との間に樹脂製のフィルタエレメントを挟み込んだ状態では、溶着速度が十分ではないため、この点で更なる改良の余地がある。
 そこで、本発明は、溶着速度の向上が図れる溶着方法及び溶着体を提供することを目的とする。
 本発明に係る溶着方法は、第一の樹脂層と第二の樹脂層とを溶着する溶着方法であって、第一の樹脂層と第二の樹脂層との間に、空隙が形成された金属層を挟み込み、第一の樹脂層及び第二の樹脂層の少なくとも一方にレーザーを照射して、融解した樹脂を金属層に貫通させて第一の樹脂層と第二の樹脂層とを溶着する。
 本発明に係る溶着方法によれば、第一の樹脂層と第二の樹脂層との間に空隙が形成された金属層を挟み込むため、第一の樹脂層及び第二の樹脂層の少なくとも一方にレーザーを照射すると、融解した樹脂が金属層の空隙に入り込むとともに、この融解した樹脂が金属層を貫通することにより、第一の樹脂層と第二の樹脂層とが溶着される。このとき、金属層は、照射されたレーザーの一部を吸収することによりジュール熱が発生する。これにより、第一の樹脂層及び第二の樹脂層の加熱速度が高くなって樹脂の融解が促進されるため、第一の樹脂層と第二の樹脂層との溶着速度を向上させることができる。しかも、金属層に空隙が形成されているため、照射されたレーザーは、金属層に全反射されることなく、金属層を通過することができる。このため、金属層により樹脂の融解が阻害されるのを抑制することができる。
 また、本発明は、金属層の空隙率が、10%以上85%以下である方法とすることができる。金属層の空隙率を10%以上とすることで、融解した樹脂が金属層を貫通しやすくなるため、第一の樹脂層と第二の樹脂層とを溶着しやすくすることができる。一方、金属層の空隙率を85%以下とすることで、金属層に、第一の樹脂層及び第二の樹脂層の加熱を促進できるだけの金属量を確保することができるため、第一の樹脂層と第二の樹脂層の加熱速度を高くすることができる。
 また、本発明は、金属層が、網目が形成されたメッシュ部材である方法とすることができる。このように、金属層としてメッシュ部材を用いることで、第一の樹脂層と第二の樹脂層とを溶着する際に、第一の樹脂層及び第二の樹脂層の加熱速度を高めつつ、融解した樹脂を金属層に貫通させ易くすることができる。
 また、本発明は、金属層が、光吸収性を有する金属を含む方法とすることができる。このように、光吸収性を有する金属を含む金属層を用いることで、レーザーを照射した際に金属層の発熱を促進させることができる。
 また、本発明は、金属層が、鉄、アルミ、銅、チタン、ニッケル、スズ、亜鉛、クロム、鉛フリー半田、少なくともこれらを含む合金、これら以外の金属又は合金で表面処理を施してレーザー光を吸収する金属材料、金属皮膜を施した材料から選択される少なくとも一種を含む方法とすることができる。このような金属を含む金属層を用いることで、レーザーを照射した際に金属層を適切に発熱させることができる。
 また、本発明は、樹脂層が、スチレン系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル酸系樹脂、ポリアミド系樹脂、ABS樹脂、変性PPE樹脂、フッ素系樹脂、熱可塑性ポリイミド樹脂、芳香族ポリエーテルケトン、ゴム系樹脂から選択される少なくとも一種を含む方法とすることができる。このような樹脂を含む樹脂層を用いることで、第一の樹脂層及び第二の樹脂層を適切に融解することができる。
 また、本発明は、第一の樹脂層及び第二の樹脂層の何れか一方が、光透過性の樹脂からなり、第一の樹脂層及び第二の樹脂層の何れか他方が、光吸収性の樹脂からなる方法とすることができる。このような樹脂で第一の樹脂層及び第二の樹脂層を形成することで、光透過性の樹脂側からレーザー光を照射することで、光吸収性の樹脂側を融解させて、第一の樹脂層と第二の樹脂層とを溶着することができる。
 また、本発明は、第一の樹脂層及び第二の樹脂層が、光透過性の樹脂からなる方法とすることができる。このような樹脂で第一の樹脂層及び第二の樹脂層を形成しても、金属層の発熱により第一の樹脂層と第二の樹脂層とを溶着することができる。
 また、本発明は、第一の樹脂層及び第二の樹脂層が、レーザー吸収材を更に含む方法とすることができる。このように、レーザー吸収材を含む樹脂層を用いることで、第一の樹脂層と第二の樹脂層とを突き合せた状態であっても、第一の樹脂層及び第二の樹脂層の外側から第一の樹脂層及び第二の樹脂層の少なくとも一方にレーザーを照射することで、レーザーが照射された第一の樹脂層及び/又は第二の樹脂層の外側部分だけでなく第一の樹脂層及び/又は第二の樹脂層の内部も十分に融解させることができる。これにより、第一の樹脂層と第二の樹脂層との溶着強度を更に高めることができる。しかも、第一の樹脂層及び第二の樹脂層に溶着するためのフランジを形成しなくても、第一の樹脂層と第二の樹脂層とをレーザー溶着することができるため、省スペース化を図ることができる。
 また、本発明は、第一の樹脂層が、液体が流入される流入口が形成された第一容器部であり、第二の樹脂層が、第一容器部との間に内部空間を形成し、流入口から流入された液体が排出される排出口が形成された第二容器部であり、金属層が、内部空間を流入口側と排出口側に仕切るメッシュ部材である方法とすることができる。このような構成とすることで、オイルストレーナ―等のような流体を濾過する容器を製造することができる。
 本発明に係る溶着体は、上記の何れかの溶着方法により、第一の樹脂層と第二の樹脂層との間に金属層が挟み込まれた状態で第一の樹脂層と第二の樹脂層とが溶着されている。
 また、本発明に係る溶着体は、第一の樹脂層と第二の樹脂層とが溶着された溶着体であって、第一の樹脂層と、第二の樹脂層と、第一の樹脂層と第二の樹脂層との間に挟み込まれた金属層と、を備え、金属層は、空隙が形成されており、第一の樹脂層と第二の樹脂層とが、金属層を介して溶着されているとともに、第一の樹脂層と第二の樹脂層とを溶着する溶着部が、金属層を貫通している。
 本発明によれば、溶着速度の向上が図れる。
実施形態に係るオイルストレーナの正面図である。 実施形態に係るオイルストレーナの平面図である。 図1及び図2に示すIII-III線におけるオイルストレーナの断面図である。 図3に示すIV-IV線におけるオイルストレーナの断面図である。 図3に示すオイルストレーナの一部拡大図である。 図4に示すオイルストレーナの一部拡大図である。 メッシュ部材の構造を示す図である。 金属粉の最近接距離を説明するための図である。 実施例における第一容器部及び第二容器部の正面図である。 実施例における第一容器部及び第二容器部の底面図である。 実施例におけるメッシュ部材の平面図である。
 以下、図面を参照して、本発明に係る溶着方法及び溶着体の好適な実施形態について詳細に説明する。なお、全図中、同一又は相当部分には同一符号を付すこととする。
(第1の実施形態)
 第1の実施形態は、本発明をオイルストレーナに適用したものである。図1は、実施形態に係るオイルストレーナの正面図である。図2は、実施形態に係るオイルストレーナの平面図である。図3は、図1及び図2に示すIII-III線におけるオイルストレーナの断面図である。図4は、図3に示すIV-IV線におけるオイルストレーナの断面図である。図5は、図3に示すオイルストレーナの一部拡大図である。図6は、図4に示すオイルストレーナの一部拡大図である。
 図1~図3に示すように、本実施形態に係るオイルストレーナ1は、第一の樹脂層を構成する第一容器部2と、第二の樹脂層を構成する第二容器部3と、金属層を構成するメッシュ部材4と、を備えている。そして、オイルストレーナ1は、第一容器部2と第二容器部3との間に空隙が形成された金属層を挟み込んだ状態で、第一容器部2と第二容器部3とをレーザー溶着することにより製造される。
 第一容器部2は、第二容器部3と接合されることで、第二容器部3との間に流体のオイルが充填される内部空間を形成するものである。第一容器部2は、樹脂製の容器であり、第二容器部3と接合される面が開口した略椀状に形成されている。
 第一容器部2には、内部空間にオイルを流入させるための流入口21が形成されている。流入口21の形成位置は、特に限定されるものではなく、第一容器部2の任意の位置に設定することができる。なお、図面では、第一容器部2の開口と対向する位置に、流入口21を形成している。
 第一容器部2の開口側端縁には、開口を形成して第二容器部3と接合される接合部22が形成されている。接合部22には、第二容器部3と接合される接合面23が形成されている。接合面23は、第二容器部3との接合性を向上する観点から、略平面状に形成されている。また、接合部22は、接合面23の面積を大きくする観点から、接合面23に沿って第一容器部2の外側に延びるフランジ状に形成してもよい。なお、接合部22は、必ずしもフランジ状に形成されていなくてもよい。
 第二容器部3は、第一容器部2と接合されることで、第一容器部2との間に流体のオイルが充填される内部空間を形成するものである。第二容器部3は、樹脂製の容器であり、第一容器部2と接合される面が開口した略椀状に形成されている。
 第二容器部3には、内部空間に流入されたオイルを排出させるための排出口31が形成されている。排出口31の形成位置は、特に限定されるものではなく、第二容器部3の任意の位置に設定することができる。なお、図面では、第二容器部3の開口と対向する位置に、排出口31を形成している。
 第二容器部3の開口側端縁には、開口を形成して第一容器部2と接合される接合部32が形成されている。接合部32には、第一容器部2の接合面23と接合される接合面33が形成されている。接合面33は、第一容器部2との接合性を向上する観点から、略平面状に形成されている。また、接合部32は、接合面33の面積を大きくする観点から、接合面33に沿って第二容器部3の外側に延びるフランジ状に形成してもよい。なお、接合部32は、必ずしもフランジ状に形成されていなくてもよい。
 第一容器部2と第二容器部3とを形成する樹脂は、熱可塑性を有していれば、特に限定されるものではない。また、第一容器部2と第二容器部3とを形成する樹脂は、同じであってもよく、異なっていてもよいが、レーザー溶着の観点から、第一容器部2及び第二容器部3の何れか一方は、光透過性の樹脂とし、第一容器部2及び第二容器部3の何れか他方は、光吸収性の樹脂とすることが好ましい。但し、第一容器部2及び第二容器部3の双方とも光透過性の樹脂としてもよい。
 第一容器部2及び第二容器部3を形成する樹脂としては、熱可塑性を有していれば特に限定されないが、例えば、スチレン系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル酸系樹脂、ポリアミド系樹脂、ABS樹脂、変性PPE樹脂、フッ素系樹脂、熱可塑性ポリイミド樹脂、芳香族ポリエーテルケトン、ゴム系樹脂等から選択される少なくとも一種を含むものとすることができる。これらの中でも、経済性や汎用性等の観点から、ポリアミド系樹脂、ポリオレフィン系樹脂が好ましい。スチレン系樹脂の具体例としては、ポリスチレン等が挙げられる。オレフィン系樹脂の具体例としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体等が挙げられる。ポリエステル系樹脂の具体例としては、ポリエチレンテレフタレート、ポリメチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。ポリカーボネート系樹脂の具体例としては、ポリカーボネート、ポリカーボネート-ABSアロイ樹脂等が挙げられる。アクリル酸系樹脂の具体例としては、ポリメタクリル酸メチル、アクリル酸-アクリル酸エステル共重合体等が挙げられる。ポリアミド系樹脂の具体例としては、ポリアミド(PA)6、PA11、PA12、PA66、PA610、PA6T、PA6I、PA9T等が挙げられる。変性PPE樹脂の具体例としては、PPEと、ポリスチレン、ポリアミド及びポリプロピレンからなる群より選ばれるいずれか1種等とのポリマーアロイ等が挙げられる。フッ素系樹脂の具体例としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体等が挙げられる。ゴム系樹脂の具体例としては、スチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、熱可塑性ポリウレタンエラストマー等が挙げられる。
 光吸収性の樹脂とする場合は、上記樹脂又は材料にカーボンブラック、ニグロシン等の、顔料や染料で着色したものを用いることができる。
 図3~図6に示すように、メッシュ部材4は、第一容器部2と第二容器部3との間に配置されており、第一容器部2の流入口21から流入されたオイルを濾過して第二容器部3の排出口31から排出するものである。メッシュ部材4は、金属(金属線)によってメッシュ構造に形成されている。このため、図7に示すように、メッシュ部材4は、格子状に配置された金属線4aの網目に、間隙4bが形成されている。
 メッシュ部材4は、第一容器部2の開口及び第二容器部3の開口を全て覆う形状に形成されており、その周縁部が、第一容器部2の接合面23と第二容器部3の接合面33とに挟み込まれている。このため、メッシュ部材4は、周縁部の一方面側(表面側)が、第一容器部2の接合面23に当接されており、周縁部の他方面側(裏面側)が、第二容器部3の接合面33に当接されている。
 ここで、第一容器部2と第二容器部3との間にメッシュ部材4を挟み込み、第一容器部2及び第二容器部3のうち、光透過性の樹脂側からレーザーを照射すると、第一容器部2及び第二容器部3のうち、光吸収性の樹脂側が融解する。そして、この融解した樹脂がメッシュ部材4の空隙(網目)に入り込むとともに、この融解した樹脂がメッシュ部材4を貫通することにより、第一容器部2と第二容器部3とが溶着される。このとき、メッシュ部材4は、照射されたレーザーの一部を吸収することによりジュール熱が発生する。これにより、第一容器部2及び第二容器部3の加熱速度が高くなって樹脂の融解が促進されるため、第一容器部2と第二容器部3との溶着速度が向上する。しかも、メッシュ部材4に空隙が形成されているため、照射されたレーザーは、メッシュ部材4に全反射されることなく、メッシュ部材4を通過することができる。このため、メッシュ部材4により樹脂の融解が阻害されるのを抑制することができる。
 メッシュ部材4の網目に形成された空隙の空隙率は、10%以上85%以下であることが好ましく、更に15%以上65%以下であることが好ましく、更に20%以上40%以下であることが好ましい。この空隙率は、金属線4aと間隙4bとを合わせたメッシュ部材4の面積に対する、間隙4bの面積の割合である(図7参照)。この空隙率を10%以上とすることで、第一容器部2と第二容器部3とをレーザー溶着する際に、融解した樹脂がメッシュ部材4を貫通しやすくなるため、第一容器部2と第二容器部3とを溶着しやすくすることができる。この場合、空隙率を更に15%以上、20%以上とすることで、この効果が高まる。一方、メッシュ部材4の空隙率を85%以下とすることで、メッシュ部材4に、第一容器部2及び第二容器部3の加熱を促進できるだけの金属量を確保することができるため、第一容器部2及び第二容器部3の加熱速度を高くすることができる。この場合、空隙率を更に65%以下、40%以下とすることで、この効果が高まる。
 メッシュ部材4を形成する金属としては、光吸収性を有する金属であることが好ましく、例えば、鉄、アルミ、銅、チタン、ニッケル、スズ、亜鉛、クロム、鉛フリー半田、少なくともこれらを含む合金(ステンレス鋼、真鍮、アルミニウム合金、リン青銅など)、これら以外の金属又は合金で表面処理を施してレーザー光を吸収する金属材料、金属皮膜(メッキ、蒸着膜など)を施した材料から選択される少なくとも一種を含むものとすることができる。この場合、メッシュ部材4を形成する又はメッシュ部材4に含まれる金属は、第一容器部2と第二容器部3とをレーザー溶着する際に照射するレーザーを吸収する金属であることが好ましい。例えば、レーザー溶着する際に照射されるレーザーの波長は500nm以上1500nm以下であるため、この波長帯の光吸収率が高いSUSをメッシュ部材4の素材とすることが好ましい。光吸収率が高いとは、光吸収率が0.35以上であることをいう。このように、吸収性を有する金属を含むメッシュ部材4を用いることで、レーザーを照射した際にメッシュ部材4の発熱を促進させることができる。
 メッシュ部材4の厚みは、特に限定されるものではなく、例えば、0.005mm以上0.800mm以下とすることができる。この場合、メッシュ部材4の厚みは、例えば、0.01mm以上0.50mm以下とすることが好ましく、0.05mm以上0.30mm以下とすることが更に好ましい。メッシュ部材4における網目構造及び網目の大きさは、特に限定されるものではなく、オイルストレーナ1の用途などにより適宜設定することができる。
 そして、オイルストレーナ1は、第一容器部2の接合面23と第二容器部3の接合面33とが、メッシュ部材4上において溶着されている。つまり、第一容器部2の接合面23と第二容器部3の接合面33との間にメッシュ部材4の周縁部が挟み込まれており、第一容器部2の接合面23と第二容器部3の接合面33とを溶着する溶着部5がメッシュ部材4を貫通することで、第一容器部2の接合面23と第二容器部3の接合面33とが溶着されている。溶着部5は、第一容器部2と第二容器部3とをレーザー溶着した際に、第一容器部2及び第二容器部3の少なくとも一方から溶け出した(融解した)樹脂が冷却硬化したものである。
 第一容器部2と第二容器部3との溶着は、メッシュ部材4上においてメッシュ部材4の全周縁に沿って連続的に行われていることが好ましい。すなわち、メッシュ部材4を貫通する溶着部5は、メッシュ部材4の全周縁に沿って連続的に形成されていることが好ましい。但し、第一容器部2と第二容器部3との溶着は、必ずしも連続的に行われている必要はなく、間欠的に行われていてもよい。すなわち、溶着部5は、必ずしも連続的に形成されている必要はなく、間欠的に形成されていてもよい。
 次に、オイルストレーナ1の製造方法、つまり、第一容器部2と第二容器部3との溶着方法について説明する。
 まず、第一容器部2と、第二容器部3と、メッシュ部材4と、を用意する。
 次に、第一容器部2の接合面23と第二容器部3の接合面33との間にメッシュ部材4の周縁部を挟み込み、第一容器部2の接合面23と第二容器部3の接合面33とを突き合わせる。
 次に、メッシュ部材4上において、第一容器部2の接合面23と第二容器部3の接合面33とをレーザー溶着する。レーザー溶着では、まず、メッシュ部材4が当接されている接合面23の付近にレーザーの焦点が合うように、レーザーを第一容器部2に照射する。すると、焦点付近の樹脂が融解され、この融解された樹脂が、メッシュ部材4を通って第一容器部2の接合面23から第二容器部3の接合面33に流れ出す。その後、融解された樹脂が接合面33に到達すると、レーザーの照射を停止して融解された樹脂を冷却硬化させる。すると、第一容器部2の接合面23と第二容器部3の接合面33との間に、メッシュ部材4を貫通して第一容器部2の接合面23と第二容器部3の接合面33とに溶着された溶着部5が形成される。
 このようにして製造されたオイルストレーナ1は、第一容器部2の接合面23と第二容器部3の接合面33とがメッシュ部材4上において溶着されているとともに、第一容器部2の接合面23と第二容器部3の接合面33とを溶着する溶着部5がメッシュ部材4を貫通したものとなる。
 以上説明したように、本実施形態によれば、第一容器部2と第二容器部3との間に空隙が形成されたメッシュ部材4を挟み込むため、第一容器部2及び第二容器部3の少なくとも一方にレーザーを照射すると、融解した樹脂がメッシュ部材4の空隙に入り込むとともに、この融解した樹脂がメッシュ部材4を貫通することにより、第一容器部2と第二容器部3とが溶着される。このとき、メッシュ部材4は、照射されたレーザーの一部を吸収することによりジュール熱が発生する。これにより、第一容器部2及び第二容器部3の加熱速度が高くなって樹脂の融解が促進されるため、第一容器部2と第二容器部3との溶着速度を向上させることができる。しかも、メッシュ部材4に空隙が形成されているため、照射されたレーザーは、メッシュ部材4に全反射されることなく、メッシュ部材4を通過することができる。このため、メッシュ部材4により樹脂の融解が阻害されるのを抑制することができる。
(第2の実施形態)
 次に、第2の実施形態について説明する。第2の実施形態は、基本的に第1の実施形態と同様であるが、第一容器部2及び第二容器部3の材質と、レーザー溶着の方法と、のみ第1の実施形態と相違する。このため、以下の説明では、第1の実施形態と相違する点のみ説明し、第1の実施形態と同様の説明を省略する。
 第2の実施形態では、第一容器部2及び第二容器部3を、ACW(Absorbance
Control Welding)工法に用いる光半透過性の樹脂により形成する。ACW工法とは、オリヱント化学工業株式会社により提案されているレーザー溶着工法(特許第4102424号公報参照)である。具体的には、熱可塑性樹脂にレーザー吸収材等を含有させることにより吸光度を0.07~3.0とした光半透過性の樹脂を作製し、この光半透過性の樹脂にレーザー光の少なくとも一部を吸収させることで、同じ素材の光半透過性の樹脂をレーザー溶着する工法である。
 第一容器部2及び第二容器部3を形成する光半透過性の樹脂として、例えば、1種又は2種以上のポリアミド樹脂からなるポリアミド樹脂組成物に、レーザー吸収材等が配合されたものが挙げられる。
 上記ポリアミド樹脂組成物としては、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド6、ポリアミドMXD6(ポリメタキシレンアジパミド)、ポリアミド6I、ポリアミド6T、ポリアミド9T、ポリアミドM5Tなどが挙げられる。これらは二種以上を混合して用いてもよい。
 レーザー吸収材としては、アジン系化合物、ニグロシン、アニリンブラック、フタロシアニン、ナフタロシアニン、ポルフィリン、シアニン系化合物、ペリレン、クオテリレン、金属錯体、アゾ染料、アントラキノン、スクエア酸誘導体及びインモニウム染料等が挙げられる。上記熱可塑性材料におけるレーザー吸収材の含有量は、ポリアミド樹脂組成物100質量部に対し、好ましくは0.001~0.8質量部であり、より好ましくは、0.01~0.5質量部である。レーザー吸収材の含有量が0.001質量部未満であるとレーザー溶着時の発熱量が少なく、溶着部5の接合強度が不十分となりやすく、他方、0.8質量部を超えるとレーザー溶着時の発熱量が多すぎて焦げやボイドが発生しやすい。
 上記熱可塑性材料は、ポリアミド樹脂組成物及びレーザー吸収材に、必要に応じて以下のような添加剤を配合したものであってもよい。添加剤の種類としては、例えば、補強材(例えば、ガラスフィラー)、着色剤、充填材、紫外線吸収剤、光安定剤、酸化防止剤、抗菌・防かび剤、難燃剤、助色剤、分散剤、安定剤、可塑剤、改質剤、帯電防止剤、潤滑剤、離型剤、結晶促進剤及び結晶核剤等が挙げられる。これらの添加剤は1種を単独で使用してもよく、2種以上を併用してもよい。
 例えば、ガラスフィラーの含有量は、ポリアミド樹脂組成物100質量部に対して20~100質量部程度とすることができる。これ以外の添加剤の合計量は、ポリアミド樹脂組成物の全質量100質量部に対して0.1~50質量部程度とすることができる。本発明者らの検討によると、ポリアミド樹脂組成物100質量部に対し、ガラスフィラー(例えば、ガラス繊維)の含有量が100質量部程度であっても、上記ポリアミド樹脂組成物100質量%に対し低融点ポリアミドを少なくとも40質量%含んでいれば、レーザー照射によるポリアミド樹脂の融解によって十分に高い強度の接合強度を達成できる。
 なお、第1の部材1及び第2の部材2が同一組成の熱可塑性材料からなる場合、両者のポリアミド樹脂組成物の組成が同一であれば、両者の間でレーザー吸収材の配合量及び/又は添加剤の種類や配合量が相違していてもよい。
 次に、オイルストレーナ1の製造方法、つまり、第一容器部2と第二容器部3との溶着方法について説明する。
 まず、第1の実施形態と同様に、第一容器部2と、第二容器部3と、メッシュ部材4と、を用意し、第一容器部2の接合面23と第二容器部3の接合面33との間にメッシュ部材4の周縁部を挟み込み、第一容器部2の接合面23と第二容器部3の接合面33とを突き合わせる。
 次に、第一容器部2の接合面23と第二容器部3の接合面33とをレーザー溶着する。レーザー溶着では、例えば、特許第4102424号公報に記載の方法を行うことができる。具体的に説明すると、レーザー溶着では、第一容器部2及び第二容器部3の外側から、メッシュ部材4が当接されている第一容器部2の接合面23の付近にレーザーの焦点が合うように、レーザーを照射する。
 すると、レーザーが照射された第一容器部2の外側部分だけでなく第一容器部2の内部も十分に融解される。そして、この融解された樹脂が、メッシュ部材4の間隙を通って第一容器部2の接合面23から第二容器部3の接合面33に流れ出す。その後、融解された樹脂が接合面33に到達すると、レーザーの照射を停止して融解された樹脂を冷却硬化させる。すると、第一容器部2の接合面23と第二容器部3の接合面33との間に、メッシュ部材4を貫通して第一容器部2の接合面23と第二容器部3の接合面33とに溶着された溶着部5が形成される。
 このとき、レーザーを照射する第一容器部2に焦げやボイドが発生ない範囲で、レーザーを照射する第一容器部2が十分に発熱し且つ十分に融解が広がるように、レーザーの照射条件を適宜設定する。レーザーの照射条件としては、レーザーの出力やレーザーの照射時間(照射速度)などが挙げられる。
 メッシュ部材4の全周縁に沿って連続的にレーザー溶着する場合は、第一容器部2及び第二容器部3を回転させながらレーザーを照射することが好ましい。このように、第一容器部2及び第二容器部3を回転させる場合は、第一容器部2及び第二容器部3の回転速度により、レーザーの照射時間(照射速度)を設定することができる。
 照射するレーザーの波長としては、800nm以上1600nm以下の赤外光線、好ましくは800nm以上1100nmに発振波長を有するレーザー光を使用することができる。例えば、固体レーザー(Nd:YAG励起、半導体レーザー励起等)、半導体レーザー、チューナブルダイオードレーザー、チタンサファイアレーザー(Nd:YAG励起)を使用できる。あるいは、波長700nm以上の赤外線を発生するハロゲンランプやキセノンランプを使用してもよい。
 このようにして製造されたオイルストレーナ1は、第一容器部2の接合面23と第二容器部3の接合面33とがメッシュ部材4上において溶着されているとともに、第一容器部2の接合面23と第二容器部3の接合面33とを溶着する溶着部5がメッシュ部材4を貫通したものとなる。
 以上説明したように、本実施形態によれば、第1の実施形態に加え、更に以下の効果が得られる。すなわち、第一容器部2及び第二容器部3を、ポリアミド樹脂組成物にレーザー吸収材等を含ませた光半透過性の樹脂とすることで、第一容器部2と第二容器部3とを突き合せた状態であっても、第一容器部2及び第二容器部3の外側から第一容器部2にレーザーを照射することで、レーザーが照射された第一容器部2の外側部分だけでなく第一容器部2の内部も十分に融解させることができる。これにより、第一容器部2と第二容器部3との溶着強度を更に高めることができる。しかも、第一容器部2及び第二容器部3に溶着するためのフランジを形成しなくても、また、レーザーの照射角度によらず、第一容器部2と第二容器部3とレーザー溶着することができるため、省スペース化を図ることができる。
(第3の実施形態)
 次に、第3の実施形態について説明する。
 第3の実施機形態は、第一の樹脂層と第二の樹脂層との間に、空隙が形成された金属層を挟み込み、第一の樹脂層と第二の樹脂層とを溶着する溶着方法である。
 第一の樹脂層及び第二の樹脂層は、第1の実施形態又は第2の実施形態の第一容器部2及び第二容器部3と同じ樹脂を用いることができる。
 金属層は、空隙が形成されていれば、如何なる形状であってもよい。金属層としては、例えば、第1の実施形態及び第2の実施形態のメッシュ部材4のようなメッシュ部材の他に、金属線や金属粉を用いることができる。
 金属層として金属粉を用いる場合は、塗料などの媒体に金属粉を混ぜ、この媒体を第一の樹脂層及び/又は第二の樹脂層に塗ることで、第一の樹脂層と第二の樹脂層との間に金属層を挟み込みやすくなる。この場合、媒体に混ぜられた金属粉の最近接距離の平均値が、0.001μm以上300μm以下であることが好ましく、更には0.005μm以上200μm以下であることが好ましく、更には0.01μm以上100μm以下であることが好ましい。ここで、金属粉の最近接距離とは、図8に示すように、ある金属粉から、最も近接した位置にある他の金属粉までの離隔距離(空間距離)をいう。金属粉の最近接距離の測定は、例えば、SEMにより行うことができる。この最近接距離の平均値を0.001%以上とすることで、第一の樹脂層と第二の樹脂層とをレーザー溶着する際に、融解した樹脂が金属層を貫通しやすくなるため、第一の樹脂層と第二の樹脂層とを溶着しやすくすることができる。この場合、最近接距離の平均値を更に0.005μm以上、0.01μm以上とすることで、この効果が高まる。一方、最近接距離の平均値を300μm以下とすることで、金属層に、第一の樹脂層及び第二の樹脂層の加熱を促進できるだけの金属量を確保することができるため、第一の樹脂層及び第二の樹脂層の加熱速度を高くすることができる。この場合、最近接距離の平均値を更に200μm以下、100μm以下とすることで、この効果が高まる。
 次に、第一の樹脂層と第二の樹脂層との溶着方法について説明する。
 まず、第1の実施形態と同様に、第一の樹脂層と、第二の樹脂層と、金属層と、を用意し、第一の樹脂層と第二の樹脂層との間に金属層を挟み込み、第一の樹脂層と第二の樹脂層とを突き合わせる。
 次に、第一の樹脂層と第二の樹脂層とをレーザー溶着する。レーザー溶着は、第1の実施形態又は第2の実施形態と同様の方法により行うことができる。
 すると、レーザーが照射された第一の樹脂層が融解され、この融解された樹脂が、金属層の間隙を通って第一の樹脂層から第二の樹脂層に流れ出す。その後、融解された樹脂が第二の樹脂層に到達すると、レーザーの照射を停止して融解された樹脂を冷却硬化させる。すると、第一の樹脂層と第二の樹脂層との間に、金属層を貫通して第一の樹脂層と第二の樹脂層とに溶着された溶着部が形成される。
 このようにして溶着された溶着体は、第一の樹脂層と第二の樹脂層とを溶着する溶着部が金属層を貫通することで、第一の樹脂層と第二の樹脂層とが金属層を介して溶着されたものとなる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、第1及び第2の実施形態では、本発明の適用例としてオイルストレーナ―を用いて説明したが、本発明は、オイルストレーナに限定されるものではなく、その他の様々な部材に適用することができる。また、流体は、オイルに限定されるものではなく、その他の様々な液体や気体などを採用することができる。
 また、第1及び第2の実施形態では、第一容器部2と第二容器部3との溶着が、メッシュ部材4上においてのみ行われるものとして説明したが、第一容器部2と第二容器部3との溶着は、少なくともメッシュ部材4上において行われていればよく、メッシュ部材4から外れた位置において行われていてもよい。
 また、第1及び第2の実施形態では、第一容器部2と第二容器部3とをレーザー溶着する際、第一容器部2にレーザーの焦点を合わせて樹脂を融解させるものとして説明したが、第一容器部2及び第二容器部3の少なくとも一方にレーザーの焦点を合わせて樹脂を融解させればよい。
 また、第1及び第2の実施形態では、第一容器部2及び第二容器部3の全体が樹脂製であるものとして説明したが、少なくとも、第一容器部2と第二容器部3とを接合する面が樹脂製であればよい。
 次に、本発明の実施例について説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1~4、比較例1)
 図9は、実施例における第一容器部及び第二容器部の正面図である。図10は、実施例における第一容器部及び第二容器部の底面図である。図11は、実施例におけるメッシュ部材の平面図である。
 図9及び図10に示すように、第一容器部2及び第二容器部3は、長細いカプセルを長手方向に沿って半割にした形状とし、第一容器部2の接合面23及び第二容器部3の接合面33を、平行に配置された一対の直線状面部Zと、一対の直線状面部Zにそれぞれ接続された一対の半円状面部Yと、を備える形状とした。接合面23及び接合面33は、直線状面部Z及び半円状面部Yの幅Aを5.0mmとし、一対の直線状面部Zの内側の間隔Bを55.0mmとし、一対の直線状面部Zの外側の間隔Cを65.0mmとし、半円状面部Yの内側の半径Dを27.5mm、半円状面部Yの外側の半径Eを32.5mmとした。また、第一容器部2及び第二容器部3は、接続部の厚みF3.5mmとし、接続部から第一容器部2及び第二容器部3の頂部までの高さGを27.5mmとした。第一容器部2及び第二容器部3の素材は、ポリアミド66(PA66)の同一素材とし、一方を光透過性とし、他方を光吸収材であるニグロシンで着色して光吸収性とした。
 図11に示すように、メッシュ部材4は、長方形部Xと、長方形部Xの短手方向両端に接続される一対の半円部Wと、を備える形状とし、大小二種類のものを用意した。大型のメッシュ部材4は、長方形部Xの短手方向の幅Hを66.0mmとし、長方形部Xの長手方向の長さIを195.0mmとし、半円部Wの半径Jを33.0mmとし、厚みを0.1mmとした。小型のメッシュ部材4は、長方形部Xの短手方向の幅Hを59.0mmとし、長方形部Xの長手方向の長さIを188.0mmとし、半円部Wの半径Jを29.5mmとし、厚みを0.1mmとした。大型及び小型のメッシュ部材4の素材は、何れもステンレス鋼(SUS)とした。
 実施例1では、第一容器部2の接合面23と第二容器部3の接合面33との間に大型のメッシュ部材4を挟み込み、第一容器部2と第二容器部3とをレーザー溶着した。レーザー溶着の条件は、レーザーの出力を100Wとし、レーザーの走査速度を20.0mm/sとし、レーザーの焦点径(直径)をφ3.2mmとし、第一容器部2及び第二容器部3に対するレーザーの照射周数を1周とした。
 実施例2では、第一容器部2の接合面23と第二容器部3の接合面33との間に大型のメッシュ部材4を挟み込み、第一容器部2と第二容器部3とをレーザー溶着した。レーザー溶着の条件は、レーザーの出力を100Wとし、レーザーの走査速度を20.0mm/sとし、レーザーの焦点径(直径)をφ3.2mmとし、第一容器部2及び第二容器部3に対するレーザーの照射周数を2周とした。
 実施例3では、第一容器部2の接合面23と第二容器部3の接合面33との間に小型のメッシュ部材4を挟み込み、第一容器部2と第二容器部3とをレーザー溶着した。レーザー溶着の条件は、レーザーの出力を100Wとし、レーザーの走査速度を20.0mm/sとし、レーザーの焦点径(直径)をφ3.2mmとし、第一容器部2及び第二容器部3に対するレーザーの照射周数を1周とした。
 実施例4では、第一容器部2の接合面23と第二容器部3の接合面33との間に小型のメッシュ部材4を挟み込み、第一容器部2と第二容器部3とをレーザー溶着した。レーザー溶着の条件は、レーザーの出力を100Wとし、レーザーの走査速度を20.0mm/sとし、レーザーの焦点径(直径)をφ3.2mmとし、第一容器部2及び第二容器部3に対するレーザーの照射周数を2周とした。
 比較例1では、第一容器部2の接合面23と第二容器部3の接合面33との間にメッシュ部材4を挟み込むことなく、第一容器部2と第二容器部3とをレーザー溶着した。レーザー溶着の条件は、レーザーの出力を100Wとし、レーザーの走査速度を20.0mm/sとし、レーザーの焦点径(直径)をφ3.2mmとし、第一容器部2及び第二容器部3に対するレーザーの照射周数を1周とした。
 その後、実施例1~4及び比較例1について、破壊検査を行った。破壊検査は、第二容器部3の排出口31を塞いで第一容器2の流入口21から水を入れていき、容器1の破壊または水漏れが発生したときの圧力をバースト強度として計測した。
 表1に示すように、何れの実施例も、比較例1と比べて遜色がなかった。この結果から、実施例においても、第一容器部2と第二容器部3とが確実に溶着されていることが確認された。
Figure JPOXMLDOC01-appb-T000001
(実施例5)
 実施例5では、第一の樹脂層として、頂部に開口が形成されたハーフドーム状の第一部材を作製し、第二の樹脂層として、平板状の第二部材を作製し、金属層として、第一部材と第二部材との間に挟み込まれるメッシュ部材を作製した。
 第一部材及び第二部材は、ACW工法に用いる光半透過性の樹脂により作製した。
 第一部材及び第二部材の作製に際して、まず、ポリアミド66ペレットを調整した。ポリアミド66ペレットの調整では、400Lオートクレーブ中に40%AH塩(アジピン酸とヘキサメチレンジアミンの等モル塩)水溶液に、ヨウ化カリウム3質量%、ヨウ化銅0.1質量%を仕込み、1.8MPa加圧下で加熱溶融重合を行った。得られた重合体を冷却固化及び造粒してポリアミド66のペレットを得た。
 次に、上記ポリアミド66のペレット64.5質量部、ガラス繊維33質量部(日本電気硝子株式会社製、商品名:T275H)、レーザー溶着用着色マスターバッチ2.5質量部(オリヱント化学工業株式会社製、商品名:eBIND ACW-9871)をバレル温度290℃に設定した二軸押出機(東芝機械株式会社製、商品名:TEM35)を用いて溶融混練して熱可塑性材料のペレットを得た。
 次に、上記熱可塑性材料のペレットをシリンダー温度290℃に設定した射出成形機(住友重機械工業株式会社製、商品名:SE130)に導入し、金型温度80℃で成形して第一部材及び第二部材を得た。
 メッシュ部材は、SUS(ステンレス鋼)製のメッシュ200番手により作製した。メッシュ部材の間隙率は、35であった。
 そして、第一部材と第二部材との間にメッシュ部材を挟み込み、ACW工法により第一部材と第二部材とをレーザー溶着し、中空部品を作製した。このとき、レーザーの出力を130Wとし、WD(レーザー照射光学系から第1部材照射側表面までの距離)を83mmとし、溶着速度を35mm/sとした。
(実施例6)
 実施例6として、実施例5と同じ形状の第一部材、第二部材及びメッシュ部材を作製した。
 第一部材は、光吸収性の樹脂により作製し、第二部材は、光透過性の樹脂により作製した。
 第一部材の作製に際して、まず、ポリアミド66ペレットを調整した。ポリアミド66ペレットの調整では、400Lオートクレーブ中に40%AH塩(アジピン酸とヘキサメチレンジアミンの等モル塩)水溶液に、ヨウ化カリウム3質量%、ヨウ化銅0.1質量%を仕込み、1.8MPa加圧下で加熱溶融重合を行った。得られた重合体を冷却固化及び造粒してポリアミド66のペレットを得た。
 次に、上記ポリアミド66のペレット65.6質量部、ガラス繊維34.1質量部(日本電気硝子株式会社製、商品名:T275H)、レーザー溶着用着色マスターバッチ2.5質量部(オリヱント化学工業株式会社製、商品名:eBIND 樹脂着色染料物質0.3をバレル温度290℃に設定した二軸押出機(東芝機械株式会社製、商品名:TEM35)を用いて溶融混練して熱可塑性材料のペレットを得た。
 次に、上記熱可塑性材料のペレットをシリンダー温度290℃に設定した射出成形機(住友重機械工業株式会社製、商品名:SE130)に導入し、金型温度80℃で成形して第一部材を得た。
 第二部材の作製に際して、まず、ポリアミド66ペレットを調整した。ポリアミド66ペレットの調整では、400Lオートクレーブ中に40%AH塩(アジピン酸とヘキサメチレンジアミンの等モル塩)水溶液に、ヨウ化カリウム3質量%、ヨウ化銅0.1質量%を仕込み、1.8MPa加圧下で加熱溶融重合を行った。得られた重合体を冷却固化及び造粒してポリアミド66のペレットを得た。
 次に、上記ポリアミド66のペレット67質量部、ガラス繊維33質量部(日本電気硝子株式会社製、商品名:T275Hをバレル温度290℃に設定した二軸押出機(東芝機械株式会社製、商品名:TEM35)を用いて溶融混練して熱可塑性材用のペレットを得た。
 次に、上記熱可塑性材料のペレットをシリンダー温度290℃に設定した射出成形機(住友重機械工業株式会社製、商品名:SE130)に導入し、金型温度80℃で成形して第二部材を得た。
 メッシュ部材は、SUS(ステンレス鋼)製のメッシュ200番手により作製した。メッシュ部材の間隙率は、35%であった。
 そして、第一部材と第二部材との間にメッシュ部材を挟み込み、第二部材を透過させたレーザーを第一部材にレーザーを照射することにより第一部材と第二部材とをレーザー溶着し、中空部品を作製した。このとき、レーザーの出力を130Wとし、WD(レーザー照射光学系から第1部材照射側表面までの距離)を83mmとし、レーザーの出力を130Wとし、溶着速度を35mm/sとした。
(比較例2)
 比較例2として、実施例5と同じ形状の第一部材、第二部材及びメッシュ部材を作製した。
 第一部材及び第二部材は、何れも金属であるアルミニウム合金により作製した。
 メッシュ部材は、SUS(ステンレス鋼)製のメッシュ200番手により作製した。メッシュ部材の間隙率は、35%であった。
 そして、第一部材と第二部材との間にメッシュ部材を挟み込み、第一部材と第二部材とをカシメにより接合し、中空部品を作製した。
(気密性試験)
 実施例5,6及び比較例2について、気密性試験を行った。気密性試験は、第一部材の開口に耐圧ホースの一端を接続し、耐圧ホースの他端を圧力ゲージ付コンプレッサーに接続した。水を満たした水槽に実施例5,6及び比較例2の中空部品を入れ、各中空部品の内部をコンプレッサーで加圧した。そして、各中空部品の内部の圧力であるゲージ圧を測定し、ゲージ圧が0.15MPa及び0.25MPaのときに第一部材と第二部材との接合部から気泡が漏れたか否かを観察した。観察結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ゲージ圧が0.15MPaだと、比較例2は気泡が漏れたが、実施例5,6は気泡が漏れなかった。また、ゲージ圧が0.25MPaだと、実施例6及び比較例2は気泡が漏れたが、実施例5は気泡が漏れなかった。このような結果から、ACW工法により第一部材と第二部材とをレーザー溶着することで、より第一部材と第二部材との溶着強度が向上することが確認された。
 1…オイルストレーナ(容器)、2…第一容器部、21…流入口、22…接合部、23…接合面、3…第二容器部、31…排出口、32…接合部、33…接合面、4…メッシュ部材、5…溶着部。

Claims (12)

  1.  第一の樹脂層と第二の樹脂層とを溶着する溶着方法であって、
     前記第一の樹脂層と前記第二の樹脂層との間に、空隙が形成された金属層を挟み込み、
     前記第一の樹脂層及び前記第二の樹脂層の少なくとも一方にレーザーを照射して、融解した樹脂を前記金属層に貫通させて前記第一の樹脂層と前記第二の樹脂層とを溶着する、
    溶着方法。
  2.  前記金属層の空隙率が、10%以上85%以下である、
    請求項1に記載の溶着方法。
  3.  前記金属層が、網目が形成されたメッシュ部材である、
    請求項1又は2に記載の溶着方法。
  4.  前記金属層が、光吸収性を有する金属を含む、
    請求項1~3の何れか一項に記載の溶着方法。
  5.  前記金属層が、鉄、アルミ、銅、チタン、ニッケル、スズ、亜鉛、クロム、鉛フリー半田、少なくともこれらを含む合金、これら以外の金属又は合金で表面処理を施してレーザー光を吸収する金属材料、金属皮膜を施した材料から選択される少なくとも一種を含む、
    請求項1~4の何れか一項に記載の溶着方法。
  6.  前記樹脂層が、スチレン系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリル酸系樹脂、ポリアミド系樹脂、ABS樹脂、変性PPE樹脂、フッ素系樹脂、熱可塑性ポリイミド樹脂、芳香族ポリエーテルケトン、ゴム系樹脂から選択される少なくとも一種を含む、
    請求項1~5の何れか一項に記載の溶着方法。
  7.  前記第一の樹脂層及び前記第二の樹脂層の何れか一方が、光透過性の樹脂からなり、
     前記第一の樹脂層及び前記第二の樹脂層の何れか他方が、光吸収性の樹脂からなる、
    請求項1~6の何れか一項に記載の溶着方法。
  8.  前記第一の樹脂層及び前記第二の樹脂層が、光透過性の樹脂からなる、
    請求項1~6の何れか一項に記載の溶着方法。
  9.  前記第一の樹脂層及び前記第二の樹脂層が、レーザー吸収材を更に含む、
    請求項1~6の何れか一項に記載の溶着方法。
  10.  前記第一の樹脂層が、液体が流入される流入口が形成された第一容器部であり、
     前記第二の樹脂層が、前記第一容器部との間に内部空間を形成し、前記流入口から流入された液体が排出される排出口が形成された第二容器部であり、
     前記金属層が、前記内部空間を前記流入口側と前記排出口側に仕切るメッシュ部材である、
    請求項1~9の何れか一項に記載の溶着方法。
  11.  請求項1~10の何れか一項に記載の溶着方法により、前記第一の樹脂層と前記第二の樹脂層との間に前記金属層が挟み込まれた状態で前記第一の樹脂層と前記第二の樹脂層とが溶着された溶着体。
  12.  第一の樹脂層と第二の樹脂層とが溶着された溶着体であって、
     前記第一の樹脂層と、
     前記第二の樹脂層と、
     前記第一の樹脂層と前記第二の樹脂層との間に挟み込まれた金属層と、
    を備え、
     前記金属層は、空隙が形成されており、
     前記第一の樹脂層と前記第二の樹脂層とが、前記金属層を介して溶着されているとともに、前記第一の樹脂層と前記第二の樹脂層とを溶着する溶着部が、前記金属層を貫通している、
    溶着体。
PCT/JP2013/068551 2012-07-05 2013-07-05 溶着方法及び溶着体 WO2014007382A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/411,650 US20150183155A1 (en) 2012-07-05 2013-07-05 Welding method and weld
CN201380034424.3A CN104395059A (zh) 2012-07-05 2013-07-05 焊接方法及焊接体
KR1020147036449A KR20150024853A (ko) 2012-07-05 2013-07-05 용착 방법 및 용착체
JP2014523810A JP5976803B2 (ja) 2012-07-05 2013-07-05 溶着方法及び溶着体
KR1020177028058A KR20170116249A (ko) 2012-07-05 2013-07-05 용착 방법 및 용착체
EP13812538.0A EP2871040A4 (en) 2012-07-05 2013-07-05 WELDING METHOD AND WELDING CONNECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-151710 2012-07-05
JP2012151710 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014007382A1 true WO2014007382A1 (ja) 2014-01-09

Family

ID=49882133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068551 WO2014007382A1 (ja) 2012-07-05 2013-07-05 溶着方法及び溶着体

Country Status (6)

Country Link
US (1) US20150183155A1 (ja)
EP (1) EP2871040A4 (ja)
JP (1) JP5976803B2 (ja)
KR (2) KR20150024853A (ja)
CN (2) CN104395059A (ja)
WO (1) WO2014007382A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117504A1 (ja) * 2015-01-22 2016-07-28 オムロン株式会社 接合構造体の製造方法および接合構造体
JP2017141407A (ja) * 2016-02-12 2017-08-17 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物
CN107921713A (zh) * 2015-11-27 2018-04-17 欧姆龙株式会社 接合结构体的制造方法及接合结构体
JP2018168346A (ja) * 2017-03-30 2018-11-01 三菱エンジニアリングプラスチックス株式会社 成形品、キットおよび成形品の製造方法
WO2019088073A1 (ja) * 2017-10-31 2019-05-09 三菱エンジニアリングプラスチックス株式会社 レーザー溶着体
WO2020085301A1 (ja) 2018-10-23 2020-04-30 帝人株式会社 ろ過用フィルター、フィルター付容器、及び細胞懸濁液中の異物除去方法
WO2021233837A1 (en) * 2020-05-19 2021-11-25 Basf Se Method for manufacturing a metal-polymer hybrid part and metal-polymer hybrid part

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253915B2 (en) * 2015-10-30 2019-04-09 Consolidated Edison Company Of New York, Inc. Electrofusion fitting and method of repairing pipes
US10464282B2 (en) * 2016-01-21 2019-11-05 GM Global Technology Operations LLC Systems and processes for joining workpieces robustly using moguls and adhesive
US10427356B1 (en) * 2016-01-22 2019-10-01 Infiltrator Water Technologies Llc Plastic tank having a welded frusto-conical flange joint
EP3275939A1 (en) 2016-07-27 2018-01-31 Plastic Omnium Advanced Innovation and Research Composite pressure vessel with a monolayer liner
CN112060598B (zh) * 2019-06-10 2023-05-12 上海中科神光光电产业有限公司 一种金属工件与热固性树脂基复合材料工件的焊接方法
CN111002591A (zh) * 2020-01-10 2020-04-14 深圳技术大学 一种用于塑件的激光透射焊接方法
CN114012231B (zh) * 2021-11-12 2023-06-06 沈阳航天新光集团有限公司 一种电爆阀的电子束焊方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140432U (ja) * 1979-03-27 1980-10-07
JPS5867436A (ja) * 1981-09-28 1983-04-22 アンゲリカ キルヒナー―カール 複合材料、その製造方法及び装置
JPS60214929A (ja) * 1984-04-09 1985-10-28 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPS6274629A (ja) * 1985-09-30 1987-04-06 Toyota Motor Corp 合成樹脂材料の接合方法
JPH01139530U (ja) * 1988-03-14 1989-09-25
JP2006231875A (ja) 2005-02-28 2006-09-07 Gp Daikyo Corp 車両用流体フィルタ装置及びその製造方法
JP2008001112A (ja) * 2005-09-21 2008-01-10 Orient Chem Ind Ltd レーザー溶着体
JP4102424B2 (ja) 2005-09-21 2008-06-18 オリヱント化学工業株式会社 レーザー溶着体
JP2008284430A (ja) * 2007-05-16 2008-11-27 Piolax Inc オイルストレーナ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954625A (en) * 1974-09-27 1976-05-04 Plastisonics Company, Inc. Filter and method of forming same
JPS5439436U (ja) * 1977-08-23 1979-03-15
JPS5867436U (ja) * 1981-10-29 1983-05-07 コンビ株式会社 ロ−ラ−式指圧機のロ−ラ−送り装置
JPH0340797Y2 (ja) * 1986-08-25 1991-08-27
DE10301353A1 (de) * 2003-01-16 2004-07-29 Mann + Hummel Gmbh Filtervorrichtung zur Filterung eines Fluids
US7727658B2 (en) * 2004-03-17 2010-06-01 Honda Motor Co., Ltd. Method for joining laser transmitting resin member and porous member, method for joining thermoplastic resin, and fuel cell
JP2005297288A (ja) * 2004-04-08 2005-10-27 Honda Motor Co Ltd レーザー透過性樹脂部材と多孔質部材との接合方法
JP4610238B2 (ja) * 2004-06-21 2011-01-12 ダイセルポリマー株式会社 樹脂成形体の接合方法
US20060219624A1 (en) * 2005-03-29 2006-10-05 Toyota Boshoku Kabushiki Kaisya Filter and manufacturing method therefor
JP4371134B2 (ja) * 2006-09-12 2009-11-25 トヨタ紡織株式会社 フィルタ及びその製造方法
JP4983662B2 (ja) * 2008-03-14 2012-07-25 オムロン株式会社 樹脂フィルムの生産方法
CN102131714B (zh) * 2008-08-29 2012-05-23 东洋制罐株式会社 通过激光焊接密封的包装体和密封包装体的方法
DE102010040933B4 (de) * 2010-09-16 2020-10-29 Airbus Operations Gmbh Verfahren zum thermischen Fügen von zwei Bauteilen
CN102107530A (zh) * 2010-12-30 2011-06-29 东莞市创普光电技术有限公司 一种采用金属激光焊接机焊接塑料的新方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140432U (ja) * 1979-03-27 1980-10-07
JPS5867436A (ja) * 1981-09-28 1983-04-22 アンゲリカ キルヒナー―カール 複合材料、その製造方法及び装置
JPS60214929A (ja) * 1984-04-09 1985-10-28 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPS6274629A (ja) * 1985-09-30 1987-04-06 Toyota Motor Corp 合成樹脂材料の接合方法
JPH01139530U (ja) * 1988-03-14 1989-09-25
JP2006231875A (ja) 2005-02-28 2006-09-07 Gp Daikyo Corp 車両用流体フィルタ装置及びその製造方法
JP2008001112A (ja) * 2005-09-21 2008-01-10 Orient Chem Ind Ltd レーザー溶着体
JP4102424B2 (ja) 2005-09-21 2008-06-18 オリヱント化学工業株式会社 レーザー溶着体
JP2008284430A (ja) * 2007-05-16 2008-11-27 Piolax Inc オイルストレーナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871040A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117504A1 (ja) * 2015-01-22 2016-07-28 オムロン株式会社 接合構造体の製造方法および接合構造体
CN107921713A (zh) * 2015-11-27 2018-04-17 欧姆龙株式会社 接合结构体的制造方法及接合结构体
CN107921713B (zh) * 2015-11-27 2019-12-24 欧姆龙株式会社 接合结构体的制造方法及接合结构体
JP2017141407A (ja) * 2016-02-12 2017-08-17 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物
WO2017138455A1 (ja) * 2016-02-12 2017-08-17 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物
US10590222B2 (en) 2016-02-12 2020-03-17 Techno-Umg Co., Ltd. Thermoplastic resin composition
JP2018168346A (ja) * 2017-03-30 2018-11-01 三菱エンジニアリングプラスチックス株式会社 成形品、キットおよび成形品の製造方法
JP7096264B2 (ja) 2017-10-31 2022-07-05 三菱エンジニアリングプラスチックス株式会社 レーザー溶着体
WO2019088073A1 (ja) * 2017-10-31 2019-05-09 三菱エンジニアリングプラスチックス株式会社 レーザー溶着体
JPWO2019088073A1 (ja) * 2017-10-31 2020-09-24 三菱エンジニアリングプラスチックス株式会社 レーザー溶着体
US11390037B2 (en) 2017-10-31 2022-07-19 Mitsubishi Engineering-Plastics Corporation Laser welded body
WO2020085301A1 (ja) 2018-10-23 2020-04-30 帝人株式会社 ろ過用フィルター、フィルター付容器、及び細胞懸濁液中の異物除去方法
JPWO2020085301A1 (ja) * 2018-10-23 2021-12-16 帝人株式会社 ろ過用フィルター、フィルター付容器、及び細胞懸濁液中の異物除去方法
CN113164844A (zh) * 2018-10-23 2021-07-23 帝人株式会社 过滤用过滤器、带过滤器的容器和细胞悬浮液中的异物去除方法
CN113164844B (zh) * 2018-10-23 2022-11-22 Jcr制药股份有限公司 过滤用过滤器、带过滤器的容器和细胞悬浮液中的异物去除方法
JP7291152B2 (ja) 2018-10-23 2023-06-14 Jcrファーマ株式会社 ろ過用フィルター、フィルター付容器、及び細胞懸濁液中の異物除去方法
WO2021233837A1 (en) * 2020-05-19 2021-11-25 Basf Se Method for manufacturing a metal-polymer hybrid part and metal-polymer hybrid part

Also Published As

Publication number Publication date
KR20150024853A (ko) 2015-03-09
EP2871040A4 (en) 2015-11-04
EP2871040A1 (en) 2015-05-13
JP5976803B2 (ja) 2016-08-24
CN104395059A (zh) 2015-03-04
KR20170116249A (ko) 2017-10-18
JPWO2014007382A1 (ja) 2016-06-02
CN108407307A (zh) 2018-08-17
US20150183155A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5976803B2 (ja) 溶着方法及び溶着体
JP5038443B2 (ja) フィルタ部材を製造する方法およびその方法に従って製造されたフィルタ部材
Acherjee Laser transmission welding of polymers–A review on process fundamentals, material attributes, weldability, and welding techniques
JP5156639B2 (ja) 電磁線による溶着法
KR101341606B1 (ko) 레이저 용착체
CN102765194B (zh) 用于连接成形塑料体的激光透射焊接方法
JP4836993B2 (ja) プラスチックパイプと別のプラスチック製品とのレーザー溶接化連接部
JP2008279730A (ja) 成形樹脂製品及びその製造方法
JP4805225B2 (ja) レーザー溶着体
JP5775095B2 (ja) 導電性フィルタエレメント及びフィルタエレメントを有するフィルタ装置
WO2015022933A1 (ja) 接合体及び接合方法
JP2013141823A (ja) 樹脂成形品及びその製造方法
JP2002539408A (ja) 熱交換器チューブのレーザ接合
JP2008105430A (ja) レーザー溶着体
JP5825758B2 (ja) 3層接着体
JP4568904B2 (ja) ろ過カートリッジの製造方法及び熱板溶着装置
JP4792429B2 (ja) レーザー溶着体
JP4492784B2 (ja) レーザ溶着部材の製造方法
JP4032862B2 (ja) 樹脂部材のレーザー溶着方法
CN209240500U (zh) 一种过水组件
JP6173662B2 (ja) 容器及びその製造方法
JP2015020363A (ja) 接合方法及び二槽式オイルパンの製造方法
WO2022185739A1 (ja) 接合体の製造方法、および接合体
JP2019077119A (ja) 樹脂成形品及び樹脂成形品の製造方法
JP4839978B2 (ja) オイルフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523810

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147036449

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411650

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013812538

Country of ref document: EP