WO2014002625A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2014002625A1
WO2014002625A1 PCT/JP2013/063444 JP2013063444W WO2014002625A1 WO 2014002625 A1 WO2014002625 A1 WO 2014002625A1 JP 2013063444 W JP2013063444 W JP 2013063444W WO 2014002625 A1 WO2014002625 A1 WO 2014002625A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
gate
wirings
semiconductor
semiconductor device
Prior art date
Application number
PCT/JP2013/063444
Other languages
English (en)
French (fr)
Inventor
久人 道越
平方 宣行
浩史 野津
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP13810046.6A priority Critical patent/EP2869340A4/en
Priority to CN201380026637.1A priority patent/CN104321867B/zh
Publication of WO2014002625A1 publication Critical patent/WO2014002625A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • the present invention relates to a semiconductor device.
  • a semiconductor device including a MOSFET semiconductor chip As an example of a semiconductor device, a semiconductor device including a MOSFET semiconductor chip is known (see Patent Document 1). In such a semiconductor device, a semiconductor chip mounted on a die pad is connected to a gate lead via a gate wire and connected to a source lead via a plurality of source wires.
  • the length of the source wire closest to the gate wire is the same as or longer than the lengths of the other source wires. For this reason, when the currents flowing through the plurality of source wires change with time, the influence of the mutual inductance that the gate wire receives from the plurality of source wires due to the electromagnetic induction effect increases. As a result, in the semiconductor device, the temporal variation of the gate voltage applied to the gate wire becomes large.
  • a semiconductor device includes at least one semiconductor chip, a gate wiring connected to the at least one semiconductor chip, a first wiring connected to the at least one semiconductor chip, and the at least one semiconductor chip.
  • the first wiring is disposed between the second wiring, the first wiring is the wiring closest to the gate wiring, and the length of the first portion of the gate wiring facing the first wiring is The length is shorter than the length of the second portion of the gate wiring facing the second wiring.
  • the first portion of the gate wiring may be a portion located at the intersection of the perpendicular and the gate wiring when a perpendicular is drawn from each point of the first wiring to the gate wiring.
  • the second portion of the gate wiring may be a portion located at the intersection of the perpendicular and the gate wiring when a perpendicular is drawn from each point of the second wiring to the gate wiring.
  • the gate wiring is affected by the mutual inductance from the first wiring and the second wiring due to the electromagnetic induction effect.
  • the mutual inductance is determined by the distance between the gate wiring, the first wiring, and the second wiring, and the length of the portion of the gate wiring that faces the first wiring and the second wiring.
  • the distance between the gate wiring and the first wiring and the second wiring is short, the mutual inductance increases.
  • the length of the portion of the gate wiring facing the first wiring and the second wiring is long, the mutual inductance increases.
  • the length d1 of the first portion of the gate wiring facing the first wiring closest to the gate wiring is larger than the length d2 of the second portion of the gate wiring facing the second wiring. short. Therefore, since the influence of the mutual inductance that the gate wiring receives from the first wiring due to the electromagnetic induction effect is small, the temporal variation of the gate voltage is suppressed.
  • the at least one semiconductor chip is a plurality of semiconductor chips, the plurality of semiconductor chips are arranged along a first direction, and a second direction perpendicular to the first direction between adjacent semiconductor chips
  • the gate wiring, the first wiring, and the second wiring may be inverted with respect to an axis extending along the line.
  • the influence of the mutual inductance that the gate wiring of each semiconductor chip receives from the first wiring and the second wiring due to the electromagnetic induction effect is made uniform, so that variations in gate voltage between adjacent semiconductor chips are reduced.
  • the material of the at least one semiconductor chip may include a wide band gap semiconductor.
  • the semiconductor device may further include a wiring pattern connected to the gate wiring.
  • the length of the gate wiring can be shortened by setting the distance between the semiconductor chip and the wiring pattern small. Therefore, since the influence of the mutual inductance which a gate wiring receives from a 1st wiring and a 2nd wiring by an electromagnetic induction effect is further reduced, the temporal fluctuation
  • the semiconductor device includes a first lead electrically connected to the gate wiring, a second lead electrically connected to the first wiring and the second wiring, and the at least one semiconductor. And a die pad having a chip mounting surface on which the chip is mounted.
  • the present invention it is possible to provide a semiconductor device capable of suppressing temporal fluctuation of the gate voltage.
  • FIG. 1 is a plan view schematically showing a semiconductor device according to a first embodiment. It is a figure which shows an example of the time change of the gate voltage in the semiconductor device which concerns on 1st Embodiment. It is a top view which shows typically the semiconductor device for a reference. It is a figure which shows an example of the time fluctuation
  • FIG. 1 is a plan view schematically showing the semiconductor device according to the first embodiment.
  • a semiconductor device 10 shown in FIG. 1 is a resin-encapsulated semiconductor device.
  • the semiconductor device 10 includes a plurality of semiconductor chips 14a to 14d.
  • the semiconductor chips 14a to 14d can be connected in parallel.
  • the semiconductor device 10 may include a die pad 12 having a chip mounting surface 12a on which semiconductor chips 14a to 14d are mounted.
  • the die pad 12 can be electrically connected to the semiconductor chips 14a to 14d.
  • the die pad 12 has a plate shape, for example.
  • the chip mounting surface 12a is, for example, a rectangle.
  • Examples of the material of the die pad 12 include metals such as copper (Cu) and a copper alloy.
  • a through-hole 26 that penetrates the die pad 12 in the thickness direction can be formed in the die pad 12.
  • the through hole 26 is a hole through which a screw is passed when the semiconductor device 10 is fixed to another member (for example, a heat sink or the like) by, for example, a screw.
  • the semiconductor chips 14a to 14d are mounted at predetermined positions on the chip mounting surface 12a.
  • Examples of the semiconductor chips 14a to 14d include a transistor such as a MOS-FET and an insulated gate bipolar transistor (IGBT), a diode such as a PN junction diode and a Schottky barrier diode.
  • the semiconductor chips 14a to 14d can be mounted on the chip mounting surface 12a via an adhesive layer made of a material including lead-containing metal solder, lead-free metal solder, conductive resin, or the like.
  • Examples of the material of the semiconductor chips 14a to 14d include a wide band gap semiconductor, silicon and other semiconductors.
  • a wide band gap semiconductor has a band gap larger than that of silicon. Examples of wide band gap semiconductors include silicon carbide (SiC), gallium nitride (GaN), and diamond.
  • Each of the semiconductor chips 14a to 14d may have a gate electrode pad GP and an electrode pad SP.
  • the gate electrode pad GP can be formed at the end of the main surface of the semiconductor chips 14a to 14d.
  • a gate liner GL may be connected to the gate electrode pad GP.
  • the electrode pad SP can be formed in a region where the gate electrode pad GP and the gate liner GL are not formed on the main surfaces of the semiconductor chips 14a to 14d.
  • the electrode pad SP corresponds to the source electrode pad.
  • the electrode pad SP corresponds to an emitter electrode pad.
  • Further electrode pads such as drain electrode pads or collector electrode pads can be formed on the entire back surface of the semiconductor chips 14a to 14d.
  • a gate wiring 30a, a first wiring 32a, and a second wiring 34a are connected to the semiconductor chip 14a.
  • the gate wiring 30a can be connected to the gate electrode pad GP of the semiconductor chip 14a.
  • the first wiring 32a and the second wiring 34a can be connected to the electrode pad SP of the semiconductor chip 14a.
  • gate wirings 30b to 30d can be connected to the gate electrode pads GP of the semiconductor chips 14b to 14d, respectively.
  • First wirings 32b to 32d can be connected to the electrode pads SP of the semiconductor chips 14b to 14d, respectively.
  • Second wirings 34b to 34d can be connected to the electrode pads SP of the semiconductor chips 14b to 14d, respectively.
  • the first wirings 32a to 32d and the second wirings 34a to 34d are wirings for supplying current to the semiconductor chips 14a to 14d.
  • the gate wirings 30a to 30d are wirings for switching currents flowing through the first wirings 32a to 32d and the second wirings 34a to 34d.
  • the first wirings 32a to 32d and the second wirings 34a to 34d may be distributed in the electrode pad SP in order to suppress current concentration.
  • the first wirings 32a to 32d and the second wirings 34a to 34d extend along the gate wirings 30a to 30d.
  • the gate wirings 30a to 30d, the first wirings 32a to 32d, and the second wirings 34a to 34d may extend along the XY plane.
  • the first wirings 32a to 32d are arranged between the gate wirings 30a to 30d and the second wirings 34a to 34d.
  • the first wiring 32a is disposed between the gate wiring 30a and the second wiring 34a.
  • the first wirings 32a to 32d are wirings closest to the gate wirings 30a to 30d, respectively.
  • the length d1 of the first portion 30x of the gate wirings 30a to 30d facing the first wirings 32a to 32d is the length of the second portion 30y of the gate wirings 30a to 30d facing the second wirings 34a to 34d. Shorter than d2.
  • the length d2 may be not less than 1.2 times the length d1.
  • the lengths d1 and d2 can be measured by looking at the first wirings 32a to 32d and the second wirings 34a to 34d from the Z direction perpendicular to the main surfaces of the semiconductor chips 14a to 14d.
  • the first portion 30x of the gate wirings 30a to 30d is located at the intersection of the vertical line and the gate wirings 30a to 30d when a vertical line is drawn from each point of the first wirings 32a to 32d to the gate wirings 30a to 30d. Can be part.
  • the second portion 30y of the gate wirings 30a to 30d is located at the intersection of the perpendicular and the gate wirings 30a to 30d when a perpendicular is drawn from each point of the second wirings 34a to 34d to the gate wirings 30a to 30d. Can be part.
  • the semiconductor chips 14a to 14d can be arranged along the X direction (first direction).
  • An axis Ax extending along the Y direction (second direction perpendicular to the first direction) is disposed between adjacent semiconductor chips 14a to 14d.
  • the gate wirings 30a to 30d, the first wirings 32a to 32d, and the second wirings 34a to 34d can be arranged so as to be inverted with respect to the axis Ax.
  • the gate electrode pad GP and the electrode pad SP can also be arranged in an inverted manner with respect to the axis Ax.
  • the gate line 30a is disposed at a position symmetrical to the gate line 30b with respect to the axis Ax.
  • the semiconductor device 10 may include a first lead 18, a second lead 20, and a third lead 16.
  • the leads 16, 18, and 20 extend along the Y direction, and are arranged along the X direction.
  • the lead 16 is located between the leads 18 and 20.
  • the leads 16, 18, 20 and the die pad 12 may constitute a lead frame.
  • the semiconductor device 10 is a power semiconductor device used for a power source or the like, for example.
  • An example of the package form of the semiconductor device 10 is a general TO series. Examples of TO series include TO-247, TO-220, TO-263 (D2-PAK), and TO-252 (D-PAK).
  • the lead 18 is electrically connected to the gate wirings 30a to 30d.
  • the lead 20 is electrically connected to the first wirings 32a to 32d and the second wirings 34a to 34d.
  • the inner end of the lead 16 is mechanically and integrally connected to the die pad 12. Since the die pad 12 has conductivity, the lead 16 and the die pad 12 are electrically connected. Examples of the material of the lead 16 include the same material as that of the die pad 12.
  • the lead 16 corresponds to the drain electrode terminal
  • the lead 18 corresponds to the gate electrode terminal
  • the lead 20 corresponds to the source electrode terminal.
  • the semiconductor chips 14a to 14d include IGBTs
  • the lead 16 corresponds to the collector electrode terminal
  • the lead 18 corresponds to the gate electrode terminal
  • the lead 20 corresponds to the emitter electrode terminal.
  • the material of the leads 18 and 20 include metals such as copper and copper alloys.
  • the semiconductor device 10 can include a wiring pattern 36 connected to the gate wirings 30a to 30d, and an insulating member 38 disposed between the die pad 12 and the wiring pattern 36.
  • the wiring pattern 36 is connected to the lead 18 through the wiring 40.
  • the insulating member 38 is interposed between the die pad 12 and the wiring pattern 36 in the Z direction.
  • the insulating member 38 is, for example, an insulating substrate or an insulating layer. Examples of the material of the insulating member 38 include a resin such as an epoxy resin or ceramics.
  • the die pad 12, the insulating member 38, and the wiring pattern 36 can be connected to each other by an adhesive.
  • the semiconductor device 10 may include a wiring pattern 42 connected to the first wirings 32a to 32d and the second wirings 34a to 34d, and an insulating member 44 disposed between the die pad 12 and the wiring pattern 42.
  • the wiring pattern 42 is connected to the leads 20 via a plurality of wirings 46.
  • the insulating member 44 is interposed between the die pad 12 and the wiring pattern 42 in the Z direction.
  • the insulating member 44 is, for example, an insulating substrate or an insulating layer. Examples of the material of the insulating member 44 include a resin such as an epoxy resin or ceramics.
  • the die pad 12, the insulating member 44, and the wiring pattern 42 can be connected to each other by an adhesive.
  • the wiring patterns 36 and 42 are also called wiring bars. Examples of the material of the wiring patterns 36 and 42 include the same material as that of the die pad 12.
  • the gate wirings 30a to 30d, the first wirings 32a to 32d, the second wirings 34a to 34d, and the wirings 40 and 46 may be wires or bonding ribbons.
  • Examples of materials of the gate wirings 30a to 30d, the first wirings 32a to 32d, the second wirings 34a to 34d, and the wirings 40 and 46 include metals such as aluminum, gold, and copper.
  • the gate wirings 30a to 30d, the first wirings 32a to 32d, the second wirings 34a to 34d, and the wirings 40 and 46 are, for example, wiring patterns 36 and 42, a semiconductor chip by wire bonding using ultrasonic waves or pressure. 14a to 14d or leads 18 and 20.
  • the die pad 12, the semiconductor chips 14a to 14d, the inner end portion of the lead 18, and the inner end portion of the lead 20 can be covered with a resin portion 24. Inner ends of the leads 16, 18, and 20 are inserted into the resin portion 24. Of the leads 16, 18, and 20, the portion inside the resin portion 24 is a so-called inner lead portion. Of the leads 16, 18, and 20, the portion outside the resin portion 24 is an outer lead portion. An example of the outer shape of the resin portion 24 is a substantially rectangular parallelepiped. Examples of the material of the resin portion 24 include thermoplastic resins such as polyphenylene sulfide resin (PPS resin) and liquid crystal polymer.
  • the resin portion 24 can be formed by molding the die pad 12 and the semiconductor chips 14a to 14d with a thermoplastic resin.
  • a through hole 28 is formed in the resin portion 24 with the central axis of the through hole 26 of the die pad 12 as the central axis.
  • the through hole 28 is a hole through which a screw is passed in the case of screwing or the like, like the through hole 26.
  • the diameter of the through hole 28 is smaller than the diameter of the through hole 26.
  • the gate wirings 30a to 30d become the first wirings 32a to 32d and the second wirings 34a to 34d due to the electromagnetic induction effect. Affected by mutual inductance.
  • the gate voltages of the semiconductor chips 14a to 14d vary with time.
  • the mutual inductance is opposed to the distance between the gate wirings 30a to 30d and the first wirings 32a to 32d and the second wirings 34a to 34d, and to the first wirings 32a to 32d and the second wirings 34a to 34d. It is determined by the length of the gate wirings 30a to 30d.
  • the length d1 of the first portion 30x of the gate wiring 30b facing the first wiring 32b closest to the gate wiring 30b is equal to the second length of the gate wiring 30b facing the second wiring 34b. It is shorter than the length d2 of the portion 30y. Therefore, the influence of the mutual inductance that the gate wiring 30b receives from the first wiring 32b due to the electromagnetic induction effect is relatively small. Therefore, temporal variation of the gate voltage is suppressed.
  • the gate wirings 30a to 30d, the first wirings 32a to 32d, and the second wirings 34a to 34d are inverted with respect to the axis Ax extending in the Y direction between the adjacent semiconductor chips 14a to 14d. Can be arranged. In this case, the influence of the mutual inductance that the gate wirings 30a to 30d of the semiconductor chips 14a to 14d receive from the first wirings 32a to 32d and the second wirings 34a to 34d by the electromagnetic induction effect is made uniform. Therefore, variation in gate voltage between adjacent semiconductor chips 14a to 14d is reduced.
  • the material of the semiconductor chips 14a to 14d includes a wide bandgap semiconductor
  • a larger current than the semiconductor chips 14a to 14d made of silicon is allowed to flow through the first wirings 32a to 32d and the second wirings 34a to 34d. It becomes possible. For this reason, in the wide band gap semiconductor, the temporal variation of the gate voltage tends to be large, so that the effect of suppressing the temporal variation of the gate voltage is great.
  • the semiconductor device 10 includes the wiring pattern 36 connected to the gate wirings 30a to 30d, the distance between the semiconductor chips 14a to 14d and the wiring pattern 36 can be set small. As a result, the lengths of the gate wirings 30a to 30d can be shortened. Thereby, the influence of the mutual inductance that the gate wirings 30a to 30d receive from the first wirings 32a to 32d and the second wirings 34a to 34d due to the electromagnetic induction effect is further reduced. Therefore, temporal variation of the gate voltage is further suppressed.
  • the semiconductor device 10 may include leads 18 and 20 and a die pad 12. In this case, it is usually difficult to sufficiently separate the gate wiring from the first wiring and the second wiring. Therefore, since the temporal variation of the gate voltage tends to increase, the effect of suppressing the temporal variation of the gate voltage is great.
  • FIG. 2 is a diagram illustrating an example of temporal variation of the gate voltage in the semiconductor device according to the first embodiment.
  • FIG. 2 shows an example of the influence of mutual inductance that the gate wiring 30b of the semiconductor chip 14b receives from the first wirings 32a to 32d and the second wirings 34a to 34d. The influence of the self-inductance of the gate wiring 30b is not considered.
  • the current value flowing through the semiconductor chips 14a to 14d connected in parallel is 50A. Therefore, a current of 12.5 A flows through each of the semiconductor chips 14a to 14d.
  • the gate voltage during operation of the semiconductor chips 14a to 14d is 15V. Switching time is 20 ns.
  • the length of the gate wiring 30b is 3.2 mm.
  • the length d1 of the first portion 30x of the gate wiring 30b is 2.4 mm.
  • the length d2 of the second portion 30y of the gate wiring 30b is 3.2 mm.
  • the shortest distance is adopted as the distance between the gate wiring 30b and the first wirings 32a to 32d and the second wirings 34a to 34d.
  • the shortest distance is a distance between positions P1 to P8 on the first wirings 32a to 32d and the second wirings 34a to 34d and the gate wiring 30b.
  • the distance between the position P1 on the second wiring 34a and the gate wiring 30b is 3.72 mm.
  • the mutual inductance received by the gate wiring 30b from the second wiring 34a is 0.22 nH.
  • the variation of the gate voltage due to this is 0.14V.
  • the total mutual inductance that the gate wiring 30b receives from the first wirings 32a to 32d and the second wirings 34a to 34d is 1.81 nH.
  • the total fluctuation of the gate voltage in the gate wiring 30b is 1.14V (1.1V in two significant figures).
  • the mutual inductance received by the gate wiring 30a from the first wirings 32a to 32d and the second wirings 34a to 34d is calculated.
  • the total mutual inductance that the gate wiring 30a receives from the first wirings 32a to 32d and the second wirings 34a to 34d is 1.81 nH. Further, the fluctuation of the gate voltage in the gate wiring 30a is calculated. The total gate voltage fluctuation in the gate wiring 30a is 1.1 V (2 significant digits). Therefore, since the gate voltage variation between the adjacent semiconductor chips 14a and 14b is the same, there is no variation in the gate voltage variation between the adjacent semiconductor chips 14a and 14b.
  • FIG. 3 is a plan view schematically showing a semiconductor device for reference.
  • a semiconductor device 110 shown in FIG. 3 includes semiconductor chips 114a to 114d instead of the semiconductor chips 14a to 14d, gate wirings 130a to 130d instead of the gate wirings 30a to 30d, and first wirings 32a to 32d.
  • the semiconductor device 10 has the same configuration as that of the semiconductor device 10 except that the first wirings 132a to 132d are provided, and the second wirings 134a to 134d are provided instead of the second wirings 34a to 34d.
  • the gate wirings 130a to 130d are arranged between the first wirings 132a to 132d and the second wirings 134a to 134d.
  • the lengths of the portions of the gate wirings 130a to 130d facing the first wirings 132a to 132d and the second wirings 134a to 134d are all the same as the length of the gate wiring 130b.
  • FIG. 4 is a diagram illustrating an example of temporal variation of the gate voltage in the reference semiconductor device.
  • FIG. 4 shows an example of the influence of the mutual inductance that the gate wiring 130b of the semiconductor chip 114b receives from the first wirings 132a to 132d and the second wirings 134a to 134d.
  • the influence of the self-inductance of the gate wiring 130b is not considered.
  • the value of current flowing through the semiconductor chips 114a to 114d connected in parallel is 50A. Therefore, a current of 12.5 A flows through each of the semiconductor chips 114a to 114d.
  • the gate voltage during the operation of the semiconductor chips 114a to 114d is 15V. Switching time is 20 ns.
  • the length of the gate wiring 130b is 3.2 mm.
  • the length of the gate wiring 130b facing the first wiring 132a to 132d and the second wiring 134a to 134d is 3.2 mm.
  • the shortest distance is adopted as the distance between the gate wiring 130b and the first wirings 132a to 132d and the second wirings 134a to 134d.
  • the shortest distance is a distance between positions P11 to P18 on the first wirings 132a to 132d and the second wirings 134a to 134d and the gate wiring 130b.
  • the distance between the position P11 on the second wiring 134a and the gate wiring 130b is 4.54 mm.
  • the calculation results of the mutual inductance and the fluctuation of the gate voltage are shown in FIG.
  • the mutual inductance that the gate wiring 130b receives from the second wiring 134a is 0.10 nH.
  • the variation of the gate voltage due to this is 0.07V.
  • the total mutual inductance received by the gate wiring 130b is 1.90 nH.
  • the total fluctuation of the gate voltage in the gate wiring 130b is 1.19V (1.2V in two significant figures).
  • the mutual inductance received by the gate wiring 130a from the first wirings 132a to 132d and the second wirings 134a to 134d is calculated.
  • the total mutual inductance received by the gate line 130a from the first lines 132a to 132d and the second lines 134a to 134d is 1.74 nH. Further, the fluctuation of the gate voltage in the gate wiring 130a is calculated. The total gate voltage fluctuation in the gate wiring 130a is 1.1 V (2 significant digits). Therefore, the variation in the gate voltage between the adjacent semiconductor chips 114a and 114b differs by 0.1 V, and thus the variation in the gate voltage between the adjacent semiconductor chips 114a and 114b varies.
  • FIG. 5 is a plan view schematically showing the semiconductor device according to the second embodiment.
  • a semiconductor device 10a shown in FIG. 5 is a case-type semiconductor device.
  • the semiconductor device 10a includes semiconductor chips 14a to 14l, gate wirings 30a to 30l connected to the semiconductor chips 14a to 14l, first wirings 32a to 32l connected to the semiconductor chips 14a to 14l, and a semiconductor chip, respectively.
  • Second wirings 34a to 34l connected to 14a to 14l, respectively, and a case 60 are provided.
  • the semiconductor chips 14e, 14g, 14i, and 14k can have the same configuration as the semiconductor chip 14a.
  • the semiconductor chips 14f, 14h, 14j, and 14l can have the same configuration as the semiconductor chip 14b.
  • the semiconductor chips 14a to 14f are provided on a wiring pattern 52a formed on the first substrate 50a.
  • Wiring patterns 54a and 56a may be formed on the substrate 50a.
  • the wiring pattern 54a can be connected to the semiconductor chips 14a to 14f by gate wirings 30a to 30f, respectively.
  • the wiring pattern 56a can be connected to the semiconductor chips 14a to 14f by the first wirings 32a to 32f and the second wirings 34a to 34f, respectively.
  • the semiconductor chips 14g to 14l are provided on the wiring pattern 52b formed on the second substrate 50b.
  • Wiring patterns 54b and 56b may be formed on the substrate 50b.
  • the wiring pattern 54b can be connected to the semiconductor chips 14g to 14l by gate wirings 30g to 30l, respectively.
  • the wiring pattern 56b can be connected to the semiconductor chips 14g to 14l by the first wirings 32g to 32l and the second wirings 34g to 34l, respectively.
  • the case 60 may include a bottom portion 60a for mounting the substrates 50a and 50b. On the bottom portion 60a, a base portion 60b for placing the bus bars 72a to 72c may be disposed. The bus bars 72a to 72c can be electrically connected to the semiconductor chips 14a to 14l.
  • the case 60 may include a first side wall 60c that surrounds the substrates 50a and 50b and the base 60b, and a second side wall 60d that surrounds the first side wall 60c.
  • the opening of the case 60 can be sealed with a lid.
  • the material of the case 60 include resins such as engineering plastics such as polybutylene terephthalate (PBT) or polyphenylene sulfide (PPS) resin.
  • the lid material include a thermoplastic resin.
  • a gel such as a silicone gel may be injected into the case 60 for stress relaxation. In the semiconductor device 10a, the same effects as the semiconductor device 10 can be obtained.
  • FIG. 6 is a plan view schematically showing a semiconductor device for reference.
  • the semiconductor device 110a shown in FIG. 6 includes semiconductor chips 114a to 114l instead of the semiconductor chips 14a to 14l, gate gates 130a to 130l instead of the gate wirings 30a to 30l, and the first wirings 32a to 32l.
  • the semiconductor device 10a has the same configuration as the semiconductor device 10a except that the first wirings 132a to 132l are provided and the second wirings 134a to 134l are provided instead of the second wirings 34a to 34l.
  • the gate wirings 130a to 130l are arranged between the first wirings 132a to 132l and the second wirings 134a to 134l.
  • the lengths of the portions of the gate wirings 130a to 130l facing the first wirings 132a to 132l and the second wirings 134a to 134l are all the same as the length of the gate wiring 130b.
  • the semiconductor devices 10 and 10a may include only one semiconductor chip.
  • the semiconductor devices 10 and 10a may include a third wiring connected to the semiconductor chip.
  • the semiconductor chips 14a to 14l may include a horizontal transistor instead of the vertical transistor.
  • electrode pads are not formed on the back surfaces of the semiconductor chips 14a to 14l, and further electrode pads such as drain electrode pads or collector electrode pads are formed on the front surfaces of the semiconductor chips 14a to 14l.
  • the semiconductor device 10 may not include the wiring patterns 36 and 42.
  • the gate wirings 30a to 30d are connected to the leads 18.
  • the first wirings 32 a to 32 d and the second wirings 34 a to 34 d are connected to the lead 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

半導体装置(10)は、少なくとも1つの半導体チップ(14a~14d)と、少なくとも1つの半導体チップに接続されるゲート配線(30a~30d)と、少なくとも1つの半導体チップに接続される第1の配線(32a~32d)と、少なくとも1つの半導体チップに接続される第2の配線(34a~34d)とを備える。第1の配線及び第2の配線は、ゲート配線に沿って延びている。第1の配線はゲート配線と第2の配線との間に配置される。第1の配線はゲート配線に最も近い配線である。第1の配線に対向するゲート配線の第1の部分(30x)の長さ(d1)は、第2の配線に対向するゲート配線の第2の部分(30y)の長さ(d2)よりも短い。

Description

半導体装置
 本発明は、半導体装置に関する。
 半導体装置の例として、MOSFETの半導体チップを備えた半導体装置が知られている(特許文献1参照)。このような半導体装置では、ダイパッドに搭載された半導体チップが、ゲートワイヤを介してゲートリードに接続され、複数のソースワイヤを介してソースリードに接続される。
特許第4746061号公報
 上記半導体装置では、ゲートワイヤに最も近いソースワイヤの長さがその他のソースワイヤの長さと同じか又はより長くなっている。そのため、複数のソースワイヤに流れる電流が時間的に変化すると、電磁誘導効果によってゲートワイヤが複数のソースワイヤから受ける相互インダクタンスの影響が大きくなる。その結果、上記半導体装置では、ゲートワイヤに印加されるゲート電圧の時間的な変動が大きくなってしまう。
 本発明は、ゲート電圧の時間的な変動を抑制できる半導体装置を提供することを目的とする。
 本発明の一側面に係る半導体装置は、少なくとも1つの半導体チップと、前記少なくとも1つの半導体チップに接続されるゲート配線と、前記少なくとも1つの半導体チップに接続される第1の配線と、前記少なくとも1つの半導体チップに接続される第2の配線と、を備え、前記第1の配線及び前記第2の配線が、前記ゲート配線に沿って延びており、前記第1の配線が前記ゲート配線と前記第2の配線との間に配置され、前記第1の配線が前記ゲート配線に最も近い配線であり、前記第1の配線に対向する前記ゲート配線の第1の部分の長さが、前記第2の配線に対向する前記ゲート配線の第2の部分の長さよりも短い。ゲート配線の第1の部分は、第1の配線の各点からゲート配線に垂線が引かれたときに垂線とゲート配線との交点に位置する部分であり得る。ゲート配線の第2の部分は、第2の配線の各点からゲート配線に垂線が引かれたときに垂線とゲート配線との交点に位置する部分であり得る。
 第1の配線及び第2の配線に流れる電流が時間的に変化すると、電磁誘導効果によってゲート配線が第1の配線及び第2の配線から相互インダクタンスの影響を受ける。その結果、半導体チップのゲート電圧が時間的に変動する。相互インダクタンスは、ゲート配線と第1の配線及び第2の配線との間の距離と、第1の配線及び第2の配線に対向するゲート配線の部分の長さとによって決定される。ゲート配線と第1の配線及び第2の配線との間の距離が短いと、相互インダクタンスは大きくなる。第1の配線及び第2の配線に対向するゲート配線の部分の長さが長いと、相互インダクタンスは大きくなる。
 上記半導体装置では、ゲート配線に最も近い第1の配線に対向するゲート配線の第1の部分の長さd1が、第2の配線に対向するゲート配線の第2の部分の長さd2よりも短い。そのため、電磁誘導効果によってゲート配線が第1の配線から受ける相互インダクタンスの影響が小さいので、ゲート電圧の時間的な変動が抑制される。
 前記少なくとも1つの半導体チップが複数の半導体チップであり、前記複数の半導体チップが第1の方向に沿って配列されており、隣接する半導体チップ間において前記第1の方向に垂直な第2の方向に沿って延びる軸に対して、前記ゲート配線、前記第1の配線及び前記第2の配線が反転して配置されてもよい。
 この場合、各半導体チップのゲート配線が電磁誘導効果によって第1の配線及び第2の配線から受ける相互インダクタンスの影響が均一化されるので、隣接する半導体チップ間のゲート電圧のばらつきが低減される。
 前記少なくとも1つの半導体チップの材料が、ワイドバンドギャップ半導体を含んでもよい。
 この場合、シリコンからなる半導体チップに比べて大きな電流を第1の配線及び第2の配線に流すことが可能になる。そのため、ワイドバンドギャップ半導体では、ゲート電圧の時間的な変動が大きくなる傾向にあるので、ゲート電圧の時間的な変動を抑制することによる効果が大きい。
 上記半導体装置が、前記ゲート配線に接続される配線パターンを更に備えてもよい。
 この場合、半導体チップと配線パターンとの間の距離を小さく設定することによって、ゲート配線の長さが短くなり得る。これにより、電磁誘導効果によってゲート配線が第1の配線及び第2の配線から受ける相互インダクタンスの影響が更に低減されるので、ゲート電圧の時間的な変動が更に抑制される。
 上記半導体装置が、前記ゲート配線に電気的に接続される第1のリードと、前記第1の配線及び前記第2の配線に電気的に接続される第2のリードと、前記少なくとも1つの半導体チップが搭載されるチップ搭載面を有するダイパッドと、を更に備えてもよい。
 リードを備えた半導体装置では、通常、ゲート配線を第1の配線及び第2の配線から十分に離すことが困難である。そのため、リードを備えた半導体装置では、ゲート電圧の時間的な変動が大きくなる傾向にあるので、ゲート電圧の時間的な変動を抑制することによる効果が大きい。
 本発明によれば、ゲート電圧の時間的な変動を抑制できる半導体装置が提供され得る。
第1実施形態に係る半導体装置を模式的に示す平面図である。 第1実施形態に係る半導体装置におけるゲート電圧の時間的な変動の一例を示す図である。 参照用の半導体装置を模式的に示す平面図である。 参照用の半導体装置におけるゲート電圧の時間的な変動の一例を示す図である。 第2実施形態に係る半導体装置を模式的に示す平面図である。 参照用の半導体装置を模式的に示す平面図である。
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図1、図3、図5及び図6にはXYZ直交座標系が示されている。
(第1実施形態)
 図1は、第1実施形態に係る半導体装置を模式的に示す平面図である。図1に示される半導体装置10は、樹脂封止型の半導体装置である。半導体装置10は、複数の半導体チップ14a~14dを備える。半導体チップ14a~14dは並列接続され得る。
 半導体装置10は、半導体チップ14a~14dが搭載されるチップ搭載面12aを有するダイパッド12を備え得る。ダイパッド12は、半導体チップ14a~14dと電気的に接続され得る。ダイパッド12は例えば板状を呈している。チップ搭載面12aは、例えば長方形である。ダイパッド12の材料の例は、銅(Cu)及び銅合金等の金属を含む。ダイパッド12には、板厚方向にダイパッド12を貫通する貫通孔26が形成され得る。貫通孔26は、例えば螺子によって半導体装置10を他の部材(例えばヒートシンク等)に固定する際に、螺子を通すための孔である。
 半導体チップ14a~14dは、チップ搭載面12aの所定位置に搭載される。半導体チップ14a~14dの例は、MOS-FET、絶縁ゲートバイポーラトランジスタ(IGBT)等のトランジスタ、PN接合ダイオード、ショットキーバリアダイオード等のダイオードを含む。半導体チップ14a~14dは、鉛入り金属半田、鉛を含まない金属半田又は導電性樹脂等を含む材料から構成される接着層を介してチップ搭載面12aに実装され得る。半導体チップ14a~14dの材料の例は、ワイドバンドギャップ半導体、シリコンその他の半導体を含む。ワイドバンドギャップ半導体は、シリコンのバンドギャップよりも大きいバンドギャップを有する。ワイドバンドギャップ半導体の例は、シリコンカーバイド(SiC)、窒化ガリウム(GaN)、ダイヤモンドを含む。
 半導体チップ14a~14dのそれぞれは、ゲート電極パッドGP及び電極パッドSPを有し得る。ゲート電極パッドGPは、半導体チップ14a~14dの主面における端部に形成され得る。ゲート電極パッドGPにはゲートライナーGLが接続されてもよい。電極パッドSPは、半導体チップ14a~14dの主面においてゲート電極パッドGP及びゲートライナーGLが形成されていない領域に形成され得る。
 半導体チップ14a~14dがMOS-FETを含む場合、電極パッドSPはソース電極パッドに対応する。半導体チップ14a~14dがIGBTを含む場合、電極パッドSPはエミッタ電極パッドに対応する。半導体チップ14a~14dの裏面全体には、例えばドレイン電極パッド又はコレクタ電極パッド等の更なる電極パッドが形成され得る。
 半導体チップ14aには、ゲート配線30a、第1の配線32a及び第2の配線34aが接続される。ゲート配線30aは半導体チップ14aのゲート電極パッドGPに接続され得る。第1の配線32a及び第2の配線34aは、半導体チップ14aの電極パッドSPに接続され得る。同様に、半導体チップ14b~14dのゲート電極パッドGPには、それぞれゲート配線30b~30dが接続され得る。半導体チップ14b~14dの電極パッドSPには、それぞれ第1の配線32b~32dが接続され得る。半導体チップ14b~14dの電極パッドSPには、それぞれ第2の配線34b~34dが接続され得る。第1の配線32a~32d及び第2の配線34a~34dは、半導体チップ14a~14dに電流を供給するための配線である。ゲート配線30a~30dは、第1の配線32a~32d及び第2の配線34a~34dに流れる電流をスイッチングするための配線である。第1の配線32a~32d及び第2の配線34a~34dは、電流集中を抑制するために電極パッドSPにおいて分散配置されてもよい。
 第1の配線32a~32d及び第2の配線34a~34dは、ゲート配線30a~30dに沿って延びている。ゲート配線30a~30d、第1の配線32a~32d及び第2の配線34a~34dは、XY平面に沿って延びてもよい。第1の配線32a~32dは、ゲート配線30a~30dと第2の配線34a~34dとの間に配置される。例えば、第1の配線32aはゲート配線30aと第2の配線34aとの間に配置される。第1の配線32a~32dは、それぞれゲート配線30a~30dに最も近い配線である。第1の配線32a~32dに対向するゲート配線30a~30dの第1の部分30xの長さd1は、第2の配線34a~34dに対向するゲート配線30a~30dの第2の部分30yの長さd2よりも短い。長さd2は長さd1の1.2倍以上であってもよい。長さd1及びd2は、半導体チップ14a~14dの主面に垂直なZ方向から第1の配線32a~32d及び第2の配線34a~34dを見て測定され得る。ゲート配線30a~30dの第1の部分30xは、第1の配線32a~32dの各点からゲート配線30a~30dに垂線が引かれたときに垂線とゲート配線30a~30dとの交点に位置する部分であり得る。ゲート配線30a~30dの第2の部分30yは、第2の配線34a~34dの各点からゲート配線30a~30dに垂線が引かれたときに垂線とゲート配線30a~30dとの交点に位置する部分であり得る。
 半導体チップ14a~14dはX方向(第1の方向)に沿って配列され得る。隣接する半導体チップ14a~14d間には、Y方向(第1の方向に垂直な第2の方向)に沿って延びる軸Axが配置される。ゲート配線30a~30d、第1の配線32a~32d及び第2の配線34a~34dは、軸Axに対して反転して配置され得る。ゲート電極パッドGP及び電極パッドSPも軸Axに対して反転して配置され得る。例えば、ゲート配線30aは軸Axに対してゲート配線30bと対称な位置に配置される。
 半導体装置10は、第1のリード18、第2のリード20、第3のリード16を備えてもよい。リード16,18,20は、Y方向に沿って延びており、X方向に沿って配列される。リード16は、リード18,20の間に位置する。リード16,18、20及びダイパッド12は、リードフレームを構成し得る。半導体装置10は、例えば電源等に使用されるパワー半導体装置である。半導体装置10のパッケージ形態の例は一般的なTOシリーズである。TOシリーズの例はTO-247、TO-220、TO-263(D2―PAK)、TO-252(D-PAK)を含む。
 リード18は、ゲート配線30a~30dに電気的に接続される。リード20は、第1の配線32a~32d及び第2の配線34a~34dに電気的に接続される。リード16の内側端部は、ダイパッド12に機械的に一体的に連結されている。ダイパッド12は導電性を有するので、リード16とダイパッド12とは電気的に接続されている。リード16の材料の例はダイパッド12の材料と同じ材料を含む。
 半導体チップ14a~14dがMOS-FETを含む場合、リード16はドレイン電極端子に対応し、リード18はゲート電極端子に対応し、リード20はソース電極端子に対応する。半導体チップ14a~14dがIGBTを含む場合、リード16はコレクタ電極端子に対応し、リード18はゲート電極端子に対応し、リード20はエミッタ電極端子に対応する。リード18,20の材料の例は、銅及び銅合金等の金属を含む。
 半導体装置10は、ゲート配線30a~30dに接続される配線パターン36と、ダイパッド12と配線パターン36との間に配置された絶縁部材38とを備え得る。配線パターン36は、配線40を介してリード18に接続される。絶縁部材38は、Z方向においてダイパッド12と配線パターン36との間に介在する。絶縁部材38は、例えば絶縁基板又は絶縁層である。絶縁部材38の材料の例は、エポキシ樹脂等の樹脂又はセラミックスを含む。ダイパッド12と絶縁部材38と配線パターン36とは互いに接着剤により接続され得る。
 半導体装置10は、第1の配線32a~32d及び第2の配線34a~34dに接続される配線パターン42と、ダイパッド12と配線パターン42との間に配置された絶縁部材44とを備え得る。配線パターン42は、複数の配線46を介してリード20に接続される。絶縁部材44は、Z方向においてダイパッド12と配線パターン42との間に介在する。絶縁部材44は、例えば絶縁基板又は絶縁層である。絶縁部材44の材料の例は、エポキシ樹脂等の樹脂又はセラミックスを含む。ダイパッド12と絶縁部材44と配線パターン42とは互いに接着剤により接続され得る。配線パターン36及び42は配線バーとも呼ばれる。配線パターン36及び42の材料の例はダイパッド12の材料と同じ材料を含む。
 ゲート配線30a~30d、第1の配線32a~32d、第2の配線34a~34d、配線40及び46は、ワイヤ又はボンディングリボンであってもよい。ゲート配線30a~30d、第1の配線32a~32d、第2の配線34a~34d、配線40及び46の材料の例は、アルミニウム、金、銅等の金属を含む。ゲート配線30a~30d、第1の配線32a~32d、第2の配線34a~34d、配線40及び46は、例えば超音波又は加圧等を用いたワイヤボンディングにより、配線パターン36及び42、半導体チップ14a~14d、又はリード18,20に接続される。
 ダイパッド12、半導体チップ14a~14d、リード18の内側端部及びリード20の内側端部は、樹脂部24によって覆われ得る。リード16,18,20の内側端部は、樹脂部24に挿入される。リード16,18,20のうち樹脂部24の内側の部分は、いわゆるインナーリード部である。リード16,18,20のうち樹脂部24の外側の部分は、アウターリード部である。樹脂部24の外形形状の一例は、略直方体である。樹脂部24の材料の例は、ポリフェニレンサルファイド樹脂(PPS樹脂)、液晶ポリマー等の熱可塑性樹脂を含む。樹脂部24は、ダイパッド12及び半導体チップ14a~14dを熱可塑性樹脂でモールドすることによって形成され得る。樹脂部24には、ダイパッド12の貫通孔26の中心軸線を中心軸線とする貫通孔28が形成されている。貫通孔28は、貫通孔26と同様に螺子止めなどの際などに螺子が通される孔である。貫通孔28の直径は、貫通孔26の直径より小さい。
 第1の配線32a~32d及び第2の配線34a~34dに流れる電流が時間的に変化すると、電磁誘導効果によってゲート配線30a~30dが第1の配線32a~32d及び第2の配線34a~34dから相互インダクタンスの影響を受ける。その結果、半導体チップ14a~14dのゲート電圧が時間的に変動する。相互インダクタンスは、ゲート配線30a~30dと第1の配線32a~32d及び第2の配線34a~34dとの間の距離と、第1の配線32a~32d及び第2の配線34a~34dに対向するゲート配線30a~30dの部分の長さとによって決定される。ゲート配線30a~30dと第1の配線32a~32d及び第2の配線34a~34dとの間の距離が短いと、相互インダクタンスは大きくなる。第1の配線32a~32d及び第2の配線34a~34dに対向するゲート配線30a~30dの部分の長さが長いと、相互インダクタンスは大きくなる。
 半導体装置10では、例えばゲート配線30bに最も近い第1の配線32bに対向するゲート配線30bの第1の部分30xの長さd1が、第2の配線34bに対向するゲート配線30bの第2の部分30yの長さd2よりも短い。そのため、電磁誘導効果によってゲート配線30bが第1の配線32bから受ける相互インダクタンスの影響が比較的小さい。よって、ゲート電圧の時間的な変動が抑制される。
 半導体装置10では、隣接する半導体チップ14a~14d間においてY方向に沿って延びる軸Axに対して、ゲート配線30a~30d、第1の配線32a~32d及び第2の配線34a~34dが反転して配置され得る。この場合、各半導体チップ14a~14dのゲート配線30a~30dが電磁誘導効果によって第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスの影響が均一化される。よって、隣接する半導体チップ14a~14d間のゲート電圧のばらつきが低減される。
 半導体チップ14a~14dの材料が、ワイドバンドギャップ半導体を含む場合、シリコンからなる半導体チップ14a~14dに比べて大きな電流を第1の配線32a~32d及び第2の配線34a~34dに流すことが可能になる。そのため、ワイドバンドギャップ半導体では、ゲート電圧の時間的な変動が大きくなる傾向にあるので、ゲート電圧の時間的な変動を抑制することによる効果が大きい。
 半導体装置10がゲート配線30a~30dに接続される配線パターン36を備える場合、半導体チップ14a~14dと配線パターン36との間の距離が小さく設定され得る。その結果、ゲート配線30a~30dの長さが短くなり得る。これにより、電磁誘導効果によってゲート配線30a~30dが第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスの影響が更に低減される。よって、ゲート電圧の時間的な変動が更に抑制される。
 半導体装置10はリード18及び20とダイパッド12とを備え得る。この場合、通常、ゲート配線を第1の配線及び第2の配線から十分に離すことが困難である。そのため、ゲート電圧の時間的な変動が大きくなる傾向にあるので、ゲート電圧の時間的な変動を抑制することによる効果が大きい。
 図2は、第1実施形態に係る半導体装置におけるゲート電圧の時間的な変動の一例を示す図である。図2には、半導体チップ14bのゲート配線30bが第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスの影響の一例が示される。ゲート配線30bの自己インダクタンスによる影響は考慮されていない。
 並列接続された半導体チップ14a~14dに流れる電流値は50Aである。よって、半導体チップ14a~14dのそれぞれには、12.5Aの電流が流れる。半導体チップ14a~14dの動作時のゲート電圧は15Vである。スイッチング時間は20nsである。ゲート配線30bの長さは3.2mmである。ゲート配線30bの第1の部分30xの長さd1は2.4mmである。ゲート配線30bの第2の部分30yの長さd2は3.2mmである。
 ゲート配線30bと第1の配線32a~32d及び第2の配線34a~34dとの間の距離は、最短距離が採用される。最短距離は、図1及び図2に示されるように、第1の配線32a~32d及び第2の配線34a~34d上の位置P1~P8とゲート配線30bとの間の距離である。例えば、第2の配線34a上の位置P1とゲート配線30bとの距離は3.72mmである。この距離及び長さd1及びd2を用いて、ゲート配線30bが第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスが算出される。相互インダクタンスをL、電流をi、時間をtとした場合、ゲート電圧の変動Vは以下の式から算出される。
V=L×di/dt
 相互インダクタンス及びゲート電圧の変動の算出結果は図2に示される。例えば、ゲート配線30bが第2の配線34aから受ける相互インダクタンスは0.22nHである。これによるゲート電圧の変動は0.14Vである。ゲート配線30bが第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスの合計は1.81nHである。ゲート配線30bにおけるゲート電圧の変動の合計は1.14V(有効数字2桁では1.1V)である。同様に、ゲート配線30aが第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスが算出される。ゲート配線30aが第1の配線32a~32d及び第2の配線34a~34dから受ける相互インダクタンスの合計は1.81nHである。さらに、ゲート配線30aにおけるゲート電圧の変動が算出される。ゲート配線30aにおけるゲート電圧の変動の合計は1.1V(有効数字2桁)である。よって、隣接する半導体チップ14a及び14b間のゲート電圧の変動は同じであるため、隣接する半導体チップ14a及び14b間のゲート電圧の変動のばらつきがない。
 図3は、参照用の半導体装置を模式的に示す平面図である。図3に示される半導体装置110は、半導体チップ14a~14dに代えて半導体チップ114a~114dを備え、ゲート配線30a~30dに代えてゲート配線130a~130dを備え、第1の配線32a~32dに代えて第1の配線132a~132dを備え、第2の配線34a~34dに代えて第2の配線134a~134dを備えること以外は半導体装置10と同様の構成を備える。
 ゲート配線130a~130dは、第1の配線132a~132dと第2の配線134a~134dとの間に配置されている。第1の配線132a~132d及び第2の配線134a~134dに対向するゲート配線130a~130dの部分の長さはいずれもゲート配線130bの長さと同じである。
 図4は、参照用の半導体装置におけるゲート電圧の時間的な変動の一例を示す図である。図4には、半導体チップ114bのゲート配線130bが第1の配線132a~132d及び第2の配線134a~134dから受ける相互インダクタンスの影響の一例が示される。ゲート配線130bの自己インダクタンスによる影響は考慮されていない。
 並列接続された半導体チップ114a~114dに流れる電流値は50Aである。よって、半導体チップ114a~114dのそれぞれには、12.5Aの電流が流れる。半導体チップ114a~114dの動作時のゲート電圧は15Vである。スイッチング時間は20nsである。ゲート配線130bの長さは3.2mmである。第1の配線132a~132d及び第2の配線134a~134dに対向するゲート配線130bの長さは3.2mmである。
 ゲート配線130bと第1の配線132a~132d及び第2の配線134a~134dとの間の距離は、最短距離が採用される。最短距離は、図3及び図4に示されるように、第1の配線132a~132d及び第2の配線134a~134d上の位置P11~P18とゲート配線130bとの間の距離である。例えば、第2の配線134a上の位置P11とゲート配線130bとの距離は4.54mmである。この距離及びゲート配線130bの長さを用いて、ゲート配線130bが第1の配線132a~132d及び第2の配線134a~134dから受ける相互インダクタンスが算出される。相互インダクタンス及びゲート電圧の変動の算出結果は図4に示される。例えば、ゲート配線130bが第2の配線134aから受ける相互インダクタンスは0.10nHである。これによるゲート電圧の変動は0.07Vである。ゲート配線130bが受ける相互インダクタンスの合計は1.90nHである。ゲート配線130bにおけるゲート電圧の変動の合計は1.19V(有効数字2桁では1.2V)である。同様に、ゲート配線130aが第1の配線132a~132d及び第2の配線134a~134dから受ける相互インダクタンスが算出される。ゲート配線130aが第1の配線132a~132d及び第2の配線134a~134dから受ける相互インダクタンスの合計は1.74nHである。さらに、ゲート配線130aにおけるゲート電圧の変動が算出される。ゲート配線130aにおけるゲート電圧の変動の合計は1.1V(有効数字2桁)である。よって、隣接する半導体チップ114a及び114b間のゲート電圧の変動は0.1V異なるため、隣接する半導体チップ114a及び114b間のゲート電圧の変動のばらつきがある。
(第2実施形態)
 図5は、第2実施形態に係る半導体装置を模式的に示す平面図である。図5に示される半導体装置10aは、ケース型の半導体装置である。半導体装置10aは、半導体チップ14a~14lと、半導体チップ14a~14lにそれぞれ接続されるゲート配線30a~30lと、半導体チップ14a~14lにそれぞれ接続される第1の配線32a~32lと、半導体チップ14a~14lにそれぞれ接続される第2の配線34a~34lと、ケース60とを備える。半導体チップ14e,14g,14i,14kは、半導体チップ14aと同様の構成を備え得る。半導体チップ14f,14h,14j,14lは、半導体チップ14bと同様の構成を備え得る。
 半導体チップ14a~14fは、第1の基板50a上に形成された配線パターン52a上に設けられる。基板50a上には配線パターン54a及び56aが形成され得る。配線パターン54aは、それぞれゲート配線30a~30fによって半導体チップ14a~14fに接続され得る。配線パターン56aは、第1の配線32a~32f及び第2の配線34a~34fによって半導体チップ14a~14fにそれぞれ接続され得る。
 同様に、半導体チップ14g~14lは、第2の基板50b上に形成された配線パターン52b上に設けられる。基板50b上には配線パターン54b及び56bが形成され得る。配線パターン54bは、それぞれゲート配線30g~30lによって半導体チップ14g~14lに接続され得る。配線パターン56bは、第1の配線32g~32l及び第2の配線34g~34lによって半導体チップ14g~14lにそれぞれ接続され得る。
 ケース60は、基板50a及び50bを載置するための底部60aを備え得る。底部60a上には、バスバー72a~72cを載置するための台部60bが配置され得る。バスバー72a~72cは半導体チップ14a~14lに電気的に接続され得る。ケース60は、基板50a及び50b及び台部60bを取り囲む第1側壁部60cと、第1側壁部60cを取り囲む第2側壁部60dとを備え得る。ケース60の開口は、蓋によって封止され得る。ケース60の材料の例は、ポリブチレンテレフタレート(PBT)又はポリフェニレンサルファイド(PPS)樹脂といったエンジニヤリングプラスチック等の樹脂を含む。蓋の材料の例は熱可塑性樹脂を含む。ケース60の内側には、応力緩和のため、例えばシリコーンゲル等のゲルが注入され得る。半導体装置10aでは、半導体装置10と同様の作用効果が得られる。
 図6は、参照用の半導体装置を模式的に示す平面図である。図6に示される半導体装置110aは、半導体チップ14a~14lに代えて半導体チップ114a~114lを備え、ゲート配線30a~30lに代えてゲート配線130a~130lを備え、第1の配線32a~32lに代えて第1の配線132a~132lを備え、第2の配線34a~34lに代えて第2の配線134a~134lを備えること以外は半導体装置10aと同様の構成を備える。
 ゲート配線130a~130lは、第1の配線132a~132lと第2の配線134a~134lとの間に配置されている。第1の配線132a~132l及び第2の配線134a~134lに対向するゲート配線130a~130lの部分の長さはいずれもゲート配線130bの長さと同じである。
 以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。
 例えば、半導体装置10,10aは、1つの半導体チップのみを含んでもよい。半導体装置10,10aは、半導体チップに接続される第3の配線を備えてもよい。
 半導体チップ14a~14lは、縦型トランジスタに代えて横型トランジスタを含んでもよい。この場合、半導体チップ14a~14lの裏面には電極パッドが形成されず、半導体チップ14a~14lの表面に例えばドレイン電極パッド又はコレクタ電極パッド等の更なる電極パッドが形成される。
 半導体装置10は、配線パターン36及び42を備えなくてもよい。この場合、ゲート配線30a~30dはリード18に接続される。第1の配線32a~32d及び第2の配線34a~34dはリード20に接続される。
 10,10a…半導体装置、14a~14l…半導体チップ、12…ダイパッド、12a…チップ搭載面、18…第1のリード、20…第2のリード、30a~30l…ゲート配線、30x…ゲート配線の第1の部分、30y…ゲート配線の第2の部分、32a~32l…第1の配線、34a~34l…第2の配線、36…配線パターン、Ax…軸。

Claims (5)

  1.  少なくとも1つの半導体チップと、
     前記少なくとも1つの半導体チップに接続されるゲート配線と、
     前記少なくとも1つの半導体チップに接続される第1の配線と、
     前記少なくとも1つの半導体チップに接続される第2の配線と、
    を備え、
     前記第1の配線及び前記第2の配線が、前記ゲート配線に沿って延びており、
     前記第1の配線が前記ゲート配線と前記第2の配線との間に配置され、
     前記第1の配線が前記ゲート配線に最も近い配線であり、
     前記第1の配線に対向する前記ゲート配線の第1の部分の長さが、前記第2の配線に対向する前記ゲート配線の第2の部分の長さよりも短い、半導体装置。
  2.  前記少なくとも1つの半導体チップが複数の半導体チップであり、
     前記複数の半導体チップが第1の方向に沿って配列されており、
     隣接する半導体チップ間において前記第1の方向に垂直な第2の方向に沿って延びる軸に対して、前記ゲート配線、前記第1の配線及び前記第2の配線が反転して配置される、請求項1に記載の半導体装置。
  3.  前記少なくとも1つの半導体チップの材料が、ワイドバンドギャップ半導体を含む、請求項1又は2に記載の半導体装置。
  4.  前記ゲート配線に接続される配線パターンを更に備える、請求項1~3のいずれか一項に記載の半導体装置。
  5.  前記ゲート配線に電気的に接続される第1のリードと、
     前記第1の配線及び前記第2の配線に電気的に接続される第2のリードと、
     前記少なくとも1つの半導体チップが搭載されるチップ搭載面を有するダイパッドと、
    を更に備える、請求項1~4のいずれか一項に記載の半導体装置。
PCT/JP2013/063444 2012-06-28 2013-05-14 半導体装置 WO2014002625A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13810046.6A EP2869340A4 (en) 2012-06-28 2013-05-14 SEMICONDUCTOR DEVICE
CN201380026637.1A CN104321867B (zh) 2012-06-28 2013-05-14 半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-145146 2012-06-28
JP2012145146A JP5991045B2 (ja) 2012-06-28 2012-06-28 半導体装置

Publications (1)

Publication Number Publication Date
WO2014002625A1 true WO2014002625A1 (ja) 2014-01-03

Family

ID=49777175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063444 WO2014002625A1 (ja) 2012-06-28 2013-05-14 半導体装置

Country Status (5)

Country Link
US (1) US9087817B2 (ja)
EP (1) EP2869340A4 (ja)
JP (1) JP5991045B2 (ja)
CN (1) CN104321867B (ja)
WO (1) WO2014002625A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127695B2 (en) 2017-09-29 2021-09-21 Hitachi Automotive Systems, Ltd. Power conversion device for reducing an inductance difference between control signal wires of a power semiconductor and suppressing a current unbalancing of the control signals

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175704A1 (en) * 2012-01-05 2013-07-11 Ixys Corporation Discrete power transistor package having solderless dbc to leadframe attach
JP6374225B2 (ja) * 2014-06-02 2018-08-15 ルネサスエレクトロニクス株式会社 半導体装置および電子装置
CN107005664A (zh) * 2014-11-20 2017-08-01 株式会社岛津制作所 光检测器
DE102015103667A1 (de) * 2015-03-12 2016-09-15 Infineon Technologies Bipolar Gmbh & Co. Kg Leistungshalbleitermodul mit verbesserter Bondverbindungstruktur
US10340811B2 (en) 2016-11-28 2019-07-02 Ford Global Technologies, Llc Inverter switching devices with gate coils to enhance common source inductance
WO2018237199A1 (en) * 2017-06-22 2018-12-27 Renesas Electronics America Inc. SOLID TOP TERMINAL FOR DISCRETE FEED DEVICES
JP7428018B2 (ja) 2020-03-06 2024-02-06 富士電機株式会社 半導体モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110077A (ja) * 2001-10-02 2003-04-11 Mitsubishi Electric Corp 半導体装置
JP2004134460A (ja) * 2002-10-08 2004-04-30 Mitsubishi Electric Corp 半導体装置
JP2004273749A (ja) * 2003-03-07 2004-09-30 Fuji Electric Fa Components & Systems Co Ltd 半導体パワーモジュール
JP2004342735A (ja) * 2003-05-14 2004-12-02 Renesas Technology Corp 半導体装置および電源システム
WO2010004802A1 (ja) * 2008-07-10 2010-01-14 三菱電機株式会社 電力用半導体モジュール
JP4746061B2 (ja) 2008-02-12 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907068A (en) * 1987-01-21 1990-03-06 Siemens Aktiengesellschaft Semiconductor arrangement having at least one semiconductor body
JPS63224335A (ja) * 1987-03-13 1988-09-19 Sharp Corp 半導体集積回路装置
JPH03244149A (ja) * 1990-02-21 1991-10-30 Mitsubishi Electric Corp リードフレーム
JP4292652B2 (ja) * 1999-09-30 2009-07-08 三菱電機株式会社 パワー半導体モジュール
JP2004022968A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
US7633140B2 (en) * 2003-12-09 2009-12-15 Alpha And Omega Semiconductor Incorporated Inverted J-lead for power devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110077A (ja) * 2001-10-02 2003-04-11 Mitsubishi Electric Corp 半導体装置
JP2004134460A (ja) * 2002-10-08 2004-04-30 Mitsubishi Electric Corp 半導体装置
JP2004273749A (ja) * 2003-03-07 2004-09-30 Fuji Electric Fa Components & Systems Co Ltd 半導体パワーモジュール
JP2004342735A (ja) * 2003-05-14 2004-12-02 Renesas Technology Corp 半導体装置および電源システム
JP4746061B2 (ja) 2008-02-12 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置
WO2010004802A1 (ja) * 2008-07-10 2010-01-14 三菱電機株式会社 電力用半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869340A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127695B2 (en) 2017-09-29 2021-09-21 Hitachi Automotive Systems, Ltd. Power conversion device for reducing an inductance difference between control signal wires of a power semiconductor and suppressing a current unbalancing of the control signals

Also Published As

Publication number Publication date
JP2014011227A (ja) 2014-01-20
EP2869340A1 (en) 2015-05-06
CN104321867A (zh) 2015-01-28
US20140001481A1 (en) 2014-01-02
EP2869340A4 (en) 2015-08-19
JP5991045B2 (ja) 2016-09-14
CN104321867B (zh) 2017-05-10
US9087817B2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
JP5991045B2 (ja) 半導体装置
US9196577B2 (en) Semiconductor packaging arrangement
US10698021B2 (en) Device including a compound semiconductor chip
WO2014103133A1 (ja) 半導体装置
US8519545B2 (en) Electronic device comprising a chip disposed on a pin
US20130249008A1 (en) Semiconductor device
JP7286582B2 (ja) 半導体装置
CN104037152B (zh) 芯片载体结构、芯片封装及其制造方法
US8896114B2 (en) Semiconductor device
US8987880B2 (en) Chip module and a method for manufacturing a chip module
US8853835B2 (en) Chip arrangements, a chip package and a method for manufacturing a chip arrangement
WO2014132826A1 (ja) 半導体装置
WO2013172139A1 (ja) 半導体デバイス
JP5123966B2 (ja) 半導体装置
US11646252B2 (en) Semiconductor device including an extension element for air cooling
US9123710B2 (en) Semiconductor device having a semiconductor chip and wiring
CN216871961U (zh) 半导体装置
JP2020047677A (ja) 半導体装置
JP2014170800A (ja) 半導体装置
KR19980047802A (ko) 리드 프레임 및 그를 이용한 트랜지스터 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013810046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE