WO2014003000A9 - アルキル芳香族炭化水素の分離方法および分離装置 - Google Patents

アルキル芳香族炭化水素の分離方法および分離装置 Download PDF

Info

Publication number
WO2014003000A9
WO2014003000A9 PCT/JP2013/067383 JP2013067383W WO2014003000A9 WO 2014003000 A9 WO2014003000 A9 WO 2014003000A9 JP 2013067383 W JP2013067383 W JP 2013067383W WO 2014003000 A9 WO2014003000 A9 WO 2014003000A9
Authority
WO
WIPO (PCT)
Prior art keywords
complex
alkyl aromatic
aromatic hydrocarbon
acid
diluent
Prior art date
Application number
PCT/JP2013/067383
Other languages
English (en)
French (fr)
Other versions
WO2014003000A1 (ja
Inventor
潤也 西内
長尾 伸一
義孝 田中
北村 光晴
弘明 岡
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2014522639A priority Critical patent/JP6146411B2/ja
Priority to CN201380034869.1A priority patent/CN104411666B/zh
Priority to US14/411,289 priority patent/US9896397B2/en
Priority to KR1020147036424A priority patent/KR102048250B1/ko
Priority to EP13810190.2A priority patent/EP2868644B1/en
Priority to IN188DEN2015 priority patent/IN2015DN00188A/en
Priority to SG11201408633WA priority patent/SG11201408633WA/en
Publication of WO2014003000A1 publication Critical patent/WO2014003000A1/ja
Publication of WO2014003000A9 publication Critical patent/WO2014003000A9/ja
Priority to US15/713,972 priority patent/US10207967B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0426Counter-current multistage extraction towers in a vertical or sloping position
    • B01D11/043Counter-current multistage extraction towers in a vertical or sloping position with stationary contacting elements, sieve plates or loose contacting elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/152Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by forming adducts or complexes

Definitions

  • the present invention relates to a method for separating alkyl aromatic hydrocarbons, and more particularly, to isolate a desired alkyl aromatic hydrocarbon from a mixture of alkyl aromatic hydrocarbons containing a plurality of isomers to obtain a desired alkyl.
  • the present invention relates to a method for obtaining aromatic hydrocarbons with high purity and a separation apparatus for carrying out the method.
  • polyalkyl aromatic hydrocarbons such as xylene and mesitylene.
  • mixed xylene obtained from petroleum reformed oil or cracked gasoline contains four isomers of p-xylene, m-xylene, o-xylene, and ethylbenzene.
  • p-xylene hereinafter sometimes abbreviated as “PX”
  • MX m-xylene
  • the boiling point is 139 ° C.
  • o-xylene hereinafter sometimes abbreviated as “OX” has a boiling point of 144 ° C. and is close to each other.
  • a method for separating only a specific aromatic hydrocarbon from a mixture of aromatic hydrocarbons containing a plurality of isomers has been developed.
  • two methods are known as methods for industrially separating MX from mixed xylene.
  • One is a method in which only MX is adsorbed and separated from mixed xylene using an adsorbent having an affinity for MX.
  • the affinity for zeolite and other adsorbents can be obtained using the principle of liquid chromatogram.
  • a method is known in which MX is obtained by selectively adsorbing and separating strong MX from mixed xylene (see Patent Document 1).
  • MX uses other C8 aromatic hydrocarbon compounds (PX, OX, And MX is selectively extracted and separated from mixed xylene by utilizing its basicity stronger than ethylbenzene).
  • This method has an advantage that the selectivity of MX is higher than the method using the adsorbent described above. For example, when separating MX from a C8 aromatic hydrocarbon mixture, in the method using an adsorbent, the selectivity of MX with respect to OX which is a separation limit component is 2 (paragraph [0037] of Patent Document 1).
  • selectivity is 10 in the method of separating and extracting MX using hydrogen fluoride and boron trifluoride, which are super strong acids.
  • the method using a super strong acid as an extractant can be used if there is a difference in basicity among the isomer mixtures, in addition to the mixed xylene, from the isomer mixture of C9 alkyl aromatic hydrocarbon, It is possible to extract and separate only mesitylene which is specifically high.
  • Patent Document 2 supplies mixed xylene from the center of the extraction tower and liquid hydrogen fluoride from the top of the tower. And boron trifluoride are supplied, a diluent is supplied from the bottom of the column, and continuous countercurrent extraction is performed at a temperature of ⁇ 20 ° C. to + 30 ° C., and MX-HF-BF 3 complex is converted into excess fluoride.
  • a method for separating MX from mixed xylene by extraction into hydrogen has been proposed.
  • Patent Document 3 proposes that MX-HF-BF 3 complex is thermally decomposed in a decomposition tower, and hydrogen fluoride and boron trifluoride are isolated and recycled.
  • hexane is evaporated and refluxed as a decomposition aid, and MX is extracted from the bottom of the decomposition tower by decomposing the complex at a pressure of 2 to 10 atm and a tower bottom temperature of 131 to 217 ° C. It is described that hydrogen fluoride and boron trifluoride that are are recovered and recycled.
  • Non-Patent Document 1 describes the following reactions as complex formation reactions.
  • A represents an aromatic hydrocarbon
  • a ⁇ H + + BF 4 ⁇ represents an aromatic hydrocarbon-HF—BF 3 complex.
  • the extraction tower is cooled to a low temperature of ⁇ 20 ° C. to + 30 ° C. so as not to alter the complex when forming the MX-HF-BF 3 complex.
  • the MX-HF-BF 3 complex is altered by heat. Therefore, in order to perform thermal decomposition quickly while suppressing alteration of the complex, it is necessary to keep the bottom of the decomposition tower at a high temperature of 100 ° C. or higher.
  • the latent heat of hydrogen fluoride, the latent heat of the decomposition aid, etc. there is a problem that a large amount of energy is required to maintain the tower bottom at a high temperature.
  • an object of the present invention is to extract and separate alkyl aromatic hydrocarbons from a mixture containing at least one alkyl aromatic hydrocarbon and its isomer using a super strong acid such as hydrogen fluoride and boron trifluoride.
  • An object of the present invention is to provide a method for significantly reducing the energy required for separation in a method for separating a desired alkyl aromatic hydrocarbon.
  • Another object of the present invention is to provide a separation apparatus for performing the separation method.
  • the present inventors have obtained specific super strong acids such as hydrogen fluoride and boron trifluoride from alkyl aromatic hydrocarbons containing a plurality of isomers such as mixed xylene.
  • specific alkyl aromatic hydrocarbon is extracted and separated, the complex of the alkyl aromatic hydrocarbon and the super strong acid is decomposed using a specific leaving agent, thereby It was found that the heating when separating the strong acid can be almost eliminated, and as a result, the energy for industrially separating the alkyl aromatic hydrocarbon such as MX can be greatly reduced.
  • a super strong acid can be used as a super strong acid solution of a complex of a leaving agent and a super strong acid without isolating super strong acids (for example, hydrogen fluoride and boron trifluoride). It was recovered and was found to be recyclable as an extractant in the complex state. The present invention has been completed based on this finding.
  • a method for separating an alkyl aromatic hydrocarbon comprising: The alkyl aromatic hydrocarbon is extracted by adding a first diluent and an extractant composed of a super strong acid to a mixture containing at least one of the alkyl aromatic hydrocarbon and its isomer, and performing acid-base extraction. Separating the complex from the mixture after forming a complex with the superacid and A releasing agent having a relative basicity with respect to the alkyl aromatic hydrocarbon in the range of 0.06 to 10 and a second diluent are added to the complex, and the alkyl aromatic hydrocarbon and the releasing agent are added.
  • a method for separating alkyl aromatic hydrocarbons comprising: [2] The alkyl fragrance according to the above [1], further comprising the step of adding the release agent and super strong acid complex formed by the complex exchange to the mixture as an extractant together with the second diluent and recycling the mixture.
  • a releasing agent having a relative basicity with respect to the alkyl aromatic hydrocarbon in the range of 0.1 to 2.0 and a second diluent are added to the complex to remove the alkyl aromatic hydrocarbon and the releasing agent.
  • the method according to [1] or [2] above comprising: [4] The method according to any one of [1] to [3] above, wherein the mixture containing at least one alkyl aromatic hydrocarbon and its isomer is C8 alkylbenzene, C9 alkylbenzene, or C10 alkylbenzene. [5] The method according to [4] above, wherein the mixture containing one or more alkyl aromatic hydrocarbons and isomers thereof is a C8 alkylbenzene, and the alkyl aromatic hydrocarbon is m-xylene.
  • the super strong acid is a mixed super strong acid of Bronsted acid and Lewis acid.
  • the complex of the leaving agent and super strong acid is such that the number of moles of alkyl aromatic hydrocarbon in the mixture / number of moles of Lewis acid in the complex is in the range of 0.5 to 1.5.
  • the first diluent is added in an amount such that the volume of the first diluent / the number of moles of Lewis acid in the super strong acid is in the range of 50 mL / mol to 500 mL / mol, [6 ] Or the method according to [7].
  • the Lewis acid is at least one selected from the group consisting of boron trifluoride, tantalum pentafluoride, niobium pentafluoride, titanium tetrafluoride, phosphorus pentafluoride, antimony pentafluoride, and tungsten hexafluoride.
  • the first and / or second diluent comprises isohexane, 3-methylpentane, 2-methylhexane, 2-ethylhexane, decalin, tetrahydrodicyclopentadiene, ethylcyclohexane, methylcyclohexane, and methylcyclopentane;
  • a pipe supplying a complex solution of the leaving agent and the super strong acid, and the alkyl aromatic hydrocarbon is discharged from the bottom of the acid-base extraction tower as a complex solution of the alkyl aromatic hydrocarbon and the super strong acid.
  • the complex exchange column includes a tube for supplying a complex solution of the alkyl aromatic hydrocarbon and super strong acid discharged from the bottom of the acid-base extraction column, and a tube for supplying a second diluent and a desorbing agent.
  • a tube for discharging the extracted mixture of the alkyl aromatic hydrocarbon, the desorbing agent and the diluent from the top of the complex exchange column, and a desorbing agent after the complex exchange is performed.
  • An apparatus comprising: a pipe for discharging a complex solution with a super strong acid from the bottom of the complex exchange tower.
  • the energy required for separation in a method for separating desired alkyl aromatic hydrocarbons by extracting and separating alkyl aromatic hydrocarbons from a mixture containing at least one alkyl aromatic hydrocarbon and its isomer. can be greatly reduced.
  • FIG. 1 is a schematic view showing an embodiment of a separation apparatus for carrying out the separation method according to the present invention.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios of the devices and members are not limited to the illustrated ratios.
  • the separation method of the alkyl aromatic hydrocarbon in the present embodiment is as follows: A mixture containing at least one alkyl aromatic hydrocarbon and isomer thereof is added with a first diluent and an extractant composed of a super strong acid, and acid-base extraction is performed. Separating the complex from the mixture after forming a complex with the super strong acid; A releasing agent having a relative basicity with respect to the alkyl aromatic hydrocarbon in the range of 0.06 to 10 and a second diluent are added to the complex, and the alkyl aromatic hydrocarbon and the releasing agent are added. Separating the alkyl aromatic hydrocarbon from the complex by performing a complex exchange; Is a method for separating an alkyl aromatic hydrocarbon.
  • the method for separating alkyl aromatic hydrocarbons is a method of selectively extracting and separating alkyl aromatic hydrocarbons from a mixture containing at least one alkyl aromatic hydrocarbon and its isomer. It separates alkyl aromatic hydrocarbons with high purity.
  • high precision distillation Therefore, it is not realistic from an industrial viewpoint such as manufacturing cost and apparatus scale.
  • the separation method of this embodiment is particularly suitable for separating specific alkyl aromatic hydrocarbons from alkyl aromatic hydrocarbons containing a plurality of isomers having close boiling points.
  • a diluent and a super strong acid are added as an extractant to a mixture containing at least one alkyl aromatic hydrocarbon and its isomer, and acid-base extraction is performed. From this, an extract containing a complex of an alkyl aromatic hydrocarbon and a super strong acid in high purity is obtained. Thereafter, a high purity alkyl aromatic hydrocarbon can be separated from the extract by adding a leaving agent having a relative basicity within a specific range to the extract and performing complex exchange. Moreover, since the complex of the alkyl aromatic hydrocarbon and the super strong acid is formed by returning the complex of the releasing agent and the super strong acid formed by the complex exchange to the mixture again, the super strong acid is isolated. It can be recycled without doing.
  • the complex of the alkyl aromatic hydrocarbon and the super strong acid can be decomposed as in the conventional case because the complex of the release agent and the super strong acid can be recycled as an extractant without thermal decomposition.
  • no heat is required to isolate the super strong acid.
  • the energy for separating the alkyl aromatic hydrocarbon can be greatly reduced.
  • a mixture containing one or more alkyl aromatic hydrocarbons and isomers thereof is not particularly limited, but from the viewpoint of the number of isomers having close boiling points, C8 alkylbenzene, C9 alkylbenzene, or C10 alkylbenzenes are preferred.
  • the C8 alkylbenzene is a mixture containing two or more selected from the group consisting of p-xylene (PX), m-xylene (MX), o-xylene (OX), and ethylbenzene.
  • a mixture of the above-mentioned alkyl aromatic hydrocarbon isomers is used as a raw material, but a compound other than the isomer may be contained, and the alkyl aromatic carbonization is performed on the entire mixture. It is preferable that 90% or more of hydrogen is contained on a mass basis.
  • the separation method includes a mixture of alkyl aromatic hydrocarbons containing isomers having a small boiling point difference as described above, and the most basic alkyl aromatic hydrocarbon (hereinafter referred to as “specific alkyl aromatic” in the mixture). Is also selectively extracted and separated.
  • specific alkyl aromatic the most basic alkyl aromatic hydrocarbon
  • the most basic one is MX
  • the most basic one is mesitylene
  • the most basic one is C10. Is isodulene.
  • the separation method of the alkyl aromatic hydrocarbon in the present embodiment is as follows: A mixture containing at least one alkyl aromatic hydrocarbon and isomer thereof is added with a first diluent and an extractant composed of a super strong acid, and acid-base extraction is performed. After the complex with the super strong acid is formed, a step (acid-base extraction step) of separating the complex from the mixture is included.
  • a super strong acid is added as an extractant to a mixture containing at least one of the specific alkyl aromatic hydrocarbons and isomers thereof.
  • “super strong acid” means an acid having an acid strength stronger than 100% sulfuric acid having Hammett acidity function H 2 O of ⁇ 11.93.
  • the “super strong acid” includes not only an acid alone but also an acid solution.
  • Super strong acids form complexes with the most basic alkyl aromatic hydrocarbons in the mixture.
  • alkyl aromatic hydrocarbon-super strong acid complex By adding a diluent to a mixture containing this complex (hereinafter also referred to as “alkyl aromatic hydrocarbon-super strong acid complex”) and stripping components other than the specific alkyl aromatic hydrocarbon in the mixture.
  • the specific alkyl aromatic hydrocarbon can be extracted from the mixture in a complex state.
  • the super strong acid used as an extractant are not limited to, the Bronsted acids, for example, fluorosulfonic acid (FSO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H) and the like. Further, a mixed super strong acid in which Bronsted acid and Lewis acid are combined may be used.
  • the Bronsted acids for example, fluorosulfonic acid (FSO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H) and the like.
  • FSO 3 H fluorosulfonic acid
  • CF 3 SO 3 H trifluoromethanesulfonic acid
  • a mixed super strong acid in which Bronsted acid and Lewis acid are combined may be used.
  • mixed super strong acids include Bronsted acids such as hydrogen fluoride (HF), hydrochloric acid (HCl), fluorosulfuric acid (FSO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H), and sulfuric acid (H 2 SO 4 ) and at least one selected from the group consisting of antimony pentafluoride (SbF 5 ), boron trifluoride (BF 3 ), aluminum chloride (AlCl 3 ), and tantalum pentafluoride (TaF 5 ).
  • Bronsted acids such as hydrogen fluoride (HF), hydrochloric acid (HCl), fluorosulfuric acid (FSO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H), and sulfuric acid (H 2 SO 4 ) and at least one selected from the group consisting of antimony pentafluoride (SbF 5 ), boron trifluoride (BF 3 ), aluminum chloride (AlCl 3 ), and tantalum
  • a super strong acid that combines at least one selected from the group consisting of niobium pentafluoride (NbF 5 ), titanium tetrafluoride (TiF 4 ), and phosphorus pentafluoride (PF 5 ).
  • a super strong acid in which the alkyl aromatic hydrocarbon-super strong acid complex exists in a liquid form at a temperature range of ⁇ 50 ° C. to + 20 ° C. is preferable.
  • it is preferable to use a mixture of hydrogen fluoride and the above Lewis acid and more preferably, a mixture of hydrogen fluoride (HF) and boron trifluoride (BF 3 ), hydrogen fluoride (HF) and five fluorine.
  • an alkyl aromatic hydrocarbon-super strong acid complex or a leaving agent-super strong acid complex after a complex exchange reaction described later is a Lewis acid (gas). It is preferable to add in such an amount that the complex state can be maintained without releasing.
  • the molar ratio of Bronsted acid to Lewis acid in the super strong acid is preferably in the range of 5-50, more preferably 5-20. Range. If the molar ratio of Bronsted acid to Lewis acid in the super strong acid is in the above range, the alkylaromatic hydrocarbon-super strong acid complex and / or the leaving agent-super There is a tendency that the strong acid complex can be stably maintained.
  • the Lewis acid can be effectively prevented from being released as a gas from the super strong acid complex solution, the amount of the alkyl aromatic hydrocarbon and the desorbing agent transferred to the oil phase side including the diluent and the extraction residue is reduced. It tends to be reduced.
  • hydrogen fluoride is used as the Bronsted acid in the above ratio, it is particularly preferable because the releasing agent-superstrong acid complex can be easily controlled in a liquid state.
  • first diluent used in the acid-base extraction step
  • second diluent the diluent used in the complex exchange step
  • each diluent is shown individually or the mixture of a 1st diluent and a 2nd diluent is shown.
  • the first diluent added in the acid-base extraction step is a component other than the complex in the component extracted by the extractant, that is, an alkyl aromatic hydrocarbon other than the specific alkyl aromatic hydrocarbon that is physically dissolved by the complex.
  • the first diluent is a specific alkyl aromatic hydrocarbon-super strong acid complex obtained by complex exchange of the releasing agent-super strong acid complex. It is preferable to add in an amount sufficient to
  • the first diluent can be used without particular limitation as long as it dissolves alkyl aromatic hydrocarbons.
  • the first diluent is a secondary agent such as disproportionation reaction or polymerization that occurs in the presence of a super strong acid. From the viewpoint of suppressing the reaction, it is preferable to use an aliphatic or alicyclic saturated hydrocarbon.
  • Examples of the aliphatic or alicyclic saturated hydrocarbon include n-hexane, n-heptane, n-decane, isohexane, 3-methylpentane, 2-methylhexane, 2-ethylhexane, cis-decalin, tetrahydrodi Examples include cyclopentadiene, ethylcyclohexane, methylcyclohexane, methylcyclopentane, cis-1,2-dimethylcyclohexane, 1,3-dimethyladamantane, decahydroacenaphthene, and the like. These may be used alone or in combination of two or more. be able to.
  • saturated hydrocarbon In addition to the saturated hydrocarbon, other saturated hydrocarbons that do not contain a quaternary carbon atom may be used in combination, but in this case, the volumetric efficiency of the apparatus may be reduced. Moreover, it is preferable that the said 1st diluent does not contain the impurity which has an unsaturated bond and the impurity containing atoms other than carbon and hydrogen.
  • isohexane, 3-methylpentane, 2-methylhexane, 2-ethylhexane, cis-decalin, tetrahydrodicyclopentadiene, ethylcyclohexane, methylcyclohexane are used from the viewpoint of suppressing the disproportionation reaction.
  • Methylcyclopentane, cis-1,2-dimethylcyclohexane, 1,3-dimethyladamantane, and decahydroacenaphthene are more preferable, and methylcyclopentane, cis-decalin, decahydroacenaphthene, cis-1,2, -Dimethylcyclohexane, 1,3-dimethyladamantane, decahydroacenaphthene.
  • the separation method of the alkyl aromatic hydrocarbon in the present embodiment is as follows: A releasing agent having a relative basicity with respect to the alkyl aromatic hydrocarbon in the range of 0.06 to 10 and a second diluent are added to the complex, and the alkyl aromatic hydrocarbon and the releasing agent are added. It includes a step (complex exchange step) of separating the alkyl aromatic hydrocarbon from the complex by performing complex exchange.
  • the alkyl aromatic hydrocarbon extracted and separated as an alkyl aromatic hydrocarbon-super strong acid complex by the acid-base extraction step is subjected to complex state exchange (complex exchange) by adding a specific leaving agent to the complex,
  • complex state exchange complex exchange
  • the desired alkyl aromatic hydrocarbon is separated. That is, the following equilibrium reaction is established between the alkyl aromatic hydrocarbon-super strong acid complex and the leaving agent-super strong acid complex after the complex exchange.
  • a 1 is an alkyl aromatic hydrocarbon
  • a 1 H + is an alkyl aromatic hydrocarbon-super strong acid complex
  • a 2 is a leaving agent
  • a 2 H + is a leaving agent— Super strong acid complex.
  • a method for calculating the relative basicity of the desorbing agent will be described by taking as an example the case where MX is used as the alkyl aromatic hydrocarbon and HF—BF 3 is used as the super strong acid.
  • An autoclave with an electromagnetic stirrer with an internal volume of 500 mL (manufactured by SUS316L) capable of controlling the temperature was mixed with anhydrous hydrogen fluoride, MX, hexane, and a desorbing agent in a molar ratio of 4.0: 0.32: 0.95: 0.66. The contents are stirred and the liquid temperature is kept at -10 ° C.
  • a leaving agent having a relative basicity with respect to the alkyl aromatic hydrocarbon to be separated (eg, MX) within the above range, between the alkyl aromatic hydrocarbon-superacid complex and the leaving agent, and Complex state exchange between the alkyl aromatic hydrocarbon and the leaving agent-superacid complex proceeds easily.
  • the relative basicity is less than 0.06, acid-base extraction becomes easy, but the complex exchange reaction between the alkyl aromatic hydrocarbon-superstrong acid complex and the releasing agent does not easily proceed, and a large amount of the releasing agent Is required. Therefore, when it implements industrially, the fall of the volumetric efficiency of the reaction container in which complex exchange with a releasing agent is performed will be caused.
  • a desorbing agent an aromatic hydrocarbon can be preferably used. Among them, it is more preferable to use one that can stably form a desorbing agent-super strong acid complex.
  • the releasing agent alone and the releasing agent-superstrong acid complex are in the liquid state in the range of ⁇ 50 to + 20 ° C.
  • the releasing agent-super strong acid complex is particularly preferable because it can be easily controlled into a liquid state by adjusting the ratio of hydrogen fluoride.
  • Non-Patent Document 1 the detailed measurement method is omitted, but the relative basicity of the alkyl aromatic hydrocarbon is described when the relative basicity of p-xylene (PX) is 1. Yes.
  • PX p-xylene
  • the relative basicity of C8 to C9 alkyl aromatic hydrocarbons is as shown in Table 1 below, and the elimination agent may be appropriately selected with reference to these data.
  • an aromatic hydrocarbon having a boiling point higher than that of the specific alkyl aromatic hydrocarbon to be separated is used from the viewpoint that the specific alkyl aromatic hydrocarbon can be more easily separated by distillation operation. It is preferable to use an aromatic hydrocarbon having a boiling point in the range of 145 to 400 ° C.
  • examples of the leaving agent include 3-ethyltoluene, 1-methyl-3-propylbenzene, metadiethylbenzene, 1-fluoronaphthalene, 1,3, 5-triethylbenzene, 3-methylbiphenyl, fluoro-2,4,6-trimethylbenzene, fluoro-2,3,6-trimethylbenzene, fluoro-3,4,5-trimethylbenzene, or fluoro-2,3 5-trimethylbenzene, 1,3-dimethyl-4- (2,2-dimethylpropyl) benzene, 1,3-dimethyl-5- (2,2-dimethylpropyl) benzene, 1-methyl-3,5-di (2,2-dimethylpropyl) benzene, 1-isobutyl-3-methylbenzene and the like can be preferably used.
  • the releasing agents can be used alone or in admixture of two or more.
  • C8 alkylbenzenes are used as alkyl aromatic hydrocarbons, and MX is extracted from the mixture as specific alkyl aromatic hydrocarbons, 3-ethyltoluene, metadiethylbenzene or these as a desorbing agent.
  • a mixture of these can be suitably used.
  • C9 alkylbenzenes are used as alkyl aromatic hydrocarbons and mesitylene is extracted from the mixture as specific alkyl aromatic hydrocarbons, 1,3,5-triethylbenzene or the like is used as a desorbing agent. It can be preferably used.
  • the amount of the releasing agent added is not particularly limited as long as it can be complex-exchanged with the alkyl aromatic hydrocarbon-super strong acid complex, but the amount of the specific alkyl aromatic hydrocarbon-super strong acid complex, the relative base of the releasing agent It is appropriately determined according to the degree and the ability of the reaction vessel for performing the complex exchange.
  • the amount of addition of the desorbing agent should be such that complex exchange is possible when the number of theoretical plates in the reaction vessel for complex exchange is in the range of 5 to 10 stages. preferable.
  • the molar ratio with respect to the Lewis acid in the complex of the alkyl aromatic hydrocarbon and the super strong acid is used. It is preferable to add the releasing agent in such an amount as to be in the range of 1-15.
  • the addition amount of the leaving agent within the above range, the complex exchange reaction between the alkyl aromatic hydrocarbon-Bronsted acid-Lewis acid complex and the leaving agent can easily proceed.
  • the concentration of the extracted alkyl aromatic hydrocarbon tends to increase, and the distillation efficiency tends to be improved.
  • the amount should be in the range of 1.1 to 10 in molar ratio to the Lewis acid in the complex of alkyl aromatic hydrocarbon and super strong acid. More preferred.
  • the alkyl aromatic hydrocarbon separated by the complex exchange becomes a mixed solution of the desorbing agent and the second diluent. Extracted and separated, and only alkyl aromatic hydrocarbons can be obtained by known means such as distillation. Therefore, the second diluent is preferably added in such an amount that the super strong acid solution and the oil phase (mixed solution of the alkyl aromatic hydrocarbon, the releasing agent, and the second diluent) can be separated. .
  • the addition amount of the second diluent that can separate the super strong acid solution and the oil phase and suppress the disproportionation reaction of the releasing agent is a mass ratio (second The weight of the diluent / the weight of the releasing agent is preferably in the range of 0.001 to 1, more preferably in the range of 0.01 to 0.25.
  • the same one as the first diluent described above can be used.
  • a mixture of a releasing agent and a super strong acid formed by complex exchange and a second diluent together with one or more alkyl aromatic hydrocarbons and isomers thereof as an extractant is preferable to further include a step of adding to and recycling.
  • the leaving agent-superacid complex formed by complex exchange is continuously added to the original mixture and recycled without isolating superacids (eg, hydrogen fluoride and Lewis acid).
  • superacids eg, hydrogen fluoride and Lewis acid
  • the leaving agent-super strong acid complex added to the original mixture may contain a part of the alkyl aromatic hydrocarbon-super strong acid complex that could not be completely exchanged in the complex exchange step.
  • the alkyl aromatic hydrocarbon-superstrong acid complex discharged after the acid-base extraction step contains an alkyl that is simultaneously with the acid-base extraction.
  • a part of the leaving agent-superstrong acid complex that could not complete the complex exchange with the aromatic hydrocarbon may be contained.
  • the above leaving agent-super strong acid complex is added again to the mixture containing the alkyl aromatic hydrocarbon and its isomer, so that the complex exchange is performed again, and the alkyl aromatic hydrocarbon is exchanged with the super strong acid. Acid-base extraction is performed as a complex. Therefore, the first diluent added to the reaction vessel in which complex formation is performed is the other non-complexed alkyl aromatic hydrocarbon that is physically dissolved in the super strong acid solution of the alkyl aromatic hydrocarbon-super strong acid complex. It is preferable to add (that is, an isomer) in an amount capable of stripping.
  • the amount of the first diluent (diluent volume (mL) / super amount) with respect to the amount of Lewis acid in the super strong acid solution.
  • the number of moles of Lewis acid in the strong acid solution is preferably in the range of 50 mL / mol to 500 mL / mol, more preferably in the range of 100 mL / mol to 300 mL / mol.
  • the super strong acid solution containing the leaving agent-super strong acid complex is added to the mixture containing the alkyl aromatic hydrocarbon and its isomer, whereby the complex exchange is performed again and the desorption is performed. Since the super strong acid solution containing the agent-super strong acid complex functions as an extractant, the alkyl aromatic hydrocarbon in the mixture is extracted as the alkyl aromatic hydrocarbon-super strong acid complex by acid-base extraction. For example, when a mixture of Bronsted acid and Lewis acid is used as a super strong acid, in order to perform complex exchange and acid-base extraction, a super strong acid solution containing a desorbing agent-super strong acid complex is used as an extractant.
  • the number of moles of alkyl aromatic hydrocarbon in the mixture / number of moles of Lewis acid in the complex ranges from 0.5 to 1.5.
  • the separation apparatus for alkyl aromatic hydrocarbons in the present embodiment is: A separation apparatus comprising an acid-base extraction tower and a complex exchange tower, The acid-base extraction column is extracted from a tube for supplying a mixture containing one or more alkyl aromatic hydrocarbons and isomers thereof, a tube for supplying a first diluent, and a bottom of the complex exchange column. A pipe supplying a complex solution of the leaving agent and the super strong acid, and the alkyl aromatic hydrocarbon is discharged from the bottom of the acid-base extraction tower as a complex solution of the alkyl aromatic hydrocarbon and the super strong acid.
  • the complex exchange column includes a tube for supplying a complex solution of the alkyl aromatic hydrocarbon and super strong acid discharged from the bottom of the acid-base extraction column, and a tube for supplying a second diluent and a desorbing agent.
  • a tube for discharging the extracted mixture of the alkyl aromatic hydrocarbon, the desorbing agent and the diluent from the top of the complex exchange column, and a desorbing agent after the complex exchange is performed.
  • FIG. 1 is a schematic view showing an embodiment of a purification apparatus for carrying out the purification method according to the present invention.
  • FIG. 1 is an example provided with a pipe 5 for performing a step of adding a complex of a desorbing agent and a super strong acid together with a second diluent as an extractant to the mixture for recycling.
  • FIG. 1 shows that from the lower side of the complex exchange column, the second diluent is supplied through the tube 2-1, the desorbing agent is supplied through the tube 2-2, and both are mixed at the lower portion of the column.
  • the second diluent and the releasing agent may be mixed in advance and supplied in one tube.
  • description will be made using an example of purifying MX by extracting and separating MX having the strongest basicity from mixed xylene, which is an alkyl aromatic hydrocarbon, using a super strong acid.
  • mixed xylene as a raw material is supplied to an acid-base extraction column 6 for extracting MX in mixed xylene as an MX-super strong acid complex through a tube 7.
  • the first diluent is supplied to the acid-base extraction tower 6 from a pipe 9 disposed below the acid-base extraction tower.
  • the super strong acid solution of the desorbing agent-super strong acid complex extracted from the bottom 5 of the complex exchange tower 1 for performing the complex exchange reaction of the MX-super strong acid complex with the desorbing agent is It is supplied from above the base extraction column 6.
  • a complex exchange between the leaving agent-super strong acid complex and MX is performed, and MX is acid-base extracted as the MX-super strong acid complex.
  • the super strong acid solution of the releasing agent-super strong acid complex can be said to be a Bronsted acid solution of the releasing agent-Bronsted acid-Lewis acid complex.
  • the super strong acid solution of MX-super strong acid complex can also be said to be a Bronsted acid solution of MX-Bronsted acid-Lewis acid complex.
  • the super strong acid solution of MX-super strong acid complex extracted from the acid-base extraction tower 6 is supplied from above the complex exchange tower 1 through the pipe 3. Further, from the lower side of the complex exchange tower, the second diluent is supplied through the pipe 2-1, and the desorbing agent is supplied through the pipe 2-2, and both are mixed in the lower part of the tower. In the complex exchange tower 1, the MX-superacid complex solution and the mixed solution of the second diluent and the desorbing agent are brought into countercurrent contact. Here, complex exchange is performed, and the MX-super strong acid complex is separated into MX and a leaving agent-super strong acid complex.
  • the separated MX is continuously extracted from the top 4 of the complex exchange tower 1 as a mixed liquid of excess desorbent and diluent. Further, as described above, the complex-exchanged leaving agent-super strong acid complex is continuously withdrawn from the bottom 5 of the complex exchange tower 1 as a super strong acid solution, and is again extracted by the tube 5 through the acid-base extraction tower. By being supplied to 6, it is recycled.
  • the separation device in the present embodiment distills the mixed liquid composed of the alkyl aromatic hydrocarbon, the desorbing agent and the diluent discharged from the complex exchange tower to obtain the alkyl aromatic hydrocarbon, the desorbing agent and the diluent. It is preferable to further comprise a distillation column for separating the components.
  • the mixed solution composed of the desorbing agent discharged from the top 11 of the acid-base extraction column 6, the extracted residual xylene and the diluent is passed through a known distillation column (not shown), Separated into xylene, desorbent and diluent.
  • the separation apparatus in the present embodiment distills a mixed solution composed of the desorbing agent discharged from the acid-base extraction tower, the extracted non-extracted extracted isomer, and the diluent, It is preferable to further comprise a distillation column for separating the body and diluent.
  • the mixed liquid composed of MX, the desorbing agent and the diluent discharged from the top 4 of the complex exchange column 1 passes through a known distillation column (not shown), and then the MX, desorbing agent and diluent are mixed. Separated into each. In this way, high purity MX can be separated from the mixed xylene.
  • the complex exchange column 1 and the acid-base extraction column 6 known means applicable to the liquid-liquid extraction operation system can be used without particular limitation, and packed column, perforated plate column, perforated plate pulse column, acid with stirrer A base extraction tower, WINRAY (registered trademark), a mixer settler, or the like can be suitably used. Among these, a type having a high throughput per unit cross-sectional area and a high extraction efficiency can be preferably used.
  • the internal temperatures of the complex exchange column 1 and the acid-base extraction column 6 are preferably maintained in the temperature range of ⁇ 50 ° C. to + 20 ° C., and more preferably the temperature range is ⁇ 30 ° C. to 0 ° C.
  • the complex alteration tends to be reduced. From the above viewpoint, it can be said that it is preferable to keep the temperature as low as possible. However, excessive cooling has the disadvantage of increasing the separation cost.
  • the internal pressure of the complex exchange column 1 and acid-base extraction column 6 is higher than the vapor pressure of the MX-HF-BF 3 complex and DatsuHanarezai -HF-BF 3 complex
  • a pressure that does not cause problems when the tower is operated is preferably selected.
  • the internal pressures of the complex exchange column 1 and the acid-base extraction column 6 are preferably in the pressure range of 0.2 MPa to 10 MPa, more preferably in the pressure range of 0.25 MPa to 1 MPa. If the internal pressure is too low, boron trifluoride (gas) is released from the HF-BF 3 complex, and the complex state may not be maintained. On the other hand, if the internal pressure is too high, it is necessary to prepare a tower having a material and structure capable of withstanding the pressure, which tends to increase the separation cost.
  • the molar ratio of MX (manufactured by Mitsubishi Gas Chemical Co., Inc.), 3-ethyltoluene (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.), and n-hexane (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) is 1 : 122.9 g of raw material liquid (MX: 0.20 mol, 3-ethyltoluene: 0.41 mol, n-hexane: 0.59 mol) mixed at a ratio of 2: 3 was added to the reactor at 4 g / min. Supplied in proportion.
  • the obtained hydrogen fluoride solution phase and the oil phase were each neutralized to obtain an oil component dissolved in the hydrogen fluoride solution and an oil component obtained by removing a trace amount of acid from the oil phase.
  • the relative basicity of 3-ethyltoluene determined from the reaction results obtained by gas chromatography analysis was 0.52.
  • the analysis was performed using gas chromatography (GC-14B, manufactured by Shimadzu Corporation), and a calibration curve was prepared and evaluated using n-decane (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) as an internal standard substance.
  • n-decane reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • ULBON Xylene Master inner diameter 0.32 mm ⁇ , length 50 m
  • Shinwa Kako Co., Ltd. was used as a capillary column.
  • the temperature raising program the temperature was raised from 70 ° C. to 150 ° C. at a rate of 2 ° C./min and held for 30 minutes.
  • Sample 2 Relative basicity was measured in the same manner as Sample 1 except that 1-fluoronaphthalene (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-ethyltoluene. The relative basicity of 1-fluoronaphthalene was 0.37.
  • Sample 3 Relative basicity was measured in the same manner as Sample 1, except that fluoro-2,3,4,6-tetramethylbenzene (manufactured by Shin Nippon Pharmaceutical Co., Ltd.) was used instead of 3-ethyltoluene. .
  • the relative basicity of 1-fluoro-2,3,4,6-tetramethylbenzene was 0.29.
  • Sample 4 Relative basicity was measured in the same manner as Sample 1 except that metadiethylbenzene (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-ethyltoluene. The relative basicity of metadiethylbenzene was 0.28.
  • Sample 5 Relative basicity was measured in the same manner as Sample 1 except that fluoro-2,4,6-trimethylbenzene (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-ethyltoluene. The relative basicity of fluoro-2,4,6-trimethylbenzene was 0.16.
  • Sample 6 Relative basicity was measured in the same manner as Sample 1 except that pseudocumene (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 3-ethyltoluene. The relative basicity of pseudocumene was 1.63.
  • Sample 7 Relative basicity was measured in the same manner as Sample 1, except that mesitylene (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 3-ethyltoluene. The relative basicity of mesitylene was 5.00.
  • Sample 8 Relative basicity was measured in the same manner as Sample 1 except that OX (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 3-ethyltoluene. The relative basicity of OX was 0.04.
  • Sample 9 Relative basicity was measured in the same manner as Sample 1, except that 1,3,5-triethylbenzene (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-ethyltoluene.
  • the relative basicity of 1,3,5-triethylbenzene was 3.52.
  • Sample 10 Relative basicity was measured in the same manner as Sample 1 except that ethylbenzene (reagent grade, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-ethyltoluene.
  • the relative basicity of ethylbenzene was 0.02.
  • the amount of MX-HF-BF 3 complex and MX in each step described later is determined by extracting each hydrogen fluoride solution phase and oil phase into ice water, respectively, and with respect to the obtained hydrogen fluoride solution phase and oil phase. Each was neutralized to obtain an oil component dissolved in the hydrogen fluoride solution and an oil component obtained by removing a small amount of acid from the oil phase, and then using gas chromatography (GC-14B, manufactured by Shimadzu Corporation). , N-decane (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used as an internal standard substance, and was evaluated by preparing a calibration curve.
  • GC-14B gas chromatography
  • ULBON Xylene Master (inner diameter: 0.32 mm ⁇ , length: 50 m) manufactured by Shinwa Kako Co., Ltd. was used.
  • the temperature was raised from 70 ° C. to 150 ° C. at a rate of 2 ° C./min and held for 30 minutes.
  • Example 1 [MX acid-base extraction step] As raw materials, ethylbenzene, p-xylene, m-xylene, and o-xylene (all reagent grades, manufactured by Wako Pure Chemical Industries, Ltd.) are contained at 14%, 19%, 41%, and 24%, respectively, on a mass basis. A xylene mixture mixed in this manner was used.
  • a rotating disk extraction tower (made of material SUS316L) having an inner diameter of 45 mm and a total length of 2,000 mm with a total of 52 rotating disks inside is maintained at 0.4 ° C. with a temperature of 0 ° C. and nitrogen pressure in the middle of the extraction tower.
  • the xylene mixture is supplied from the provided supply pipe at a rate of 524 g / hour, and 524 g of hexane (manufactured by Gordo Co., Ltd.) containing 39 mol% of methylcyclopentane as a diluent is supplied from the pipe provided at the bottom of the extraction tower. Supplied at a rate of / hour.
  • MX extracted with hydrogen fluoride and boron trifluoride was continuously discharged as a hydrogen fluoride solution of MX-HF-BF 3 complex from a tube provided at the bottom of the extraction tower at a rate of 1370 g / hr. .
  • mixed components other than the complex solution were continuously discharged from the tube provided at the top of the extraction tower at a rate of 1534 g / hour.
  • Complex solution discharged from the column bottom, MX-HF-BF 3 are included and complex and meta diethylbenzene -HF-BF 3 complex, the molar ratio is 60: was 8.
  • MX extraction rate (%) (([number of moles of MX-HF-BF 3 complex discharged from the extraction tower] ⁇ [number of moles of MX-HF-BF 3 complex supplied to the extraction tower]) / [supplied] Number of moles of MX] in the xylene mixture) ⁇ 100
  • a rotary disk extraction tower (material SUS316L) having an inner diameter of 45 mm and a total length of 1,000 mm equipped with a total of 26 rotary disks inside is maintained at a column temperature of 0 ° C. and a nitrogen pressure of 0.4 MPa. From the tube provided in the upper stage, the complex solution discharged in the MX extraction step was supplied at a rate of 1367 g / hour.
  • MX which had undergone complex exchange with the desorbent in the complex exchange tower was continuously discharged at a rate of 1988 g / hr from the tube provided at the top of the complex exchange tower as a mixed liquid of the desorbent and diluent.
  • concentrations of MX and metadiethylbenzene in the discharged mixture were 11.2% and 55.2%, respectively, on a mass basis.
  • a hydrogen fluoride solution of metadiethylbenzene-HF-BF 3 complex was continuously discharged at a rate of 1843 g / hr from a tube provided at the bottom of the complex exchange column.
  • MX complex exchange rate (%) 100- (number of moles of [MX-HF-BF 3 complex discharged from complex exchange tower]) / ([MX-HF-BF 3 complex supplied to complex exchange tower]) Number of moles) x 100
  • MX yield 81% when MX was separated from the raw material xylene mixture through the MX acid-base extraction step and the complex exchange step.
  • MX was isolated by distilling the mixed solution containing MX discharged from the tube provided at the top of the extraction tower.
  • distillation was performed at a column top pressure of 31 kPa to separate into a component mainly containing MX and a component mainly containing diethylbenzene higher than the boiling point of MX.
  • Example 2 The above operation was performed in the same manner as in Example 1 except that 3-ethyltoluene was used instead of metadiethylbenzene as the releasing agent.
  • the MX extraction rate in the MX extraction step is 90%
  • the MX complex exchange rate in the complex exchange step is 98%
  • MX is extracted from the raw material xylene mixture through the MX extraction step and the complex exchange step.
  • the MX yield upon separation was 88%.
  • Example 3 The above operation was performed in the same manner as in Example 1 except that pseudocumene was used instead of metadiethylbenzene as the desorbing agent.
  • the MX extraction rate in the MX extraction step is 74%
  • the MX complex exchange rate in the complex exchange step is 100%
  • MX is extracted from the raw material xylene mixture through the MX extraction step and the complex exchange step.
  • the MX yield upon separation was 74%.
  • Example 4 The above operation was performed in the same manner as in Example 1 except that fluoro-2,4,6-trimethylbenzene was used as a desorbing agent instead of metadiethylbenzene.
  • the MX extraction rate in the MX extraction step is 93%
  • the MX complex exchange rate in the complex exchange step is 70%
  • MX is separated from the raw material xylene mixture through the MX extraction step and the complex exchange step.
  • the MX yield of was 65%.
  • Example 5 The above operation was performed in the same manner as in Example 1 except that mesitylene was used in place of metadiethylbenzene as a desorbing agent.
  • the MX extraction rate in the MX extraction step is 53%
  • the MX complex exchange rate in the complex exchange step is 100%
  • MX is separated from the raw material xylene mixture through the MX extraction step and the complex exchange step.
  • the MX yield of was 53%.
  • Example 1 The above operation was performed in the same manner as in Example 1 except that o-xylene (OX) was used in place of metadiethylbenzene.
  • the MX extraction rate in the MX extraction step is 71%
  • the MX complex exchange rate in the complex exchange step is 1.6%
  • MX is separated from the raw material xylene mixture through the MX extraction step and the complex exchange step.
  • the MX yield was 1%.
  • Number of moles of MX-HF-BF 3 complex relative to the total number of moles of aromatic hydrocarbons having 8 carbon atoms (ethylbenzene, p-xylene, MX, and o-xylene) in the hydrogen fluoride solution, ie, hydrogen fluoride solution MX component / total C8 aromatic hydrocarbon molar ratio) and MX complex exchange rate in the complex exchange step were as shown in Table 3 below.
  • examples and comparative examples are described in the order of relative basicity of the releasing agents used.
  • [MX acid-base extraction step] A rotary disk extraction tower (made of material SUS316L) having an inner diameter of 45 mm and a total length of 2,000 mm with a total of 52 rotary disks inside is maintained at 0.4 MPa with a tower temperature of 0 ° C. and nitrogen pressure, and is placed at the bottom of the extraction tower. From the provided tube, hexane (manufactured by Gordo Co., Ltd.) containing 39 mol% of methylcyclopentane as a diluent was supplied at a rate of 524 g / hour.
  • MX extracted with hydrogen fluoride and boron trifluoride was continuously discharged as a hydrogen fluoride solution of MX-HF-BF 3 complex from a tube provided at the bottom of the extraction tower at a rate of 1429 g / hr. .
  • mixed components other than the complex solution were continuously discharged from the tube provided at the top of the extraction tower at a rate of 1005 g / hour.
  • the molar ratio of MX, HF and BF 3 in the complex solution discharged from the column bottom was 0.39: 5: 0.5.
  • the number of moles of MX-HF-BF 3 complex in the discharged complex solution (hydrogen fluoride solution) was 0.995 with respect to the total number of moles of the xylene mixture in the complex solution.
  • MX extraction rate (%) ([number of moles of MX in the complex solution discharged from the bottom of the extraction tower]) / (number of moles of [MX in the supplied mixture]) ⁇ 100
  • the obtained hexane solution was neutralized to obtain an oil layer.
  • the MX complex decomposition rate and MX recovery rate were calculated from the reaction results obtained by gas chromatography analysis, and were 99.9% and 99.9%, respectively.
  • the complex decomposition rate and MX recovery rate were calculated by the following formulas. From the above results, the MX yield was 98.4% when MX was separated from the raw material xylene mixture through the MX acid-base extraction step and the complex decomposition step.
  • MX was isolated in the same manner as in Example 1 using a hexane solution containing MX discharged from the bottom of the decomposition tower.
  • the purity of the obtained MX was 99.7%, and the distillation recovery rate of MX was 78%.
  • the complex decomposition tower in order to decompose the complex without deteriorating, it is necessary to set the tower bottom temperature to 100 ° C. or higher, and in Examples 1 to 5, it is understood that an unnecessary amount of heat is required.
  • Example 6 [Mix acid-base extraction process using circulating release agent complex]
  • the acid base of MX of Example 1 except that the metadiethylbenzene-HF-BF3 complex discharged from the tower bottom in the complex exchange step of Example 1 was used as the mixed solution supplied from the tube provided in the upper stage of the extraction tower. The operation was performed in the same manner as in the extraction step.
  • the number of moles of MX-HF-BF3 complex in the complex solution discharged from the column bottom was 0.995 with respect to the total number of moles of the xylene mixture in the complex solution, and the MX extraction rate was 92%. The results were the same as when blended in proportions.
  • Example 7 [Mesitylene acid-base extraction process] As a raw material, a C9 alkylbenzene mixture containing 7% propylbenzenes, 36% ethyltoluenes, 11% mesitylene, 35% pseudocumene, 6% hemimeritene, 1% indane, and 4% other (made by Gordo Co., Ltd.) is used. It was.
  • a rotating disk extraction tower (made of material SUS316L) having an inner diameter of 45 mm and a total length of 2,000 mm with a total of 52 rotating disks inside is maintained at 0.4 ° C. with a temperature of 0 ° C. and nitrogen pressure in the middle of the extraction tower.
  • the above-mentioned C9 alkylbenzene mixture was supplied from the provided supply pipe at a rate of 2392 g / hr, and hexane containing 39 mol% of methylcyclopentane as a diluent from a pipe provided at the bottom of the extraction tower (manufactured by Gordo Co., Ltd.) was fed at a rate of 524 g / hr.
  • the complex solution discharged from the bottom of the column was a hydrogen fluoride solution of mesitylene-HF-BF 3 complex and 1,2,3-triethylbenzene-HF-BF 3 complex (molar ratio of mesitylene-HF-BF 3 complex: The molar ratio with the 1,2,3-triethylbenzene-HF-BF 3 complex was 9:55).
  • the mole number of the mesitylene-HF-BF 3 complex in the discharged complex solution (hydrogen fluoride solution) was 0.90 with respect to the total mole number of the C9 alkylbenzene mixture charged. Moreover, it was 87% when the mesitylene extraction rate was computed from the following formula.
  • Extraction rate of mesitylene (%) ((number of moles of [mesitylene-HF-BF 3 complex discharged from the extraction tower] ⁇ number of moles of mesitylene-HF-BF 3 complex supplied to the extraction tower]) / [supplied Number of moles of mesitylene in the C9 alkylbenzene mixture] ⁇ 100
  • a rotary disk extraction tower (material SUS316L) having an inner diameter of 45 mm and a total length of 1,000 mm equipped with a total of 26 rotary disks inside is maintained at a column temperature of 0 ° C. and a nitrogen pressure of 0.4 MPa. From the tube provided in the upper stage, the complex solution discharged in the mesitylene extraction step was supplied at a rate of 1300 g / hour.
  • the mesitylene complex-exchanged with the releasing agent in the extraction tower was continuously discharged at a rate of 1299 g / hour from the tube provided at the top of the extraction tower as a mixed liquid of the releasing agent and the diluent.
  • the concentration of mesitylene and the concentration of 1,2,3-triethylbenzene in the discharged mixture were 15.0% and 48.0%, respectively, on a mass basis.
  • the 1,2,3-triethylbenzene-HF-BF 3 complex hydrogen fluoride solution was continuously discharged at a rate of 2170 g / hr from the tube provided at the bottom of the extraction column.
  • the discharged complex hydrogen fluoride solution contains mesitylene-HF-BF 3 complex and 1,2,3-triethylbenzene-HF-BF 3 complex, and the ratio is 0.26 in molar ratio: It was 99.74. Moreover, it was 99.5% when the mesitylene complex exchange rate was computed from the following formula.
  • Mesitylene complex exchange rate (%) 100 ⁇ (number of moles of [mesitylene-HF-BF 3 complex discharged from the complex exchange column]) / ([mesitylene-HF-BF 3 complex supplied to the complex exchange column]) Number of moles) x 100
  • mesitylene was isolated by distilling a mixed solution containing mesitylene discharged from a tube provided at the top of the extraction tower. First, 150 kg of mesitylene containing a desorbing agent and a diluent is distilled at a top pressure of 93 kPa, so that the components below the boiling point of mesitylene mainly containing hexane and methylcyclopentane and the components above the boiling point of mesitylene are obtained. And separated.
  • distillation was performed at a column top pressure of 31 kPa to separate a component mainly containing mesitylene and a component mainly containing 1,2,3-triethylbenzene higher than the boiling point of mesitylene.
  • a column top pressure of 31 kPa to separate a component mainly containing mesitylene and a component mainly containing 1,2,3-triethylbenzene higher than the boiling point of mesitylene.
  • the purity of mesitylene was 99.5%.
  • the number of theoretical columns of the distillation column used was 85, the reflux ratio condition of each distillation operation was 15, and the distillation recovery rate of mesitylene was 85%.
  • the energy required for separation can be greatly reduced in the separation of high-purity alkyl aromatic hydrocarbons compared to the conventional one, and it can be used as an industrially advantageous process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 アルキル芳香族炭化水素の分離方法であって、 前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物に、第1の希釈剤と、超強酸からなる抽剤とを添加して、酸塩基抽出することにより、前記アルキル芳香族炭化水素と前記超強酸との錯体を形成させた後、前記混合物から前記錯体を分離する工程、 前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.06~10の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程、 を含む、アルキル芳香族炭化水素の分離方法。

Description

アルキル芳香族炭化水素の分離方法および分離装置
 本発明は、アルキル芳香族炭化水素の分離方法に関し、より詳細には、複数の異性体を含むアルキル芳香族炭化水素の混合物から、特定のアルキル芳香族炭化水素のみを分離して、所望のアルキル芳香族炭化水素を高純度で得る方法およびその方法を実施するための分離装置に関する。
 キシレンやメシチレン等のポリアルキル芳香族炭化水素には、複数の異性体が存在する。例えば、石油改質油あるいは分解ガソリンから得られる混合キシレン中には、p-キシレン、m-キシレン、o-キシレン、およびエチルベンゼンの4種類の異性体が含まれている。これら複数の異性体は、例えば、p-キシレン(以下、「PX」と略す場合がある。)は沸点が138℃であり、m-キシレン(以下、「MX」と略す場合がある。)は沸点が139℃であり、o-キシレン(以下、「OX」と略す場合がある。)は沸点が144℃であり、互いの沸点が近いため、沸点の差を利用して分離を行う通常の蒸留方法によっては、異性体混合物の中から所望の化合物を得ることは困難である。
 現在までに、複数の異性体を含む芳香族炭化水素の混合物から、特定の芳香族炭化水素のみを分離する方法が開発されている。例えば、工業的に混合キシレンからMXを分離する方法として、二種の方法が知られている。
 一つは、MXに親和性のある吸着剤を使用して混合キシレンからMXのみを吸着分離する方法であり、例えば、液体クロマトグラムの原理を利用して、ゼオライト等の吸着剤に対して親和性の強いMXを混合キシレンから選択的に吸着分離してMXを得る方法が知られている(特許文献1参照)。
 また、他の方法としては、抽剤として、超強酸であるフッ化水素および三フッ化ホウ素を使用するものであり、この方法は、MXが他のC8芳香族炭化水素化合物(PX、OX、およびエチルベンゼン)よりも塩基性が強いことを利用して、混合キシレンからMXのみを選択的に抽出分離する方法である。この方法は、上述した吸着剤を用いる方法と比べて、MXの選択性が高いという利点を有する。例えば、C8芳香族炭化水素混合物からMXを分離するに際し、吸着剤を用いた方法では、分離限界成分であるOXに対するMXの選択性が2であるのに対し(特許文献1の段落[0037]参照)、超強酸であるフッ化水素および三フッ化ホウ素を用いてMXの分離抽出を行う方法では、選択性が10であることが知られている。また、超強酸を抽剤として用いる方法では、異性体混合物の間で塩基性に違いがあれば利用できるため、混合キシレン以外にも、C9のアルキル芳香族炭化水素の異性体混合物から、塩基性が特異的に高いメシチレンのみを抽出分離することが可能である。
 フッ化水素および三フッ化ホウ素を抽剤として用いて混合キシレンからMXを抽出分離する方法として、特許文献2には、抽出塔の中央部から混合キシレンを供給し、塔頂部から液状フッ化水素および三フッ化ホウ素を供給し、塔底部から希釈剤を供給して、-20℃~+30℃の温度条件で連続的に向流抽出を行い、MX-HF-BF錯体を過剰のフッ化水素中に抽出して、混合キシレンからMXを分離する方法が提案されている。
 また、特許文献3には、MX-HF-BF錯体を分解塔にて加熱分解し、フッ化水素および三フッ化ホウ素を単離して循環利用することが提案されている。当該文献では、分解助剤としてヘキサンを蒸発還流し、圧力2~10気圧、塔底温度131~217℃で錯体を分解することにより、分解塔の塔底よりMXを抜き出し、塔頂より抽剤であるフッ化水素および三フッ化ホウ素を回収して循環利用することが記載されている。
 さらに、MX-HF-BF錯体等の芳香族炭化水素-HF-BF錯体に特定の塩基を添加すると、芳香族炭化水素と塩基との間で錯体状態を交換する平衡反応が起こるため、これを利用してキシレンに対する個々の芳香族炭化水素の相対塩基度が測定できることが知られている(非特許文献1参照)。非特許文献1には、錯体形成反応として、下記に示す反応が記載されている。
  A+HF+BF→A・H+BF
 上記式中、「A」は芳香族炭化水素を表し、「A・H+BF 」は、芳香族炭化水素-HF-BF錯体を表している。
特開平8-143485号公報 特公昭47-19256号公報 特公昭47-37408号公報
McCaulay, D. A., and A. P. Lien, Tetrahedron, 1959,vol.5,pp.186-193
 上記特許文献2に記載された抽出分離方法においては、MX-HF-BF錯体を形成する際に、錯体を変質させないように、抽出塔を-20℃~+30℃という低温に冷却しておく必要がある。一方、分解助剤を添加して、MX-HF-BF錯体の熱分解によりフッ化水素および三フッ化ホウ素を単離する際にも、MX-HF-BF錯体が熱により変質してしまうため、錯体の変質を抑制しながら素早く熱分解させるためには、分解塔の塔底を100℃以上の高温にしておく必要がある。しかしながら、フッ化水素の潜熱や分解助剤の潜熱等を考慮すると、塔底を高温に維持しておくには、多量のエネルギーを要してしまうという問題がある。
 したがって、本発明の課題は、フッ化水素および三フッ化ホウ素等の超強酸を用いて、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物からアルキル芳香族炭化水素を抽出分離して、所望のアルキル芳香族炭化水素を分離する方法において、分離に要するエネルギーを大幅に低減できる方法を提供することである。
 また、本発明の別の課題は、上記分離方法を実施する分離装置を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、混合キシレン等の複数の異性体を含むアルキル芳香族炭化水素から、フッ化水素および三フッ化ホウ素等の特定の超強酸を用いて、特定のアルキル芳香族炭化水素を抽出分離する際に、特定の脱離剤を用いてアルキル芳香族炭化水素と超強酸との錯体を分解することにより、前記アルキル芳香族炭化水素と超強酸とを分離する際の加熱をほぼなくすことができ、その結果、MX等の前記アルキル芳香族炭化水素を工業的に分離する際のエネルギーを大幅に低減できることがわかった。また、この特定の脱離剤によれば、超強酸(例えば、フッ化水素および三フッ化ホウ素)を単離しなくとも、超強酸を、脱離剤と超強酸との錯体の超強酸溶液として回収し、錯体状態のまま、再度、抽剤として循環利用できることがわかった。本発明はかかる知見に基づいて、完成したものである。
 即ち、本発明は以下のとおりである。
[1]
 アルキル芳香族炭化水素の分離方法であって、
 前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物に、第1の希釈剤と、超強酸からなる抽剤とを添加して、酸塩基抽出することにより、前記アルキル芳香族炭化水素と前記超強酸との錯体を形成させた後、前記混合物から前記錯体を分離する工程、
 前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.06~10の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程、
を含む、アルキル芳香族炭化水素の分離方法。
[2]
 前記錯体交換により形成された脱離剤と超強酸との錯体を、前記第2の希釈剤とともに抽剤として前記混合物に添加して循環利用する工程を更に含む、上記[1]記載のアルキル芳香族炭化水素の分離方法。
[3]
 前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.1~2.0の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程、
を含む、上記[1]又は[2]に記載の方法。
[4]
 前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物が、C8のアルキルベンゼン、C9のアルキルベンゼン、またはC10のアルキルベンゼンである、上記[1]~[3]のいずれかに記載の方法。
[5]
 前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物がC8のアルキルベンゼンであり、且つ、前記アルキル芳香族炭化水素がm-キシレンである、上記[4]に記載の方法。
[6]
 前記超強酸が、ブレンステッド酸とルイス酸との混合型超強酸である、上記[1]~[5]のいずれかに記載の方法。
[7]
 前記脱離剤と超強酸との錯体を、前記混合物中のアルキル芳香族炭化水素のモル数/前記錯体中のルイス酸のモル数が0.5~1.5の範囲となるような量で添加する、上記[6]に記載の方法。
[8]
 前記第1の希釈剤を、前記第1の希釈剤の容量/前記超強酸中のルイス酸のモル数が、50mL/mol~500mL/molの範囲となるような量で添加する、上記[6]または[7]に記載の方法。
[9]
 前記脱離剤を、前記アルキル芳香族炭化水素と超強酸との錯体中のルイス酸に対して、モル比で1~15の範囲となる量で添加する、上記[6]~[8]のいずれかに記載の方法。
[10]
 前記脱離剤に対する前記第2の希釈剤の量が、質量基準で0.001~1の範囲である、上記[1]~[9]のいずれかに記載の方法。
[11]
 前記脱離剤の沸点が145℃~400℃の範囲である、上記[1]~[10]のいずれかに記載の方法。
[12]
 前記ルイス酸が、三フッ化ホウ素、五フッ化タンタル、五フッ化ニオブ、四フッ化チタン、五フッ化リン、五フッ化アンチモン、および六フッ化タングステンからなる群より選択される少なくとも1種である、上記[6]~[11]のいずれかに記載の方法。
[13]
 前記ブレンステッド酸がフッ化水素であり、前記ルイス酸が三フッ化ホウ素である、上記[6]~[12]のいずれかに記載の方法。
[14]
 前記第1および/または第2の希釈剤が、脂肪族飽和炭化水素および/または脂環式飽和炭化水素である、上記[1]~[13]のいずれかに記載の方法。
[15]
 前記第1および/または第2の希釈剤が、イソヘキサン、3-メチルペンタン、2-メチルヘキサン、2-エチルヘキサン、デカリン、テトラヒドロジシクロペンタジエン、エチルシクロヘキサン、メチルシクロヘキサン、およびメチルシクロペンタンからなる群より選択される1種以上である、上記[1]~[14]のいずれかに記載の方法。
[16]
 前記超強酸の前記ルイス酸に対する前記ブレンステッド酸の割合が、モル比で5~20の範囲である、上記[6]~[15]のいずれかに記載の方法。
[17]
 酸塩基抽出塔と錯体交換塔とを備えたアルキル芳香族炭化水素の分離装置であって、
 前記酸塩基抽出塔は、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物を供給する管と、第1の希釈剤を供給する管と、前記錯体交換塔の塔底から抜き出された脱離剤と超強酸との錯体溶液を供給する管と、前記アルキル芳香族炭化水素を、アルキル芳香族炭化水素と超強酸との錯体溶液として、前記酸塩基抽出塔の塔底から排出する管と、錯体交換により分離した脱離剤、抽出されなかった抽残異性体、および希釈剤からなる混合液を前記酸塩基抽出塔の塔頂から排出する管と、を備え、
 前記錯体交換塔は、前記酸塩基抽出塔の塔底から排出された前記アルキル芳香族炭化水素と超強酸との錯体溶液を供給する管と、第2の希釈剤および脱離剤を供給する管と、抽出された前記アルキル芳香族炭化水素、前記脱離剤および前記希釈剤からなる混合液を前記錯体交換塔の塔頂から排出する管と、錯体交換が行われた後の脱離剤と超強酸との錯体溶液を、前記錯体交換塔の塔底から排出する管と、を備えてなる、装置。
[18]
 前記第2の希釈剤および脱離剤を供給する管が、第2の希釈剤を供給する管と、脱離剤を供給する管と、に分離されている、上記[17]記載の装置。
[19]
 前記錯体交換塔において、供給された前記アルキル芳香族炭化水素と超強酸との錯体溶液と、供給された前記第2の希釈剤および脱離剤の混合溶液とを、向流接触させる、上記[17]又は[18]記載の装置。
[20]
 前記錯体交換塔から排出された前記アルキル芳香族炭化水素、脱離剤および希釈剤からなる混合液を蒸留して、前記アルキル芳香族炭化水素、脱離剤および希釈剤をそれぞれ分離する蒸留塔をさらに備える、上記[17]~[19]のいずれかに記載の装置。
[21]
 前記酸塩基抽出塔から排出された前記脱離剤、抽出されなかった抽残異性体、および希釈剤からなる混合液を蒸留して、脱離剤、抽残異性体および希釈剤をそれぞれ分離する蒸留塔をさらに備える、上記[17]~[20]のいずれかに記載の装置。
 本発明によれば、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物からアルキル芳香族炭化水素を抽出分離して、所望のアルキル芳香族炭化水素を分離する方法において、分離に要するエネルギーを大幅に低減することができる。
図1は、本発明による分離方法を実施するための分離装置の一実施形態を示した概略図を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。装置や部材の寸法比率は図示の比率に限られるものではない。
<アルキル芳香族炭化水素の分離方法>
 本実施形態におけるアルキル芳香族炭化水素の分離方法は、
 アルキル芳香族炭化水素およびその異性体を1種以上含む混合物に、第1の希釈剤と、超強酸からなる抽剤とを添加して、酸塩基抽出することにより、前記アルキル芳香族炭化水素と前記超強酸との錯体を形成させた後、前記混合物から前記錯体を分離する工程、
 前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.06~10の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程、
を含む、アルキル芳香族炭化水素の分離方法である。
 本実施形態におけるアルキル芳香族炭化水素の分離方法は、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物から、アルキル芳香族炭化水素を選択的に抽出して分離することにより、特定のアルキル芳香族炭化水素を高純度で分離するものである。沸点差が20℃以内であるアルキル芳香族炭化水素の異性体を2種以上含む混合物から、特定のアルキル芳香族炭化水素を蒸留操作によって高純度で効率的に分離するには、高度な精密蒸留を必要とするため、製造コストや装置規模等の工業的な観点からは、現実的ではない。本実施形態の分離方法は、このような沸点が近い複数の異性体が含まれるアルキル芳香族炭化水素類から特定のアルキル芳香族炭化水素を分離するのに特に適している。
 本実施形態の分離方法によれば、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物に、希釈剤と超強酸を抽剤として添加し、酸塩基抽出することにより、前記混合物の中から、アルキル芳香族炭化水素と超強酸との錯体が高純度に含まれる抽出液を得る。その後、その抽出液に、相対塩基度が特定範囲にある脱離剤を添加し、錯体交換を行うことにより、高純度のアルキル芳香族炭化水素を前記抽出液から分離できる。また、錯体交換により形成された脱離剤と超強酸との錯体を、再度、前記混合物に戻すことにより、アルキル芳香族炭化水素と超強酸との錯体が形成されるため、超強酸を単離することなく循環利用することができる。さらに、上記の方法によれば、脱離剤と超強酸との錯体を熱分解することなく抽剤として循環利用できるため、従来のように、アルキル芳香族炭化水素と超強酸との錯体を分解して超強酸を単離するための熱量を必要としない。その結果、アルキル芳香族炭化水素を分離する際のエネルギーを大幅に低減できる。
[アルキル芳香族炭化水素およびその異性体を1種以上含む混合物]
 本実施形態において使用されるアルキル芳香族炭化水素およびその異性体を1種以上含む混合物としては、特に限定されないが、沸点が近い異性体の数の観点から、C8のアルキルベンゼン、C9のアルキルベンゼン、またはC10のアルキルベンゼンが好ましい。C8のアルキルベンゼンとは、p-キシレン(PX)、m-キシレン(MX)、o-キシレン(OX)、およびエチルベンゼンからなる群から選択される2種以上を含む混合物であり、C9のアルキルベンゼンとは、クメン、n-プロピルベンゼン、エチルトルエン異性体(2-体、3-体、4-体)、およびトリメチルベンゼン異性体(1,2,4-体、1,2,3-体))からなる群から選択される2種以上を含む混合物であり、C10のアルキルベンゼンとは、イソデュレン(1,2,3,5-体)およびそれ以外のテトラメチルベンゼン(1,2,4,5-体、1,2,3,4-体)、ならびにジメチルエチルベンゼン(1,3-ジメチル-5-エチル体、1,4-ジメチル-2-エチル体、1,3-ジメチル-4-エチル体、1,2-ジメチル-4-エチル体、1,3-ジメチル-2-エチル体、1,2-ジメチル-3-エチル体)からなる群から選択される2種以上を含む混合物である。本実施形態においては、原料として、上述したアルキル芳香族炭化水素類の異性体の混合物を使用するが、異性体以外の化合物が含まれていてもよく、混合物全体に対して、アルキル芳香族炭化水素類が質量基準で90%以上含まれていることが好ましい。
 本実施形態における分離方法は、上述したような沸点差が小さい異性体を含むアルキル芳香族炭化水素類の混合物から、混合物中で最も塩基性の強いアルキル芳香族炭化水素(以下、「特定アルキル芳香族炭化水素」ともいう。)を選択的に抽出して分離するものである。上記C8のアルキルベンゼン類の中で最も塩基性の強いものはMXであり、C9のアルキルベンゼン類の中で最も塩基性の強いものはメシチレンであり、C10のアルキルベンゼン類の中で最も塩基性の強いものはイソデュレンである。したがって、本実施形態における方法において、C8のアルキルベンゼン類を原料として使用する場合は、抽出分離されるのはMXであり、C9のアルキルベンゼン類を原料として使用する場合は、抽出分離されるのはメシチレンであり、C10のアルキルベンゼン類を原料として使用する場合は、抽出分離されるのはイソデュレンである。
[酸塩基抽出工程]
 本実施形態におけるアルキル芳香族炭化水素の分離方法は、
 アルキル芳香族炭化水素およびその異性体を1種以上含む混合物に、第1の希釈剤と、超強酸からなる抽剤とを添加して、酸塩基抽出することにより、前記アルキル芳香族炭化水素と前記超強酸との錯体を形成させた後、前記混合物から前記錯体を分離する工程(酸塩基抽出工程)を含む。
(抽剤として使用される超強酸)
 本実施形態における分離方法においては、先ず、上記特定のアルキル芳香族炭化水素とその異性体を少なくとも1種以上含む混合物に、抽剤として超強酸を添加する。ここで、「超強酸」とは、ハメットの酸度関数HOが-11.93である100%硫酸よりも強い酸強度を示す酸を意味するものとする。また、「超強酸」には、酸単独のみならず、酸の溶液も含まれる。超強酸は、混合物の中で最も塩基性の強いアルキル芳香族炭化水素と錯体を形成する。この錯体(以下、「アルキル芳香族炭化水素-超強酸錯体」ともいう。)を含む混合物中に希釈剤を添加して、混合物中の特定アルキル芳香族炭化水素以外の成分をストリッピングすることにより、混合物中から、特定アルキル芳香族炭化水素を錯体の状態で抽出することができる。
 抽剤として使用される超強酸としては、特に限定されないが、ブレンステッド酸では、例えば、フルオロ硫酸(FSOH)、トリフルオロメタンスルホン酸(CFSOH)が挙げられる。また、ブレンステッド酸とルイス酸とを組み合わせた混合型の超強酸を使用してもよい。混合型超強酸としては、例えば、ブレンステッド酸としてフッ化水素(HF)、塩酸(HCl)、フルオロ硫酸(FSOH)、トリフルオロメタンスルホン酸(CFSOH)および硫酸(HSO)からなる群から選ばれる少なくとも一つ以上と、ルイス酸として五フッ化アンチモン(SbF)、三フッ化ホウ素(BF)、塩化アルミニウム(AlCl)、五フッ化タンタル(TaF)、五フッ化ニオブ(NbF)、四フッ化チタン(TiF)、および五フッ化リン(PF)からなる群から選ばれる少なくとも一つ以上と、を組み合わせた超強酸が挙げられる。
 上記超強酸の中でも、超強酸の循環利用の観点から、アルキル芳香族炭化水素-超強酸錯体が、-50℃~+20℃の温度範囲において液状で存在するような超強酸が好ましい。例えば、フッ化水素と上記ルイス酸との混合物を用いることが好ましく、より好ましくは、フッ化水素(HF)と三フッ化ホウ素(BF)との混合物、フッ化水素(HF)と五フッ化タンタル(TaF)との混合物、フッ化水素(HF)と五フッ化ニオブ(NbF)との混合物、フッ化水素(HF)と四フッ化チタン(TiF)との混合物、フッ化水素(HF)と五フッ化リン(PF)との混合物、フッ化水素(HF)と五フッ化アンチモン(SbF)との混合物、フッ化水素(HF)と六フッ化タングステン(WF)との混合物であり、これらの中でも、工業的使用実績のある超強酸であるフッ化水素(HF)と三フッ化ホウ素(BF)との混合物が特に好ましい。
 なお、-50℃~+20℃の温度範囲において液状で存在するとは、当該温度範囲に含まれるいずれかの温度で液状であればよく、全ての温度範囲で液状である必要はない。
 上記ブレンステッド酸とルイス酸との混合物を超強酸として用いる場合、アルキル芳香族炭化水素-超強酸錯体や、後述する錯体交換反応後の脱離剤-超強酸錯体が、ルイス酸(気体)を放出することなく錯体状態を維持できるような量で添加することが好ましい。具体的には、超強酸中のルイス酸に対するブレンステッド酸のモル比(ブレンステッド酸のモル数/ルイス酸のモル数)が5~50の範囲であることが好ましく、より好ましくは5~20の範囲である。超強酸中のルイス酸に対するブレンステッド酸のモル比が上記範囲にあれば、錯体形成する反応容器の容積効率を維持しながら、アルキル芳香族炭化水素-超強酸錯体および/または脱離剤-超強酸錯体を安定的に維持することができる傾向にある。また、超強酸錯体溶液からルイス酸が気体として放出されるのを有効に抑制できるため、アルキル芳香族炭化水素や脱離剤が、希釈剤や抽残物を含む油相側に移行する量を低減することができる傾向にある。また、ブレンステッド酸としてフッ化水素を上記の割合で用いた場合、脱離剤-超強酸錯体を液状に容易に制御することが可能であるため、特に好ましい。
(酸塩基抽出工程で使用される第1の希釈剤)
 本明細書においては、酸塩基抽出工程において用いられる希釈剤を「第1の希釈剤」と言い、錯体交換工程における希釈剤を「第2の希釈剤」と言う。なお、単に「希釈剤」としている場合は、それぞれの希釈剤単独を示すか、或いは、第1の希釈剤と第2の希釈剤との混合物を示す。
 酸塩基抽出工程において添加される第1の希釈剤は、抽剤によって抽出された成分中の錯体以外の成分、即ち、錯体によって物理溶解した、特定アルキル芳香族炭化水素以外のアルキル芳香族炭化水素類をストリッピングするのに十分な量で添加されるのが好ましい。また、後述するように、脱離剤-超強酸錯体を循環利用する場合、第1の希釈剤は、脱離剤-超強酸錯体を錯体交換して、特定アルキル芳香族炭化水素-超強酸錯体とするのに十分な量で添加されることが好ましい。
 第1の希釈剤としては、アルキル芳香族炭化水素類を溶解するものであれば特に制限なく使用できるが、アルキル芳香族炭化水素が超強酸の存在下で起こす不均化反応や重合等の副反応を抑制する観点から、脂肪族または脂環式の飽和炭化水素を用いることが好ましい。脂肪族または脂環式の飽和炭化水素としては、例えば、n-ヘキサン、n-ヘプタン、n-デカン、イソヘキサン、3-メチルペンタン、2-メチルヘキサン、2-エチルヘキサン、cis-デカリン、テトラヒドロジシクロペンタジエン、エチルシクロヘキサン、メチルシクロヘキサン、メチルシクロペンタン、cis-1,2-ジメチルシクロヘキサン、1,3-ジメチルアダマンタン、デカヒドロアセナフテン等が挙げられ、これらは単独または2種以上を混合して用いことができる。
 上記飽和炭化水素に加えて、第4級の炭素原子を含まない他の飽和炭化水素を併用してもよいが、この場合、装置の容積効率が低下する場合がある。また、上記第1の希釈剤には、不飽和結合を持つ不純物や、炭素、水素以外の原子を含む不純物が含まれていないことが好ましい。
 また、上記飽和炭化水素の中でも、不均化反応を抑制する観点から、イソヘキサン、3-メチルペンタン、2-メチルヘキサン、2-エチルヘキサン、cis-デカリン、テトラヒドロジシクロペンタジエン、エチルシクロヘキサン、メチルシクロヘキサン、メチルシクロペンタン、cis-1,2-ジメチルシクロヘキサン、1,3-ジメチルアダマンタン、デカヒドロアセナフテンがより好ましく、特に好ましくはメチルシクロペンタン、cis-デカリン、デカヒドロアセナフテン、cis-1,2-ジメチルシクロヘキサン、1,3-ジメチルアダマンタン、デカヒドロアセナフテンである。
[錯体交換工程]
 本実施形態におけるアルキル芳香族炭化水素の分離方法は、
 前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.06~10の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程(錯体交換工程)を含む。
(脱離剤)
 酸塩基抽出工程によりアルキル芳香族炭化水素-超強酸錯体として抽出分離されたアルキル芳香族炭化水素は、錯体に特定の脱離剤を添加することにより錯体状態の交換(錯体交換)が行われ、所望のアルキル芳香族炭化水素が分離される。即ち、アルキル芳香族炭化水素-超強酸錯体と、錯体交換された後の脱離剤-超強酸錯体とは、以下のような平衡反応が成立する。
Figure JPOXMLDOC01-appb-C000001
(式中、Aはアルキル芳香族炭化水素であり、Aはアルキル芳香族炭化水素-超強酸錯体であり、Aは脱離剤であり、Aは脱離剤-超強酸錯体である。)
 本実施形態においては、抽出される目的化合物であるアルキル芳香族炭化水素の塩基性に着目し、アルキル芳香族炭化水素に対する相対塩基度が0.06~10の範囲にある脱離剤を添加することにより、高純度で所望のアルキル芳香族炭化水素を油相に分離でき、さらに、後述するように、超強酸を単離することなく循環利用できることが判明した。なお、本実施形態において、アルキル芳香族炭化水素(A)に対する脱離剤(A)の「相対塩基度」とは、液温が0℃において、下記式から算出される値として定義されるものである。
  相対塩基度=(A+のモル数/Aのモル数)/(A+のモル数/Aのモル数)
 アルキル芳香族炭化水素としてMXを、超強酸としてHF-BFを用いた場合を一例に、脱離剤の相対塩基度の算出方法について説明する。温度を制御できる内容積500mLの電磁撹拌装置付オートクレーブ(SUS316L製)に、無水フッ化水素、MX、ヘキサン、脱離剤を、モル比4.0:0.32:0.95:0.66で仕込み、内容物を撹拌し液温を-10℃に保つ。次に、無水フッ化水素に対するモル比(三フッ化ホウ素のモル数/フッ化水素のモル数)が0.1となる割合で、ルイス酸として三フッ化ホウ素を2L/分の割合で反応器に供給し、30分間0℃で保持する。その後、10分間攪拌を停止して静置し、二相に分離したフッ化水素溶液相と油相とをそれぞれ氷水中に採取し、得られた油層について、中和水洗した後にガスクロマトグラフィー分析を行う。分析結果より得られたフッ化水素溶液相および油相のそれぞれのMXと脱離剤とのモル数(フッ化水素溶液相に存在する成分はHF-ルイス酸錯体とみなす。)を、上記の計算式に当てはめることにより、液温が0℃における、MXに対する相対塩基度を算出することができる。
 分離しようとするアルキル芳香族炭化水素(例えば、MX)に対する相対塩基度が上記範囲にある脱離剤を使用することにより、アルキル芳香族炭化水素-超強酸錯体と脱離剤との間、およびアルキル芳香族炭化水素と脱離剤-超強酸錯体との間の錯体状態の交換が容易に進行する。相対塩基度が0.06未満であると、酸塩基抽出は容易になるものの、アルキル芳香族炭化水素-超強酸錯体と脱離剤との間の錯体交換反応が進行しにくく大量の脱離剤が必要となる。そのため、工業的に実施した場合、脱離剤との錯体交換が行われる反応容器の容積効率の低下を招く。一方、相対塩基度が10を超えると、アルキル芳香族炭化水素-超強酸錯体と脱離剤との間の錯体交換反応は容易に進行するが、錯体交換により得られた脱離剤-超強酸錯体を循環利用する際に、アルキル芳香族炭化水素と脱離剤-超強酸錯体との間の錯体交換反応が進行しにくく大量の原料混合物が必要となる。そのため、工業的に実施した場合、アルキル芳香族炭化水素-超強酸錯体を形成する反応容器の容積効率が低下し、経済性、生産効率の低下を招く。
 本実施形態における分離方法においては、脱離剤として、アルキル芳香族炭化水素に対する相対塩基度が0.08~6.0の範囲にあるものを使用することが好ましく、相対塩基度が0.10~4.0の範囲にあるものを使用することがより好ましく、相対塩基度が0.10~2.0のものを使用することがさらに好ましく、相対塩基度が0.15~2.0のものを使用することが特に好ましい。このような脱離剤としては、芳香族炭化水素を好適に使用することができるが、中でも、脱離剤-超強酸錯体を安定的に形成できるものを使用することがより好ましい。また、抽剤を再利用する観点からは、-50~+20℃の範囲において、脱離剤単体および脱離剤-超強酸錯体が液状であることが好ましい。超強酸としてHF-ルイス酸を用いた場合、脱離剤-超強酸錯体を、フッ化水素の割合を調整することにより液状に容易に制御することが可能であるため、特に好ましい。
 例えば、上記非特許文献1には、詳細な測定法は省略されているが、p-キシレン(PX)の相対塩基度を1とした場合のアルキル芳香族炭化水素の相対塩基度が記載されている。この文献によれば、C8~C9のアルキル芳香族炭化水素の相対塩基度は下記表1に示されるとおりであり、これらのデータを参考にして脱離剤を適宜選択してもよい。
Figure JPOXMLDOC01-appb-T000002
 脱離剤としては、特定アルキル芳香族炭化水素を蒸留操作によってより容易に分離できるから観点から、分離する特定のアルキル芳香族炭化水素の沸点よりも高い沸点を有する芳香族炭化水素を用いることが好ましく、沸点が145~400℃の範囲にある芳香族炭化水素を用いることがより好ましい。例えば、分離するアルキル芳香族炭化水素としてMXを目的化合物とした場合、脱離剤としては、3-エチルトルエン、1-メチル-3-プロピルベンゼン、メタジエチルベンゼン、1-フルオロナフタレン、1,3,5-トリエチルベンゼン、3-メチルビフェニル、フルオロ-2,4,6-トリメチルベンゼン、フルオロ-2,3,6-トリメチルベンゼン、フルオロ-3,4,5-トリメチルベンゼン、またはフルオロ-2,3,5-トリメチルベンゼン、1,3-ジメチル-4-(2,2-ジメチルプロピル)ベンゼン、1,3-ジメチル-5-(2,2-ジメチルプロピル)ベンゼン、1-メチル-3,5-ジ(2,2-ジメチルプロピル)ベンゼン、1-イソブチル-3-メチルベンゼン等を好適に使用することができ、これらの脱離剤は単独または2種以上を混合して用いことができる。
 特に、アルキル芳香族炭化水素類としてC8のアルキルベンゼン類を使用し、その混合物からMXを特定のアルキル芳香族炭化水素として抽出する際には、脱離剤として、3-エチルトルエン、メタジエチルベンゼンまたはこれらの混合物を好適に使用することができる。また、アルキル芳香族炭化水素類としてC9のアルキルベンゼン類を使用し、その混合物からメシチレンを特定のアルキル芳香族炭化水素として抽出する際には、脱離剤として1,3,5-トリエチルベンゼン等を好適に使用することができる。
 脱離剤の添加量は、アルキル芳香族炭化水素-超強酸錯体と錯体交換し得る量であれば特に限定されないが、特定アルキル芳香族炭化水素-超強酸錯体の量、脱離剤の相対塩基度、および錯体交換を行う反応容器の能力に応じて適宜決定される。工業的に特定アルキル芳香族炭化水素を製造するには、脱離剤の添加量は、錯体交換を行う反応容器の理論段数が5段~10段の範囲で錯体交換し得る量であることが好ましい。上記観点から、本実施形態においては、超強酸としてブレンステッド酸とルイス酸との混合物を使用する場合、アルキル芳香族炭化水素と前記超強酸との錯体中のルイス酸に対して、モル比で1~15の範囲となるような量で、脱離剤を添加することが好ましい。脱離剤の添加量を上記範囲とすることにより、アルキル芳香族炭化水素-ブレンステッド酸-ルイス酸錯体と、脱離剤との錯体交換反応が容易に進行するため、反応容器の理論段数を減らすことができるとともに、抽出されるアルキル芳香族炭化水素の濃度が高くなり、蒸留効率を向上させることができる傾向にある。反応容器の規模、容積効率を考慮すると、アルキル芳香族炭化水素と前記超強酸との錯体中のルイス酸に対して、モル比で1.1~10の範囲となるような量であることがより好ましい。
(錯体交換工程で使用される第2の希釈剤)
 また、錯体交換工程においては、脱離剤とともに第2の希釈剤を添加することにより、錯体交換により分離されたアルキル芳香族炭化水素が、脱離剤および第2の希釈剤との混合溶液として抽出分離され、さらに、蒸留等の公知の手段によりアルキル芳香族炭化水素のみを得ることができる。したがって、第2の希釈剤は、超強酸溶液と油相(アルキル芳香族炭化水素と脱離剤と第2の希釈剤との混合溶液)とを分離できるような量で添加されることが好ましい。また、第2の希釈剤を添加することにより、錯体交換反応の際の脱離剤の不均化反応を抑制することができる。上述のように超強酸溶液と油相とを分離でき、脱離剤の不均化反応を抑制できる第2の希釈剤の添加量としては、添加する脱離剤に対して質量比(第2の希釈剤の質量/脱離剤の質量)で0.001~1の範囲であることが好ましく、より好ましくは0.01~0.25の範囲である。第2の希釈剤の添加量を上記範囲内とすることにより、超強酸溶液と油相との分離や、脱離剤の不均化反応の抑制に有利であり、さらに、経済的および生産効率の観点からも有利である。
 第2の希釈剤としては、上述した第1の希釈剤と同様のものを用いることができる。
<超強酸の循環利用>
 本実施形態の分離方法においては、錯体交換により形成された脱離剤と超強酸との錯体を、第2の希釈剤とともに抽剤としてアルキル芳香族炭化水素およびその異性体を1種以上含む混合物に添加して循環利用する工程を更に含むことが好ましい。錯体交換により形成された脱離剤-超強酸錯体は、超強酸(例えば、フッ化水素およびルイス酸)を単離することなく、連続的にもとの混合物に添加されて循環利用される。上記工程を含む場合、従来必要であった超強酸の単離操作を必要としないため、アルキル芳香族炭化水素の分離に要するエネルギーを大幅に低減できる。なお、もとの混合物に添加される脱離剤-超強酸錯体には、錯体交換工程で錯体交換をしきれなかったアルキル芳香族炭化水素-超強酸錯体が一部含まれていてもよい。また、もとの混合物に添加されて酸塩基抽出工程を繰り返した際に、該酸塩基抽出工程後に排出されるアルキル芳香族炭化水素-超強酸錯体中には、酸塩基抽出と同時に行われるアルキル芳香族炭化水素との錯体交換をしきれなかった脱離剤-超強酸錯体が、一部含まれていてもよい。
 上記脱離剤-超強酸錯体は、アルキル芳香族炭化水素とその異性体とを含む混合物に添加されることにより、再度、錯体交換が行われて、アルキル芳香族炭化水素は、超強酸との錯体として酸塩基抽出される。したがって、錯体形成が行われる反応容器に添加される第1の希釈剤は、アルキル芳香族炭化水素-超強酸錯体の超強酸溶液中に物理溶解した錯体形成されていない他のアルキル芳香族炭化水素(即ち、異性体)をストリッピングし得る量で添加されることが好ましい。
(超強酸循環利用における酸塩基抽出塔での第1の希釈剤)
 超強酸として、ブレンステッド酸とルイス酸との混合物を使用する場合を一例に説明すると、超強酸溶液中のルイス酸の量に対する第1の希釈剤の量(希釈剤の容量(mL)/超強酸溶液中のルイス酸のモル数)は、50mL/mol~500mL/molの範囲であることが好ましく、より好ましくは100mL/mol~300mL/molの範囲である。第1の希釈剤の添加量を上記範囲とすることにより、反応容器の容積効率を維持しながらストリッピングを充分に行えるとともに、フッ化水素溶液として抽出されるアルキル芳香族炭化水素-ブレンステッド酸-ルイス酸錯体の含有量を多くすることができるため、反応容器の理論段数が少なくても高純度のアルキル芳香族炭化水素を得ることができる傾向にある。
 上述したように、脱離剤-超強酸錯体を含む超強酸溶液は、アルキル芳香族炭化水素とその異性体とを含む混合物に添加されることにより、再度、錯体交換が行われるとともに、脱離剤-超強酸錯体を含む超強酸溶液が抽剤として機能するため、酸塩基抽出により、混合物中のアルキル芳香族炭化水素が、アルキル芳香族炭化水素-超強酸錯体として抽出される。例えば、超強酸としてブレンステッド酸とルイス酸との混合物を使用する場合、錯体交換と酸塩基抽出が行われるためには、脱離剤-超強酸錯体を含む超強酸溶液を、抽剤として、混合物中のアルキル芳香族炭化水素のモル数/錯体中のルイス酸のモル数が0.5~1.5の範囲となる量で、混合物に添加する。混合物と脱離剤-超強酸錯体との量が上記範囲となるように調整することにより、脱離剤-超強酸錯体とアルキル芳香族炭化水素との錯体交換反応が容易に進行する傾向にある。その結果、錯体交換されないアルキル芳香族炭化水素が、抽残成分の他の異性体、希釈剤および脱離剤とともに油相として排出されてしまうのを低減できる傾向にある。
<アルキル芳香族炭化水素の分離装置>
 次に、本実施形態におけるアルキル芳香族炭化水素の分離装置を、図1を参照しながら説明する。
 本実施形態におけるアルキル芳香族炭化水素の分離装置は、
 酸塩基抽出塔と錯体交換塔とを備えた分離装置であって、
 前記酸塩基抽出塔は、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物を供給する管と、第1の希釈剤を供給する管と、前記錯体交換塔の塔底から抜き出された脱離剤と超強酸との錯体溶液を供給する管と、前記アルキル芳香族炭化水素を、アルキル芳香族炭化水素と超強酸との錯体溶液として、前記酸塩基抽出塔の塔底から排出する管と、錯体交換により分離した脱離剤、抽出されなかった抽残異性体、および希釈剤からなる混合液を前記酸塩基抽出塔の塔頂から排出する管と、を備え、
 前記錯体交換塔は、前記酸塩基抽出塔の塔底から排出された前記アルキル芳香族炭化水素と超強酸との錯体溶液を供給する管と、第2の希釈剤および脱離剤を供給する管と、抽出された前記アルキル芳香族炭化水素、前記脱離剤および前記希釈剤からなる混合液を前記錯体交換塔の塔頂から排出する管と、錯体交換が行われた後の脱離剤と超強酸との錯体溶液を、前記錯体交換塔の塔底から排出する管と、を備えてなる、装置である。
 図1は、本発明による精製方法を実施するための精製装置の一実施形態を示した概略図である。図1は、脱離剤と超強酸との錯体を、第2の希釈剤とともに抽剤として混合物に添加して循環利用する工程を行うための管5を備えた例である。また、図1は、錯体交換塔の下方から、管2-1により第2の希釈剤が、管2-2により脱離剤が供給され、塔下部で両者が混合される、即ち、第2の希釈剤と脱離剤を供給する管が分離した例であるが、第2の希釈剤と脱離剤が予め混合されて、一つの管で供給されてもよい。以下、アルキル芳香族炭化水素類である混合キシレンから、その中で最も塩基性の強いMXを、超強酸を用いて抽出分離してMXを精製する例を用いて説明する。
 先ず、原料である混合キシレンが、管7により、混合キシレン中のMXをMX-超強酸錯体として抽出するための酸塩基抽出塔6に供給される。また、第1の希釈剤が、酸塩基抽出塔の下方に配置された管9より酸塩基抽出塔6に供給される。さらに、MX-超強酸錯体を脱離剤により錯体交換反応を行うための錯体交換塔1の塔底5から抜き出された脱離剤-超強酸錯体の超強酸溶液が、管8により、酸塩基抽出塔6の上方から供給される。酸塩基抽出塔6において、脱離剤-超強酸錯体とMXとの錯体交換が行われて、MX-超強酸錯体としてMXが酸塩基抽出され、酸塩基抽出塔6の塔底10から、MX-超強酸錯体の超強酸溶液が連続的に抜き出される。また、錯体交換により分離した脱離剤、抽出されなかった抽残キシレン、および希釈剤は、混合液として酸塩基抽出塔6の塔頂11から連続的に抜き出される。なお、超強酸としてブレンステッド酸およびルイス酸の混合物を使用する場合、脱離剤-超強酸錯体の超強酸溶液は、脱離剤-ブレンステッド酸-ルイス酸錯体のブレンステッド酸溶液とも言え、また、MX-超強酸錯体の超強酸溶液は、MX-ブレンステッド酸-ルイス酸錯体のブレンステッド酸溶液とも言える。
 酸塩基抽出塔6から抜き出されたMX-超強酸錯体の超強酸溶液は、管3により、錯体交換塔1の上方から供給される。また、錯体交換塔の下方から、管2-1により第2の希釈剤が、管2-2により脱離剤が供給され、塔下部で両者が混合される。錯体交換塔1内では、MX-超強酸錯体溶液と、第2の希釈剤および脱離剤の混合溶液とを向流接触させる。ここで錯体交換が行われ、MX-超強酸錯体は、MXと脱離剤-超強酸錯体とに分離される。分離されたMXは、余剰の脱離剤と希釈剤との混合液として、錯体交換塔1の塔頂4から連続的に抜き出される。また、錯体交換された脱離剤-超強酸錯体は、上述したように、超強酸溶液として、錯体交換塔1の塔底5から連続的に抜き出され、再度、管5により酸塩基抽出塔6に供給されることにより循環利用される。
 また、本実施形態における分離装置は、錯体交換塔から排出されたアルキル芳香族炭化水素、脱離剤および希釈剤からなる混合液を蒸留して、アルキル芳香族炭化水素、脱離剤および希釈剤をそれぞれ分離する蒸留塔をさらに備えることが好ましい。この場合、酸塩基抽出塔6の塔頂11より排出された脱離剤、抽出されなかった抽残キシレンおよび希釈剤からなる混合液は、公知の蒸留塔(図示せず)を経て、抽残キシレン、脱離剤、希釈剤のそれぞれに分離される。
 さらに、本実施形態における分離装置は、酸塩基抽出塔から排出された脱離剤、抽出されなかった抽残異性体、および希釈剤からなる混合液を蒸留して、脱離剤、抽残異性体および希釈剤をそれぞれ分離する蒸留塔をさらに備えることが好ましい。この場合、錯体交換塔1の塔頂4より排出されたMX、脱離剤および希釈剤からなる混合液は、公知の蒸留塔(図示せず)を経て、MX、脱離剤および希釈剤のそれぞれに分離される。このようにして、混合キシレンから、高純度のMXを分離することができる。
 錯体交換塔1および酸塩基抽出塔6としては、液々抽出操作系に適用される公知の手段を特に制限なく使用することができ、充填塔、多孔板塔、多孔板パルス塔、攪拌機付酸塩基抽出塔、WINTRAY(登録商標)、ミキサーセトラー等を好適に使用できる。これらの中でも、単位断面積当りの処理量が高く、抽出効率が高い形式のものが好ましく使用できる。
 混合キシレンに限らず、アルキル芳香族炭化水素とその異性体とを含む混合物に超強酸を添加した場合、温度が高いと不均化反応や重合反応が激しく起こる。また、抽剤として超強酸を使用するため、高温になると錯体交換塔1および酸塩基抽出塔6の腐食が進行する。そのため、錯体交換塔1および酸塩基抽出塔6の内部温度は-50℃~+20℃の温度範囲に保持しておくことが好ましく、より好ましい温度範囲は-30℃~0℃である。また、錯体交換塔1および酸塩基抽出塔6の内部温度が上記温度範囲であれば、錯体の変質を低減することができる傾向にある。なお、上記観点からは、なるべく低温で保持することが好ましいと言えるが、過剰に冷却すると分離コストの上昇を招くという不利益がある。
 超強酸としてHF-BFを用いた場合、錯体交換塔1および酸塩基抽出塔6の内部圧力は、MX-HF-BF錯体および脱離剤-HF-BF錯体の蒸気圧よりも高く、かつ塔を運転する上で不具合がない圧力が好適に選択される。具体的には、錯体交換塔1および酸塩基抽出塔6の内部圧力は、0.2MPa~10MPaの圧力範囲あることが好ましく、より好ましくは0.25MPa~1MPaの圧力範囲である。内部圧力を低くし過ぎると、HF-BF錯体から三フッ化ホウ素(気体)が放出してしまい、錯体状態が維持されない場合がある。また、内部圧力が高過ぎると、それに耐えうる材質や構造の塔を準備する必要があるため、分離コストの上昇を招く傾向にある。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。
<相対塩基度の測定>
試料1
 温度を制御できる内容積500mLの電磁撹拌装置付オートクレーブ(SUS316L製)に、無水フッ化水素50g(2.5mol、森田化学工業株式会社製)を仕込み、内容物を撹拌し液温を-10℃に保った。次に、MX(三菱ガス化学株式会社製)、3-エチルトルエン(試薬グレード、東京化成工業株式会社製)、およびn-ヘキサン(試薬グレード、和光純薬工業株式会社製)のモル比が1:2:3の割合となるように混合した原料液122.9g(MX:0.20mol、3-エチルトルエン:0.41mol、n-ヘキサン:0.59mol)を、反応器に4g/分の割合で供給した。続いて、反応器の液温を-10℃に冷却した後、三フッ化ホウ素(ステラケミファ株式会社製)を6g/分の割合で反応器に17.0g(0.25mol)供給し、0℃に昇温した後、30分間保持した。その後、攪拌を停止し、反応液を10分間静置したところ、フッ化水素溶液相と油相とに分離しているのが確認された。分離したフッ化水素溶液相および油相を、それぞれ氷水中に抜き出した。得られたフッ化水素溶液相および油相に対してそれぞれ中和処理を行い、フッ化水素溶液に溶解していた油分および油相中から微量酸分を取り除いた油分をそれぞれ得た。ガスクロマトグラフィー分析により得られた反応成績から3-エチルトルエンの相対塩基度を求めたところ、0.52であった。なお、分析はガスクロマトグラフィー(GC-14B、島津製作所製)を用いて、n-デカン(試薬グレード、和光純薬工業株式会社製)を内部標準物質として検量線を作成し評価した。また、キャピラリーカラムとして、信和化工株式会社製のULBON Xylene Master(内径0.32mmφ、長さ50m)を用いた。昇温プログラムは、70℃から2℃/分の割合で150℃まで昇温し、30分間保持した。
試料2
 3-エチルトルエンの代わりに1-フルオロナフタレン(試薬グレード、東京化成工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。1-フルオロナフタレンの相対塩基度は0.37であった。
試料3
 3-エチルトルエンの代わりにフルオロ-2,3,4,6-テトラメチルベンゼン(新日本薬業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。1-フルオロ-2,3,4,6-テトラメチルベンゼンの相対塩基度は0.29であった。
試料4
 3-エチルトルエンの代わりにメタジエチルベンゼン(試薬グレード、東京化成工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。メタジエチルベンゼンの相対塩基度は0.28であった。
試料5
 3-エチルトルエンの代わりにフルオロ-2,4,6-トリメチルベンゼン(試薬グレード、東京化成工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。フルオロ-2,4,6-トリメチルベンゼンの相対塩基度は0.16であった。
試料6
 3-エチルトルエンの代わりにプソイドクメン(試薬グレード、和光純薬工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。プソイドクメンの相対塩基度は1.63であった。
試料7
 3-エチルトルエンの代わりにメシチレン(試薬グレード、和光純薬工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。メシチレンの相対塩基度は5.00であった。
試料8
 3-エチルトルエンの代わりにOX(試薬グレード、和光純薬工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。OXの相対塩基度は0.04であった。
試料9
 3-エチルトルエンの代わりに1,3,5-トリエチルベンゼン(試薬グレード、東京化成工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。1,3,5-トリエチルベンゼンの相対塩基度は3.52であった。
試料10
 3-エチルトルエンの代わりにエチルベンゼン(試薬グレード、東京化成工業株式会社製)を用いたこと以外は、試料1と同様にして相対塩基度の測定を行った。エチルベンゼンの相対塩基度は0.02であった。
 上記した試料1~10の相対塩基度の測定結果を、下記の表2に示す。なお、表2には、相対塩基度の高い順に試料を記載した。
Figure JPOXMLDOC01-appb-T000003
 後述する各工程におけるMX-HF-BF錯体、MXの物質量は、各フッ化水素溶液相および油相を、それぞれ氷水中に抜き出し、得られたフッ化水素溶液相および油相に対してそれぞれ中和処理を行い、フッ化水素溶液に溶解していた油分および油相中から微量酸分を取り除いた油分をそれぞれ得た後、ガスクロマトグラフィー(GC-14B、島津製作所製)を用いて、n-デカン(試薬グレード、和光純薬工業株式会社製)を内部標準物質として検量線を作成することにより、評価したものである。なお、キャピラリーカラムとしては、信和化工株式会社製のULBON Xylene Master(内径0.32mmφ、長さ50m)を用いた。昇温プログラムは、70℃から2℃/分の割合で150℃まで昇温し、30分間保持した。
[実施例1]
[MXの酸塩基抽出工程]
 原料として、エチルベンゼン、p-キシレン、m-キシレン、およびo-キシレン(全て試薬グレード、和光純薬工業株式会社製)を、それぞれ質量基準で14%、19%、41%、および24%含まれるように混合したキシレン混合物を用いた。
 内部に合計52枚の回転円盤を備える内径45mm、全長2,000mmの回転円盤抽出塔(材質SUS316L製)を、塔内温度0℃、窒素圧で0.4MPaに保持し、抽出塔の中段に設けた供給管から、上記キシレン混合物を524g/時の割合で供給し、抽出塔の下部に備えた管より、希釈剤としてメチルシクロペンタンが39mol%含まれるヘキサン(株式会社ゴードー社製)を524g/時の割合で供給した。また、抽出塔の上段に備えた管から、フッ化水素、三フッ化ホウ素、MXおよびメタジエチルベンゼンをモル比で、フッ化水素:三フッ化ホウ素:MX:メタジエチルベンゼン=5:0.5:0.04:0.56の割合で含む混合液を、1738g/時の割合で供給し、MXの抽出を行った。なお、系内では、MX-HF-BF錯体およびメタジエチルベンゼン-HF-BF錯体が混合物として存在していた。
 フッ化水素および三フッ化ホウ素により抽出されたMXを、MX-HF-BF錯体のフッ化水素溶液として、抽出塔の塔底に備えた管から1370g/時の割合で連続的に排出した。また、抽出塔の塔頂に備えた管より、錯体溶液以外の混合成分を1534g/時の割合で連続的に排出した。塔底から排出された錯体溶液は、MX-HF-BF錯体とメタジエチルベンゼン-HF-BF錯体とが含まれており、そのモル比は、60:8であった。この排出された錯体溶液(フッ化水素溶液)中のMX-HF-BF錯体のモル数は、錯体溶液中のキシレン混合物の総モル数に対して0.995であった。また、下記式よりMX抽出率を算出したところ、92%であった。
 MX抽出率(%)=(([抽出塔から排出されるMX-HF-BF錯体]のモル数-[抽出塔に供給したMX-HF-BF錯体]のモル数)/[供給したキシレン混合物中のMX]のモル数)×100
[錯体交換工程]
 錯体交換塔として、内部に合計26枚の回転円盤を備える内径45mm、全長1,000mmの回転円盤抽出塔(材質SUS316L)を塔内温度0℃、窒素圧で0.4MPaに保持し、抽出塔の上段に備えた管より、上記したMX抽出工程で排出された錯体溶液を、1367g/時の割合で供給した。また、希釈剤としてメチルシクロペンタンを39mol%含有するヘキサン(株式会社ゴードー社製)を20mol%、および脱離剤としてメタジエチルベンゼンを80mol%含む混合液を、抽出塔の下部に備えた管より2422g/時の割合で供給した。
[規則91に基づく訂正 10.01.2014] 
 錯体交換塔内で脱離剤と錯体交換したMXを、脱離剤と希釈剤との混合液として、錯体交換塔の塔頂に備えた管より1988g/時の割合で連続的に排出した。排出された混合液中のMXの濃度、およびメタジエチルベンゼンの濃度は、質量基準でそれぞれ、11.2%および55.2%であった。また、メタジエチルベンゼン-HF-BF錯体のフッ化水素溶液を、錯体交換塔の塔底に備えた管より1843g/時の割合で連続的に排出した。排出された錯体フッ化水素溶液には、MX-HF-BF錯体とメタジエチルベンゼン-HF-BF錯体とが含まれており、その割合は、モル比で8:112であった。また、下記式よりMX錯体交換率を算出したところ、88%であった。
 MX錯体交換率(%)=100-([錯体交換塔から排出されたMX-HF-BF錯体]のモル数)/([錯体交換塔に供給されたMX-HF-BF錯体]のモル数)×100
 以上の結果より、MX酸塩基抽出工程および錯体交換工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は81%であった。なお、MX収率は、下記式に従って算出した。
 MX収率(%)=MX抽出率(%)×MX錯体交換率(%)/100
 従来技術では、錯体形成時に0℃以下へ冷却し、さらに、錯体分解時に塔底温度を100℃以上へ加熱する必要があったが、本実施形態のアルキル芳香族炭化水素の分離方法によれば、錯体形成時の冷却のみで済み、エネルギーコストを削減できるため、工業的に有利であることが分かる。
[MXの単離]
 上述した錯体交換工程において、抽出塔の塔頂に備えた管より排出されたMXを含む混合液を蒸留して、MXの単離を行った。先ず、脱離剤と希釈剤とを含むMX混合液約1kgを、93kPaの塔頂圧力で蒸留を行うことにより、ヘキサンとメチルシクロペンタンを主に含むMXの沸点未満の成分と、MXの沸点以上の成分とに分離した。続いて、31kPaの塔頂圧力で蒸留を行うことにより、MXを主に含む成分と、MXの沸点よりも高いジエチルベンゼンを主に含む成分とに分離した。この2段階の蒸留操作により、MX約105gを回収した。MXの純度は99.8%であった。なお、使用した蒸留塔の理論段数は約20段、各蒸留作業の還流比条件は30、MXの蒸留回収率は81%であった。
[実施例2]
 脱離剤として、メタジエチルベンゼンに代えて3-エチルトルエンを使用したこと以外は、実施例1と同様にして、上記の操作を行った。その結果、MX抽出工程でのMX抽出率は90%であり、錯体交換工程でのMX錯体交換率は98%であり、MX抽出工程および錯体交換工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は88%であった。
[実施例3]
 脱離剤として、メタジエチルベンゼンに代えてプソイドクメンを使用したこと以外は、実施例1と同様にして、上記の操作を行った。その結果、MX抽出工程でのMX抽出率は74%であり、錯体交換工程でのMX錯体交換率は100%であり、MX抽出工程および錯体交換工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は74%であった。
[実施例4]  
 脱離剤として、メタジエチルベンゼンに代えてフルオロ-2,4,6-トリメチルベンゼンを使用したこと以外は、実施例1と同様にして、上記の操作を行った。MX抽出工程でのMX抽出率は93%であり、錯体交換工程でのMX錯体交換率は70%であり、MX抽出工程および錯体交換工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は65%であった。
[実施例5]
 脱離剤として、メタジエチルベンゼンに代えてメシチレンを使用したこと以外は、実施例1と同様にして、上記の操作を行った。MX抽出工程でのMX抽出率は53%であり、錯体交換工程でのMX錯体交換率は100%であり、MX抽出工程および錯体交換工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は53%であった。
[比較例1]
 脱離剤として、メタジエチルベンゼンに代えてo-キシレン(OX)を使用したこと以外は、実施例1と同様にして、上記の操作を行った。MX抽出工程でのMX抽出率は71%であり、錯体交換工程でのMX錯体交換率は1.6%であり、MX抽出工程および錯体交換工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は1%であった。
 上述した実施例1~5および比較例1のMXの分離において、酸塩基抽出工程におけるMX抽出率、および抽出塔の塔底から排出された錯体溶液中のMX錯体の含有割合(=排出されたフッ化水素溶液中の炭素数8の芳香族炭化水素(エチルベンゼン、p-キシレン、MX、およびo-キシレン)の総モル数に対するMX-HF-BF錯体のモル数、即ち、フッ化水素溶液中のMX成分/全C8芳香族炭化水素のモル比)、ならびに錯体交換工程でのMX錯体交換率は、それぞれ下記表3に示すとおりであった。なお、表3においては、使用した脱離剤の相対塩基度の順に、実施例及び比較例を記載した。
[比較例2]
[MXの酸塩基抽出工程]
 内部に合計52枚の回転円盤を備える内径45mm、全長2,000mmの回転円盤抽出塔(材質SUS316L製)を、塔内温度0℃、窒素圧で0.4MPaに保持し、抽出塔の下部に備えた管より、希釈剤としてメチルシクロペンタンが39mol%含まれるヘキサン(株式会社ゴードー社製)を524g/時の割合で供給した。また、抽出塔の上段に備えた管から、フッ化水素、三フッ化ホウ素、エチルベンゼン、p-キシレン、MXおよびo-キシレンを、モル比でフッ化水素:三フッ化ホウ素:エチルベンゼン:p-キシレン:MX:o-キシレン=5:0.5:0.14:0.18:0.40:0.23の割合で含む混合液を、1909g/時の割合で供給し、MXの抽出を行った。
 フッ化水素および三フッ化ホウ素により抽出されたMXを、MX-HF-BF錯体のフッ化水素溶液として、抽出塔の塔底に備えた管から1429g/時の割合で連続的に排出した。また、抽出塔の塔頂に備えた管より、錯体溶液以外の混合成分を1005g/時の割合で連続的に排出した。塔底から排出された錯体溶液のMX、HFおよびBFのモル比は、0.39:5:0.5であった。この排出された錯体溶液(フッ化水素溶液)中のMX-HF-BF錯体のモル数は、錯体溶液中のキシレン混合物の総モル数に対して0.995であった。また、下記式よりMX抽出率を算出したところ、98.5%であった。
 MX抽出率(%)=([抽出塔の塔底から排出される錯体溶液中のMX]のモル数)/([供給した混合液中のMX]のモル数)×100
[規則91に基づく訂正 10.01.2014] 
[錯体分解工程]
 圧力0.4MPa、塔底温度120℃、ヘキサンを10g/分の割合で供給した、還流下の錯体分解塔(SUS316L製、内径760mm、長さ1760mm、1/2インチのテフロン製ラシヒリング充填)へ、上記で得られたMX-HF-BF錯体フッ化水素溶液を10g/分の割合で供給し、塔頂よりフッ化水素および三フッ化ホウ素を回収し、塔底部よりMXを含むヘキサン溶液を排出した。得られたヘキサン溶液に対して中和処理を行い、油層を得た。ガスクロマトグラフィー分析による反応成績からMX錯体分解率およびMX回収率を算出したところ、それぞれ、99.9%および99.9%であった。なお、錯体分解率およびMX回収率は、下記式により算出した。以上の結果より、MXの酸塩基抽出工程および錯体分解工程を経て、原料であるキシレン混合物からMXを分離した際のMX収率は98.4%であった。
 MX錯体分解率(%)=100-(ヘキサン溶液中の三フッ化ホウ素のモル数/ヘキサン溶液中のMXのモル数)×100
 MX回収率(%)=(ヘキサン溶液中のMXのモル数)/(供給したMX-HF-BF錯体のモル数)×100
[MXの単離]
 上記錯体分解工程において、分解塔の塔底より排出されたMXを含むヘキサン溶液を用いて、実施例1と同様の操作によりMXの単離を行った。得られたMXの純度は99.7%であり、MXの蒸留回収率は78%であった。錯体分解塔を用いた場合、錯体を変質することなく分解するには、塔底温度を100℃以上の温度にする必要があり、実施例1~5では必要のない熱量を要することがわかる。 
Figure JPOXMLDOC01-appb-T000004
[実施例6]
[脱離剤錯体の循環利用によるMXの酸塩基抽出工程]
 抽出塔の上段に備えた管から供給する混合液として、実施例1の錯体交換工程で塔底より排出されたメタジエチルベンゼン-HF-BF3錯体を用いたこと以外は実施例1のMXの酸塩基抽出工程と同様にして操作を行った。
 塔底より排出された錯体溶液中のMX-HF-BF3錯体のモル数は、錯体溶液中のキシレン混合物の総モル数に対して0.995で、MX抽出率は92%であり、上記の割合で調合した場合と同等の成績であった。
[実施例7]
[メシチレンの酸塩基抽出工程]
 原料として、プロピルベンゼン類7%、エチルトルエン類36%、メシチレン11%、プソイドクメン35%、ヘミメリテン6%、インダン1%、およびその他4%を含有するC9アルキルベンゼン混合物(株式会社ゴードー社製)を用いた。
 内部に合計52枚の回転円盤を備える内径45mm、全長2,000mmの回転円盤抽出塔(材質SUS316L製)を、塔内温度0℃、窒素圧で0.4MPaに保持し、抽出塔の中段に設けた供給管から、上記したC9アルキルベンゼン混合物を2392g/時の割合で供給し、抽出塔の下部に備えた管より、希釈剤としてメチルシクロペンタンが39mol%含まれるヘキサン(株式会社ゴードー社製)を524g/時の割合で供給した。また、抽出塔の上段に備えた管から、メシチレン-HF-BF錯体および1,2,3-トリエチルベンゼン-HF-BF錯体のフッ化水素溶液(モル比で、フッ化水素:三フッ化ホウ素:メシチレン:1,2,3-トリエチルベンゼン=5:0.5:0.002:0.66)を、1676g/時の割合で供給し、メシチレンの抽出を行った。
 フッ化水素および三フッ化ホウ素により抽出されたメシチレンを、メシチレン-HF-BF錯体のフッ化水素溶液として、抽出塔の塔底に備えた管から1460g/時の割合で連続的に排出した。また、抽出管の塔頂に備えた管より、錯体溶液以外の混合成分を3132g/時の割合で連続的に排出した。塔底から排出された錯体溶液は、メシチレン-HF-BF錯体および1,2,3-トリエチルベンゼン-HF-BF錯体のフッ化水素溶液(モル比で、メシチレン-HF-BF錯体:1,2,3-トリエチルベンゼン-HF-BF錯体とのモル比は、9:55)であった。この排出された錯体溶液(フッ化水素溶液)中のメシチレン-HF-BF錯体のモル数は、投入したC9アルキルベンゼン混合物の総モル数に対して0.90であった。また、下記式よりメシチレン抽出率を算出したところ、87%であった。
 メシチレン抽出率(%)=(([抽出塔から排出されるメシチレン-HF-BF錯体]のモル数-[抽出塔に供給したメシチレン-HF-BF錯体]のモル数)/[供給したC9アルキルベンゼン混合物中のメシチレン]のモル数)×100
[錯体交換工程]
 錯体交換塔として、内部に合計26枚の回転円盤を備える内径45mm、全長1,000mmの回転円盤抽出塔(材質SUS316L)を塔内温度0℃、窒素圧で0.4MPaに保持し、抽出塔の上段に備えた管より、上記したメシチレン抽出工程で排出された錯体溶液を、1300g/時の割合で供給した。また、希釈剤としてメチルシクロペンタンを39mol%含有するヘキサン(株式会社ゴードー社製)を20mol%、および脱離剤として1,2,3-トリエチルベンゼンを80mol%含む混合液を、抽出塔の下部に備えた管より2169g/時の割合で供給した。
[規則91に基づく訂正 10.01.2014] 
 抽出塔内で脱離剤と錯体交換したメシチレンを、脱離剤と希釈剤との混合液として、抽出塔の塔頂に備えた管より1299g/時の割合で連続的に排出した。排出された混合液中のメシチレンの濃度、および1,2,3-トリエチルベンゼンの濃度は、質量基準でそれぞれ、15.0%および48.0%であった。また、1,2,3-トリエチルベンゼン-HF-BF錯体フッ化水素溶液を、抽出塔の塔底に備えた管より2170g/時の割合で連続的に排出した。排出された錯体フッ化水素溶液には、メシチレン-HF-BF錯体および1,2,3-トリエチルベンゼン-HF-BF錯体が含まれており、その割合は、モル比で0.26:99.74であった。また、下記式よりメシチレン錯体交換率を算出したところ、99.5%であった。
 メシチレン錯体交換率(%)=100-([錯体交換塔から排出されたメシチレン-HF-BF錯体]のモル数)/([錯体交換塔に供給されたメシチレン-HF-BF錯体]のモル数)×100
[メシチレンの単離]
 上記錯体交換工程において、抽出塔の塔頂に備えた管より排出されたメシチレンを含む混合液を蒸留して、メシチレンの単離を行った。先ず、脱離剤と希釈剤とを含むメシチレン150kgを、93kPaの塔頂圧力で蒸留を行うことにより、ヘキサンとメチルシクロペンタンを主に含むメシチレンの沸点未満の成分と、メシチレンの沸点以上の成分とに分離した。続いて、31kPaの塔頂圧力で蒸留を行うことにより、メシチレンを主に含む成分と、メシチレンの沸点よりも高い1,2,3-トリエチルベンゼンを主に含む成分とに分離した。この2段階の蒸留操作により、メシチレン19.2kgを回収した。メシチレンの純度は99.5%であった。なお、使用した蒸留塔の理論段数は85段、各蒸留作業の還流比条件は15、メシチレンの蒸留回収率は85%であった。
 本出願は、2012年6月29日に日本国特許庁へ出願された日本特許出願(特願2012-147540)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の分離方法および分離装置によれば、高純度のアルキル芳香族炭化水素の分離において、従来に比べ分離に要するエネルギーを大幅に低減でき、工業的に有利なプロセスとして利用できる。
 1 錯体交換塔
 2-1 希釈剤供給管
 2-2 脱離剤供給管
 3 アルキル芳香族炭化水素-超強酸錯体供給管
 4,11 塔頂
 5,10 塔底
 6 酸塩基抽出塔
 7 原料混合物供給管
 8 脱離剤-超強酸錯体供給管
 9 希釈剤供給管

Claims (21)

  1.  アルキル芳香族炭化水素の分離方法であって、
     前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物に、第1の希釈剤と、超強酸からなる抽剤とを添加して、酸塩基抽出することにより、前記アルキル芳香族炭化水素と前記超強酸との錯体を形成させた後、前記混合物から前記錯体を分離する工程、
     前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.06~10の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程、
    を含む、アルキル芳香族炭化水素の分離方法。
  2.  前記錯体交換により形成された脱離剤と超強酸との錯体を、前記第2の希釈剤とともに抽剤として前記混合物に添加して循環利用する工程を更に含む、請求項1記載の方法。
  3.  前記錯体に、前記アルキル芳香族炭化水素に対する相対塩基度が0.1~2.0の範囲にある脱離剤及び第2の希釈剤を添加して、前記アルキル芳香族炭化水素と前記脱離剤の錯体交換を行うことにより、前記アルキル芳香族炭化水素を前記錯体から分離する工程、
    を含む、請求項1又は2記載の方法。
  4.  前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物が、C8のアルキルベンゼン、C9のアルキルベンゼン、またはC10のアルキルベンゼンである、請求項1~3のいずれか一項に記載の方法。
  5.  前記アルキル芳香族炭化水素およびその異性体を1種以上含む混合物がC8のアルキルベンゼンであり、且つ、前記アルキル芳香族炭化水素がm-キシレンである、請求項4に記載の方法。
  6.  前記超強酸が、ブレンステッド酸とルイス酸との混合型超強酸である、請求項1~5のいずれか一項に記載の方法。
  7.  前記脱離剤と超強酸との錯体を、前記混合物中のアルキル芳香族炭化水素のモル数/前記錯体中のルイス酸のモル数が0.5~1.5の範囲となるような量で添加する、請求項6に記載の方法。
  8.  前記第1の希釈剤を、前記第1の希釈剤の容量/前記超強酸中のルイス酸のモル数が、50mL/mol~500mL/molの範囲となるような量で添加する、請求項6または7に記載の方法。
  9.  前記脱離剤を、前記アルキル芳香族炭化水素と超強酸との錯体中のルイス酸に対して、モル比で1~15の範囲となる量で添加する、請求項6~8のいずれか一項に記載の方法。
  10.  前記脱離剤に対する前記第2の希釈剤の量が、質量基準で0.001~1の範囲である、請求項1~9のいずれか一項に記載の方法。
  11.  前記脱離剤の沸点が145℃~400℃の範囲である、請求項1~10のいずれか一項に記載の方法。
  12.  前記ルイス酸が、三フッ化ホウ素、五フッ化タンタル、五フッ化ニオブ、四フッ化チタン、五フッ化リン、五フッ化アンチモン、および六フッ化タングステンからなる群より選択される少なくとも1種である、請求項6~11のいずれか一項に記載の方法。
  13.  前記ブレンステッド酸がフッ化水素であり、前記ルイス酸が三フッ化ホウ素である、請求項6~12のいずれか一項に記載の方法。
  14.  前記第1および/または第2の希釈剤が、脂肪族飽和炭化水素および/または脂環式飽和炭化水素である、請求項1~13のいずれか一項に記載の方法。
  15.  前記第1および/または第2の希釈剤が、イソヘキサン、3-メチルペンタン、2-メチルヘキサン、2-エチルヘキサン、デカリン、テトラヒドロジシクロペンタジエン、エチルシクロヘキサン、メチルシクロヘキサン、およびメチルシクロペンタンからなる群より選択される1種以上である、請求項1~14のいずれか一項に記載の方法。
  16.  前記超強酸の前記ルイス酸に対する前記ブレンステッド酸の割合が、モル比で5~20の範囲である、請求項6~15のいずれか一項に記載の方法。
  17.  酸塩基抽出塔と錯体交換塔とを備えたアルキル芳香族炭化水素の分離装置であって、
     前記酸塩基抽出塔は、アルキル芳香族炭化水素およびその異性体を1種以上含む混合物を供給する管と、第1の希釈剤を供給する管と、前記錯体交換塔の塔底から抜き出された脱離剤と超強酸との錯体溶液を供給する管と、前記アルキル芳香族炭化水素を、アルキル芳香族炭化水素と超強酸との錯体溶液として、前記酸塩基抽出塔の塔底から排出する管と、錯体交換により分離した脱離剤、抽出されなかった抽残異性体、および希釈剤からなる混合液を前記酸塩基抽出塔の塔頂から排出する管と、を備え、
     前記錯体交換塔は、前記酸塩基抽出塔の塔底から排出された前記アルキル芳香族炭化水素と超強酸との錯体溶液を供給する管と、第2の希釈剤および脱離剤を供給する管と、抽出された前記アルキル芳香族炭化水素、前記脱離剤および前記希釈剤からなる混合液を前記錯体交換塔の塔頂から排出する管と、錯体交換が行われた後の脱離剤と超強酸との錯体溶液を、前記錯体交換塔の塔底から排出する管と、を備えてなる、装置。
  18.  前記第2の希釈剤および脱離剤を供給する管が、第2の希釈剤を供給する管と、脱離剤を供給する管と、に分離されている、請求項17記載の装置。
  19.  前記錯体交換塔において、供給された前記アルキル芳香族炭化水素と超強酸との錯体溶液と、供給された前記第2の希釈剤および脱離剤の混合溶液とを、向流接触させる、請求項17又は18記載の装置。
  20.  前記錯体交換塔から排出された前記アルキル芳香族炭化水素、脱離剤および希釈剤からなる混合液を蒸留して、前記アルキル芳香族炭化水素、脱離剤および希釈剤をそれぞれ分離する蒸留塔をさらに備える、請求項17~19のいずれか一項に記載の装置。
  21.  前記酸塩基抽出塔から排出された前記脱離剤、抽出されなかった抽残異性体、および希釈剤からなる混合液を蒸留して、脱離剤、抽残異性体および希釈剤をそれぞれ分離する蒸留塔をさらに備える、請求項17~20のいずれか一項に記載の装置。
PCT/JP2013/067383 2012-06-29 2013-06-25 アルキル芳香族炭化水素の分離方法および分離装置 WO2014003000A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014522639A JP6146411B2 (ja) 2012-06-29 2013-06-25 アルキル芳香族炭化水素の分離方法および分離装置
CN201380034869.1A CN104411666B (zh) 2012-06-29 2013-06-25 烷基芳香族烃的分离方法和分离装置
US14/411,289 US9896397B2 (en) 2012-06-29 2013-06-25 Method and apparatus for separating alkyl aromatic hydrocarbon
KR1020147036424A KR102048250B1 (ko) 2012-06-29 2013-06-25 알킬 방향족 탄화수소의 분리방법 및 분리장치
EP13810190.2A EP2868644B1 (en) 2012-06-29 2013-06-25 Method and apparatus for separating alkyl aromatic hydrocarbon
IN188DEN2015 IN2015DN00188A (ja) 2012-06-29 2013-06-25
SG11201408633WA SG11201408633WA (en) 2012-06-29 2013-06-25 Method and apparatus for separating alkyl aromatic hydrocarbon
US15/713,972 US10207967B2 (en) 2012-06-29 2017-09-25 Method and apparatus for separating alkyl aromatic hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147540 2012-06-29
JP2012147540 2012-06-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/411,289 A-371-Of-International US9896397B2 (en) 2012-06-29 2013-06-25 Method and apparatus for separating alkyl aromatic hydrocarbon
US15/713,972 Division US10207967B2 (en) 2012-06-29 2017-09-25 Method and apparatus for separating alkyl aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
WO2014003000A1 WO2014003000A1 (ja) 2014-01-03
WO2014003000A9 true WO2014003000A9 (ja) 2014-03-27

Family

ID=49783146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067383 WO2014003000A1 (ja) 2012-06-29 2013-06-25 アルキル芳香族炭化水素の分離方法および分離装置

Country Status (9)

Country Link
US (2) US9896397B2 (ja)
EP (1) EP2868644B1 (ja)
JP (1) JP6146411B2 (ja)
KR (1) KR102048250B1 (ja)
CN (1) CN104411666B (ja)
IN (1) IN2015DN00188A (ja)
SG (1) SG11201408633WA (ja)
TW (1) TWI591053B (ja)
WO (1) WO2014003000A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896397B2 (en) * 2012-06-29 2018-02-20 Mitsubishi Gas Chemical Company, Inc. Method and apparatus for separating alkyl aromatic hydrocarbon
JP6931609B2 (ja) 2014-12-18 2021-09-08 ベルゲン テクノロジオーヴァーフォリング エイエス 抗Axlアンタゴニスト抗体
CN111410182A (zh) * 2020-03-31 2020-07-14 福建省龙德新能源股份有限公司 一种回用六氟磷酸锂合成尾气中五氟化磷的方法
CN113248343A (zh) * 2021-05-13 2021-08-13 天津济泰科技有限公司 隔板塔分离重整碳十芳烃的工艺及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662925A (en) 1951-06-29 1953-12-15 Standard Oil Co Isomerization of xylenes
US3512931A (en) * 1966-08-12 1970-05-19 Mitsubishi Gas Chemical Co Process for recovering hydrogen fluoride and boron fluoride
JPS4719256Y1 (ja) 1966-11-19 1972-07-01
JPS4737408Y1 (ja) 1967-08-03 1972-11-13
US3562347A (en) * 1967-12-15 1971-02-09 Japan Gas Chemical Co Process for extract-isomerization of xylene isomers
US3592865A (en) * 1968-09-03 1971-07-13 Exxon Research Engineering Co Separation and recovery of complexible ligands by liquid exchange
GB1272960A (en) * 1968-09-03 1972-05-03 Exxon Research Engineering Co Complexing ligands with bimetallic salts and derivatives thereof
US3644553A (en) * 1968-12-17 1972-02-22 Japan Gas Chemical Co Process for the decomposition of a solution of hydrogen fluoride-boron trifluoride-xylenes complex
US3766286A (en) * 1971-06-25 1973-10-16 Exxon Research Engineering Co Process for the isomerization of hydrocarbons
JPH0774170B2 (ja) * 1991-01-18 1995-08-09 工業技術院長 ベンゼン二置換異性体の分離法及びその分離用薬剤
US5177302A (en) 1990-11-27 1993-01-05 Director-General, Agency Of Industrial Science And Technology Process for separating isomers of disubstituted benzenes and agents to be used therefor
JPH06305989A (ja) * 1993-02-23 1994-11-01 Sekiyu Sangyo Kasseika Center 錯体形成による分離回収方法
JP2650862B2 (ja) 1994-11-22 1997-09-10 ユーオーピー 芳香族炭化水素からメタキシレンの吸着分離法
DE102004004683A1 (de) * 2004-01-29 2005-08-18 Basf Ag Verfahren zur Herstellung von Dinitrilen
EP1768941B1 (en) * 2004-06-23 2015-01-21 ExxonMobil Chemical Patents Inc. Methods for separating mixture components
JP5964966B2 (ja) * 2011-08-29 2016-08-03 サウディ ベーシック インダストリーズ コーポレイション 二置換スクシネートを調製するプロセス
US9896397B2 (en) * 2012-06-29 2018-02-20 Mitsubishi Gas Chemical Company, Inc. Method and apparatus for separating alkyl aromatic hydrocarbon

Also Published As

Publication number Publication date
US20150141730A1 (en) 2015-05-21
KR20150021956A (ko) 2015-03-03
JP6146411B2 (ja) 2017-06-14
EP2868644A4 (en) 2016-02-10
US20180016209A1 (en) 2018-01-18
WO2014003000A1 (ja) 2014-01-03
CN104411666A (zh) 2015-03-11
JPWO2014003000A1 (ja) 2016-06-02
CN104411666B (zh) 2016-04-13
IN2015DN00188A (ja) 2015-06-12
SG11201408633WA (en) 2015-02-27
TW201412704A (zh) 2014-04-01
US9896397B2 (en) 2018-02-20
KR102048250B1 (ko) 2019-11-25
EP2868644A1 (en) 2015-05-06
TWI591053B (zh) 2017-07-11
US10207967B2 (en) 2019-02-19
EP2868644B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US10207967B2 (en) Method and apparatus for separating alkyl aromatic hydrocarbon
KR102012065B1 (ko) 이온 액체 화합물
JP6666587B2 (ja) m−キシレンの分離方法
JP2014210779A (ja) 芳香族ヨード化化合物の製造方法
US2683760A (en) Manufacture of 1, 3, 5-ethylxylene
US2780659A (en) Ethylbenzene from c8 aromatic hydrocarbons
US2766305A (en) Separation of mixed c8 aromatic hydrocarbons into xylene and ethylxylene
JPH0451556B2 (ja)
JP6466396B2 (ja) パラプロピルベンズアルデヒドの生成
US2833836A (en) Separation of c aromatic hydrocarbon isomers
US3960976A (en) Method for the separation of hydrocarbons
US3398206A (en) Production of p-dialkylbenzenes
RU2759569C1 (ru) Восстановление катализатора в виде ионной жидкости
JP4273301B2 (ja) アルキル芳香族化合物の製造方法
JP3042367B2 (ja) メタジイソプロピルベンゼンの精製方法
EP0282064B1 (en) Method for producing m-ethyldiphenyls
US2753383A (en) Preparation of mono-nu-alkylbenzenes by treating benzene and poly-nu-alkylbenzenes with hf-bf3
US2683762A (en) Xylene separation with liquid hf and tif4
US2785211A (en) Separation of 1 ethyl 3, 5 dimethyl benzene from diethyl benzene by disproportionating the latter in the presence of hf-bf3
US3047620A (en) Production of terephthalic acid from toluene
JPH04288026A (ja) アルキル置換芳香族化合物の製造方法
US3217054A (en) Purification process
JPH0797345A (ja) アルキル芳香族化合物のエチル化方法
JPH0776531A (ja) メタキシレンの分離法
JPH04352732A (ja) アルキル置換芳香族化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522639

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147036424

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411289

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013810190

Country of ref document: EP