WO2014002498A1 - 複合プレートおよびその製造方法 - Google Patents

複合プレートおよびその製造方法 Download PDF

Info

Publication number
WO2014002498A1
WO2014002498A1 PCT/JP2013/004006 JP2013004006W WO2014002498A1 WO 2014002498 A1 WO2014002498 A1 WO 2014002498A1 JP 2013004006 W JP2013004006 W JP 2013004006W WO 2014002498 A1 WO2014002498 A1 WO 2014002498A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite plate
sintered body
zirconia sintered
thickness
base material
Prior art date
Application number
PCT/JP2013/004006
Other languages
English (en)
French (fr)
Inventor
勲 山下
紘平 今井
山内 正一
津久間 孝次
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to JP2014522434A priority Critical patent/JP6020564B2/ja
Priority to CN201380034493.4A priority patent/CN104411657B/zh
Priority to KR1020147036633A priority patent/KR102004575B1/ko
Priority to EP13809977.5A priority patent/EP2868642B1/en
Priority to US14/408,989 priority patent/US10696022B2/en
Publication of WO2014002498A1 publication Critical patent/WO2014002498A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/047Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the present invention is a composite plate of a zirconia sintered body having scratch resistance and impact resistance and a substrate having a specific elastic modulus or a zirconia sintered body and a group consisting of tempered glass, bakelite, aluminum and magnesium.
  • the present invention relates to a composite plate with a substrate composed of at least one kind and a method for producing them.
  • the material currently used is tempered glass tempered by ion exchange.
  • a reinforced layer of about several tens of ⁇ m is generated on the glass surface by ion exchange, and compressive stress is generated on the surface to prevent the development of scratches.
  • the strengthening mechanism of tempered glass is derived from the tempered layer, it immediately breaks when a scratch exceeding the tempered layer enters. Further, the glass has a Vickers hardness of about 600, and is easily scratched by contact with metal, concrete, etc., and the strength is remarkably lowered due to scratches caused by use.
  • Ceramics are widely used in industrial materials because they are excellent in heat resistance, wear resistance, and corrosion resistance.
  • the zirconia sintered body has high strength, high toughness, high hardness and scratch resistance, and further, it is easy to improve the design by coloring, and therefore, it is being used for a watch member and the like.
  • the use for exterior members such as portable electronic devices is also being studied, but in particular, in the case of exterior members for portable electronic devices, it is necessary to increase the thickness in order to improve impact resistance, so that the members become heavy and practical. It was not right. Further, if it is made thin for weight reduction, it is not sufficiently resistant to impacts such as dropping and collision, and cannot be easily cracked and used.
  • Patent Document 3 describes a watch cover glass in which sapphire and inorganic glass are joined. This is intended to improve the scratch resistance by placing a high-hardness sapphire on the surface of the watch cover glass. This method is intended, and this method does not provide the high impact resistance required for portable electronic device applications.
  • Japanese Patent No. 4869915 Japanese Patent Laid-Open No. 2008-162164 JP 2009-264692 A JP-A-6-242260
  • the present invention relates to a composite plate of a zirconia sintered body improved in impact resistance, particularly crack resistance due to impact, and a substrate having a specific elastic modulus, or a zirconia sintered body and tempered glass, bakelite, aluminum and magnesium.
  • the present invention relates to a composite plate with a substrate composed of at least one of the group consisting of
  • the present inventors have examined in detail the fracture phenomenon of a zirconia sintered thin sheet when a steel ball is dropped. As a result, it was found that the ceramic plate was bent and a bending moment was generated by the drop impact of the steel ball, and tensile fracture occurred near the impact point on the back side of the impact surface. It was also found that the smaller the elastic modulus of the material, the greater the deformation due to the impact, and the longer the time taken to absorb the impact, the smaller the absolute value of the maximum tensile stress applied to the back surface of the impact surface.
  • the inventors of the present invention have made extensive studies based on the above-described knowledge, so that the reinforced glass, bakelite, aluminum having a modulus of elasticity of less than half (modulus of about 70 GPa) on the back surface of the zirconia sintered thin plate (elastic modulus of 200 GPa). And a base material composed of at least one of the group consisting of magnesium, and by firmly bonding and bonding them together, impact deformability is imparted to the zirconia sintered body thin plate, and the maximum tensile stress is reduced.
  • the back surface where tensile stress occurs is the above base material, and the impact surface where compressive stress is generated is realized as a zirconia sintered thin plate, improving the impact resistance of the zirconia sintered thin plate As a result, the present invention has been completed.
  • the present invention is a composite plate having a thickness of 2 mm or less formed by laminating a zirconia sintered body, an adhesive layer, and a substrate, and the elastic modulus of the substrate is 100 GPa or less, and the appearance of the composite plate
  • a substrate composed of at least one of the group consisting of a composite plate (composite plate 1) having a density of 4.3 g / cm 3 or less and a zirconia sintered body, a bonding layer, tempered glass, bakelite, aluminum and magnesium.
  • a thickness ratio of the zirconia sintered body to the substrate (zirconia sintered body thickness / substrate thickness) of 0.1 to And a composite plate (composite plate 2) having an apparent density of 4.3 g / cm 3 or less, and a method for producing them.
  • the composite plate 1 of the present invention is a composite plate having a thickness of 2 mm or less formed by laminating a zirconia sintered body, an adhesive layer, and a substrate, and the elastic modulus of the substrate is 100 GPa or less, and The composite plate has an apparent density of 4.3 g / cm 3 or less.
  • examples of the base material include tempered glass, bakelite, aluminum, and magnesium.
  • the elastic modulus of the base material is 100 GPa or less because it can improve the deformability of the base material, reduce the maximum tensile stress, and can be used as a back surface where tensile stress is generated, and preferably 3 to 100 GPa, particularly preferably 5 to 70 GPa.
  • the composite plate 2 of the present invention is formed by laminating a zirconia sintered body, an adhesive layer, a tempered glass, a bakelite, a base material composed of at least one of a group consisting of aluminum and magnesium, in that order. Is a composite plate of 2 mm or less.
  • the ratio of the thickness of the zirconia sintered body to the thickness of the base material is 0.1 to 1.
  • the ratio is preferably 0.1 to 0.75, more preferably 0.1 to 0.5.
  • the apparent density ( ⁇ (composite plate)) of the composite plates 1 and 2 of the present invention is the true density of the zirconia sintered body ( ⁇ (zirconia sintered body)) and the base material or tempered glass, bakelite, aluminum and magnesium. It is given by the formula (1) from the true density ( ⁇ (base material)) of the base material composed of at least one of the group consisting of:
  • the density of the tempered glass was set to a density of 2.45 g / cm 3 of the aluminosilicate tempered glass.
  • the density of bakelite, aluminum, or magnesium ( ⁇ (base material)) varies depending on the components constituting each base material, and thus needs to be measured for each base material.
  • the apparent density of the composite plates 1 and 2 of the present invention is 4.3 g / cm 3 or less, a feeling of lightness sufficient for use as an exterior part can be obtained.
  • the substrate in the composite plate 1 of the present invention or the substrate composed of at least one of the group consisting of tempered glass, bakelite, aluminum and magnesium in the composite plate 2 is bonded via an adhesive layer.
  • the thickness of the layer is preferably 200 ⁇ m or less.
  • the thickness of the adhesive layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the zirconia sintered body in the composite plates 1 and 2 of the present invention yttria-stabilized zirconia having both high strength, wear resistance and high toughness is preferable.
  • the zirconia sintered body is preferably zirconia containing 2-10 mol% yttria. More preferably, it is 2-4 mol%.
  • the composition of yttria can be high strength, wear resistance, and high toughness by setting it to 2-10 mol% with respect to zirconia.
  • a stabilizer other than yttria can be used. Examples of other stabilizers include calcia, magnesia, and ceria.
  • the zirconia sintered body in the composite plates 1 and 2 of the present invention may further contain a colorant or the like to improve the design.
  • a colorant for example, a white pigment such as alumina and a color pigment such as a transition metal oxide are preferably contained.
  • the white pigment oxides such as alumina, silica, mullite, and spinel can be used.
  • it can be used as long as it is a general inorganic pigment, such as spinel complex oxides containing transition metals such as Fe, Co, Ni, Mn, erbium, neodymium, praseodymium, etc. Rare earth oxides can be used.
  • the zircon etc. which added the transition metal can also be used. Transition metal oxides such as nickel and iron can also be used as pigments.
  • the relative density of the zirconia sintered body in the composite plates 1 and 2 of the present invention is preferably 97% or more, and in order to further improve the scratch resistance, the unevenness of the surface of the sintered body based on residual pores 98% or more is more preferable, and 99% or more is still more preferable in order to suppress the deterioration of the design property at the time of mirror surface finishing caused by.
  • the zirconia sintered body in the composite plates 1 and 2 of the present invention preferably has a Vickers hardness of 1000 or more and more preferably 1100 or more in order to exhibit sufficient scratch resistance.
  • the tempered glass that is one example of the composite plate 1 of the present invention and the tempered glass used for the composite plate 2 are preferably chemically strengthened aluminosilicate glass.
  • tempered glass includes air-cooled tempered glass, chemically tempered glass is preferable because impact strength after tempering is low and it is difficult to form a thin plate.
  • chemically strengthened glass general silica-based soda lime glass, borosilicate glass, and the like can be used, but it is preferable to use aluminosilicate glass having high impact resistance.
  • the bakelite which is one example of the composite plate 1 of the present invention and the bakelite used for the composite plate 2 are generally thermosetting resins using phenol and formaldehyde as raw materials, and are also called phenol resins. Specifically, a cloth bakelite obtained by applying a phenol resin as a raw material to a cloth and then thermosetting, and a paper bakelite obtained by applying a phenol resin as a raw material to a paper and then thermosetting it are preferable.
  • aluminum which is one example of the composite plate 1 of the present invention and aluminum used for the composite plate 2
  • aluminum or an aluminum alloy is preferable.
  • the aluminum alloy is a binary or higher alloy containing aluminum as a maximum component, and examples of the alloy component include Si, Fe, Cu, Mn, Mg, Cr, Zn, and Ti.
  • magnesium or magnesium alloy is preferable as magnesium which is an example of the composite plate 1 of the present invention and magnesium used for the composite plate 2.
  • the magnesium alloy is a binary or higher alloy containing magnesium as a maximum component, and examples of the alloy component include Al, Zn, Zr, Mn, Fe, Si, Cu, Ni, and Ca. .
  • the impact resistance (cracking resistance) of the composite plates 1 and 2 of the present invention is as follows.
  • the height at which cracking occurs in the zirconia sintered body is 10 cm or more, preferably 15 cm or more, more preferably 20 cm or more. It is shown.
  • breaking height 10 cm or more, when used as a casing of a portable electronic device, impact resistance against dropping or collision can be imparted.
  • the composite plate 1 may be a laminate of two or more base materials, and the composite plate 2 has two types of base materials selected from the group consisting of tempered glass, bakelite, aluminum and magnesium. What laminated
  • stacked the above may be used as a base material.
  • the composite plate 1 of the present invention can be manufactured, for example, by joining a zirconia sintered body and a base material at a temperature of 300 ° C. or lower using an epoxy thermosetting adhesive.
  • an adhesive used for bonding there is no risk of reducing the strength of the substrate by relaxing the compressive stress acting on the reinforcing layer of the substrate by heating for bonding, and the zirconia sintered body and the substrate
  • an epoxy thermosetting adhesive in terms of high bonding strength, high heat resistance, and high impact resistance.
  • a filler such as inorganic particles to the adhesive to improve the rigidity of the adhesive layer.
  • the thin plate of the zirconia sintered body according to the composite plate 1 of the present invention can be manufactured using a general ceramic molding method.
  • a press method, an extrusion method, a slurry casting method, an injection molding method, and a sheet molding method can be exemplified, and among these, a sheet molding method using a doctor blade is preferable.
  • a slurry in which zirconia powder and an organic binder are mixed is formed on a green sheet having a thickness of 0.1 to 1 mm using a doctor blade, and sintered at 1300 to 1500 ° C. to obtain a zirconia sintered body.
  • the surface of the zirconia sintered body can be ground and polished to produce a composite plate.
  • vacuum sintering, hot pressing, hot isostatic pressing (HIP) and the like can be used in addition to normal atmospheric sintering.
  • the composite plate 2 of the present invention uses, for example, an epoxy-based thermosetting adhesive for a zirconia sintered body and a substrate composed of at least one of the group consisting of tempered glass, bakelite, aluminum, and magnesium. It can manufacture by joining at the temperature of 300 degrees C or less.
  • an adhesive used for bonding the strength of the glass is reduced by reducing the compressive stress acting on the reinforcing layer of the base material composed of at least one of the group consisting of tempered glass, bakelite, aluminum and magnesium by heating for bonding.
  • an epoxy thermosetting adhesive it is preferable to use an epoxy thermosetting adhesive. It is also possible to add a filler such as inorganic particles to the adhesive to improve the rigidity of the adhesive layer.
  • the thin plate of the zirconia sintered body according to the composite plate 2 of the present invention can be manufactured using a general ceramic molding method.
  • a press method, an extrusion method, a slurry casting method, an injection molding method, and a sheet molding method can be exemplified, and among these, a sheet molding method using a doctor blade is preferable.
  • a slurry in which zirconia powder and an organic binder are mixed is formed on a green sheet having a thickness of 0.1 to 1 mm using a doctor blade, and sintered at 1300 to 1500 ° C. to obtain a zirconia sintered body.
  • a substrate composed of at least one of the group consisting of tempered glass, bakelite, aluminum and magnesium, and then grinding and polishing the surface of the zirconia sintered body to produce a composite plate Can do.
  • vacuum sintering, hot pressing, hot isostatic pressing (HIP) and the like can be used in addition to normal atmospheric sintering.
  • the composite plates 1 and 2 of the present invention are thin and have high impact resistance and scratch resistance, they are used as casing members for portable electronic devices such as smartphones, tablet terminals, notebook PCs, and small music players. Can be used. It can also be used as an input device member such as a touch pad. Further, in the case of the composite plate 2 using tempered glass or bakelite as a base material, the composite plate 2 has the same dielectric characteristics as tempered glass, so that it can also be used for members that require radio wave transmission, such as antenna protection members. . Furthermore, by using a colored zirconia sintered body, it is possible to use it as a watch member because it is easy to improve the design.
  • the density of the sample was measured using the Archimedes method. The obtained density was determined as a relative density with respect to the true density.
  • the true density of each sintered body obtained by sintering the powder used in the following examples and comparative examples is a sintered body using white zirconia powder (3YS20A): 5.51 g / cm 3 , black Sintered body using zirconia powder (trade name “TZ-Black” manufactured by Tosoh Corporation): 6.06 g / cm 3 , Sintered body using zirconia powder (trade name “3YSE” manufactured by Tosoh Corporation) : 6.09 g / cm 3 .
  • powders obtained by adding 40 wt% and 60 wt% of high-purity alumina to zirconia powder are represented as 3YS40A and 3YS60A, and the respective sintered compacts have a true density of 3YS40A: 5.03 g. / Cm 3 , 3YS60A: 4.63 g / cm 3 .
  • the impact strength of the composite plate was evaluated using a steel ball drop test. For the steel ball drop test, a method similar to ISO14368-3 in the “Watch Glass Dimensions, Test Method” standard was applied.
  • the plate was fixed, a 130 g steel ball was freely dropped from an arbitrary height to the center position of the composite plate, and the breaking height was measured in 1 cm increments.
  • the surface bonded to the electrode was mirror-polished and the dielectric constant and dielectric loss tangent were measured at a frequency of 1 GHz at room temperature.
  • the bending strength of the composite plate was measured according to biaxial bending strength measurement (ISO / DIS6872).
  • the support radius is 6mm, the center of the composite plate is installed on the support, the zirconia sintered thin plate faces up, the substrate surface is the back side, and the indenter is measured so that the load is applied to the center of the zirconia sintered thin plate Was done.
  • the bending strength was calculated using a converted radius using a flat plate area.
  • Example 1-13 (Preparation of zirconia sintered body)
  • White zirconia powder (trade name “3YS20A” manufactured by Tosoh Corporation), black zirconia powder (trade name “TZ-Black” manufactured by Tosoh Corporation) and zirconia powder (trade name “3YSE” manufactured by Tosoh Corporation) was molded at a pressure of 50 MPa by a mold press.
  • the molded body was further molded by a cold isostatic press (CIP) with a pressure of 200 MPa to obtain a disk-shaped molded body.
  • CIP cold isostatic press
  • zirconia powder 3YS40A, 3YS60A
  • 3 mol% yttria-containing zirconia powder manufactured by Tosoh Corporation, trade name “TZ-3YS”
  • high-purity alumina powder were added to zirconia at 40 wt% and 60 wt%, respectively, and made of zirconia having a diameter of 10 mm in an ethanol solvent.
  • the obtained molded body was sintered in the atmosphere at a heating rate of 100 ° C./h and a sintering temperature of 1400 to 1500 ° C. to obtain a sintered body having a diameter of 17 mm.
  • the characteristics of the obtained sintered body are shown in Table 6 as reference examples.
  • the obtained sintered body was subjected to double-side grinding and double-side polishing to a predetermined thickness to obtain a zirconia sintered thin sheet.
  • surface shows the Vickers hardness measured using indenter load 10kgf.
  • Example 14 The same as in Example 1 except that a white zirconia powder (trade name “3YS20A” manufactured by Tosoh Corporation, trade name “3YS20A”) was used under the same conditions as in Example 1 to obtain a zirconia sintered thin sheet having a size of 32 mm ⁇ 25 mm. A composite plate was produced under the conditions. The results of the impact resistance test are shown in Table 1. It was found that the crack of the composite plate was 29 cm and showed high impact resistance.
  • Example 15 A composite plate was produced under the same conditions as in Example 1 except that a two-component epoxy adhesive (manufactured by Nagase ChemteX Corporation, product numbers “XNR3324” and “XNH3324”) was used as the adhesive. Bonding was performed at 100 ° C. for 30 minutes. The results of the impact resistance test are shown in Table 1. It was found that the composite plate had a fracture height of 24 cm and exhibited high impact resistance.
  • Example 16 In the same manner as in Example 14, a 3YS20A composite plate of 32 mm ⁇ 25 mm was manufactured.
  • Example 17 A 3YS20A 32 mm ⁇ 25 mm composite plate was produced in the same manner as in Example 14. Adhesion was performed using a hot press at 140 ° C. for 30 minutes so that a pressure of 4 MPa was applied to the plate. The thickness of the adhesive layer of the obtained composite plate was 7 ⁇ m.
  • Example 18 A 3YS20A 32 mm ⁇ 25 mm composite plate was produced in the same manner as in Example 14. Table 2 shows the relative dielectric constant and dielectric loss tangent of this composite plate at room temperature and 1 GHz. The relative dielectric constant and dielectric loss tangent of the composite plate were found to be comparable to those of aluminosilicate glass.
  • the dielectric constant of the aluminosilicate glass measured at room temperature and 1 GHz was 7.5
  • the dielectric loss tangent was 0.0125
  • the dielectric constant of 3YS20A was 28.4, and the dielectric loss tangent was 0.003.
  • the relative dielectric constant calculated from both values assuming the series model was 9.5, which was in good agreement with the actual measurement. It was found that the relative dielectric constant of the composite plate can be reproduced with a series model of zirconia sintered body and tempered glass. Examples 20 and 21 A 3YS20A 32 mm ⁇ 25 mm composite plate was produced in the same manner as in Example 14, and the biaxial bending strength was measured. The bending strength was found to be a high value of about 940 MPa.
  • Example 22 Using 3YS20A, a zirconia sintered body thickness / tempered glass thickness ratio of 0.09 was produced in the same manner as in Example 1. The results are shown in Table 4. Although the composite plate exhibited high impact resistance, the Vickers hardness was 800 and the scratch resistance was slightly low.
  • Example 23 700 g of TZ-3YS powder, 14 g of a commercially available polycarboxylic acid ester type polymer dispersant as a dispersant, 3.5 g of commercially available polyethylene glycol mono-para-iso-octylphenyl ether as an antifoaming agent, 245 g of ethyl acetate as a solvent, and 245 g of n-butyl acetate, 49 g of butyral resin (polymerization degree: about 1000) powder as a binder, and 42 g of industrial dioctyl phthalate as a plasticizer were added and mixed in a ball mill for 48 hours. Using a doctor blade apparatus and a blade, PET was used as a carrier film, and a green sheet was formed on the carrier film.
  • PET was used as a carrier film, and a green sheet was formed on the carrier film.
  • the obtained green sheet was sintered by placing a weighted alumina setter on a porous alumina setter. Sintering is performed at room temperature to 450 ° C. at 5 ° C./h, held at 450 ° C. for 10 hours for degreasing, from 450 ° C. to 1000 ° C. at 50 ° C./h, and held at 1000 ° C. for 5 hours, After that, it was sintered at 1450 ° C. for 2 hours. The relative density of the obtained sintered body was 99% or more.
  • the obtained sintered body was used in the same manner as in Example 1 by using an epoxy-based thermosetting resin (product number “XN1245SR” manufactured by Nagase ChemteX Corporation) on chemically tempered glass having a size of 32 mm ⁇ 25 mm and a thickness of 0.698 mm. Adhesive treatment. The surface of the bonded zirconia sintered body of the composite plate was ground and polished to prepare a composite plate.
  • an epoxy-based thermosetting resin product number “XN1245SR” manufactured by Nagase ChemteX Corporation
  • the thickness of the sintered body was 0.302 mm, and the thickness of the adhesive layer was 45 ⁇ m.
  • the thickness of the zirconia sintered body / the thickness of the glass was 0.43.
  • the apparent density of the composite plate was 3.55 g / cm 3 and the Vickers hardness was 1430.
  • the fracture height of the composite plate was 26 cm. Comparative Example 1 Using 3YS20A, a zirconia sintered body thickness / tempered glass thickness ratio of 1.66 was produced in the same manner as in Example 1. The results are shown in Table 4.
  • the apparent density of the composite plate exceeded 4.3 g / cm 3 .
  • Comparative Example 2 Using 3YS20A, a steel ball drop test was performed in the same manner as in Example 1 and without the adhesive. The results are shown in Table 4. When it was placed directly on the glass without bonding, it was broken at about 3 cm, and the impact resistance was found to be extremely low. Comparative Examples 3-5 The surface of the aluminosilicate type tempered glass (32 mm ⁇ 25 mm, thickness 0.55 mm, 0.7 mm, 1.1 mm) having a different thickness is subjected to a scratch treatment in the same manner as in Example 15, and before and after the scratch. Impact resistance was evaluated. The results are shown in Table 5.
  • the breaking height of the steel ball was less than 10 cm, and the impact resistance was lower than that of the zirconia sintered body. Since the elastic modulus of sapphire is about double (400 GPa) compared to the zirconia sintered body, it is considered that tensile stress was generated on the sapphire side.
  • Examples 24-28 3YS20A was used in the same manner as in Example 1, and the base material was aluminum (97 wt%)-magnesium alloy (Eggs, # 5052), magnesium (90 wt%)-aluminum-zinc alloy (MG Precision Co., Ltd.) , Trade name “AZ91D”), cloth bakelite, and paper bakelite (manufactured by Fuso Rubber Sangyo Co., Ltd.) were used to prepare a composite plate of 32 mm ⁇ 25 mm.
  • the base material was aluminum (97 wt%)-magnesium alloy (Eggs, # 5052), magnesium (90 wt%)-aluminum-zinc alloy (MG Precision Co., Ltd.) , Trade name “AZ91D”), cloth bakelite, and paper bakelite (manufactured by Fuso Rubber Sangyo Co., Ltd.) were used to prepare a composite plate of 32 mm ⁇ 25 mm.
  • a composite plate of 32 mm ⁇ 25 mm was produced using hard polyvinyl chloride (Misumi Co., Ltd.) in the same manner as in Example 1 except that 3YS20A was used and the adhesive was cyanoacrylate.
  • the evaluation results are shown in Table 8.
  • the apparent density of each composite plate was 4.3 g / cm 3 or less, and the Vickers hardness of each composite plate was 1000 or more.
  • the results of the impact resistance test were all 10 cm or more, and it was found that high impact resistance was exhibited.
  • the composite plate of the zirconia sintered body of the present invention and a substrate composed of at least one of the group consisting of tempered glass, bakelite, aluminum, and magnesium has impact resistance and scratch resistance. It can be suitably used for small and thin parts such as portable electronic devices and watch members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

【課題】 軽量で且つ耐衝撃性、耐擦傷性に優れた携帯用電子機器の筐体、時計部材等に好適に使用可能な、ジルコニア質焼結体と基材又は強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との複合プレートを提供する。 【解決手段】 ジルコニア質焼結体、接着層、基材が積層してなる、厚み2mm以下の複合プレートであって、基材の弾性率が100GPa以下であり、且つ、複合プレートの見かけ密度が4.3g/cm以下である複合プレート又はジルコニア質焼結体、接着層、強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との順で積層してなる、厚み2mm以下の複合プレートであって、ジルコニア質焼結体と上記基材との厚み比率(ジルコニア質焼結体厚み/上記基材厚み)が0.1~1であり、且つ、複合プレートの見かけ密度を4.3g/cm以下とした複合プレート。

Description

複合プレートおよびその製造方法
 本発明は、耐擦傷性、耐衝撃性を有するジルコニア質焼結体と特定の弾性率の基材との複合プレート又はジルコニア質焼結体と強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との複合プレートおよびそれらの製造方法に関する。
 近年、スマートフォン等に代表される携帯用電子機器において耐擦傷性、耐衝撃性の優れた部材の需要が高まっている。特に携帯電子機器の外装部品は、厚み1~2mm程度の薄板形状で且つ、落下等の衝突にも耐えなくてはならないため、とりわけ耐衝撃性の高い材質が要求されている。
 現在使用されている素材は、イオン交換によって強化された強化ガラスである。イオン交換によってガラス表面に数十μm程度の強化層を生成し、表面に圧縮応力を発生させ傷の進展を防いでいる。しかしながら強化ガラスの強化機構は、強化層に由来するため強化層を超える傷が入ると直ちに破壊してしまう。またガラスのビッカース硬度は600程度であり、金属、コンクリート等との接触により容易に傷が付き、使用に伴う加傷により強度が著しく低下することが問題であった。
 セラミックスは耐熱性、耐摩耗性、耐食性に優れていることから、産業部材用途に広く使用されている。とりわけジルコニア質焼結体は高強度、高靭性かつ高硬度で耐擦傷性を有しており、更に着色による意匠性の向上が容易であることから、時計部材などへの使用が進んでいる。また、携帯用電子機器等の外装部材への使用も検討されているが、特に携帯電子機器の外装部材の場合、衝撃性を向上するためには厚くする必要があるため、部材が重くなり実用的ではなかった。また軽量化のために薄くすると、落下、衝突等の衝撃に対する耐性が十分でなく、容易に割れて使用することが出来なかった。
 セラミックス部材の耐衝撃性の向上については、繊維強化プラスティックと接合し砲弾などの飛翔体の貫通を防ぐといった、いわゆる合わせガラスと類似した方法が提案されている(例えば、特許文献1、特許文献2等)。しかしながら、この手法は飛翔体の貫通を防ぐことを目的としたものであって、衝突によるセラミックスの割れを防ぐことは出来ない。
 特許文献3には、サファイヤと無機ガラスを接合した時計用カバーガラスが記述されているが、これは時計のカバーガラスの表面に高硬度のサファイヤを配置することで耐擦傷性を向上させることを目的としたものであり、この方法では携帯電子機器用途に要求される高い耐衝撃性は得られない。
 従って、これまでに厚さ数mm程度のジルコニア質焼結体板において落下、衝突等の衝撃に対する耐割れ性を向上させた耐衝撃部材およびその製造方法は存在しなかった。
特許第4869915号公報(特開2008-162164号公報) 特開2009-264692号公報 特開平6-242260号公報
 ジルコニア質焼結体において耐衝撃性を向上するためには、部材を厚くする必要があり携帯用電子機器として不向きであった。本発明は、耐衝撃性、特に衝撃による耐割れ性を向上させたジルコニア質焼結体と特定の弾性率の基材との複合プレート又はジルコニア質焼結体と強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との複合プレートおよびその製造方法に関する。
 上記の課題を鑑み、本発明者等は、ジルコニア質焼結体薄板の鋼球落下における破壊現象を詳細に検討した。その結果、鋼球の落下衝撃によりセラミックス板がたわみ、曲げモーメントが発生し、インパクト面の裏側の面のインパクト点近傍より引っ張り破壊が生じていることを見出した。また材料の弾性率が小さいものほど、衝撃により大きく変形し、長い時間をかけて衝撃を吸収することで、インパクト面の裏面にかかる最大引っ張り応力の絶対値が減少することを見出した。
 本発明者等は、上記の知見を基に鋭意検討することで、ジルコニア質焼結体薄板(弾性率200GPa)の裏面に弾性率が半分以下(弾性率70GPa程度)の強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材を配置し、両者を強固に接着接合することで、衝撃変形能をジルコニア質焼結体薄板に付与し、最大引っ張り応力の低減を図ると共に、引っ張り応力が発生する裏面を上記基材とし、専ら圧縮応力が発生するインパクト面をジルコニア質焼結体薄板とする構造を実現し、ジルコニア質焼結体薄板の耐衝撃性を向上させることを見出し、本発明を完成するに至った。
 すなわち、本発明は、ジルコニア質焼結体、接着層、基材が積層してなる、厚み2mm以下の複合プレートであって、基材の弾性率が100GPa以下であり、且つ、複合プレートの見かけ密度が4.3g/cm以下である複合プレート(複合プレート1)及びジルコニア質焼結体、接合層、強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との順で積層してなる、厚み2mm以下の複合プレートであって、ジルコニア質焼結体と上記基材との厚み比率(ジルコニア質焼結体厚み/上記基材厚み)が0.1~1であり、且つ、複合プレートの見かけ密度を4.3g/cm以下である複合プレート(複合プレート2)並びにそれらの製造方法に関する。
 以下、本発明を詳細に説明する。
 本発明の複合プレート1はジルコニア質焼結体、接着層、基材が積層してなる、厚み2mm以下の複合プレートであって、基材の弾性率が100GPa以下であり、且つ、複合プレートの見かけ密度が4.3g/cm以下である複合プレートである。
 ここで、基材としては、例えば強化ガラス、ベークライト、アルミニウム、マグネシウム等が挙げられる。該基材の弾性率は、基材の変形能を向上させ、最大引っ張り応力の低減を図ると共に、引っ張り応力が発生する裏面とすることが可能となることから100GPa以下であり、好ましくは3~100GPa、特に好ましくは5~70GPaである。
 本発明の複合プレート2は、ジルコニア質焼結体、接着層、強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との順で積層してなり、その厚みが2mm以下である複合プレートである。本発明の複合プレートにおける、ジルコニア質焼結体の厚みと上記基材の厚みの比率(ジルコニア質焼結体厚み/上記基材厚み)は、0.1~1である。ジルコニア質焼結体の厚みと上記基材の厚みの比率を0.1~1とすることで、軽量かつ耐擦傷性に優れる耐衝撃性複合プレートとすることができる。ジルコニア質焼結体焼結体の厚みが増加して複合プレートの見かけ密度が増加することを抑制し、耐衝撃強度の低下を抑制できる点、及びジルコニア質焼結体の厚みが薄くなることによる耐擦傷性の低下を抑制できる点で、好ましくは0.1~0.75、更に好ましくは0.1~0.5である。
 本発明の複合プレート1,2の見かけ密度(ρ(複合プレート))は、ジルコニア質焼結体の真密度(ρ(ジルコニア質焼結体))と基材又は強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材の真密度(ρ(基材))から式(1)で与えられる。
 ρ(複合プレート)=ρ(ジルコニア質焼結体)×ジルコニア質焼結体体積分率+ρ(基材)×基材の体積分率
          =ρ(ジルコニア質焼結体)×ジルコニア質焼結体厚み分率+ρ(基材)×基材厚み分率 (1)
 ここで強化ガラスの密度は、アルミノシリケート系強化ガラスの密度、2.45g/cmとした。また、ベークライト、アルミニウム又はマグネシウムの密度(ρ(基材))については、各基材を構成する成分によって変化するので、基材毎に測定する必要がある。
 本発明の複合プレート1,2の見かけの密度が4.3g/cm以下であれば、外装部品として使用するのに十分な軽量感を得ることができる。
 本発明の複合プレート1における基材又は複合プレート2における強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材とは、接着層を介して接着されるが、接着層の厚みは、200μm以下が好ましい。接着層の厚みは、好ましくは100μm以下、更に好ましくは50μm以下である。このような接着層の厚みとすることにより、ジルコニア質焼結体と上記基材とが一体となって変形して衝撃吸収するために耐衝撃性の向上を図ることができる。
 本発明の複合プレート1,2におけるジルコニア質焼結体としては、高強度、耐摩耗性、高靭性を併せ持つイットリア安定化ジルコニアが好ましい。更にジルコニア質焼結体は2-10mol%のイットリアを含有するジルコニアであることが好ましい。さらに好ましくは2-4mol%である。イットリアの組成は、ジルコニアに対して、2-10mol%とすることで高強度、耐摩耗性、高靭性とすることができる。ジルコニア質焼結体は、イットリア以外の安定化剤のものも使用できる。他の安定化剤としては、カルシア、マグネシア、セリア等が例示できる。
 本発明の複合プレート1,2におけるジルコニア質焼結体には、更に着色剤等を含有させて、意匠性を向上しても良い。このような着色剤としては、例えば、アルミナ等の白色顔料、遷移金属酸化物等の着色顔料を含有することが好ましい。白色顔料としては、アルミナ、シリカ、ムライト、スピネル等の酸化物を使用することができる。白色以外の色調については、一般的な無機顔料であれば使用することができ、例えば、Fe、Co、Ni、Mn等の遷移金属が含まれるスピネル系複合酸化物やエルビウム、ネオジム、プラセオジム等の希土類酸化物が使用できる。また遷移金属を添加したジルコンなども使用できる。またニッケル、鉄などの遷移金属酸化物も顔料として使用することができる。
 本発明の複合プレート1,2におけるジルコニア質焼結体は、その相対密度が97%以上であることが好ましく、より耐擦傷性を向上させるため、また、残留気孔に基づく焼結体表面の凹凸に起因する鏡面仕上げ時の意匠性低下を抑制するためには、98%以上がより好ましく、99%以上が更に好ましい。
 本発明の複合プレート1,2におけるジルコニア質焼結体は、十分な耐擦傷性を示すために、そのビッカース硬度が1000以上であることが好ましく、1100以上が更に好ましい。
 本発明の複合プレート1の例示の一つである強化ガラス、複合プレート2に用いる強化ガラスは、化学強化されたアルミノシリケートガラスであることが好ましい。強化ガラスには、風冷強化ガラスもあるが、強化後の衝撃強度が低く、また薄板形状にすることは困難なため化学強化ガラスが好ましい。化学強化ガラスとしては、一般的なシリカ系のソーダライムガラス、ホウケイ酸ガラス等が使用できるが、耐衝撃性の高い、アルミノシリケートガラスを用いることが好ましい。
 本発明の複合プレート1の例示の一つであるベークライト、複合プレート2に用いるベークライトとは、一般にフェノールとホルムアルデヒドとを原料とした熱硬化性樹脂であり、フェノール樹脂とも呼ばれるものである。具体的には、布に原料となるフェノール樹脂を塗布した後、熱硬化させてなる布ベークライト、紙に原料となるフェノール樹脂を塗布した後、熱硬化させてなる紙ベークライト等が好ましい。
 また、本発明の複合プレート1の例示の一つであるアルミニウム、複合プレート2に用いるアルミニウムとしては、アルミニウム又はアルミニウム合金が好ましい。アルミニウム合金としては、アルミニウムを最大含有成分とする2元系以上の合金であり、合金成分としては、Si、Fe、Cu、Mn、Mg、Cr、Zn,Ti等を例示することができる。
 更に、本発明の複合プレート1の例示の一つであるマグネシウム、複合プレート2に用いるマグネシウムとしては、マグネシウム又はマグネシウム合金が好ましい。マグネシウム合金としては、マグネシウムを最大含有成分とする2元系以上の合金であり、合金成分としては、Al、Zn、Zr、Mn、Fe、Si、Cu,Ni、Ca等を例示することができる。
 本発明の複合プレート1,2における耐衝撃性(耐割れ性)は、複合プレート1,2を、アルミ合金の上に厚さ0.1mmの両面テープで接着し、130gの鋼球を任意の高さから、自然落下させるという衝撃試験において、ジルコニア質焼結体に割れが発生する高さ(破壊高さ)が10cm以上、好ましくは15cm以上、更に好ましくは20cm以上という高い耐衝撃性値を示すものである。10cm以上の破壊高さとすることで、携帯用電子機器の筐体として使用した場合、落下や衝突などに対する耐衝撃性を付与することができる。
 なお、本発明においては、複合プレート1では基材を2種以上を積層したものを用いてもよく、複合プレート2では強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群より選ばれる基材の2種以上を積層したものを基材として用いてもよい。
 次に、本発明の複合プレート1の製造方法について詳述する。
 本発明の複合プレート1は、例えば、ジルコニア質焼結体と基材とをエポキシ系の熱硬化型接着剤を用いて300℃以下の温度で接合することで製造できる。接合に用いる接着剤としては、接着のための加熱により基材の強化層に働く圧縮応力を緩和して基材の強度を低下させるおそれがなく、また、ジルコニア質焼結体と基材との接合強度が高く、耐熱性、耐衝撃性も高いと言う点で、エポキシ系熱硬化型接着剤を使用することが好ましい。また、接着剤中に無機粒子などのフィラーを添加し、接着層の剛性を向上させることも可能である。
 本発明の複合プレート1に係るジルコニア質焼結体の薄板の作製方法は、一般的なセラミックスの成型方法を用いて作製することができる。例えば、プレス法、押し出し法、泥漿鋳込み法、射出成形法、シート成型法が例示できるが、この中でもドクターブレードによるシート成型法が好ましい。具体的には、ジルコニア粉末と有機バインダーを混合したスラリーを、ドクターブレードを用いて厚さ0.1~1mmのグリーンシートに成膜し、1300~1500℃で焼結し、ジルコニア質焼結体を得て、それを基材に接合した後、ジルコニア質焼結体表面を研削・研磨し複合プレートを製造することができる。焼結は、通常の大気焼結の他、真空焼結、ホットプレス、熱間等方圧加圧法(HIP)なども使用することができる。
 次に、本発明の複合プレート2の製造方法について詳述する。
 本発明の複合プレート2は、例えば、ジルコニア質焼結体と強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材とをエポキシ系の熱硬化型接着剤を用いて300℃以下の温度で接合することで製造できる。接合に用いる接着剤としては、接着のための加熱により強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材の強化層に働く圧縮応力を緩和してガラスの強度を低下させるおそれがなく、また、ジルコニア質焼結体と強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との接合強度が高く、耐熱性、耐衝撃性も高いと言う点で、エポキシ系熱硬化型接着剤を使用することが好ましい。また、接着剤中に無機粒子などのフィラーを添加し、接着層の剛性を向上させることも可能である。
 本発明の複合プレート2に係るジルコニア質焼結体の薄板の作製方法は、一般的なセラミックスの成型方法を用いて作製することができる。例えば、プレス法、押し出し法、泥漿鋳込み法、射出成形法、シート成型法が例示できるが、この中でもドクターブレードによるシート成型法が好ましい。具体的には、ジルコニア粉末と有機バインダーを混合したスラリーを、ドクターブレードを用いて厚さ0.1~1mmのグリーンシートに成膜し、1300~1500℃で焼結し、ジルコニア質焼結体を得て、それを強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材に接合した後、ジルコニア質焼結体表面を研削・研磨し複合プレートを製造することができる。焼結は、通常の大気焼結の他、真空焼結、ホットプレス、熱間等方圧加圧法(HIP)なども使用することができる。
 本発明の複合プレート1,2は、薄板状であり且つ耐衝撃性や耐擦傷性も高いことから、スマートフォン、タブレット型端末、ノートPC、小型音楽プレーヤー等の携帯電子機器用の筐体部材として使用することができる。またタッチパッドなどの入力装置部材としても使用することができる。また、基材として強化ガラスやベークライトを使用した複合プレート2の場合、強化ガラスと同程度の誘電特性を有するために、アンテナの保護部材等の電波透過性が必要とされる部材にも使用できる。更に着色ジルコニア質焼結体を使用することで、意匠性の向上が容易なことから時計部材としても使用することができる。
白色ジルコニア(東ソー株式会社製、商品名「3YS20A」)を用いた複合プレートにおけるジルコニア質焼結体厚みと強化ガラス厚みの比率と、鋼球破壊高さの相関を示す図である。○:実施例1~4および実施例14(複合プレート厚:約1mm)、●:比較例1(複合プレート厚:1.49mm)
 以下、実施例及び比較例により本発明を具体的に説明する。
(相対密度)
 アルキメデス法を用いて試料の密度を測定した。得られた密度を真密度に対する相対密度として求めた。以下の実施例・比較例で使用した粉末を焼結して得られる、それぞれの焼結体の真密度は、白色ジルコニア粉末(3YS20A)を用いた焼結体:5.51g/cm、黒色ジルコニア粉末(東ソー株式会社製、商品名「TZ-Black」)を用いた焼結体:6.06g/cm、ジルコニア粉末(東ソー株式会社製、商品名「3YSE」)を用いた焼結体:6.09g/cmとした。またジルコニア粉末(東ソー株式会社製、商品名「3YS」)に高純度アルミナを40wt%、60wt%添加した粉末を3YS40A,3YS60Aと表記し、それぞれの焼結体真密度を、3YS40A:5.03g/cm、3YS60A:4.63g/cmとした。
(衝撃強度測定)
 複合プレートの衝撃強度評価は鋼球落下試験を用いて行った。鋼球落下試験は、「ウオッチ用ガラスの寸法、試験方法」規格のISO14368-3に類似した方法を適用した。すなわち、厚さ5mmの平坦なアルミ合金上(50mm×52mm)に厚さ0.1mmの両面テープ(3M社製、商品番号「4511-100」)で、実施例又は比較例で得られた複合プレートを固定し、当該複合プレートの中心位置に130gの鋼球を任意の高さから自由落下させ、破壊する高さを1cm刻みで測定した。なおインパクト面については表面粗さRa=0.02μm以下に鏡面研磨したものを用いた。
(誘電率測定)
 誘電率測定は、インピーダンスアナライザーを用いた容量法を用いて行った。電極に接着する面は鏡面研磨し、室温で1GHzの周波数で誘電率と誘電正接を測定した。
(二軸曲げ測定)
 二軸曲げ強度測定(ISO/DIS6872)に準じて複合プレートの曲げ強度を測定した。サポート半径を6mmとし、複合プレートの中央をサポートに設置し、ジルコニア質焼結体薄板を表向き、基材面を裏面として、圧子がジルコニア質焼結体薄板の中央に荷重が懸かるようにして測定を行なった。曲げ強度の算出は、平板面積を用いた換算半径を用いた。ジルコニア質焼結体は表面粗さRa=0.02μm以下に両面鏡面研磨したものを用いた。
実施例1-13
 (ジルコニア質焼結体の作製)
 白色ジルコニア粉末(東ソー株式会社製、商品名「3YS20A」)、黒色ジルコニア粉末(東ソー株式会社製,商品名「TZ-Black」)及びジルコニア粉末(東ソー株式会社製、商品名「3YSE」)のそれぞれを金型プレスによって圧力50MPaで成形した。成形体を更に圧力200MPaの冷間静水圧プレス(CIP)で成形し、円盤状成形体を得た。
 ジルコニア粉末(3YS40A、3YS60A)については、以下の通りに製造した。3mol%イットリア含有ジルコニア粉末(東ソー株式会社製,商品名「TZ-3YS」)及び高純度アルミナ粉末を、ジルコニアに対して、それぞれ40wt%、60wt%添加し、エタノール溶媒中で直径10mmのジルコニア製ボールで72時間ボールミル混合した後、乾燥し、原料粉末とし、同様の条件で成型した。
 得られた成形体を、大気中、昇温速度100℃/h、焼結温度1400~1500℃で焼結し、φ17mmの焼結体を得た。得られた焼結体の特性を参考例として表6に示す。得られた焼結体を両面研削、両面研磨し所定の厚みとし、ジルコニア質焼結体薄板を得た。なお表中のHv10とは、圧子荷重10kgfを用いて測定されたビッカース硬度を示す。
 得られたジルコニア質焼結体薄板とアルミノシリケート系の化学強化ガラス(32mm×25mm)の各表面をアセトンにより洗浄し、次いで、エポキシ系熱硬化性樹脂(ナガセケムテックス株式会社製、商品番号「XN1245SR」)を接着面に均一に塗布し、複合プレートの上下面に均等に荷重が懸かる状態とし、140℃、30分の条件で接着した。得られた複合プレートにおける各層の厚みを表1に示した。
 評価結果を表1に示す。複合プレートの見かけ密度は、いずれも4.3g/cm以下であり、複合プレートのビッカース硬度は、いずれも1000以上であった。また耐衝撃試験の結果も、いずれも10cm以上となり高い耐衝撃性を示すことが分かった。
実施例14
 実施例1と同様の条件で、白色ジルコニア粉末(東ソー株式会社製、商品名「3YS20A」)を用いて、寸法が32mm×25mmのジルコニア質焼結体薄板を得た以外は実施例1と同じ条件で複合プレートを作製した。耐衝撃試験の結果を表1に示す。複合プレートの割れは、29cmとなり高い耐衝撃性を示すことが分かった。
実施例15
 接着剤として2液系のエポキシ系接着剤(ナガセケムテックス株式会社製、商品番号「XNR3324」、「XNH3324」)を用いた以外は、実施例1と同じ条件で複合プレートを作製した。接着は100℃、30分とした。耐衝撃試験の結果を表1に示す。複合プレートの破壊高さは24cmとなり、高い耐衝撃性を示すことが分かった。
実施例16
 実施14と同様な方法にて、3YS20Aの32mm×25mmの複合プレートを製造した。この複合プレートのジルコニア質焼結体薄板表面に#100の紙ヤスリを置き、更に3kgの鉄製おもりによる荷重をかけて、鉄製おもりを紙ヤスリ上で30cmの距離を5回往復させて加傷した。加傷処理した複合プレートの鋼球落下試験の結果を表1に示す。鋼球破壊高さは、30cmであり、加傷処理による衝撃強度の低下は見られなかった。実施例17
 実施例14と同様な方法にて、3YS20Aの32mm×25mmの複合プレートを製造した。接着は140℃、30分の条件でホットプレスを用いて行い、プレートに4MPaの圧力がかかるように行った。得られた複合プレートの接着層の厚みは7μmであった。鋼球破壊高さは47cmとなり、高い耐衝撃性を示すことが分かった。
実施例18、19
 実施例14と同様の方法にて3YS20Aの32mm×25mmの複合プレートを製造した。この複合プレートにおける、室温、1GHzでの比誘電率及び誘電正接を表2に示す。複合プレートの比誘電率及び誘電正接は、アルミノシリケートガラスと同程度であることが分かった。
 別途、室温、1GHzで測定したアルミノシリケートガラスの比誘電率は7.5、誘電正接は0.0125、3YS20Aの誘電率は28.4、誘電正接は0.003であった。両者の値から直列モデルを仮定して計算した比誘電率は、9.5であり、実測値とよく一致した。複合プレートの比誘電率は、ジルコニア質焼結体と強化ガラスの直列モデルで再現できることがわかった。
実施例20、21
 実施例14と同様の方法にて3YS20Aの32mm×25mmの複合プレートを製造し、二軸曲げ強度を測定した。曲げ強度は940MPa程度の高い値であることがわかった。試験における荷重-変位曲線から曲げ弾性率を見積もると、80GPa程度であり、いずれも強化ガラス(70GPa)と同程度の弾性率であることがわかった。
実施例22
 3YS20Aを用い、実施例1と同様の方法で、ジルコニア質焼結体厚み/強化ガラス厚みの比率を0.09にしたものを製造した。結果を表4に示す。複合プレートは高い耐衝撃性を示すものの、ビッカース硬度は800となり、耐擦傷性は少し低いものであった。
実施例23
 TZ-3YS粉末を700g、分散剤として市販のポリカルボン酸エステル型高分子分散剤14g、消泡剤として市販のポリエチレングリコールモノ-パラ-イソ-オクチルフェニルエーテル3.5g、溶剤として酢酸エチル245g及び酢酸n-ブチル245g、結合剤としてブチラール樹脂(重合度約1000)粉末49g、及び可塑剤として、工業用のフタル酸ジオクチル42gを添加してボールミルにて48時間混合した。ドクターブレード装置およびブレードを使用しキャリヤーフィルムとしてPETを使用し、キャリヤーフィルム上にグリーンシートを成膜した。
 得られたグリーンシートを、多孔質アルミナセッター上に重しのアルミナセッターを載せて焼結した。焼結は、室温から450℃までは、5℃/hとして、450℃で10時間保持し脱脂を行い、450℃から1000℃までは、50℃/hとし、1000℃で5時間保持し、その後1450℃で2時間保持して焼結した。得られた焼結体の相対密度は99%以上であった。
 得られた焼結体を、32mm×25mm、厚み0.698mmの化学強化ガラスにエポキシ系の熱硬化性樹脂(ナガセケムテックス株式会社製、商品番号「XN1245SR」)を用いて実施例1と同様に接着処理した。接着した複合プレートのジルコニア質焼結体薄板表面を研削・研磨し複合プレートを作製した。
 焼結体の厚みは、0.302mmであり、接着層の厚みは45μmであった。ジルコニア質焼結体の厚み/ガラスの厚みは0.43であった。複合プレートの見かけ密度は、3.55g/cm、ビッカース硬度は1430であった。実施例1と同様な鋼球落下にて耐衝撃試験を行った結果、複合プレートの破壊高さは26cmであった。
比較例1
 3YS20Aを用い、実施例1と同様の方法で、ジルコニア質焼結体厚み/強化ガラス厚みの比率を1.66にしたものを製造した。結果を表4に示す。複合プレートの見かけの密度は4.3g/cmを超えた。
比較例2
 3YS20Aを用い、実施例1と同様の方法で、接着材なしの条件で鋼球落下試験を行った。結果を表4に示す。接着せずガラスに直置きしてある場合、3cm程度で破壊し、耐衝撃特性は著しく低いことが分かった。
比較例3~5
 厚みの異なるアルミノシリケート系の強化ガラス(32mm×25mm、厚み0.55mm、0.7mm、1.1mm)の表面に対して、実施例15と同じ方法で加傷処理を行い、加傷前後の耐衝撃性を評価した。結果を表5に示す。0.55mmについては、加傷処理により母材が割れ、0.7、1.1mmの強化ガラスについては、加傷によって鋼球破壊高さは、半分程度となった。
比較例6、7
 ジルコニア質焼結体の代わりにサファイヤ単結晶(株式会社オルベ・パイオニア製)(32mm×25mm)を用いて実施例1と同様の方法で複合プレートを作製し、同様の条件で鋼球落下試験を行った。結果を表7に示す。ここでサファイヤの密度は、3.99g/cmとした。
 サファイヤを用いたものでは、鋼球破壊高さは10cm未満となりジルコニア質焼結体と比較して低い耐衝撃特性となった。ジルコニア質焼結体と比較してサファイヤの弾性率は倍程度(400GPa)であるため、サファイヤ側に引っ張り応力が発生したものと考えられる。
実施例24~28
 3YS20Aを用い、実施例1と同様の方法で、基材として、アルミニウム(97wt%)-マグネシウム合金(Eggs社製、#5052)、マグネシウム(90wt%)-アルミニウム-亜鉛合金(エムジープレシジョン株式会社製、商品名「AZ91D」)、布ベークライト、紙ベークライト(株式会社扶桑ゴム産業製)をそれぞれ用いて32mm×25mmの複合プレートを作製した。
 3YS20Aを用い、接着剤をシアノアクリレートとした以外、実施例1と同様の方法で、硬質ポリ塩化ビニル(株式会社ミスミ)を用いて32mm×25mmの複合プレートを作製した。
 評価結果を表8に示す。複合プレートの見かけ密度は、いずれも4.3g/cm以下であり、複合プレートのビッカース硬度は、いずれも1000以上であった。また耐衝撃試験の結果も、いずれも10cm以上となり高い耐衝撃性を示すことが分かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明のジルコニア質焼結体焼結体と強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材との複合プレートは、耐衝撃性、耐擦傷性を有するため携帯用電子機器、時計部材等の小型・薄型部品に好適に使用することができる。
 

Claims (14)

  1.  ジルコニア質焼結体、接着層、基材が積層してなる、厚み2mm以下の複合プレートであって、基材の弾性率が100GPa以下であり、且つ、複合プレートの見かけ密度が4.3g/cm以下である複合プレート。
  2.  ジルコニア質焼結体、接着層、強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材が積層してなる、厚み2mm以下の複合プレートであって、ジルコニア質焼結体と上記基材との厚み比率(ジルコニア質焼結体厚み/上記基材厚み)が0.1~1であり、且つ、複合プレートの見かけ密度が4.3g/cm以下である複合プレート。
  3.  ジルコニア質焼結体が、2~10mol%のイットリアを含有するジルコニアである請求項1又は2記載の複合プレート。
  4.  ジルコニア質焼結体が、白色顔料、遷移金属酸化物、着色顔料からなる群より選ばれる少なくとも1種を含有するジルコニアである請求項1乃至3のいずれかに記載の複合プレート。
  5.  ジルコニア質焼結体の相対密度が97%以上である請求項1乃至4のいずれかに記載の複合プレート。
  6.  ジルコニア質焼結体のビッカース硬度が1000以上である請求項1乃至5のいずれかに記載の複合プレート。
  7.  基材が強化ガラスである請求項1乃至6のいずれかに記載の複合プレート。
  8.  強化ガラスが、化学強化されたアルミノシリケートガラスである請求項7に記載の複合プレート。
  9.  130gの鋼球を自由落下させる試験において、破壊高さが10cm以上である高耐衝撃性を示すことを特徴とする請求項1乃至8のいずれかに記載の複合プレート。
  10.  ジルコニア質焼結体と基材とを、エポキシ系熱硬化型接着剤を用いて300℃以下の温度で接合することを特徴とする、請求項1に記載の複合プレートの製造方法。
  11.  ジルコニア質焼結体と強化ガラス、ベークライト、アルミニウム及びマグネシウムからなる群のうち少なくとも1種類から構成される基材とを、エポキシ系熱硬化型接着剤を用いて300℃以下の温度で接合することを特徴とする、請求項2に記載の複合プレートの製造方法。
  12.  ジルコニア質焼結体が、ジルコニア粉末と有機バインダーを混合したスラリーを厚さ0.1~1mmのグリーンシートに成膜し、次いで1300~1500℃で焼結したものである請求項10又は11記載の複合プレートの製造方法。
  13.  請求項1~9のいずれかに記載の複合プレートを用いた携帯用電子機器の筐体。
  14.  請求項1~9のいずれかに記載の複合プレートを用いた時計部材。
     
     
PCT/JP2013/004006 2012-06-27 2013-06-26 複合プレートおよびその製造方法 WO2014002498A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014522434A JP6020564B2 (ja) 2012-06-27 2013-06-26 複合プレートおよびその製造方法
CN201380034493.4A CN104411657B (zh) 2012-06-27 2013-06-26 复合板及其制造方法
KR1020147036633A KR102004575B1 (ko) 2012-06-27 2013-06-26 복합 플레이트 및 그 제조 방법
EP13809977.5A EP2868642B1 (en) 2012-06-27 2013-06-26 Composite plate and production method therefor
US14/408,989 US10696022B2 (en) 2012-06-27 2013-06-26 Composite plate and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012144677 2012-06-27
JP2012-144677 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014002498A1 true WO2014002498A1 (ja) 2014-01-03

Family

ID=49782685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004006 WO2014002498A1 (ja) 2012-06-27 2013-06-26 複合プレートおよびその製造方法

Country Status (6)

Country Link
US (1) US10696022B2 (ja)
EP (1) EP2868642B1 (ja)
JP (1) JP6020564B2 (ja)
KR (1) KR102004575B1 (ja)
CN (1) CN104411657B (ja)
WO (1) WO2014002498A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088842A (ja) * 2014-10-29 2016-05-23 京セラ株式会社 通信機器外装部品およびこれを備えてなる通信機器
WO2021117720A1 (ja) * 2019-12-10 2021-06-17 東ソー株式会社 耐衝撃性に優れる焼結体
WO2023163205A1 (ja) * 2022-02-28 2023-08-31 東ソー株式会社 焼結体、焼結体の製造方法、粉末、及び、仮焼体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252113B2 (ja) * 2013-11-06 2017-12-27 東ソー株式会社 複合プレート及びその製造方法
EP4123390A1 (fr) * 2021-07-19 2023-01-25 Comadur S.A. Article multicolore en cermet et/ou céramique et son procédé de fabrication

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131875A (ja) * 1983-12-20 1985-07-13 三菱重工業株式会社 セラミツクと金属の接合法
JPH01271234A (ja) * 1988-04-25 1989-10-30 Toshiba Corp セラミックス−金属接合体
JPH06242260A (ja) 1993-02-12 1994-09-02 Kyocera Corp 時計用カバーガラス
JP2005298915A (ja) * 2004-04-13 2005-10-27 Seiko Epson Corp 表面処理方法、装飾品および時計
JP2007275144A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 装飾品および時計
JP2008162164A (ja) 2006-12-28 2008-07-17 Kyocera Chemical Corp 複合防弾板
WO2009017080A1 (ja) * 2007-07-31 2009-02-05 Namiki Seimitsu Houseki Kabushiki Kaisha 腕時計ケース
JP2009203097A (ja) * 2008-02-26 2009-09-10 Kyocera Corp メタライズ基板、接合体、および接合体の作製方法
JP2009264692A (ja) 2008-04-28 2009-11-12 Kyocera Chemical Corp 複合防弾板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138846B2 (ja) 1971-12-27 1976-10-25
JPS5113486B2 (ja) * 1973-08-15 1976-04-30
JPS54113621A (en) * 1978-02-24 1979-09-05 Matsushita Electric Works Ltd Production of substrateeglass composite
DE3650137T2 (de) * 1985-09-06 1995-03-23 Toray Industries Verfahren zur Herstellung eines gesinterten Zirkonoxidmaterials.
US5948516A (en) * 1997-02-06 1999-09-07 The Board Of Trustees Of The University Of Illinois High-strength, flaw-tolerant, oxide ceramic composite
US7724532B2 (en) * 2004-07-02 2010-05-25 Apple Inc. Handheld computing device
EP2083744A4 (en) * 2006-11-09 2013-08-28 Univ New York DEGRADED GLASS / ZIRCONIUM / GLASS STRUCTURES FOR DAMAGE-RESISTANT DENTAL AND ORTHOPEDIC CERAMIC PROSTHESES
US8341976B2 (en) * 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
JP2011143683A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd 複合構造部材
CN102137554A (zh) * 2010-01-26 2011-07-27 深圳富泰宏精密工业有限公司 电子装置外壳及其制作方法
CN101844920A (zh) 2010-05-13 2010-09-29 清华大学 一种彩色氧化锆陶瓷的制备方法
CN101988327A (zh) * 2010-08-25 2011-03-23 吕孟龙 复合玻璃墙地砖
US8824140B2 (en) * 2010-09-17 2014-09-02 Apple Inc. Glass enclosure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131875A (ja) * 1983-12-20 1985-07-13 三菱重工業株式会社 セラミツクと金属の接合法
JPH01271234A (ja) * 1988-04-25 1989-10-30 Toshiba Corp セラミックス−金属接合体
JPH06242260A (ja) 1993-02-12 1994-09-02 Kyocera Corp 時計用カバーガラス
JP2005298915A (ja) * 2004-04-13 2005-10-27 Seiko Epson Corp 表面処理方法、装飾品および時計
JP2007275144A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 装飾品および時計
JP2008162164A (ja) 2006-12-28 2008-07-17 Kyocera Chemical Corp 複合防弾板
JP4869915B2 (ja) 2006-12-28 2012-02-08 京セラケミカル株式会社 複合防弾板
WO2009017080A1 (ja) * 2007-07-31 2009-02-05 Namiki Seimitsu Houseki Kabushiki Kaisha 腕時計ケース
JP2009203097A (ja) * 2008-02-26 2009-09-10 Kyocera Corp メタライズ基板、接合体、および接合体の作製方法
JP2009264692A (ja) 2008-04-28 2009-11-12 Kyocera Chemical Corp 複合防弾板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868642A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088842A (ja) * 2014-10-29 2016-05-23 京セラ株式会社 通信機器外装部品およびこれを備えてなる通信機器
WO2021117720A1 (ja) * 2019-12-10 2021-06-17 東ソー株式会社 耐衝撃性に優れる焼結体
CN114787103A (zh) * 2019-12-10 2022-07-22 东曹株式会社 耐冲击性优异的烧结体
WO2023163205A1 (ja) * 2022-02-28 2023-08-31 東ソー株式会社 焼結体、焼結体の製造方法、粉末、及び、仮焼体

Also Published As

Publication number Publication date
JPWO2014002498A1 (ja) 2016-05-30
KR102004575B1 (ko) 2019-07-26
US10696022B2 (en) 2020-06-30
JP6020564B2 (ja) 2016-11-02
EP2868642B1 (en) 2016-09-28
KR20150032675A (ko) 2015-03-27
US20150174863A1 (en) 2015-06-25
EP2868642A4 (en) 2016-03-09
CN104411657A (zh) 2015-03-11
EP2868642A1 (en) 2015-05-06
CN104411657B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6064567B2 (ja) 複合プレートおよびその製造方法
JP6020564B2 (ja) 複合プレートおよびその製造方法
US9919971B2 (en) Zirconia sintered body and use thereof
CN102123960A (zh) 用于电子设备的耐久性玻璃机壳/封罩
JP6237130B2 (ja) 複合プレートおよびその製造方法
US11220463B2 (en) Red zirconium-oxide sintered body, preparation method and use
CN104329988A (zh) 一种防弹陶瓷片及其制备方法
RU2735350C2 (ru) Прозрачный керамический материал в качестве компонента небьющихся оптических стекол
JP2015054801A (ja) ジルコニア焼結体並びにその用途
CN113347815B (zh) 壳体及其制备方法和电子设备
JP2023126191A (ja) 焼結体、焼結体の製造方法、粉末、及び、仮焼体
JP6252113B2 (ja) 複合プレート及びその製造方法
CN212160261U (zh) 一种镁铝尖晶石透明陶瓷和聚氨酯充填镜片
CN113929452B (zh) 氧化锆复合陶瓷及其制备方法、壳体组件和电子设备
CN111231438A (zh) 透明基板及其制备方法、电子设备
JP5895719B2 (ja) 透光性セラミックス接合体および製造方法
JP2010024107A (ja) 透光性セラミックス
CN111620685A (zh) 一种利用镁铝尖晶石透明陶瓷的防弹聚氨酯复合镜片
TW201602053A (zh) 多晶系透明陶瓷基板之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522434

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013809977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013809977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14408989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147036633

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE