WO2014005543A1 - 一种s-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途 - Google Patents

一种s-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途 Download PDF

Info

Publication number
WO2014005543A1
WO2014005543A1 PCT/CN2013/078856 CN2013078856W WO2014005543A1 WO 2014005543 A1 WO2014005543 A1 WO 2014005543A1 CN 2013078856 W CN2013078856 W CN 2013078856W WO 2014005543 A1 WO2014005543 A1 WO 2014005543A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxymethyl
cysteine
ammonium salt
compound
preparation
Prior art date
Application number
PCT/CN2013/078856
Other languages
English (en)
French (fr)
Inventor
陈矛
朱少璇
万平
王玮
廖维
胡海容
傅祥麟
冯金
黄冰娥
张琳
钟南山
郑劲平
莫红缨
Original Assignee
广州白云山制药股份有限公司广州白云山制药总厂
广州呼吸疾病研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210234440.4A external-priority patent/CN102863364B/zh
Application filed by 广州白云山制药股份有限公司广州白云山制药总厂, 广州呼吸疾病研究所 filed Critical 广州白云山制药股份有限公司广州白云山制药总厂
Priority to US15/508,761 priority Critical patent/US10251854B2/en
Publication of WO2014005543A1 publication Critical patent/WO2014005543A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/10Expectorants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention is based on a Chinese patent application No. 201210234440.4 and 201210234482.8 filed on Jul. 6, 2012, the content of which is hereby incorporated by reference.
  • the present invention is in the field of chemical pharmaceuticals, and in particular, the present invention relates to a S-(carboxymethyl)-cysteine pharmaceutical compound, a process for its preparation and use. Background technique
  • Carboxystatin chemically known as S-(carboxymethyl)-L-cysteine (carbocisteine, carboxymethylcysteine, CMC), was first developed and applied in clinical practice by Joume, France in 1961. It can affect the secretion of bronchial glands, increase the secretion of low-viscosity salivary mucin, reduce the production of high-viscosity fucoidin, and directly act on the disulfide bond of mucin to cleave mucin molecules and reduce ⁇ Liquid viscosity, easy to smear; can increase mucociliary clearance; reduce airway hyperresponsiveness.
  • CMC When CMC enters the body, it is easy to remove carboxymethyl groups to form cysteine, and its thiol group can interact with electrophilic groups such as reactive oxygen species (ROS) to exert direct antioxidant effects.
  • Cystine is also a precursor of glutathione (GSH), which can re-synthesize bioactive GSH, increase the concentration of GSH in the body, and play an indirect antioxidant effect.
  • GSH glutathione
  • CMC has good oral absorption and quick onset. It can be used for 4 hours to achieve obvious curative effect. It is used for the treatment of chronic bronchitis, emphysema, chronic obstructive pulmonary disease (COPD), bronchial asthma and other diseases caused by sputum viscous and coughing difficulties. .
  • COPD chronic obstructive pulmonary disease
  • Carboxystatin is a common drug in China. It is very common in the production and use in China. However, there are two carboxyl groups in the structure of carboplatin, which are acidic, which makes the drug have a stimulating effect on the digestive tract and can cause the stomach. Adverse reactions such as discomfort, nausea, vomiting, and gastrointestinal bleeding. If taking this medicine for a long time is easy to damage the gastrointestinal mucosa, it will cause serious side effects such as bleeding, ulcers and even perforation. The instructions in the drug label clearly state that the patient with active peptic ulcer is banned. Therefore, the search for safe and effective alternatives to carboxymethyl cantan is significant for the treatment of diseases such as COPD.
  • An object of the present invention is to provide a pharmaceutical compound of S-(carboxymethyl)-cysteine, particularly S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Another object of the present invention is to provide a process for preparing a S-(carboxymethyl)-cysteine pharmaceutical compound, in particular, S-(carboxymethyl)-L-cysteine ammonium salt-water crystallization Preparation method.
  • a further object of the present invention is to provide a composition of a pharmaceutical compound comprising S-(carboxymethyl)-cysteine, in particular comprising S-(carboxymethyl)-L-cysteine ammonium salt monohydrate crystals Pharmaceutical composition.
  • a further object of the present invention is to provide a pharmaceutical compound of S-(carboxymethyl)-cysteine, in particular, S-(carboxymethyl)-L-cysteine ammonium salt, crystallized in water, in the preparation of hydrazine
  • S-(carboxymethyl)-cysteine in particular, S-(carboxymethyl)-L-cysteine ammonium salt, crystallized in water, in the preparation of hydrazine
  • R is a pharmaceutically acceptable basic compound capable of forming a salt with S-(carboxymethyl)-cysteine
  • X is an integer of 1 to 2
  • y is a general formula of 1 to 5 (I) a pharmaceutical compound, wherein R can be ammonia or arginine.
  • a pharmaceutical compound of the formula (I) of the present invention wherein R does not include lysine.
  • the compound of the present invention is an S-(carboxymethyl)-cysteine ammonium salt monohydrate having a structural formula of the formula (11).
  • the levorotatory isomer is S-(carboxymethyl)-L-cysteine, an acid ammonium salt monohydrate compound having the formula (111).
  • the invention further provides a method for preparing a pharmaceutical compound of S-(carboxymethyl)-cysteine, which is dissolved or suspended in a suitable solvent by S-(carboxymethyl)-cysteine.
  • the solvent is water; the basic compound R is added, and the solid is sufficiently reacted to dissolve the solid, and then a crystallizing solvent is added to the reaction liquid to separate and obtain a drug compound crystal of S-(carboxymethyl)-cysteine. .
  • the "crystallization solvent” mentioned in the above method can be understood as a solvent which is at most slightly soluble with the reaction product.
  • the dissolution crystallization method (or solvent crystallization method) dissolves the solute in water or other.
  • a certain solvent is added to the crystal to lower the solubility of the solute in the original solvent, thereby crystallizing the solute rapidly.
  • the solvent to be added is referred to as a crystallization solvent or a precipitating agent.
  • the crystallization solvent for crystallizing the S-(carboxymethyl)-cysteine drug compound of the present invention is an alcohol having C of 1 to 4, such as ethanol, isopropanol, n-propanol or n-butanol.
  • the present invention provides a process for preparing S-(carboxymethyl)-L-cysteine ammonium salt monohydrate, which is also applicable to S-(carboxymethyl)-L-cysteine ammonium Preparation of a salt-water crystalline isomer compound such as S-(carboxymethyl)-D-cysteine ammonium salt monohydrate crystalline compound, which is as follows:
  • the crystallization process described above can also add a reaction solution of S-(carboxymethyl)-L-cysteine and aqueous ammonia to a crystallization solvent (with S-(carboxymethyl)-L-cysteine
  • the ammonium salt is crystallized in one water to a slightly sparingly soluble solvent. After the crystal is charged and analyzed, it is separated and dried to obtain crystals of S-(carboxymethyl)-L-cysteine monohydrate.
  • the crystallization method described above can be carried out in any crystallization operation such as batch crystallization, continuous crystallization, stirred crystallization, or static crystallization.
  • the crystallization solvent described in the above method for preparing a crystalline compound of S-(carboxymethyl)-L-cysteine ammonium salt monohydrate is an alcohol having C of 1 to 4, Such as ethanol, isopropanol, n-propanol, n-butanol, 2-butanol; ketones containing C 3 ⁇ 6, such as acetone, methyl ethyl ketone, pentanone; nitriles containing C 2 ⁇ 4, such as acetonitrile, Propionitrile; ethers containing C 2 to 6, such as dioxins, tetrahydrofuran; amides containing C 1 to 5, such as N, N-dimethylformamide, N, N-dimethylacetamide Or a combination of more than one of the above solvents.
  • These solvents or solvent mixtures are water soluble and slightly soluble in the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Preferred solvents are ethanol, acetone, isopropanol, acetonitrile or a binary, ternary or multi-component mixture thereof.
  • the S-(carboxymethyl)-L-cysteine ammonium salt of the invention has a uniform particle size distribution, and after storage for a period of time at normal temperature, no obvious change is observed in the trait, the property is relatively stable, and it is not easy to absorb moisture. The moisture content measured after standing for a while is not much different.
  • XRPD X-ray powder diffraction analysis
  • DSC differential scanning calorimetry
  • TG thermogravimetric analysis
  • melting point solid state nuclear magnetic resonance
  • ion chromatography infrared spectroscopy
  • X-ray diffraction data were obtained from a D/ max- 3A X-ray diffractometer using C U -K ai ray to measure the following X-ray powder diffraction with a Bragg angle of 2 ⁇ and relative intensity (expressed as a percentage relative to the strongest ray).
  • the intensity of each peak on the XRPD diffraction pattern may vary, so the relative intensity is not represented by a number, but the following intensity definition is used: Table 3, X-ray diffraction peak relative intensity definition table
  • the infrared spectrum was obtained by FT-IR NICOLET 6700 instrument.
  • the infrared spectrum of KBr pellets of S-(carboxymethyl)-L-cysteine ammonium salt monohydrate (Figure 15) has the following characteristic absorption peaks: 1600-1610cm -l, 1550-1559 cm- K 1400-1410 cm-1 is the characteristic absorption peak of carboxylate; -NH absorption frequency is also in the range of 1600-1610cm-l, 1550-1559 cm-1, with carboxylate The absorption overlaps; 1470-1480 cm-1 is the -CH- absorption peak.
  • the TG data was obtained by the German NETZSCH TG209 instrument, and the temperature was raised to 350 ° C at a rate of 10 ° C / mm in an air atmosphere, and the thermogravimetric curve was recorded. As shown in Figure 10, the TG differential thermogram shows that the compound begins to lose weight at around 55 °C, with a loss of about 8-9% in the range of 95-135 °C, and S-(carboxymethyl)-L-half The theoretical content of water in the cysteine ammonium salt monohydrate is 8.4%.
  • the DSC data was analyzed by the German NETZSCH DSC204 instrument, and the temperature was raised to 165 °C at a rate of 10 °C/mm under a nitrogen atmosphere, and the temperature rise curve was recorded. As shown in the DSC chart (Fig. 9), the peak value of the first endotherm is about 95 °C (the endothermic action starts at about 55 °C), and there is a second endothermic effect around 117 °C. Referring to the measured melting point and TG data, it is shown that there is dehydration at about 95 °C during the heating of S-(carboxymethyl)-L-cysteine ammonium salt monohydrate, at around 117 °C. Melting endotherm. The results of TG and DSC data indicate that the desolvation point of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate is in the range of 55-115 °C.
  • the S-(carboxymethyl) cysteine ammonium salt monohydrate has the following main features: ⁇ - NMR ⁇ D ⁇ , 400 MHz) ⁇ : 3.04 (m, 1H, CH 2), 3.16 (m, 1H, CH 2), 3.30 (m, 2H, CH 2), 3.91 (m, 1H, CH); 13 C-Li R (D 2 0, 400 MHz) 5: 178.07 (C-5), 173.25 (Cl), 54.16 (C-2), 37.52 (C-4), 33.91 (C-3).
  • the present invention uses S-(carboxymethyl)-L-cysteine to form a salt with a pharmaceutically acceptable suitable inorganic or organic base, which is absorbed by the body and then hydrolyzed in the body to form S-(carboxymethyl).
  • -L-cysteine while retaining the efficacy of S-(carboxymethyl)-L-cysteine, can reduce S- (carboxyl The acidity of methyl)-L-cysteine stimulates the digestive tract and reduces its side effects.
  • S-(carboxymethyl)-L-cysteine ammonium salt monohydrate crystalline compound is a soluble double salt formed by the acidity of its carboxyl group and the basicity of aqueous ammonia.
  • the drug can be hydrolyzed into S-(carboxymethyl)-L-cysteine and ammonium chloride after being absorbed by the body, which can not only reduce S-(carboxymethyl)-L-cysteine
  • the acid stimulates the gastrointestinal tract and neutralizes excess stomach acid.
  • S-(carboxymethyl)-L-cysteine ammonium salt crystallizes in water, S-(carboxymethyl)-L-cysteine continues to exert its pharmacological action in vivo, and at the same time, hydrolyzed chlorine Ammonium is chemically irritating to the mucous membranes, can reflexively increase the amount of sputum, make sputum easy to discharge, and facilitate the removal of a small amount of sticky sputum that is not easy to cough up, for S-(carboxymethyl)-L-cysteine It has a synergistic effect and is more conducive to improving the efficacy.
  • S-(carboxymethyl)-L-cysteine ammonium salt has good safety and side effects, and can be used for long-term use in patients with chronic obstructive pulmonary disease and the like.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising an S-(carboxymethyl)-cysteine pharmaceutical compound as an active ingredient and a carrier, more specifically, S-(carboxymethyl)-
  • the L-cysteine ammonium salt monohydrate pharmaceutical compound is an active ingredient and a pharmaceutical composition of a pharmaceutically acceptable carrier.
  • the invention also provides a pharmaceutical compound of the kind of S-(carboxymethyl)-cysteine, in particular, a crystalline compound of S-(carboxymethyl)-L-cysteine ammonium salt monohydrate in the preparation of bismuth drugs Applications, as well as in the preparation of drugs for the prevention and treatment of chronic obstructive pulmonary respiratory diseases.
  • the method of preparing some of the above compounds is similar to the method of preparing the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • a specific S-(carboxymethyl)-D-cysteine ammonium salt monohydrate is prepared by dissolving or suspending S-(carboxymethyl)-D-cysteine in water, At 20 ⁇ 60 °C, add an appropriate amount of ammonia water, stir it to fully react, and dissolve the reaction solution, then add a crystallization solvent to precipitate the crystal and separate it to obtain S-(carboxymethyl)-D-cysteine.
  • the ammonium salt of the acid crystallizes the compound.
  • crystallizing solvent mentioned in the above method is the same as the above-described crystallizing solvent described in the preparation method of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate crystal compound.
  • S-(carboxymethyl)-cysteine ammonium salt is relatively small in molar ratio with water, and generally has a molar ratio of not more than 0.5;
  • the polarity of the crystallization solvent is relatively weak, such as n-butanol, 2-butanol, dioxan, tetrahydrofuran, etc.; the quality of the selected crystallization solvent is small compared with the water, such as the mass ratio of the crystallization solvent to water.
  • some methods of the present invention also provide a process for preparing S-(carboxymethyl)-cysteine salt containing a plurality of water of crystallization, which is S-(carboxymethyl)-
  • the cysteine salt-water crystalline compound is dissolved in a suitable solvent system, preferably the solvent is water, and no more than 50 times the mass of the crystallizing solvent used, such as n-butanol, 2-butanol, dioxins ⁇ , tetrahydrofuran, control crystallization temperature does not exceed 40 ° C, crystallize, separate, to obtain S-(carboxymethyl)-cysteine salt containing a plurality of water of crystallization.
  • the pure compound which can be obtained after separation is not limited, and it can be generally carried out by means of ordinary filtration, depressurization filtration, pressure filtration or centrifuge filtration, and a vacuum filtration method is preferred.
  • the compound is obtained by filtration, and in order to further improve the purity and remove the residual solvent, it may be treated by a drying method such as pressure reduction drying, nitrogen drying, or the like.
  • the drying process is not an essential step, and drying can be carried out, and a compound which can be used can also be obtained.
  • the S-(carboxymethyl)-L-cysteine drug compound obtained by the invention is a relatively uniform particle size distribution Good crystallization, stable nature, not easy to absorb moisture, easy to preserve and make corresponding pharmaceutical preparations.
  • the preparation method of the S-(carboxymethyl)-L-cysteine pharmaceutical compound, especially the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate crystal is simple and easy to control, and the yield is high. The production cycle is short and the environmental pollution is small, which is conducive to large-scale production and application.
  • the preliminary pharmacodynamic results indicate that the compound of the present invention can significantly reduce the airway resistance of the COPD model rat, reduce the production of oxides, increase the level of antioxidants, and reduce the damage of the kidneys such as oxides and inflammatory mediators.
  • Country deletion
  • Figure 1 shows the pathological sections of lung tissue of normal rats, HE staining (X 100).
  • Figure 2 shows the pathological sections of lung tissue of normal rats, HE staining (X 200 ).
  • Figure 3 shows the pathological sections of the lung tissue of the model group, HE staining (X 100).
  • Figure 4 shows the pathological section of the lung tissue of the model group, HE staining (X 200 ).
  • Figure 5 shows the pathological sections of the lung tissue of the positive group, HE staining (X 100).
  • Figure 6 shows the pathological sections of the lung tissue of the positive group, HE staining (X 200 ).
  • Figure 7 shows the pathological section of the lung tissue of the experimental group, HE staining (X 100).
  • Figure 8 shows the pathological section of the lung tissue of the test group, HE staining (X 200).
  • Figure 9 shows a DSC chart of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Figure 10 is a TG diagram of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Figure 11 is a 'H-NMR chart of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Figure 12 is a 13 C-NMR chart of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Figure 13 is an ion chromatogram of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Figure 14 shows an X-ray powder diffraction pattern of S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Fig. 15 is a chart showing the infrared spectrum of the S-(carboxymethyl)-L-cysteine ammonium salt monohydrate.
  • Example 4 Preparation of S-(carboxymethyl)-L-cysteine ammonium salt monohydrate crystalline compound: At room temperature, in a beaker equipped with a stirring device, 25 g of S-(carboxymethyl)-L-cysteine and 20 ml of distilled water were added, and 14 ml of 25% aqueous ammonia was further added to the suspension, and the mixture was quickly stirred to obtain a clear solution.
  • the filter cake was washed with a small amount of n-butanol, dried, and dried to give white S-(carboxymethyl)-D-cysteine arginine salt crystals of 37.5 g, yield of about 79.0%.
  • the moisture content was 16.95%, and the elemental analysis results were C 31.12%, S 7.54%, N 16.86%, and 0 37.66%.
  • the filter cake was dried, dried to give white S-(carboxymethyl)-D-cysteine arginine salt crystals of 37.5 g, yield of about 90.5%.
  • the moisture content was determined by Karl Fischer method to be 4.85%, and elemental analysis: C 35.65%, S 8.83%, N 18.85%, 0 30.12%.
  • Example 16 Preparation of S-(carboxymethyl)-D-cysteine sodium salt: At room temperature, 50 g of S-(carboxymethyl)-D-cysteine and 60 ml of distilled water were added to a three-necked flask equipped with a stirring device, and 11.5 g of sodium hydroxide was added to the obtained suspension, and the mixture was quickly stirred. The solution is clarified, and 700 ml of ethanol is added dropwise thereto. The initial acceleration is slightly faster, and the dropping rate is slowed down when the white solid precipitates. After the ethanol is added dropwise, the filter cake is filtered, and the filter cake is washed with a small amount of ethanol, dried, and dried to obtain white. S-(carboxymethyl)-D-cysteine sodium salt 52.8 g, yield about 94%.
  • the filter cake was washed with a small amount of acetone, dried, and dried to obtain 7 g of white S-(carboxymethyl)-L-cysteine arginine trihydrate.
  • the moisture content was 13.4%, and the elemental analysis result was C 32.44%.
  • Example 23 Preparation of S-(carboxymethyl)-L-cysteine arginine pentahydrate crystals: At room temperature, in a three-necked flask equipped with a stirring device, add 5 g of S-(carboxymethyl)-L-cysteine arginine monohydrate crystals, 80 ml of distilled water, stir to obtain a clear solution, and the temperature of the system will be - At 15 ° C, 400 ml of acetonitrile, 300 ml of acetone and 1000 ml of tetrahydrofuran were added dropwise. The initial drip acceleration was slightly faster, and the dropping rate was slowed down when white crystals were precipitated.
  • the drug is mixed with the surfactant and the co-solvent uniformly, pre-cooled, filled with the prescribed amount of the propellant, and encapsulated in the quantitative valve container to be an aerosol.
  • the above prescription drugs and auxiliary materials are mixed and potted in a quantitative valve container to obtain a spray.
  • 225 rats were randomly divided into 15 groups: normal group (using normal saline), model group (using normal saline), positive group (administered with carboxymethylstamine), and S-carboxymethyl L-cysteine.
  • Ammonium salt monohydrate crystal (referred to as "L-ammonium”, obtained in Example 1) high, medium and low dose group
  • S-(carboxymethyl)-D-cysteine ammonium salt monohydrate crystalline compound referred to as "D-ammonium” ", obtained in Example 25) high, medium and low dose group
  • S-(carboxymethyl)-D-cysteine arginine salt monohydrate crystalline compound referred to as "D-fine", obtained in Example 15) high school Low-dose group
  • S-(carboxymethyl)-L-cysteine arginine salt monohydrate crystalline compound (referred to as "L-fine”, prepared in Example 12) high, medium and low dose test group (ie, drug group) ), 15 in each group.
  • the rat COPD model was established by instilling endotoxin lipopolysaccharide (LPS) into the smoked and air-filled tubes commonly used at home and abroad. The period is 3 months (90 days). Specific methods: On the 1st, 15th, 29th, 43th, 57th, 71st and 85th day of the experiment, the rats were anesthetized with ether, the root of the tongue was pulled out, and the needle was instilled into the LPS through the trachea with an elbow (200ug/200ul). o The normal group was dripped with the same amount of normal saline in the same way, without fumigation. The remaining 5 groups of rats were placed in a homemade smoked warehouse for fumigation every day.
  • LPS endotoxin lipopolysaccharide
  • a vacuum pump is attached to one side of the smoker compartment, and a cigarette socket is attached to the top.
  • the cigarette smoke can be sucked into the smoke chamber.
  • the smoke is smoked 20mm and the cover is opened for fresh air. Lh /3 times / day, plus with the elbow, the needle is dripped into the LPS (200ug/200ul) through the trachea o
  • the experiment was carried out for 90 days.
  • the drug intervention was started from the 15th day of the experiment.
  • the positive group was perfused with carboxymethacetin.
  • the low-middle-high test group was perfused with different doses of test drugs.
  • the model group and the normal group were perfused with the same amount of normal saline.
  • the rats in the normal group were active and active, and the hair was light and radiant.
  • the overall condition of the model and the drug-administered group was poor. There were cough, wilting, tiredness, slow movement, dry and yellow hair, messy, falling off and other symptoms. Signs.
  • the gastric mucosal epithelial cells were arranged neatly, and the glands were closely arranged. Except for the presence of individual inflammatory cells in the antrum, the other parts showed no inflammatory cell infiltration.
  • the gastric mucosa was mildly edematous and hyperemia, and a large number of inflammatory cells infiltrated.
  • the columnar epithelial cells on the surface of some gastric mucosa were metamorphosed into goblet epithelial cells. There was no obvious edema and congestion in the gastric mucosa of the model group and each drug group, and only a small amount of inflammatory cells infiltrated.
  • the bronchial mucosa epithelial structure was relatively intact, the cilia were arranged neatly, and the inflammatory cell infiltration was rarely seen under the mucosa.
  • the alveolar structure was continuous and intact, and the alveolar cavity showed no obvious enlargement and inflammatory exudation.
  • Rats in the model group were stenotic and even occluded; cilia adhesions, lodging, obvious shedding, airway mucosal degeneration and necrosis, epithelial cells, goblet cells significantly proliferated, and there were a large number of inflammatory cell infiltration around the membrane and bronchioles, lymphatic Cell-based; airway smooth muscle hyperplasia, pulmonary arteriolar smooth muscle thickening; emphysema is obvious, pulmonary bullae formation can be seen.
  • the bronchial submucosal inflammatory cell infiltration, the degree of degeneration and necrosis of airway mucosa and the thickness of pulmonary arteriolar smooth muscle hyperplasia in each drug group were significantly reduced compared with the model group.
  • COPD chronic inflammatory lesions throughout the airways and lung parenchyma, oxidative-antioxidant imbalances, and enhanced oxidative stress in the body.
  • the preliminary pharmacodynamic results showed that the COPD model rats simultaneously tested the drug at the same pressure on the 15th day of modeling to significantly reduce the airway resistance under the same pressure, reduce the production of oxides, increase the level of antioxidants, and make the oxidation/antioxidant system In the balance, the damage to the lungs such as oxides and inflammatory mediators is alleviated, which is consistent with the results observed in pathological sections.
  • the S-(carboxymethyl)-cysteine pharmaceutical compound provided by the present invention a preparation method and use thereof, in particular, a S-(carboxymethyl)-L-cysteine ammonium salt monohydrate crystalline drug compound.
  • the compound is a good crystal with a relatively uniform particle size distribution, stable in nature, not easy to absorb moisture, easy to preserve and made into a corresponding pharmaceutical preparation.
  • the preparation method is simple and easy to control, has high yield, short production cycle, small environmental pollution, and is advantageous for industrial mass production, and has industrial applicability.
  • the preliminary pharmacodynamic results indicate that the compound of the present invention can significantly reduce the airway resistance of the COPD model rat, reduce the production of oxides, increase the level of antioxidants, and reduce the damage of the lungs caused by oxides and inflammatory mediators. Basically non-irritating.
  • the compound of the present invention solves the gastrointestinal mucosal damage caused by long-term administration of carboxymethaster, serious side effects such as bleeding, ulceration and even perforation, and adverse reactions such as stomach discomfort, nausea, vomiting, and gastrointestinal bleeding. It is a safe and effective alternative to carboplatin and is of great significance for the treatment of diseases such as COPD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种S-(羧甲基)-半胱氨酸化合物(I)及其制备方法和用途,以及S-(羧甲基)-D-半胱氨酸铵盐一水化合物,及其在制备预防和治疗慢性阻塞性肺等呼吸系统疾病药物,特别是祛痰药物中的应用,并且能降低COPD模型大鼠气道阻力,减少氧化物的产生,增加抗氧化剂的水平,减轻氧化物、炎症介质对肺的损伤。

Description

一种 S- (羧甲基) -半胱氨酸药物化合物及其制备方法和用途
¾术领域
本发明基于申请日为 2012年 7月 6日的中国专利申请 201210234440.4及 201210234482.8, 该申 请的内容作为参考引入本文。
本发明属于化学制药领域, 具体而言, 本发明涉及一种 S- (羧甲基) -半胱氨酸药物化合物及其制备方 法和用途。 背景技术
羧甲司坦, 化学名为 S- (羧甲基) -L-半胱氨酸(carbocisteine、 carboxymethylcysteine, CMC), 于 1961 年由法国 Joume公司首先开发并应用于临床, 为粘痰溶解药, 可影响支气管腺体的分泌, 使低粘度的唾 液粘蛋白的分泌增加, 高粘度的岩藻粘蛋白的产生减少, 且可直接作用于粘蛋白的二硫键, 使粘蛋白分 子裂解而降低痰液粘滞性, 易于咯出; 可提高粘膜纤毛清除率; 降低气道高反应性。 CMC进入体内后 易脱去羧甲基形成半胱氨酸, 其所含的巯基能与活性氧 (reactive oxygen species, ROS ) 等的亲电子基 团相互作用, 发挥直接抗氧化作用; 此外, 半胱氨酸亦是谷胱甘肽 (GSH) 的前体, 能再合成具有生物 活性的 GSH, 增加体内 GSH的浓度, 起到间接抗氧化作用。 CMC口服吸收良好, 起效快, 服用 4小时 即可见明显疗效, 用于治疗慢性支气管炎、 肺气肿、 慢性阻塞性肺病(COPD)、 支气管哮喘等疾病引起 的痰液粘稠和咳痰困难。
慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD )是一种气流受限为特征, 且气流 受限不完全可逆, 呈进行性发展的的慢性呼吸系统疾病。 据世界卫生组织公布, COPD在全球疾病死亡 原因当中, 仅次于心脏病、 脑血管病和急性肺部感染, 与艾滋病一起并列第四位。 在全球范围内, 受该 病困扰的患者多达 6亿, 我国每年慢阻肺患者总人数可达 2700万。 目前, COPD主要是通过药物治疗 改善患者症状, 减少疾病的急性加重。
2006年,日本学者 Yasuda H开展随机双盲试验,结果显示 COPD患者长期大量服用 CMC( 1500mg/d, 12 个月) 可降低感冒的发病频率以及减缓 COPD 急性加重 (Yasuda H, Yamaya M, Sasaki T, et al. Carbocisteine reduces frequency of common colds and exacerbations in patients with chronic obstructive pulmonary disease. J Am Geriatr Soc. 2006;54(2):378-80. )„ 2007年日本学者 Tatsumi K开展多中心平行随 机的试验,入选 142名 COPD患者,结果表明, CMC长期大量服用 CMC ( 1500mg/d, 12个月)对 COPD 急性发作具预防作用, St George's 问卷等研究表明还可提高患者生活质量 (Tatsumi K, Fukuchi Y. Carbocisteine improves quality of life in patients with chronic obstructive pulmonary disease. J Am Geriatr Soc. 2007;55(ll): 1884-6. )„ 2008 年, 钟南山等研究发现, 长期大量 (1500mg/d, 12 个月) 服用羧甲司坦能 较好预防慢阻肺的急性发作, 每年每人急性发作率可减少 24.5 %。 其疗效接近于国际标准的吸入皮质激 素联合长效 β激动剂或长效抗胆碱能药物, 并且其治疗效果不受慢阻肺严重程度以及合并用药的影响, 较之国际标准的吸入治疗方法, 治疗费用可减少 85 %。此研究结果表明, 羧甲司坦对于慢阻肺的治疗有 非常好的应用前景 (Jin-Ping Zheng, Nan- Shan Zhong,etc. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomized placebo-controlled study. Lancet, 2008; 371 : 2013 - 18 )。
羧甲司坦作为一种祛痰药物, 在我国的生产和使用十分普遍, 但羧甲司坦的结构中存在两个羧基, 呈酸性, 使得该药物对消化道有刺激作用, 可引起胃部不适、 恶心、 呕吐、 肠胃道出血等不良反应。 若 长期服用该药易损伤胃肠粘膜, 导致出血、 溃疡甚至穿孔等严重副作用。 药品说明书中明确注明 "消化 道溃疡活动期患者禁用"。 因此, 寻求安全有效的羧甲司坦替代物, 对于 COPD等疾病的治疗具有重大
。 发明内容
本发明的目的是提供一种 S- (羧甲基) -半胱氨酸的药物化合物,特别是 S- (羧甲基) -L-半胱氨酸铵盐一 水结晶。
本发明的另一目的是提供一种 S- (羧甲基) -半胱氨酸的药物化合物的制备方法,特别是 S- (羧甲基) -L- 半胱氨酸铵盐一水结晶的制备方法。
本发明的再一目的是提供包含 S- (羧甲基) -半胱氨酸的药物化合物的组合物, 特别是包含 S- (羧甲 基) -L-半胱氨酸铵盐一水结晶的药物组合物。
本发明的进一目的是提供 S- (羧甲基) -半胱氨酸的药物化合物,特别是 S- (羧甲基) -L-半胱氨酸铵盐一 水结晶,在制备祛痰药物中的应用,以及在制备预防和治疗慢性阻塞性肺等呼吸系统疾病药物中的应用。
本发明的目的是通过以下具体技术方案实现的:
一种 S- (羧甲基) -半
Figure imgf000004_0001
(I)
其中:
R为药学上可接受的能与 S- (羧甲基) -半胱氨酸成盐的碱性化合物, X为 1~2的整数, y为 1~5的整 本发明的通式 (I) 药物化合物, 其中 R可为氨或者精氨酸。
本发明的通式 (I) 药物化合物, 其中 R不包括赖氨酸。
本发明的化合物选 S- (羧甲基) -半胱氨酸铵盐一水化合物, 其结构式如式 (11)。
Figure imgf000004_0002
(II) 其左旋异构体为 S- (羧甲基) -L-半胱氨 ,酸铵盐一水化合物, 其结构式如式 (111)。
Figure imgf000005_0001
本发明进一步还提供了一种 S- (羧甲基) -半胱氨酸的药物化合物的制备方法,该方法是以 S- (羧甲基) - 半胱氨酸溶解或悬浮于适当的溶剂体系中,优选溶剂为水;加入碱性化合物 R,充分反应使固体溶清后, 往反应液中加入析晶溶剂, 分离, 得 S- (羧甲基) -半胱氨酸的药物化合物结晶。
上述方法中提到的 "析晶溶剂"可理解为与该反应产物至多微溶的溶剂, 根据该方法所属的技术领 域, 溶析结晶法(或溶媒结晶法) 是将溶质溶解于水或其他有机溶剂中, 然后向结晶体中加入某种溶剂 使溶质在原溶剂中的溶解度降低,从而溶质快速析出的结晶方法。加入的溶剂被称作析晶溶剂或沉淀剂。
本发明所述使 S- (羧甲基) -半胱氨酸的药物化合物结晶析出的析晶溶剂为含 C为 1~4的醇, 如乙醇、 异丙醇、 正丙醇、 正丁醇、 2-丁醇; 含 C为 3~6的酮, 如丙酮、 甲乙酮、 戊酮; 含 C为 2~4的腈类, 如 乙腈、 丙腈; 含 C为 2~6的醚类, 如二恶垸、 四氢呋喃; 含 C为 1~5的酰胺类, 如 N, N-二甲基甲酰 胺、 N, N-二甲基乙酰胺; 或是上述溶剂一种以上的组合。
具体地, 本发明提供了 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的制备方法, 该方法也可用于 S- (羧 甲基) -L-半胱氨酸铵盐一水结晶异构体化合物如 S- (羧甲基) -D-半胱氨酸铵盐一水结晶化合物的的制备, 该方法如下:
将 S- (羧甲基) -L-半胱氨酸溶解或悬浮于水中, 在 20~60°C下, 加入适量的氨水,搅拌使其充分反应, 反应液溶清后, 加入析晶溶剂, 使结晶析出, 分离得到的 S- (羧甲基) - L-半胱氨酸铵盐一水结晶化合物。
上述制备方法中, 可以理解到的具体过程步骤为:
( 1 )、 将 S- (羧甲基) -L-半胱氨酸溶解或悬浮于适当的溶剂体系中, 优选溶剂为水; 在 20~60°C下, 加入至少与 S- (羧甲基) -L-半胱氨酸等摩尔比的适量氨水,充分搅拌使 S- (羧甲基) -L-半胱氨酸和氨水反应 完全, 反应液完全溶清;
(2)、 向反应液中加入析晶溶剂, 即与反应产物 S- (羧甲基) -L-半胱氨酸铵盐一水结晶至多微溶的溶 剂, 使 S- (羧甲基) -L-半胱氨酸铵盐一水结晶逐步达到饱和或过饱和状态, 即可析出晶体, 通过不断加入 溶剂, 控制过饱和过程和晶体生长速度, 使析出的晶体晶习良好, 使 S- (羧甲基) -L-半胱氨酸铵盐一水结 晶晶体充分析出, 分离, 干燥, 得 S- (羧甲基) -L-半胱氨酸铵盐一水结晶。
以上所述的析晶过程也可将 S- (羧甲基) -L-半胱氨酸和氨水的反应液加入到析晶溶剂 (与 S- (羧甲 基) -L-半胱氨酸铵盐一水结晶至多微溶的溶剂) 中, 待晶体充分析出后, 分离, 干燥, 同样可得 S- (羧甲 基) -L-半胱氨酸一水结晶。
以上所述的结晶方法无论是分批结晶、 连续结晶、 搅拌结晶、 静置结晶等结晶操作方式, 都可以实 施。
以上 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备方法中所述的析晶溶剂是含 C为 1~4的醇, 如乙醇、 异丙醇、 正丙醇、 正丁醇、 2-丁醇; 含 C为 3~6的酮, 如丙酮、 甲乙酮、 戊酮; 含 C为 2~4 的腈类, 如乙腈、 丙腈; 含 C为 2~6的醚类, 如二恶垸、 四氢呋喃; 含 C为 1~5的酰胺类, 如 N, N- 二甲基甲酰胺、 N, N-二甲基乙酰胺; 或是上述溶剂一种以上的组合。 这些溶剂或溶剂混合物与水可溶 而与 S- (羧甲基) -L-半胱氨酸铵盐一水结晶微溶。
优选的溶剂是乙醇、 丙酮、 异丙醇、 乙腈或它们的二元、 三元或多元混合物。
表 1、 S- (羧甲基) -L-半胱氨酸铵盐一水结晶在几种溶剂中的溶解性表 (25 °C ) :
Figure imgf000006_0001
本发明的 S- (羧甲基) -L-半胱氨酸铵盐一水结晶粒度分布较为均匀, 常温下储存一段时间后, 性状没 有观察到明显的变化, 性质较为稳定, 不易吸潮, 放置一段时间后测得的水分含量差异不大。
组合使用以下各种分析方法对 S- (羧甲基) 半胱氨酸铵盐一水化合物的特定晶型样品进行分析: X射线粉末衍射分析法 (下文称 XRPD)、 差示扫描量热法 (下文称 DSC)、 热重分析法 (下文称 TG)、 熔点、 固态核磁共振法、 离子色谱法、 红外光谱法。 由于不同仪器和不同条件可导致产生的数据会略有 不同, 因此下面所引用的数值不视为绝对的数值。
X射线衍射数据由 D/max-3A X射线衍射仪获得,采用 CU-Kai射线测量以布拉格角 2Θ、相对强度(以 相对于最强射线的百分数表达) 表达的以下 X-射线粉末衍射图 (附图 14 ) :
表 2、 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 X射线衍射峰相对强度
Figure imgf000006_0002
如上所提的取决于所用的测量条件, XRPD衍射图上各峰的强度会有所变动, 因此没有用数字表 示相对强度, 而是使用以下强度定义: 表 3、 X射线衍射峰相对强度定义表
Figure imgf000007_0002
上述数据证实 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 X射线衍射图的衍射角 (2Θ角 ± 0.2° ) 8.5 ° 、 19.7° 、 21.5 ° 、 23.5 ° 、 27.5 ° 、 29.2 ° 和 32.5 ° 处具有特征峰。
红外图谱由 FT-IR NICOLET 6700仪器获得, S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 KBr压片的 红外图谱 (图 15)有如下特征吸收峰: 1600-1610cm-l、 1550-1559 cm- K 1400-1410 cm-1为羧酸盐的特征 吸收峰; -N-H吸收频率也在 1600-1610cm-l、 1550-1559 cm-1这个范围, 与羧酸盐的吸收有所重叠; 1470-1480 cm-1为 -C-H-吸收峰。
上述数据证实 S- (羧甲基) -L-半胱氨酸铵盐一水结晶药物化合物的 KBr压片的红外图谱有 1600-1610 cm-l、 1550-1559 cm-K 1470-1480 cm-1、 1400-1410 cm-1特征吸收峰。
以 Optimelt熔点仪进行分析, 在 115-119°C间观察到 S- (羧甲基) -L-半胱氨酸铵盐一水化合物发生熔 化。
TG数据由德国 NETZSCH公司 TG209仪器获得,在空气氛围下,以 10°C/mm的速率升温至 350°C, 记录热重曲线。如图 10所示, TG差示热分析图显示了在 55 °C左右化合物开始失重, 95-135 °C范围内损 失约为 8~9%, 与 S- (羧甲基) -L-半胱氨酸铵盐一水化合物中水的理论含量 8.4%—致。
DSC数据采用德国 NETZSCH公司 DSC204仪器进行分析, 在氮气氛围下以 10°C/mm速率升温至 165 °C , 记录升温曲线。 DSC图 (图 9 ) 所示, 第一次吸热的峰值约在 95 °C左右 (吸热作用约在 55 °C开 始), 在 117°C左右有第二次吸热作用。参考所测得的熔点和 TG数据, 表明在加热 S- (羧甲基) -L-半胱氨 酸铵盐一水化合物的过程中在 95 °C左右有脱水现象, 在 117°C左右为熔化吸热。 TG和 DSC数据结果表 明 S- (羧甲基) -L-半胱氨酸铵盐一水化合物去溶剂化点在 55-115 °C范围内。
采用 Bruker AVANCE AV400兆超导脉冲傅里叶变换核磁共振谱仪进行结构表征 (图 11和图 12), S- (羧甲基) 半胱氨酸铵盐一水化合物具有如下主要特征: ^-NMR^D^, 400 MHz) δ: 3.04(m, 1H, CH2),3.16 (m, 1H, CH2), 3.30(m, 2H, CH2),3.91(m, 1H, CH); 13C-丽 R(D20, 400 MHz) 5: 178.07 (C-5),173.25(C-l),54.16(C-2),37.52(C-4),33.91(C-3)。
Figure imgf000007_0001
采用 Dionex DX-600仪器分析得到的离子色谱结果 (图 13 ) 显示, NH4 +%含量为 8.35~8.50%, 这 与 S- (羧甲基) 半胱氨酸铵盐一水化合物中 NH4 +理论含量一致。
本发明用 S- (羧甲基) -L-半胱氨酸与药学上可接受的适当的无机碱盐或有机碱成盐后, 被人体吸收 后在体内水解生成 S- (羧甲基) -L-半胱氨酸, 在保留 S- (羧甲基) -L-半胱氨酸药效的同时, 可以降低 S- (羧 甲基) -L-半胱氨酸的酸性对消化道的刺激, 降低其副作用。
本发明的优选方案 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物是利用其羧基的酸性和氨水的碱性 形成的可溶性复盐。 S- (羧甲基) -L-半胱氨酸铵盐一水结晶极易溶于水, 且其水溶液的 pH值接近人体的 生理范围, 产生的胃肠道刺激性较小, 而羧甲司坦则显示出较强的酸性 (pH 计测得 1 %8-(羧甲基) - 半胱氨酸铵盐一水结晶化合物 pH值为 6.60±0.36 (n=6) ; 因羧甲司坦水溶性较差, 参照 《中国药典 (2010版) 》 将其配成 1 %混悬液, 测得其 pH值为 2.93 ±0.20 (n=6) ) 。 此外, 该药物被人体吸收 以后可在胃酸作用下水解成 S- (羧甲基) -L-半胱氨酸和氯化铵,不仅能减少 S- (羧甲基) -L-半胱氨酸对胃肠 道的刺激, 还可中和多余胃酸。 S- (羧甲基) -L-半胱氨酸铵盐一水结晶水解后, S- (羧甲基) -L-半胱氨酸在 体内继续发挥其药理作用, 同时, 水解生成的氯化铵对粘膜有化学性刺激, 能反射性地增加痰量, 使痰 液易于排出, 有利于不易咳出的少量粘痰的清除, 对 S- (羧甲基) -L-半胱氨酸化痰起了增效作用, 更有利 于提高疗效。 S- (羧甲基) -L-半胱氨酸铵盐的安全性良好, 副作用小, 可用于慢阻肺等疾病患者长期服用。
本发明还提供一种药物组合物, 包含以 S- (羧甲基) -半胱氨酸药物化合物为有效成分以及可要用载 体, 更具体而言, 是以 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物为有效成分以及可药用载体的药物组 合物。
本发明还提供该类 S- (羧甲基) -半胱氨酸的药物化合物,特别是 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 化合物在制备祛痰药物中的应用, 以及在制备预防和治疗慢性阻塞性肺呼吸系统疾病药物中的应用。
根据上述通式 (1), 可以列举出的具体化合物还有:
■ (羧甲基 •D-半胱氨酸铵盐一水化合物;
■ (羧甲基•D-半胱氨酸铵盐二水化合物;
■ (羧甲基•D-半胱氨酸铵盐三水化合物;
■ (羧甲基•D-半胱氨酸铵盐四水化合物;
■ (羧甲基•D-半胱氨酸铵盐五水化合物;
■ (羧甲基•L-半胱氨酸铵盐二水化合物;
■ (羧甲基•L-半胱氨酸铵盐三水化合物;
■ (羧甲基•L-半胱氨酸铵盐四水化合物;
■ (羧甲基•L-半胱氨酸铵盐五水化合物;
■ (羧甲基•D-半胱氨酸精氨酸盐一水化合物;
■ (羧甲基•D-半胱氨酸精氨酸盐二水化合物;
■ (羧甲基•D-半胱氨酸精氨酸盐三水化合物;
■ (羧甲基•D-半胱氨酸精氨酸盐四水化合物;
■ (羧甲基•D-半胱氨酸精氨酸盐五水化合物;
■ (羧甲基•L-半胱氨酸精氨酸盐一水化合物;
■ (羧甲基 • L -半胱氨酸精氨酸盐二水化合物;
■ (羧甲基 • L -半胱氨酸精氨酸盐三水化合物;
■ (羧甲基 • L -半胱氨酸精氨酸盐四水化合物; S- (羧甲基) - L -半胱氨酸精氨酸盐五水化合物。
制备上述一些化合物的方法同制备 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的方法类似。例如, 具体 的 S- (羧甲基) -D-半胱氨酸铵盐一水化合物的制备方法为: 将 S- (羧甲基) -D-半胱氨酸溶解或悬浮于水中, 在 20~60°C下, 加入适量的氨水, 搅拌使其充分反应, 反应液溶清后, 加入析晶溶剂, 使该结晶析出, 分离, 得 S- (羧甲基) -D-半胱氨酸铵盐一水结晶化合物。
上述方法中提到的 "析晶溶剂"与前述制备 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备方 法中所述的析晶溶剂一样。
在上述本发明的一些制备方法中, 根据 S- (羧甲基) -半胱氨酸铵盐与水的不同摩尔比例; 所选择的析 晶溶剂的不同极性; 析晶溶剂与水的不同比例关系, 以及析晶时的不同温度可以得到含有不同个数结晶 水的化合物。
一般来说, 有利于得到含有较多个结晶水化合物的条件为: S- (羧甲基) -半胱氨酸铵盐与水的摩尔比 较小, 一般其摩尔比不超过 0.5 ; 所选用的析晶溶剂极性相对较弱时, 如正丁醇、 2-丁醇、 二噁垸、 四 氢呋喃等; 所选用的析晶溶剂与水的质量比较小时, 如当析晶溶剂与水的质量比为 1 : 1时候, 可以比较 容易地到含有 4或 5个结晶水的化合物; 而在析晶过程中, 较低的环境温度可以更容易地得到含有多个 数结晶水的化合物。 反之, 则倾向于得到含有较少个结晶水化合物, 如一水结晶化合物。
上述这些条件不应当理解为影响所得化合物含有结晶水数量多少的绝对条件, 应当整体考虑多个影 响条件的综合效果。 例如, 即使所选用的析晶溶剂极性相对较弱时, 如正丁醇、 2-丁醇、 二噁垸、 四氢 呋喃等, 而这些所用析晶溶剂与水的质量却比较大, 如当析晶溶剂与水的质量比为 200: 1时, 并且在析 晶过程中,析晶的环境温度又较高,如 60°C下,这种条件下,很可能得到的是含有一个水的结晶化合物。
根据上述方法的条件,本发明的一些方法还提供了一种含有多个结晶水的 S- (羧甲基) -半胱氨酸盐制 备方法, 该方法是以 S- (羧甲基) -半胱氨酸盐一水结晶化合物溶解于适当的溶剂体系中, 优选溶剂为水, 加入不多于 50倍所用水的质量的析晶溶剂, 优选如正丁醇、 2-丁醇、 二噁垸、 四氢呋喃, 控制结晶温 度不超过 40°C, 养晶, 分离, 得到含有多个结晶水的 S- (羧甲基) -半胱氨酸盐。
析晶完全后, 经过分离, 可以得到的纯净的化合物, 分离的方式没有限定, 一般使用普通过滤、 减 压过滤、 压滤或离心机过滤的方式均可以实施, 优选减压过滤的方式。
经过过滤得到化合物, 为了进一步提高纯度、 去除残留的溶剂, 还可以通过干燥的方式处理, 如减 压烘干、 氮气吹干等方式。 干燥过程不为必须步骤, 不进行干燥, 也可以得到能够使用的化合物。 有益效果
本发明所得 S- (羧甲基) -L-半胱氨酸药物化合物,特别是 S- (羧甲基) -L-半胱氨酸铵盐一水结晶, 是一 种较均匀粒度分布的良好结晶, 性质稳定, 不易吸潮, 易于保存及制成相应药物制剂。 该 S- (羧甲基) -L- 半胱氨酸药物化合物, 特别是 S- (羧甲基) -L-半胱氨酸铵盐一水结晶的制备方法简便易控, 收率高, 生产 周期短,环境污染小,有利于大规模生产应用。初步药效结果表明,本发明所述化合物能显著降低 COPD 模型大鼠气道阻力, 减少氧化物的产生, 增加抗氧化剂的水平, 减轻氧化物、 炎症介质等对肺的损伤。 國删
附图 1所示为正常组大鼠肺组织病理切片, HE染色 (X 100)。
附图 2所示为正常组大鼠肺组织病理切片, HE染色 ( X 200 )。
附图 3所示为模型组大鼠肺组织病理切片, HE染色 ( X 100)。
附图 4所示为模型组大鼠肺组织病理切片, HE染色 ( X 200 )。
附图 5所示为阳性组大鼠肺组织病理切片, HE染色 ( X 100)。
附图 6所示为阳性组大鼠肺组织病理切片, HE染色 ( X 200 )。
附图 7所示为试验组大鼠肺组织病理切片, HE染色 (X 100)。
附图 8所示为试验组大鼠肺组织病理切片, HE染色 (X 200)。
附图 9所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 DSC图。
附图 10所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 TG图。
附图 11所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 'H-NMR图。
附图 12所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 13C-NMR图。
附图 13所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的离子色谱图。
附图 14所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的 X射线粉末衍射图。
附图 15所示为 S- (羧甲基) -L-半胱氨酸铵盐一水化合物的红外光谱图。
以下以具体实例来说明本发明的技术方案, 本发明的保护范围不限于此。
实施例 1 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -L-半胱氨酸, 40ml蒸馏水, 得到的悬浊 液中再加入 25ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 600ml乙醇, 开始时滴加速度稍快, 至 有白色晶体析出时减慢滴加速度, 乙醇滴加完毕后, 25°C下养晶, 抽滤, 少量乙醇洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 56.5g, 收率约 94.5%。
实施例 2 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 25g S- (羧甲基) -L-半胱氨酸, 20ml蒸馏水, 得到的悬浊 液中再加入 14ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 400ml异丙醇, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 异丙醇滴加完毕后, 25°C下养晶, 抽滤, 少量异丙醇洗涤滤饼, 抽 干, 干燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 28.5g, 收率约 95.4%。
实施例 3 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -L-半胱氨酸, 40ml蒸馏水, 得到的悬浊 液中再加入 30ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 600ml丙酮, 开始时滴加速度稍快, 至 有白色晶体析出时减慢滴加速度, 丙酮滴加完毕后, 25°C下养晶, 抽滤, 少量丙酮洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 57.4g, 收率约 96.0%。
实施例 4 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备: 室温下, 在装有搅拌装置的烧杯内, 加入 25g S- (羧甲基) -L-半胱氨酸, 20ml蒸馏水, 得到的悬浊液 中再加入 14ml 25%氨水, 快速搅拌得澄清溶液, 备用; 向装有搅拌装置的三口瓶中加入 400ml丙酮, 水浴加热至 50°C, 搅拌下将烧杯中澄清溶液慢慢滴加入丙酮中, 有白色晶体析出, 滴加完毕后撤水浴, 25 °C下养晶,抽滤,少量丙酮洗涤滤饼,抽干,干燥,得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 28.2g, 收率约 94.4%。
实施例 5 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -L-半胱氨酸, 40ml蒸馏水, 得到的悬浊 液中再加入 30ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 600ml乙腈, 开始时滴加速度稍快, 至 有白色晶体析出时减慢滴加速度, 乙腈滴加完毕后, 25 °C下养晶, 抽滤, 少量乙腈洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 58.5g, 收率约 97.0%。
实施例 6 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 40g S- (羧甲基) -L-半胱氨酸, 30ml蒸馏水, 得到的悬浊 液中再加入 24ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 500ml四氢呋喃, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 四氢呋喃滴加完毕后, 25 °C下养晶, 抽滤, 少量丙酮洗涤滤饼, 抽 干, 干燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 26.5g, 收率约 55.4%。
实施例 7 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 40g S- (羧甲基) -L-半胱氨酸, 30ml蒸馏水, 得到的悬浊 液中再加入 24ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 500ml甲醇, 开始时滴加速度稍快, 至 有白色晶体析出时减慢滴加速度, 甲醇滴加完毕后, 35 °C下养晶, 抽滤, 少量甲醇洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 44.95g, 收率约 94.0%。
实施例 8 S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 40g S- (羧甲基) -L-半胱氨酸, 30ml蒸馏水, 得到的悬浊 液中再加入 24ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 500ml N, N-二甲基甲酰胺, 开始时滴加 速度稍快, 至有白色晶体析出时减慢滴加速度, N, N-二甲基甲酰胺滴加完毕后, 45 °C下养晶, 抽滤, 少量丙酮洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -L-半胱氨酸铵盐一水结晶 46.8g, 收率约 98.0%。
实施例 9 S- (羧甲基) -D-半胱氨酸精氨酸盐四水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 20g S- (羧甲基) -D-半胱氨酸, 19.5g精氨酸, 50ml蒸馏 水,水浴加热至 50°C,保温搅拌使反应液溶清后, 向反应液中滴加 100ml正丁醇,开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 正丁醇滴加完毕后, 5 °C养晶, 抽滤, 少量正丁醇洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱氨酸精氨酸盐四水结晶 37.5g, 收率约 79.0%。水分测定结果为 16.95%, 元素分析结果 C 31.12%, S 7.54%, N 16.86%, 0 37.66%。
实施例 10 S- (羧甲基) -D-半胱氨酸精氨酸盐五水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 25g S- (羧甲基) -D-半胱氨酸, 24.5g精氨酸, 20ml蒸馏 水, 水浴加热至 50°C, 保温搅拌使反应液溶清后, 向其中滴加 50ml异丙醇与 50ml四氢呋喃的混合液, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 滴加完毕后, 0°C养晶, 抽滤, 少量上述的 混合液洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱氨酸精氨酸盐五水结晶 54.8g, 收率约 88.6%。 水分测定结果为 20.1%, 元素分析结果 C 29.73%, S 7.24%, N 15.86%, 0 39.61%。
实施例 11 S- (羧甲基) -L-半胱氨酸精氨酸盐三水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 20g S- (羧甲基) -L-半胱氨酸, 19.5g精氨酸, 50ml蒸馏 水, 水浴加热至 50°C, 保温搅拌使反应液溶清后, 向反应液中滴加 300ml乙醇, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 乙醇滴加完毕后, 20°C养晶, 抽滤, 少量乙醇洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -L-半胱氨酸精氨酸盐三水结晶 42.7g, 收率约 93.9%。水分测定结果为 13.7%, 元 素分析结果 C 32.42%, S 7.96%, N 17.23%, 0 35.38%。
实施例 12 S- (羧甲基) -L-半胱氨酸精氨酸盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 20g S- (羧甲基) -L-半胱氨酸, 19.5g精氨酸, 50ml蒸馏 水, 水浴加热至 50°C, 保温搅拌使反应液溶清后, 向反应液中滴加 300ml乙醇, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 乙醇滴加完毕后, 20°C养晶, 抽滤, 少量乙醇洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -L-半胱氨酸精氨酸盐三水结晶 43.5g, 收率约 95.7%。 卡氏法测定水分为 4.87%, 元素分析: C 35.62%, S 8.87%, N 18.89%, 0 30.22%。
实施例 13 S- (羧甲基) -L-半胱氨酸铵盐二水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -L-半胱氨酸, 30ml蒸馏水, 得到的悬浊 液中再加入 30ml 25%氨水, 水浴加热至 50°C, 保温搅拌使反应液溶清后, 向反应液中滴加 400ml N, N-二甲基甲酰胺, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, N, N-二甲基甲酰胺滴加 完毕后, 30°C养晶, 抽滤, 少量 N, N-二甲基甲酰胺洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -L-半胱 氨酸铵盐二水结晶 58.4g, 收率约 90.1%。 卡氏法测定水分为 15.8%, 元素分析: C 25.91%, S 13.82%, N 12.18%, 0 41.46%。
实施例 14 S- (羧甲基) -D-半胱氨酸铵盐二水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -D-半胱氨酸, 30ml蒸馏水, 得到的悬浊 液中再加入 30ml 25%氨水, 水浴加热至 50°C, 保温搅拌使反应液溶清后, 向反应液中滴加 400ml N, N-二甲基乙酰胺, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, N, N-二甲基乙酰胺滴加 完毕后, 30°C养晶, 抽滤, 少量 N, N-二甲基乙酰胺洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱 氨酸铵盐二水结晶 60.2g, 收率约 92.9%。 卡氏法测定水分为 15.9%, 元素分析: C 25.95%, S 13.83%, N 12.05%, 0 41.42%。
实施例 15 S- (羧甲基) -D-半胱氨酸精氨酸盐一水结晶的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 20g S- (羧甲基) -D-半胱氨酸, 19.5g精氨酸, 50ml蒸馏 水, 水浴加热至 50°C, 保温搅拌使反应液溶清后, 向反应液中滴加 600ml乙醇, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 乙醇滴加完毕后, 30°C养晶, 抽滤, 少量乙醇洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -D-半胱氨酸精氨酸盐一水结晶 37.5g, 收率约 90.5%。 卡氏法测定水分为 4.85%, 元素分析: C 35.65%, S 8.83%, N 18.85%, 0 30.12%。
实施例 16 S- (羧甲基) -D-半胱氨酸钠盐的制备: 室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -D-半胱氨酸, 60ml蒸馏水, 得到的悬浊 液中再加入 11.5g氢氧化钠, 快速搅拌得澄清溶液, 向其中滴加 700ml乙醇, 开始时滴加速度稍快, 至 有白色固体析出时减慢滴加速度, 乙醇滴加完毕后,抽滤,少量乙醇洗涤滤饼,抽干,干燥,得白色 S- (羧 甲基) -D-半胱氨酸钠盐 52.8g, 收率约 94%。
实施例 17 S- (羧甲基) -D-半胱氨酸钾盐的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -D-半胱氨酸, 60ml蒸馏水, 得到的悬浊 液中再加入 20g氢氧化钾, 反应 0.5h后, 向其中滴加 400ml乙醇, 滴加完毕后, 抽滤, 少量乙醇洗涤滤 饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱氨酸钾盐 58g, 收率约 96%。
实施例 18 S- (羧甲基) -D-半胱氨酸钙盐的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -D-半胱氨酸, 100ml蒸馏水, 得到的悬 浊液中再加入 llg氧化钙, 水浴加热反应 0.5h后, 向其中滴加 400ml丙酮, 滴加完毕后, 抽滤, 少量丙 酮洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱氨酸钙盐 48g, 收率约 79%。
实施例 19 S- (羧甲基) -D-半胱氨酸组氨酸盐的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 20g S- (羧甲基) -D-半胱氨酸, 60ml蒸馏水, 得到的悬浊 液中再加入 17.3g L-组氨酸, 反应 0.5h后, 向其中滴加 400ml乙醇, 滴加完毕后, 抽滤, 少量乙醇洗涤 滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱氨酸组氨酸盐 34g, 收率约 93%。
实施例 20 S- (羧甲基) -L-半胱氨酸铵盐二水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 10g S- (羧甲基) -L-半胱氨酸铵盐一水结晶化合物, 30ml 蒸馏水, 搅拌得到澄清溶液, 将体系温度将至 10°C, 向其中滴加 100ml乙醇和 500ml乙腈混合液, 开 始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 滴加完毕后, 养晶, 抽滤, 少量乙腈洗涤滤饼, 抽干,干燥,得白色 S- (羧甲基) -L-半胱氨酸铵二水结晶 8g,卡氏法测定水分为 15.7%,元素分析: C 25.90%, S 13.80%, N 12.08%, 0 41.40%。
实施例 21 S- (羧甲基) -L-半胱氨酸铵盐四水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 5g S- (羧甲基) -L-半胱氨酸铵盐一水结晶, 50ml蒸馏水, 搅拌得到澄清溶液, 将体系温度将至 -10°C, 向其中滴加 100ml异丙醇、 300ml乙腈和 800ml四氢呋喃混 合液, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 滴加完毕后, 养晶, 抽滤, 少量四氢 呋喃洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -L-半胱氨酸铵四水结晶 6g。 水分测定结果为 26.80%, 元素分析结果 C 22.39%, S 11.95%, N 10.40%, 0 47.73%。
实施例 22 S- (羧甲基) -L-半胱氨酸精氨酸盐三水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 5g S- (羧甲基) -L-半胱氨酸精氨酸盐一水结晶, 40ml蒸 馏水, 搅拌得到澄清溶液, 将体系温度将至 -10°C, 向其中滴加 100ml异丙醇、 100ml乙醇和 500ml丙酮 混合液, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 滴加完毕后, 养晶, 抽滤, 少量丙 酮洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -L-半胱氨酸精氨酸三水合物 7g, 水分测定结果为 13.4%, 元素分析结果 C 32.44%, S 7.90%, N 17.20%, 0 35.35%。
实施例 23 S- (羧甲基) -L-半胱氨酸精氨酸五水结晶合物的制备: 室温下, 在装有搅拌装置的三口瓶内, 加入 5g S- (羧甲基) -L-半胱氨酸精氨酸一水结晶, 80ml蒸馏 水, 搅拌得到澄清溶液, 将体系温度将至 -15°C, 向其中滴加 400ml乙腈、 300ml丙酮和 1000ml四氢呋 喃混合液, 开始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 滴加完毕后, 养晶, 抽滤, 少量 丙酮洗涤滤饼,抽干,干燥,得白色 S- (羧甲基) -L-半胱氨酸精氨酸五水合物 4g,水分测定结果为 20.3%, 元素分析结果 C 29.78%, S 7.25%, N 15.80%, 0 39.71%。
实施例 :24 S- (羧甲基) -D-半胱氨酸铵二水结晶合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 10g S- (羧甲基) -D-半胱氨酸铵盐一水结晶化合物, 30ml 蒸馏水, 搅拌得到澄清溶液, 将体系温度将至 10°C, 向其中滴加 100ml乙醇和 500ml乙腈混合液, 开 始时滴加速度稍快, 至有白色晶体析出时减慢滴加速度, 滴加完毕后, 养晶, 抽滤, 少量乙腈洗涤滤饼, 抽干, 干燥, 得白色 S- (羧甲基) -D-半胱氨酸铵二水结晶 7g, 卡氏法测定水分为 15.8%, 元素分析: C 25.91%, S 13.82%, N 12.08%, 0 41.41%。
实施例 25 S- (羧甲基) -D-半胱氨酸铵盐一水结晶化合物的制备:
室温下, 在装有搅拌装置的三口瓶内, 加入 50g S- (羧甲基) -D-半胱氨酸, 40ml蒸馏水, 得到的悬浊 液中再加入 25ml 25%氨水, 快速搅拌得澄清溶液, 向其中滴加 600ml乙醇, 开始时滴加速度稍快, 至 有白色晶体析出时减慢滴加速度, 乙醇滴加完毕后, 25 °C下养晶, 抽滤, 少量乙醇洗涤滤饼, 抽干, 干 燥, 得白色 S- (羧甲基) -D-半胱氨酸铵盐一水结晶 55.7g, 收率约 93.2%。
实施例 26 药物组合物的制备
通式 I的钾盐 (以羧甲基半胱氨酸计) 1质量份
氯扎苯胺 0.1质量份
水 (加适量磷酸盐调节 pH至 6 ) 98.9质量份
将上述处方药物及辅料混匀, 灌封于定 i :阀门容器中即可得到喷雾剂。
实施例 27 药物组合物的制备
化合物 III (以羧甲基半胱氨酸计) 1质量份
溴扎苯胺 0.1质量份
水 (加适量硼酸盐调节 pH至 7) 98.9质量份
将上述处方药物及辅料混匀, 灌封于定 i :阀门容器中即可得到喷雾剂。
实施例 28 药物组合物的制备
化合物 III (以羧甲基半胱氨酸计) 1.5质量份
溴扎苯胺 0.1质量份
水 (加适量硼酸盐调节 pH至 7) 98.4质量份
将上述处方药物及辅料混匀, 灌封于定 i :阀门容器中即可得到喷雾剂。
实施例 29 药物组合物的制备
S- (羧甲基) -L-半胱氨酸铵盐一水化合物 1.5质量份
氯扎苯胺 0.1质量份
水 (加适量磷酸盐调节 pH至 6 ) 98.4质量份。 将上述处方药物及辅料混匀, 灌封于定量阀门容器中即可得到喷雾剂。
实施例 30 药物组合物的制备
S- (羧甲基) -D-半胱氨酸铵盐一水化合物 1质量份
司盘 85 1.5质量份
乙醇 2质量份
1,1,1,2-四氟乙垸 95.5质量份。
将药物与表面活性剂、 共溶剂混合均匀, 预冷, 充入处方量的抛射剂, 灌封于定量阀门容器中即 可气雾剂。
实施例 31 药物组合物的制备
S- (羧甲基) -L-半胱氨酸精氨酸盐一水化合物 1.2质量份
溴扎苯胺 0.1质量份
水 (加适量硼酸盐调节 pH至 7) 98.7质量份 c
将上述处方药物及辅料混匀, 灌封于定量阀门容器中即可得到喷雾剂。
实施例 32 药物效果试验
1.实验方法
1.1大鼠 COPD模型的制备
225只大鼠随机分为 15组, 分别为正常组(使用生理盐水)、 模型组(使用生理盐水)、 阳性组(给 药羧甲司坦)、 S-羧甲基 L-半胱氨酸铵盐一水结晶(简称 "L-铵", 实施例 1制得)高中低剂量组 、 S- (羧 甲基) -D-半胱氨酸铵盐一水结晶化合物(简称 "D-铵" , 实施例 25制得)高中低剂量组、 S- (羧甲基) -D- 半胱氨酸精氨酸盐一水结晶化合物(简称 "D-精" , 实施例 15制得)高中低剂量组、 和 S- (羧甲基) -L- 半胱氨酸精氨酸盐一水结晶化合物(简称 "L-精" , 实施例 12制得) 高中低剂量试验组 (即用药组), 每组 15只。采用目前国内和国际上普遍应用的熏烟加气管内滴入内毒素脂多糖(LPS)的方法建立大鼠 COPD模型。 周期为 3个月 (90天)。 具体方法: 在试验的第 1、 15、 29、 43、 57、 71、 85天, 用乙醚 麻醉大鼠, 拉出大鼠的舌根, 用弯头灌胃针头经气管滴入 LPS (200ug/200ul) o 正常组用相同的方法滴 入等量的生理盐水,不熏烟。其余 5组大鼠每天置于自制的熏烟仓中熏烟。熏烟仓一侧外接一台负压泵, 顶部接有香烟的插口。 接通负压泵的电流, 点燃香烟, 即可将香烟的烟雾抽吸入熏烟仓内。 为了防止动 物因缺氧而死亡, 每次点燃 12支香烟, 熏烟 20mm后打开仓盖换新鲜空气。 lh /3次 /日, 再加上用弯头 灌胃针头经气管滴入 LPS (200ug/200ul) o
1.2 药物干预
实验共 90天, 从实验的第 15天开始进行药物干预, 阳性组灌注羧甲司坦, 低中高试验组灌注不同 剂量试验药物, 模型组和正常组大鼠灌注等量的生理盐水。
1.3 指标测定
于实验结束后第二天眼眶取血, 分离血清, 剪取完整的胃冲洗干净, 留取肺组织, 取胃、 右上肺进 行病理检测, 余肺进行肺组织匀浆后, 测定氧化与抗氧化指标过氧化脂质(LPO)、 丙二醛(MDA)、 还 原型谷胱甘肽 (GSH) 含量及超氧化物歧化酶 (SOD) 活性, 炎症介质 TNF-a、 IL-8、 IL-6的浓度。 2.实验结果
2.1 实验过程中动物表现
正常组大鼠活泼好动, 毛发光整、 有色泽; 模型及给药组动物整体状态欠佳, 先后出现咳嗽、 精神 萎靡、 倦卧, 行动迟缓, 毛发干枯发黄、 杂乱、 脱落等症状和体征。
2.2 胃病理变化
正常组大鼠胃黏膜上皮细胞排列较整齐, 腺体排列紧密, 除胃窦部有个别炎细胞存在外, 其余部分 未见炎细胞浸润。 阳性组大鼠胃黏膜层轻度水肿充血, 大量炎细胞浸润, 部分胃黏膜表面柱状上皮细胞 化生为杯状上皮细胞。 模型组及各用药组胃黏膜层未见明显水肿充血, 仅少量炎细胞浸润。
2.3 肺病理变化
正常组大鼠支气管粘膜上皮结构相对完整, 纤毛排列整齐, 粘膜下少见明显炎性细胞浸润, 肺泡结 构连续完整, 肺泡腔未见明显扩大及炎性渗出。 模型组大鼠细支气管狭窄变形甚至闭塞; 纤毛粘连、 倒 伏, 有明显脱落, 气道粘膜变性坏死, 上皮细胞、 杯状细胞显著增生, 膜下及细支气管周围有大量炎性 细胞浸润, 以淋巴细胞为主; 气道平滑肌增生, 肺小动脉平滑肌增厚; 肺气肿明显, 可见肺大疱形成。 各用药组支气管黏膜下炎症细胞浸润、气道粘膜变性坏死程度及肺小动脉平滑肌增生厚度等都较模型组 明显减轻。
2.4 炎症指标的测定
与正常组比较, 模型组大鼠肺及血清中 TNF- α、 IL-8、 IL-6含量均显著增高 (P<0.01 ), 表明动物 造模成功。与模型组相比, 同时给予试验药物治疗, TNF- a、 IL-8、 IL-6含量降低, 且呈一定量效关系。 试验结果见表 8。 表 8、 对炎症指标的影响 (x ±SD, pg/mL)
TNF-a IL-8 IL-6
组别
肺组织 血清 肺组织 血清 肺组织 血清 正常组 8.83±2.54** 10.12±2.86** 4.07±1.19** 4.88±1.11 ** 4.50±1.12** 5.27±1.72** 模型组 40.39±11.97** 26.23±5.12 15.23±4.21 10.93±2.19 20.67±7.00 13.08±4.34 阳性组 25.17±8.28** 18.37±4.55* 10.91±2.30** 7.87±3.08* 14.24±6.26* 8.13±2.87**
L-铵低剂量组 20.60±9.60** 17.98±3.94** 9.97±1.24** 7.90±2.16* 14.72±5.51 * 7.02±3.30**
L-铵中剂量组 19.98±8.78** 15.11±4.38** 8.66±2.54** 6.30±2.17** 12.91±2.47** 6.24±2.12**
L-铵高剂量组 15.15±4.20** 13.02±5.32** 8.17±1.06** 5.36±1.51 ** 9.28±4.49** 5.83±1.51 **
D-铵低剂量组 28.26±12.06* 21.12±4.11 * 13.09±2.98* 8.56±2.79* 16.36±4.78* 10.76±2.90*
D-铵中剂量组 25.02±10.89* 19.86±3.58** 11.90±1.77** 8.05±1.72** 15.61±4.40* 9.09±3.23*
D-铵高剂量组 21.33±8.57** 17.19±4.05** 11.44±1.64** 7.38±1.54** 13.83±6.19* 7.93±3.10**
D-精低剂量组 30.10±9.44* 23.12±4.20 12.69±2.33* 9.70±1.35* 17.03±7.27 11.07±2.60*
D-精中剂量组 28.28±13.57* 20.09±5.10* 12.01±2.11 ** 8.26±2.67* 15.44±5.64* 10.38±3.54*
D-精高剂量组 24.40±6.09** 19.73±6.08* 10.82±2.59** 7.74±1.28** 13.69±4.33** 8.70±2.35** L精低剂量组 26.17±8.33* 20.22±4.77* 11.88±3.03* 8.56±2.33* 15.80±6.02* 9.17±3.08*
L-精中剂量组 23.65±11.21 ** 18.67±3.89** 9.98±2.43** 7.39±2.02** 14.22±5.13* 7.66±2.83**
L-精高剂量组 20.36±7.41 ** 15.70±5.16** 9.09±1.89** 6.24±1.89** 12.77±4.65** 6.69±1.92** 注: 与模型组比较, *P<0.05, **P<0.01
2.5 氧化及抗氧化指标的测定
与正常组比较, 模型组大鼠肺及血清中氧化指标 LPO、 MDA含量均显著增高(P<0.01 ), 抗氧化指 标 GSH和 SOD含量均显著降低成本 (P<0.01 ), 表明动物造模成功。 与模型组相比, 同时给予试验药 物治疗, 肺及血清中 LPO、 MDA含量均显著降低, GSH和 SOD含量均显著升高, 且呈一定量效关系。 试验结果见表 9和表 10。 表 9、 对氧化指标的影响 (x ±SD )
Figure imgf000017_0001
注: 与模型组比较, *P<0.05, **P<0.01 表 10、 对抗氧化指标的影响 (x ±SD )
Figure imgf000017_0002
阳性组 107.26±23.52* 132.31±24.04* 62.28±15.12* 96.16±23.03**
L-铵低剂量组 113.59 ±24.32* 140.64 ± 19.66* 60.38 ± 16.04* 90.80 ± 15.13**
L-铵中剂量组 124.19 ±30.78** 175.61 ±31.11** 70.71 ± 11.16** 102.98 ±23.26**
L-铵高剂量组 141.69 ±28.40** 232.93 ±40.49** 77.56 ± 18.09** 140.69 ±32.13**
D-铵低剂量组 94.54±17.50 120.16±17.05* 52.17±16.44 72.30±12.66*
D-铵中剂量组 109.68±24.63* 131.33±24.17* 60.31±14.12* 88.85±17.47**
D-铵高剂量组 120.13±25.76** 158.76±29.50** 70.51±20.90* 98.28±19.15**
D-精低剂量组 92.23±13.38 119.02±17.95* 46.86±19.25 74.53±8.70**
D-精中剂量组 107.77±18.26* 124.95±26.07* 54.4±12.18* 83.74±15.27*
D-精高齐 D量组 114.54±20.57* 144.17±27.40** 62.24±16.47* 92.32±20.65**
L精低剂量组 102.45±18.97* 134.21±26.45* 55.67±13.29* 82.67±19.45*
L-精中剂量组 116.22±22.73** 159.33±30.20** 65.44±17.33* 93.20±20.77**
L-精高齐 D量组 128.45±24.09** 180.40±350.78** 72.36±14.55** 116.34±27.86** 注: 与模型组比较, *P<0.05, **P<0.01
3.实验结论
COPD 的重要特征是整个气道与肺实质的持续性炎症病变,氧化-抗氧化失衡,体内氧化应激增强。 初步药效结果表明, COPD模型大鼠在造模第 15天时同时予试验药物能显著降低相同压力下的气道阻 力, 减少氧化物的产生, 增加抗氧化剂的水平, 使氧化 /抗氧化系统趋于平衡, 减轻氧化物、 炎症介质等 对肺的损伤, 这与病理切片观察到的结果相一致。 同时, 给予羧甲司坦的阳性组大鼠胃肠道黏膜出现轻 度充血水肿, 大量炎细胞浸润等轻度刺激症状, 而各用药试验组仅少量炎细胞浸润, 表明各试验药物对 胃肠道基本无刺激。本发明的一些化合物对于发生溃疡的消化道的刺激性也低于羧甲司坦, 因此可用于 "消化道溃疡活动期患者 "(此类患者禁用羧甲司坦)。 工业实用性
本发明所提供的 S- (羧甲基) -半胱氨酸药物化合物及其制备方法和用途,特别是 S- (羧甲基) -L-半胱氨 酸铵盐一水结晶药物化合物。 该化合物是一种具有较均匀粒度分布的良好结晶, 性质稳定, 不易吸潮, 易于保存及制成相应药物制剂。 其制备方法简便易控, 收率高, 生产周期短, 环境污染小, 利于工业化 批量生产, 具有工业实用性。初步药效结果表明, 本发明所述化合物能显著降低 COPD模型大鼠气道阻 力, 减少氧化物的产生, 增加抗氧化剂的水平, 减轻氧化物、 炎症介质等对肺的损伤, 对胃肠道基本无 刺激性。 本发明所述化合物解决了因长期服用羧甲司坦而引起的胃肠粘膜损伤, 出血、 溃疡甚至穿孔等 严重副作用, 及胃部不适、 恶心、 呕吐、 肠胃道出血等不良反应。 成为羧甲司坦安全有效的替代物, 对 于 COPD等疾病的治疗具有重大意义。

Claims

权 利 要 求 书
1、 一种如通式 I所
Figure imgf000019_0001
( I )
其特征在于 R为药学上可接受的能与 S- (羧甲基) -半胱氨酸成盐的碱性化合物, X为 1~2的整 数, y为 1~5的整数。
2、 根据权利要求 1所述的 S- (羧甲基) -半胱氨酸的药物化合物, 其特征在于 R为氨或精氨酸。
3、 根据权利要求 1所述的 S- (羧甲基) -半胱氨酸的药物化合物, 其特征在于 R不包括赖氨酸。
4、 根据权利要求 1、 2中任一项所述的 S- (羧甲基) -半胱氨酸的药物化合物, 其特征在于该化合 物为 S- (羧甲基) -半胱氨酸 盐一水化合物, 结构如下:
Figure imgf000019_0002
αι)。
5、 根据权利要求 4所述的 S- (羧甲基) -半胱氨酸铵盐一水化合物, 其特征在于该化合物为 S- (羧 甲基) -L-半胱氨酸铵盐一 其结构式如下,
Figure imgf000019_0003
其特征在于其 X射线衍射图的衍射角在 8.5 ° 、 19.7° 、 21.5 ° 、 23.5 ° 、 27.5 ° 、 29.2 ° 和 32.5 ° 处具有特征峰。
6、 权利要求 5所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物,其特征在于该化合物为 S- (羧 甲基) -L-半胱氨酸铵盐一水结晶药物化合物, 其 KBr压片的红外图谱有 1600-1610 cm 1 , 1550-1559 cm 1470-1480 cm—1、 1400-1410 cm—1特征吸收峰。
7、 根据权利要求 4所述的 S- (羧甲基) -半胱氨酸的药物化合物, 其特征在于其右旋异构体, 为
S- (羧甲基) -D-半胱氨酸铵盐一水结晶化合物, 其结构如下:
Figure imgf000020_0001
8、 根据权利要求 1所述的 S- (羧甲基) -半胱氨酸的药物化合物的制备方法, 其特征在于使 S- (羧 甲基) -半胱氨酸溶解或悬浮于水中, 加入碱性化合物 R, 充分反应使固体溶清后, 往反应液加入析晶 溶剂使该结晶析出, 分离, 得 S- (羧甲基) -半胱氨酸的药物化合物结晶。
9、 根据权利要求 5、 6中任一项所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物的制备方法, 其特征在于将 S- (羧甲基) -L-半胱氨酸溶解或悬浮于水中, 在 20~60°C下, 加入氨水, 搅拌使其充分反 应, 反应液溶清后, 加入析晶溶剂, 使结晶析出, 分离得到的 S- (羧甲基) - L-半胱氨酸铵盐一水结晶 化合物。
10、 根据权利要求 9所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物的制备方法,其特征在于 析晶溶剂为含 C为 1~4的醇、 含 C为 3~6的酮、 含 C为 2~4的腈、 含 C为 2~6的醚、 含 C为 1~5的 酰胺的一种或一种以上的组合。
11、 根据权利要求 10所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物的制备方法, 其特征在 于含 C为 1~4的醇选自乙醇、异丙醇、 正丙醇、 正丁醇、 2-丁醇; 含 C为 3~6的酮选自丙酮、 甲乙酮、 戊酮; 含 C为 2~4的腈为乙腈、 丙腈; 含 C为 2~6的醚选自二噁垸、 四氢呋喃; 含 C为 1~5的酰胺 为 N, N-二甲基甲酰胺、 N, N-二甲基乙酰胺。
12、 药物组合物, 包含权利要求 5、 6中任一项所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合 物为有效成分以及可药用载体。
13、 权利要求 5、 6中任一项所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物用于制备祛痰药 物中的应用。
14、 权利要求 5、 6中任一项所述的 S- (羧甲基) -L-半胱氨酸铵盐一水药物化合物在制备预防和治 疗慢性阻塞性肺疾病药物中的应用。
PCT/CN2013/078856 2012-07-06 2013-07-05 一种s-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途 WO2014005543A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/508,761 US10251854B2 (en) 2012-07-06 2013-07-05 S-(carboxymethyl)-cysteine pharmaceutical compound and preparation method and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210234482.8 2012-07-06
CN201210234440.4A CN102863364B (zh) 2011-07-07 2012-07-06 S-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途
CN201210234440.4 2012-07-06
CN201210234482.8A CN102863365B (zh) 2011-07-07 2012-07-06 一种结晶药物化合物及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2014005543A1 true WO2014005543A1 (zh) 2014-01-09

Family

ID=49882642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078856 WO2014005543A1 (zh) 2012-07-06 2013-07-05 一种s-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途

Country Status (2)

Country Link
US (1) US10251854B2 (zh)
WO (1) WO2014005543A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA720096A (en) * 1965-10-19 Joullie Maurice S-carboxymethyl cysteine composition
EP0546272A1 (en) * 1991-12-12 1993-06-16 DOMPE' FARMACEUTICI S.p.A. S-carboxymethylcysteine lysine salt monohydrate and a process for the preparation thereof
CN102775334A (zh) * 2012-06-12 2012-11-14 宁波市镇海海德生化科技有限公司 L-赖氨酸-s-羧甲基-l-半胱氨酸盐的生产工艺
CN102863365A (zh) * 2011-07-07 2013-01-09 广州白云山制药股份有限公司广州白云山制药总厂 一种结晶药物化合物及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211127C1 (de) * 1982-03-26 1983-08-11 Degussa Ag, 6000 Frankfurt Verfahren zur Gewinnung von S-(Carboxymethyl)-(R)-cystein und S-(Carboxymethyl)-(S)-cystein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA720096A (en) * 1965-10-19 Joullie Maurice S-carboxymethyl cysteine composition
EP0546272A1 (en) * 1991-12-12 1993-06-16 DOMPE' FARMACEUTICI S.p.A. S-carboxymethylcysteine lysine salt monohydrate and a process for the preparation thereof
CN102863365A (zh) * 2011-07-07 2013-01-09 广州白云山制药股份有限公司广州白云山制药总厂 一种结晶药物化合物及其制备方法和用途
CN102863364A (zh) * 2011-07-07 2013-01-09 广州白云山制药股份有限公司广州白云山制药总厂 S-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途
CN102775334A (zh) * 2012-06-12 2012-11-14 宁波市镇海海德生化科技有限公司 L-赖氨酸-s-羧甲基-l-半胱氨酸盐的生产工艺

Also Published As

Publication number Publication date
US10251854B2 (en) 2019-04-09
US20170333374A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JPH07501539A (ja) N,n’−ジアセチルシスチンの有機塩
CN102863365B (zh) 一种结晶药物化合物及其制备方法和用途
KR20120099409A (ko) 결정질 메틸티오니늄 클로라이드(메틸렌 블루) 수화물
JP6656316B2 (ja) ハマナツメの使用方法、ハマナツメ抽出物の使用方法及び薬物混合物の使用方法
BRPI0618096A2 (pt) composições farmacêuticas de gálio e métodos
JP2022503890A (ja) 2-(1-アシルオキシ-n-ペンチル)安息香酸と塩基性アミノ酸またはアミノグアニジンによって形成される塩と、その製造方法及び用途
JP2022106788A (ja) 脂質化ペプチドの水溶性塩、その製造方法および用途
CA2949328C (en) Low substituted polymyxins and compositions thereof
WO2019134159A1 (zh) 一种白头翁皂苷b4的直肠粘膜给药制剂及其制备方法
JPH09511483A (ja) α−2−アドレノセプター作動剤として有用な6−(2−イミダゾリニルアミノ)キノリン化合物
US20090318454A1 (en) Novel antioxidants and methods of treatment
KR20210114962A (ko) 류코트리엔 수용체 길항제를 함유하는 신규 제제
US20200181064A1 (en) Pharmaceutically acceptable salts of fatty acids
JP2013505926A (ja) プロセス
CN116496205A (zh) 一种卡瑞斯汀的盐及其用途
WO2014005543A1 (zh) 一种s-(羧甲基)-半胱氨酸药物化合物及其制备方法和用途
KR20170084107A (ko) 레바프라잔 염산염 다형체 및 그의 제조 방법
WO2019144484A1 (zh) 一种斯诺普利单水合物晶型及其制备方法
CN108289968A (zh) 三芳基甲烷组合物和用于染色眼膜的染色组合物
WO2020249139A1 (zh) 一种5型磷酸二酯酶抑制剂的钾盐晶型b及其制备方法和应用
WO2022078483A1 (zh) 甾体季铵化合物及其制备方法、制剂和用途
TW202328073A (zh) Ep4拮抗劑化合物及其鹽、多晶型及其製備方法和用途
CN106749481A (zh) 甘草次酸类新化合物实体及其用途
CN102731430A (zh) 非布司他的新晶型和其制备方法以及应用
CN114249721A (zh) 长春胺peg衍生物与在制备治疗糖尿病周围神经病变、糖尿病足及肺纤维化药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12.06.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13812744

Country of ref document: EP

Kind code of ref document: A1