WO2014002345A1 - 固体酸化物形燃料電池システム - Google Patents

固体酸化物形燃料電池システム Download PDF

Info

Publication number
WO2014002345A1
WO2014002345A1 PCT/JP2013/002561 JP2013002561W WO2014002345A1 WO 2014002345 A1 WO2014002345 A1 WO 2014002345A1 JP 2013002561 W JP2013002561 W JP 2013002561W WO 2014002345 A1 WO2014002345 A1 WO 2014002345A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensed water
fuel cell
gas
solid oxide
oxide fuel
Prior art date
Application number
PCT/JP2013/002561
Other languages
English (en)
French (fr)
Inventor
剛広 丸山
小林 晋
鵜飼 邦弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP13810600.0A priority Critical patent/EP2869379B1/en
Priority to JP2013533047A priority patent/JP5380633B1/ja
Priority to IN2077MUN2014 priority patent/IN2014MN02077A/en
Priority to US14/395,389 priority patent/US20150118589A1/en
Publication of WO2014002345A1 publication Critical patent/WO2014002345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04485Concentration; Density of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04813Concentration; Density of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell system. More specifically, the present invention relates to a solid oxide fuel cell system including a reformer that generates a hydrogen-containing gas using humidified air and a raw material.
  • Patent Document 1 discloses a fuel cell system including a condenser that condenses water vapor contained in an exhaust gas from an anode to generate liquid water (FIG. 3).
  • the fuel cell system can also be configured as a solid oxide fuel cell system (column 4: lines 52-56).
  • Patent Document 2 discloses that the partial oxidation air supplied to the partial oxidation reactor is brought to a dew point of 80 ° C. by contacting with humidification water heated using exhaust heat generated in the solid oxide fuel cell.
  • a solid oxide fuel cell system provided with an oxidizing air humidifying means for humidifying as described above (summary, FIG. 1).
  • the partial oxidation reactor generates a reducing gas containing hydrogen by subjecting the desulfurized fuel gas to a partial oxidation reaction under an oxidation catalyst (claim 1).
  • Humidification water is supplied from a water supply source, and water discharged from the humidifying means is stored in a hot water storage tank (FIG. 1).
  • the present invention addresses the above-described conventional problems, and provides a fuel cell system that can supply power more stably than before in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be high.
  • the purpose is to provide.
  • Another object of the present invention is to effectively use energy in a solid oxide fuel cell system that recovers moisture contained in gas discharged from the solid oxide fuel cell system and uses it for reforming raw materials. Meanwhile, it is to stabilize the supply of water for reforming.
  • One aspect of the solid oxide fuel cell system of the present invention is a solid oxide fuel cell including a reformer that generates a hydrogen-containing gas using a raw material and water, an anode, and a cathode.
  • a solid oxide fuel cell that generates power using the hydrogen-containing gas supplied from the reformer to the anode and air supplied to the cathode, an anode off-gas discharged from the anode, and
  • a radiator that radiates at least one of the combustion exhaust gas obtained by burning the anode off gas to generate condensed water, a condensed water circulation path that circulates the condensed water supplied from the radiator, and the condensation
  • a condensed water tank provided in the water circulation path for storing the condensed water; a condensed water pump provided in the condensed water circulation path for circulating the condensed water; and the condensed water.
  • a condensate-offgas heat exchanger provided in a ring path and performing heat exchange between the condensed water and offgas discharged
  • a solid oxide fuel cell system that recovers moisture contained in a gas discharged from a solid oxide fuel cell system and uses it for reforming a raw material, while making effective use of energy. There is an effect that the supply of water for reforming can be stabilized.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the second embodiment.
  • FIG. 3 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to a modification of the second embodiment.
  • FIG. 4 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the third embodiment.
  • FIG. 5 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the fourth embodiment.
  • FIG. 6 is a block diagram illustrating an example of a schematic configuration of a solid oxide fuel cell system according to a modification of the fourth embodiment.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according
  • FIG. 7 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the fifth embodiment.
  • FIG. 8 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the sixth embodiment.
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the seventh embodiment.
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the eighth embodiment.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the ninth embodiment.
  • the inventors of the present invention have earnestly tried to stabilize the supply of reforming water while effectively utilizing energy in a fuel cell system that recovers moisture contained in gas discharged from the fuel cell system and uses it for reforming raw materials. Study was carried out. As a result, the following knowledge was obtained.
  • the present inventors circulate the condensed water in the condensed water circulation path by the condensed water pump and also perform the heat exchange between the condensed water and the off-gas discharged from the solid oxide fuel cell.
  • the idea was to provide a heat exchanger and heat the condensed water by off-gas. In such a configuration, while the condensed water is heated, propagation of germs and the like can be reduced, and since the heating is performed by off-gas, the exhaust heat energy can be effectively used.
  • the inventors have developed a solid oxide that enables more stable power supply than before in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be as high as about 50 degrees Celsius.
  • intensive studies were conducted. As a result, the following knowledge was obtained.
  • the dew point of the anode off gas is as high as about 80 degrees Celsius, for example. Therefore, if the condensed water is recovered from the anode gas, a sufficient amount of condensed water can be recovered even if the temperature is as high as about 50 degrees Celsius.
  • the present inventors do not supply water to the reformer by evaporating water with the evaporator, but heat the condensed water with the off-gas of the fuel cell, circulate the obtained hot water, and use the hot water to circulate the air.
  • the supply amount of water vapor can be appropriately controlled through the temperature of condensed water, the amount of circulation, and the like. Therefore, in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be as high as about 50 degrees Celsius, power can be supplied more stably than in the past.
  • the raw material may be humidified.
  • a solid oxide fuel cell system is a solid oxide fuel cell including a reformer that generates a hydrogen-containing gas using a raw material and water, an anode, and a cathode. It is obtained by burning a solid oxide fuel cell that generates electricity using a hydrogen-containing gas supplied from a vessel to an anode and air supplied to a cathode, an anode off-gas discharged from the anode, and an anode off-gas A radiator that radiates at least one of the combustion exhaust gas to generate condensed water, a condensed water circulation path that circulates condensed water supplied from the radiator, and a condensation that is provided in the condensed water circulation path to store condensed water A water tank, a condensed water pump provided in the condensed water circulation path, and a condensed water pump for circulating the condensed water, and provided in the condensed water circulation path, are discharged from the condensed water and the solid oxide fuel cell.
  • Off-gas discharged from the solid oxide fuel cell includes cathode off-gas discharged from the cathode, anode off-gas discharged from the anode, and combustion gas obtained by burning the cathode off-gas and anode off-gas. included.
  • the oxidant gas for burning the anode off gas may be air or cathode off gas, for example.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the first embodiment.
  • the solid oxide fuel cell system 90 of this embodiment includes a reformer 10, a solid oxide fuel cell 12, a radiator 17, a condensed water circulation path 20, and a condensed water tank. 22, a condensate water pump 24, a condensate-off gas heat exchanger 26, and a reforming water pump 27.
  • the reformer 10 generates a hydrogen-containing gas using raw materials and water.
  • the condensed water is supplied to the reformer 10 via the reforming water path 61 by the reforming water pump 27.
  • the raw material is supplied to the reformer 10 via the raw material path 60.
  • the reformer 10 supplies a hydrogen-containing gas to the anode 14 via the anode gas path.
  • the condensed water may be supplied to the reformer 10 by using the condensed water to humidify the gas (raw material, air, etc.) supplied to the reformer 10.
  • the raw material can be, for example, a gas containing an organic compound composed of at least carbon and hydrogen, such as LPG gas, propane gas, butane gas, and city gas mainly composed of methane, kerosene, alcohol, and the like.
  • a gas containing an organic compound composed of at least carbon and hydrogen such as LPG gas, propane gas, butane gas, and city gas mainly composed of methane, kerosene, alcohol, and the like.
  • a steam reforming reaction may be performed using raw materials and steam.
  • an oxidative steam reforming reaction may be performed by using hydrocarbons contained in the raw material and water and oxygen contained in the humidified air.
  • the reforming reaction proceeds more easily in terms of heat balance, and the reformer 10 can be downsized than when steam reforming is used. Further, even if a sulfur compound is contained in the raw material, it is easily converted to SO 2 and the catalyst in the stack is hardly poisoned.
  • the reformer 10 is configured, for example, by filling a reforming catalyst in a container.
  • a reforming catalyst for example, an alumina carrier impregnated with at least one of platinum and rhodium can be used.
  • the reforming catalyst is not particularly limited, and for example, various catalysts capable of proceeding with at least one of a steam reforming reaction and an oxidative steam reforming reaction can be used.
  • the solid oxide fuel cell 12 is a solid oxide fuel cell including an anode 14 and a cathode 16, and includes a hydrogen-containing gas supplied from the reformer 10 to the anode 14 and air supplied to the cathode 16. To generate electricity.
  • air is supplied to the cathode 16 via the cathode gas path 68.
  • the cathode gas path 68 may include an air supply device (not shown).
  • the solid oxide fuel cell 12 is configured, for example, by connecting in series a plurality of fuel cell single cells that generate power by performing a power generation reaction between the anode 14 and the cathode 16.
  • a well-known configuration using yttria-stabilized zirconia (YSZ) as an electrolyte can be adopted.
  • YSZ yttria-stabilized zirconia
  • zirconia doped with yttrium or scandium, or a lanthanum gallate solid electrolyte In a fuel cell unit cell using yttria-stabilized zirconia, for example, a power generation reaction is performed in a temperature range of about 600 degrees Celsius to 1000 degrees Celsius, depending on the thickness of the electrolyte.
  • the electric power obtained by the power generation of the solid oxide fuel cell 12 is supplied to an external load via a terminal (not shown).
  • a terminal not shown
  • a device constituting a mobile phone base station can be used.
  • the heat radiator 17 radiates the anode off gas discharged from the anode 14 to generate condensed water.
  • the heat radiator 17 is provided in an anode off-gas path 64 connected to the anode 14.
  • the dew point of the anode off gas is generally as high as about 80 degrees Celsius, and a sufficient amount of condensed water can be obtained by cooling to about 50 degrees Celsius. Therefore, the radiator 17 is configured so that, for example, the entire amount of water for generating the required amount of hydrogen-containing gas can be covered with condensed water even when the temperature is high and the infrastructure for supplying clean water is insufficient. May be. That is, the solid oxide fuel cell system 90 can be configured as an oxidative steam reforming reaction type solid oxide fuel cell system capable of water independence even in a high temperature region.
  • water self-sustainable means that the operation of the solid oxide fuel cell system can be continued with water obtained from raw materials or the like without depending on the external water supply.
  • the heat radiator 17 may generate condensed water by dissipating combustion exhaust gas obtained by burning the anode off-gas discharged from the anode 14.
  • the radiator 17 is provided in the combustion exhaust gas path.
  • the dew point of combustion exhaust gas is generally as high as about 70 degrees Celsius, and a sufficient amount of condensed water can be obtained by cooling to about 50 degrees Celsius.
  • the radiator 17 may have any configuration as long as it can cool at least one of the anode off-gas and the combustion exhaust gas.
  • the cooling method may be a system in which the gas is directly cooled in the atmosphere, or a system in which the gas is heat-exchanged with a refrigerant such as a circulating antifreeze and the refrigerant is cooled in the atmosphere with a radiator or the like.
  • a shell and tube heat exchanger can be used as the radiator 17, for example.
  • the condensed water circulation path 20 circulates the condensed water supplied from the radiator 17.
  • the condensate circulation path 20 is constituted by piping or the like, and when the condensate water tank 22 is the starting point, the condensate pump 24 and the condensate-off gas heat exchanger 26 are connected in this order, and the end point Is connected to the condensed water tank 22.
  • the order of connection of the condensed water tank 22, the condensed water pump 24, and the condensed water-off gas heat exchanger 26 is not limited to the above.
  • the condensed water tank 22 is provided in the condensed water circulation path 20, and stores condensed water.
  • a condensed water supply path 66 branched from the anode offgas path 64 on the downstream side of the radiator 17 is connected to the condensed water tank 22.
  • the condensed water generated by the radiator 17 is supplied to the condensed water tank 22 through the condensed water supply path 66.
  • the condensed water supply path 66 may be connected to another part of the condensed water circulation path 20.
  • the condensate water tank 22 may include a water supply mechanism that supplies clean water from the clean water infrastructure outside the solid oxide fuel cell system 90 to the condensate water tank 22 at startup.
  • the condensed water tank 22 may include a water drain mechanism that discharges water from the condensed water tank 22 to the outside of the solid oxide fuel cell system 90 when not in use.
  • the condensed water pump 24 is provided in the condensed water circulation path 20 and circulates condensed water.
  • the condensed water stored in the condensed water tank 22 circulates in the condensed water circulation path 20. That is, the condensed water taken out from the condensed water tank 22 is circulated so as to return to the condensed water tank 22 through the condensed water-off gas heat exchanger 26 and the humidifier 28 in this order. Since the off-gas discharged from the solid oxide fuel cell is sufficiently hot, it can be used to heat sterilize the condensed water.
  • the condensed water By circulating the condensed water using the condensed water pump 24, for example, the condensed water is periodically sterilized by heating in the condensed water-offgas heat exchanger 26, and the growth of germs is suppressed. Therefore, the possibility of clogging of the condensed water circulation path 20 and the reforming water pump 27 and the like, failure of a water level meter provided in the condensed water tank 22 (for example, sticking of float), and the like are reduced.
  • the condensed water pump 24 for example, a plunger pump, a magnet pump, or the like can be used.
  • the minimum discharge amount of the condensed water pump 24 may be a predetermined value of 50 g / min or more.
  • the minimum discharge amount of the condensed water pump 24 may be a predetermined value of 100 g / min or more.
  • the maximum discharge amount of the condensed water pump 24 may be a predetermined value of 1000 g / min or less.
  • the minimum discharge amount of the condensate pump 24 may be 100 g / min
  • the maximum discharge amount of the condensate pump 24 may be 800 g / min.
  • the condensed water-offgas heat exchanger 26 is provided in the condensed water circulation path 20 and performs heat exchange between the condensed water and the offgas discharged from the solid oxide fuel cell 12. Since the temperature of the off gas discharged from the solid oxide fuel cell 12 is high, the condensed water can be efficiently heated to such an extent that the off gas can be sterilized.
  • the off gas is a cathode off gas discharged from the cathode 16 and the condensed water-off gas heat exchanger 26 is provided in the cathode off gas path 70 connected to the cathode 16.
  • the condensed water-off gas heat exchanger 26 for example, a plate type heat exchanger, a double pipe type heat exchanger, or the like can be used.
  • an ion exchange device may be provided in the condensed water circulation path 20.
  • an ion exchange device ion exchange resin
  • the reforming water pump 27 is provided in the reforming water path 61 and supplies condensed water to the reformer 10.
  • the reforming water pump 27 is connected to the condensed water tank 22 via the reforming water path 61, but the reforming water pump 27 is connected to the condensed water circulation path via the reforming water path 61. 20 may be connected.
  • the reforming water pump 27 is connected to the raw material path 60 via the reforming water path 61, but the reforming water pump 27 is connected to the reformer 10 via the reforming water path 61. And may be connected.
  • the maximum discharge amount of the reforming water pump 27 may be a predetermined value of 30 g / min or less.
  • the maximum discharge amount of the reforming water pump 27 may be a predetermined value of 10 g / min or less.
  • the maximum discharge amount of the reforming water pump 27 may be a predetermined value of 5 g / min or less.
  • the minimum discharge amount of the reforming water pump 27 may be 0 g / min, and the maximum discharge amount of the reforming water pump 27 may be 30 g / min.
  • the maximum discharge amount of the reforming water pump 27 may be 1 g / min or more, or 5 g / min or more.
  • the condensed water is circulated using the condensed water pump 24, so that, for example, the condensed water is periodically sterilized by heating in the condensed water-off gas heat exchanger 26, and the growth of germs is suppressed. . Therefore, clogging or the like is less likely to occur even in the reformed water pump 27 having a small capacity.
  • the means for supplying condensed water to the reformer 10 is not limited to the reforming water pump 27, and other condensed water supply devices may be used.
  • the condensate supply device any device that supplies condensate to the reformer 10 may be used.
  • the condensed water supply device may be, for example, a reformed water path configured such that condensed water is automatically supplied to the reformer by the action of gravity.
  • a cathode air heat exchanger is provided that exchanges heat between the air flowing through the cathode gas path 68 and the cathode offgas flowing through the cathode offgas path 70. May be.
  • the air before being supplied to the cathode is heated to a predetermined temperature (for example, 700 degrees Celsius) by the cathode off gas.
  • the solid oxide fuel cell system according to the second embodiment is the solid oxide fuel cell system according to the first embodiment, and the reformer generates the hydrogen-containing gas using the humidified air and the raw material.
  • a heat radiator radiates the anode off-gas discharged from the anode to generate condensed water, and is further provided in the condensed water circulation path to humidify the air using the condensed water.
  • a solid oxide fuel cell system is a solid oxide fuel cell including a reformer that generates a hydrogen-containing gas using humidified air and a raw material, and an anode and a cathode.
  • a solid oxide fuel cell that generates electricity using hydrogen-containing gas supplied from the reformer to the anode and air supplied to the cathode, and heat generated from the anode off-gas discharged from the anode to generate condensed water
  • a condensate pump that circulates water and a condensate that is provided in the condensate circulation path to exchange heat between the condensed water and off-gas discharged from the solid oxide fuel cell.
  • the off-gas heat exchanger disposed in the condensed water circulation path, and a, a humidifier for generating the humidified air supplied to the reformer by humidifying the air with condensed water.
  • Such a configuration can supply power more stably than before in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be as high as about 50 degrees Celsius.
  • Off-gas discharged from the solid oxide fuel cell includes cathode off-gas discharged from the cathode, anode off-gas discharged from the anode, and combustion gas obtained by burning the cathode off-gas and anode off-gas. included.
  • the off-gas used for heat exchange in the condensed water-off-gas heat exchanger may be a cathode off-gas discharged from the cathode.
  • the condensed water can be heated using the cathode off-gas.
  • the minimum discharge amount of the condensed water pump may be 50 g / min or more.
  • the minimum discharge amount of the condensed water pump may be 100 g / min or more.
  • the maximum discharge amount of the condensed water pump may be, for example, 1000 g / min or less.
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the second embodiment.
  • the solid oxide fuel cell system 100 of the present embodiment includes a reformer 10, a solid oxide fuel cell 12, an anode offgas radiator 18, a condensed water circulation path 20, a condensation A water tank 22, a condensed water pump 24, a condensed water-off gas heat exchanger 26, and a humidifier 28 are provided.
  • the reformer 10 generates hydrogen-containing gas using humidified air and raw materials.
  • the humidified air is supplied from the humidifier 28 to the reformer 10.
  • the raw material is supplied to the reformer 10 via the raw material path 60.
  • the reformer 10 supplies a hydrogen-containing gas to the anode 14 via the anode gas path.
  • the raw material may be humidified.
  • the raw material can be, for example, a gas containing an organic compound composed of at least carbon and hydrogen, such as LPG gas, propane gas, butane gas, and city gas mainly composed of methane, kerosene, alcohol, and the like.
  • a gas containing an organic compound composed of at least carbon and hydrogen such as LPG gas, propane gas, butane gas, and city gas mainly composed of methane, kerosene, alcohol, and the like.
  • liquid raw materials such as kerosene and alcohol
  • they may be heated and vaporized before being supplied to the reformer 10.
  • an oxidative steam reforming reaction may be performed by using hydrocarbons contained in the raw material and water and oxygen contained in the humidified air.
  • the reforming reaction proceeds more easily in terms of heat balance, and the reformer 10 can be downsized than when steam reforming is used. Further, even if a sulfur compound is contained in the raw material, it is easily converted to SO 2 and the catalyst in the stack is hardly poisoned.
  • the reformer 10 is configured, for example, by filling a reforming catalyst in a container.
  • a reforming catalyst for example, an alumina carrier impregnated with platinum can be used.
  • the reforming catalyst is not particularly limited, and for example, various catalysts that can advance the oxidative steam reforming reaction can be used.
  • the solid oxide fuel cell 12 is a solid oxide fuel cell including an anode 14 and a cathode 16, and includes a hydrogen-containing gas supplied from the reformer 10 to the anode 14 and air supplied to the cathode 16. To generate electricity.
  • air is supplied to the cathode 16 via the cathode gas path 68.
  • the cathode gas path 68 may include an air supply device (not shown).
  • the solid oxide fuel cell 12 is configured, for example, by connecting in series a plurality of fuel cell single cells that generate power by performing a power generation reaction between the anode 14 and the cathode 16.
  • a well-known configuration using yttria-stabilized zirconia (YSZ) as an electrolyte can be adopted.
  • YSZ yttria-stabilized zirconia
  • zirconia doped with yttrium or scandium, or a lanthanum gallate solid electrolyte In a fuel cell unit cell using yttria-stabilized zirconia, for example, a power generation reaction is performed in a temperature range of about 600 degrees Celsius to 1000 degrees Celsius, depending on the thickness of the electrolyte.
  • the electric power obtained by the power generation of the solid oxide fuel cell 12 is supplied to an external load via a terminal (not shown).
  • a terminal not shown
  • a device constituting a mobile phone base station can be used.
  • the anode off-gas radiator 18 radiates the anode off-gas discharged from the anode 14 to generate condensed water.
  • the anode offgas radiator 18 is provided in an anode offgas path 64 connected to the anode 14.
  • the dew point of the anode off gas is generally as high as about 80 degrees Celsius, and a sufficient amount of condensed water can be obtained by cooling to about 50 degrees Celsius. Therefore, the anode off-gas radiator 18 is configured so that, for example, even if the temperature is high and the infrastructure for supplying clean water is insufficient, the total amount of water for generating the required amount of hydrogen-containing gas can be covered with condensed water. It may be configured. That is, the solid oxide fuel cell system 100 can be configured as an oxidative steam reforming reaction type solid oxide fuel cell system capable of water independence even in a high temperature region.
  • water self-sustainable means that the operation of the solid oxide fuel cell system can be continued with water obtained from raw materials or the like without depending on the external water supply.
  • the anode offgas radiator 18 may have any configuration as long as it can cool the anode offgas.
  • the cooling method may be a method in which the anode off gas is directly cooled in the atmosphere, or a method in which the anode off gas is heat exchanged with a refrigerant such as a circulating antifreeze and the refrigerant is cooled in the atmosphere with a radiator or the like.
  • a refrigerant such as a circulating antifreeze
  • the refrigerant is cooled in the atmosphere with a radiator or the like.
  • a shell and tube heat exchanger can be used as the anode off-gas radiator 18.
  • the condensed water circulation path 20 circulates the condensed water supplied from the anode off-gas radiator 18.
  • the condensate circulation path 20 is constituted by piping or the like.
  • the condensate water tank 22 is a starting point, the condensate water pump 24, the condensate-off gas heat exchanger 26, and the humidifier 28 are connected to this.
  • the end points are connected to the condensed water tank 22 in order.
  • the order of connection of the condensed water tank 22, the condensed water pump 24, the condensed water-off gas heat exchanger 26, and the humidifier 28 is not limited to the above.
  • the condensed water tank 22 is provided in the condensed water circulation path 20, and stores condensed water.
  • a condensed water supply path 66 branched from an anode offgas path 64 on the downstream side of the anode offgas radiator 18 is connected to the condensed water tank 22.
  • the condensed water generated by the anode off-gas radiator 18 is supplied to the condensed water tank 22 through the condensed water supply path 66.
  • the condensed water supply path 66 may be connected to another part of the condensed water circulation path 20.
  • the condensate water tank 22 may include a water supply mechanism that supplies clean water from the clean water infrastructure outside the solid oxide fuel cell system 100 to the condensate water tank 22 at startup.
  • the condensed water tank 22 may include a water drain mechanism that discharges water from the condensed water tank 22 to the outside of the solid oxide fuel cell system 100 when not in use.
  • the condensed water pump 24 is provided in the condensed water circulation path 20 and circulates condensed water.
  • the condensed water stored in the condensed water tank 22 circulates in the condensed water circulation path 20. That is, the condensed water taken out from the condensed water tank 22 is circulated so as to return to the condensed water tank 22 through the condensed water-off gas heat exchanger 26 and the humidifier 28 in this order.
  • the condensed water is periodically sterilized by heating in the condensed water-off gas heat exchanger 26, the growth of various bacteria is suppressed, and the condensed water circulation path 20 is clogged. The possibility of the occurrence of etc. is reduced.
  • the condensed water pump 24 for example, a plunger pump, a magnet pump, or the like can be used.
  • the minimum discharge amount of the condensed water pump 24 may be a predetermined value of 50 g / min or more.
  • the minimum discharge amount of the condensed water pump 24 may be a predetermined value of 100 g / min or more.
  • the maximum discharge amount of the condensed water pump 24 may be a predetermined value of 1000 g / min or less.
  • the minimum discharge amount of the condensate pump 24 may be 100 g / min
  • the maximum discharge amount of the condensate pump 24 may be 800 g / min.
  • the condensed water-offgas heat exchanger 26 is provided in the condensed water circulation path 20 and performs heat exchange between the condensed water and the offgas discharged from the solid oxide fuel cell 12.
  • the off gas is a cathode off gas discharged from the cathode 16
  • the condensed water-off gas heat exchanger 26 is provided in the cathode off gas path 70 connected to the cathode 16.
  • condensate-off gas heat exchanger 26 for example, a plate heat exchanger, a double tube heat exchanger, or the like can be used.
  • an ion exchange device may be provided in the condensed water circulation path 20.
  • an ion exchange device ion exchange resin
  • the humidifier 28 is provided in the condensed water circulation path 20 and generates humidified air supplied to the reformer 10 by humidifying the air using the condensed water. Air is supplied to the humidifier 28 via the air path 62.
  • the air path 62 may be provided with an air supply such as a blower.
  • the humidified air is added to the raw material flowing through the raw material path 60, but may be directly supplied to the reformer 10.
  • a hollow fiber humidifier, a bubbler humidifier, or the like can be used as the humidifier 28, for example, a hollow fiber humidifier, a bubbler humidifier, or the like can be used.
  • the operating temperature of the humidifier 28 can be, for example, a predetermined temperature less than 100 degrees Celsius (for example, 60 degrees Celsius).
  • the humidifier 28 may not only humidify the air but also humidify the raw material using condensed water.
  • both the air path 62 and the raw material path 60 may be connected to the humidifier 28.
  • a plurality of humidifiers may be provided to humidify each of the air and the raw material using condensed water.
  • a cathode air heat exchanger is provided that exchanges heat between the air flowing through the cathode gas path 68 and the cathode offgas flowing through the cathode offgas path 70. May be.
  • the air before being supplied to the cathode is heated to a predetermined temperature (for example, 700 degrees Celsius) by the cathode off gas.
  • reaction formula of the oxidative steam reforming reaction is as follows, assuming that the conversion rate of hydrocarbon is 100%.
  • a, b, c, and d vary depending on the composition of the hydrogen-containing gas, the characteristics of the reformer, the reforming temperature, and the like.
  • O in O / C does not include oxygen atoms derived from water (H 2 O), but includes only oxygen atoms derived from oxygen (O 2 ).
  • the temperature of the condensed water stored in the condensed water tank 22 is about 60 degrees Celsius.
  • the condensed water pump 24 sends the condensed water to the condensed water-off gas heat exchanger 26 at a flow rate of 500 g / min.
  • the condensed water-off gas heat exchanger 26 the condensed water is heated by about 900 W by the cathode off gas discharged from the cathode air heat exchanger, and becomes about 85 degrees Celsius.
  • the heated condensed water is supplied to the humidifier 28.
  • the humidifier 28 7.7 g / min of water is supplied to the air to humidify the air.
  • the humidified air is mixed with fuel gas and supplied to the reformer 10.
  • the condensed water discharged from the humidifier 28 is cooled by a pipe, a radiator, and the like, and stored in the condensed water tank 22 as hot water of about 60 degrees Celsius.
  • the reformer 10 proceeds with an oxidative steam reforming reaction using humidified air and raw materials to generate a hydrogen-containing gas.
  • the solid oxide fuel cell system according to the present modification is the solid oxide fuel cell system according to the second embodiment, and off-gas used for heat exchange in the condensed water-off-gas heat exchanger is discharged from the anode. It is a solid oxide fuel cell system which is an anode off gas.
  • Such a configuration can supply power more stably than before in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be as high as about 50 degrees Celsius. Further, the condensed water can be heated using the anode off gas.
  • FIG. 3 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to a modification of the second embodiment.
  • the solid oxide fuel cell system 100A of this modification is different from the solid oxide fuel cell system 100 of the second embodiment in that the off gas that exchanges heat with condensed water is the anode off gas discharged from the anode 14. Is different.
  • the condensed water-offgas heat exchanger 26 is provided in the condensed water circulation path 20 and performs heat exchange between the condensed water and the offgas discharged from the solid oxide fuel cell 12.
  • the condensed water-offgas heat exchanger 26 is provided in an anode offgas path 64 connected to the anode 14.
  • a plate type heat exchanger, a double pipe type heat exchanger, or the like can be used as the condensed water-off gas heat exchanger 26.
  • the device configuration and operation of the solid oxide fuel cell system 100A of the present modification can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and 3 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 100A is omitted.
  • power can be supplied more stably than before in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be as high as about 50 degrees Celsius. Further, the condensed water can be heated using the anode off gas.
  • the second embodiment and this modification may be combined. That is, both heat exchange between the condensed water and the anode off gas and heat exchange between the condensed water and the cathode off gas may be performed.
  • the solid oxide fuel cell system according to the third embodiment is the solid oxide fuel cell system according to the second embodiment or the modification thereof, and further, in the condensed water circulation path, downstream of the humidifier and in the condensed water tank.
  • a condensate heat radiator is provided upstream to dissipate the condensed water.
  • the possibility that the condensed water is re-evaporated in the condensed water tank and the water vapor flows backward can be reduced.
  • the air can be humidified more effectively by increasing the temperature of the humidifier.
  • FIG. 4 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the third embodiment.
  • the solid oxide fuel cell system 200 of the third embodiment includes a condensed water radiator 30.
  • the condensed water radiator 30 is provided downstream of the humidifier 28 and upstream of the condensed water tank 22 in the condensed water circulation path 20, and dissipates the condensed water.
  • the heat dissipation method may be, for example, a method in which condensed water is cooled in the atmosphere with a radiator or the like.
  • a fin-and-tube heat exchanger or the like can be used as the condensed water radiator 30, for example.
  • the apparatus configuration and operation of the solid oxide fuel cell system 200 of the third embodiment can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and 4 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 200 is omitted.
  • the condensed water discharged from the humidifier 28 is cooled by the condensed water radiator 30 and supplied to the condensed water tank 22.
  • the temperature difference between the humidifier 28 and the condensed water tank 22 can be increased. Therefore, for example, the possibility that the condensed water is re-evaporated in the condensed water tank 22 and the water vapor flows backward toward the cathode off-gas path 70 can be reduced.
  • the temperature of the humidifier 28 can be increased to humidify the air more effectively.
  • the solid oxide fuel cell system according to the fourth embodiment is the solid oxide fuel cell system according to the second embodiment, the modification thereof, or the third embodiment, and is not humidified by bypassing the humidifier.
  • Such a configuration can shorten the startup time.
  • Switching between supplying air to the reformer via a humidifier or supplying air to the reformer via the bypass air path means that the reformer is connected via the humidifier. Not only is the ON / OFF switching between supplying all of the air or supplying all of the air to the reformer via the bypass air path, but also supplying air to the reformer via the humidifier. It also includes changing the ratio between the flow rate to be supplied and the flow rate to supply air to the reformer via the bypass air path.
  • FIG. 5 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the fourth embodiment.
  • the solid oxide fuel cell system 300 of the fourth embodiment includes a bypass air path 72 and a first switch 33.
  • the bypass air path 72 supplies air that is not humidified by bypassing the humidifier 28 to the reformer.
  • the bypass air path 72 branches from the air path 62 on the upstream side of the humidifier 28 and joins the air path 62 on the downstream side of the humidifier 28 without passing through the humidifier 28. It is configured.
  • the first switch 33 switches between supplying air to the reformer via the humidifier 28 or supplying air to the reformer via the bypass air path 72.
  • the first switch 33 includes a first on-off valve 32 and a second on-off valve 34.
  • the bypass air path 72 branches from a branch portion provided in the air path 62.
  • the first on-off valve 32 is provided in a path from the branch portion to the humidifier 28.
  • the second on-off valve 34 is provided in the bypass air path 72.
  • the first switch 33 opens the first on-off valve 32 and closes the second on-off valve 34, for example, during normal operation, so that the reformer does not go through the bypass air path 72 but goes through the humidifier 28. Air is supplied to the vessel 10.
  • the first switch 33 closes the first on-off valve 32 and opens the second on-off valve 34 at the time of startup, for example, so that the reformer does not pass through the humidifier 28 but passes through the bypass air path 72. 10 is supplied with air.
  • the first on-off valve 32 and the second on-off valve 34 may be not only on-off valves that are selected to be fully open and fully closed, but also flow rate adjusting valves that can continuously adjust the opening, for example.
  • the first switch 33 is not necessarily provided with the first on-off valve 32 and the second on-off valve 34, and may be constituted by a three-way valve, for example.
  • the first switch 33 can be controlled by a controller, for example. Since the configuration of the controller in this case can be the same as that of the modification of the present embodiment, detailed description thereof is omitted.
  • the device configuration and operation of the solid oxide fuel cell system 300 of the fourth embodiment can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and 5 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 300 is omitted.
  • the reformer 10 When starting up, it is necessary to raise the temperature of the reformer 10, the solid oxide fuel cell 12, and the like. If the reformer 10 can proceed with a partial oxidation reforming reaction (Partial Oxidation Reforming) having a larger calorific value than the oxidative steam reforming reaction at the time of startup, the startup time can be shortened.
  • a partial oxidation reforming reaction Partial Oxidation Reforming
  • air that has not been humidified is supplied to the reformer 10 by supplying air to the reformer 10 via the bypass air path 72 by the first switch 33 during startup. Therefore, the partial oxidation reforming reaction is allowed to proceed in the reformer 10 at the time of startup, so that the heat generation amount can be increased and the startup time can be shortened.
  • the first switch 33 supplies air to the reformer 10 via the humidifier 28.
  • the humidified air is supplied to the reformer 10.
  • the solid oxide fuel cell system according to the modification of the fourth embodiment is the solid oxide fuel cell system according to the second embodiment, the modification thereof, the third embodiment, or the fourth embodiment, and It has a controller that stops the condensate pump at startup.
  • Such a configuration can shorten the startup time.
  • FIG. 6 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to a modification of the fourth embodiment.
  • the solid oxide fuel cell system 300 ⁇ / b> A includes a controller 36.
  • the controller 36 stops the condensed water pump 24 at the time of activation.
  • the controller 36 may be communicably connected to the condensed water pump 24.
  • the controller 36 only needs to have a control function, and includes an arithmetic processing unit (not shown) and a storage unit (not shown) for storing a control program. Examples of the arithmetic processing unit include an MPU and a CPU. An example of the storage unit is a memory.
  • the controller may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other.
  • the apparatus configuration and operation of the solid oxide fuel cell system 300A according to the modification of the fourth embodiment may be the same as those of the solid oxide fuel cell system 100 of the second embodiment. It can. 2 and 6 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 300A is omitted.
  • the reformer 10 advances the partial oxidation reforming reaction having a calorific value larger than that of the oxidative steam reforming reaction to shorten the start-up time. It is.
  • the controller 36 stops the operation of the condensed water pump 24 at the time of activation. When the pump stops, heating of the condensed water in the condensed water-off gas heat exchanger 26 does not proceed, and the temperature of the condensed water in the condensed water circulation path 20 becomes lower than when the pump operates. Therefore, humidification of the air in the humidifier 28 is difficult to proceed, and air that has not been humidified is supplied to the reformer 10. Therefore, the partial oxidation reforming reaction is allowed to proceed in the reformer 10 at the time of startup, so that the heat generation amount can be increased and the startup time can be shortened.
  • the controller 36 starts the operation of the condensed water pump 24, and the humidified air is reformed. Supplied to the vessel 10.
  • the oxidative steam reforming reaction proceeds in the reformer during the power generation operation, and the hydrogen-containing gas can be efficiently generated.
  • This modification can also be applied to the third embodiment and the fourth embodiment.
  • the solid oxide fuel cell system according to the fifth embodiment is the solid oxide fuel cell system according to the second embodiment, the modified example thereof, the third embodiment, the fourth embodiment, or a modified example thereof, and an anode off gas.
  • the offgas used for heat exchange in the condensate-offgas heat exchanger is the combustion gas discharged from the combustor.
  • the dew point of the air discharged from the humidifier can be increased.
  • FIG. 7 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the fifth embodiment.
  • the solid oxide fuel cell system 400 includes a combustor 38.
  • the combustor 38 burns anode off-gas and cathode off-gas to generate combustion gas.
  • the combustor 38 has an upstream side connected to a cathode offgas path 70 and an anode offgas path 64, and a downstream side connected to a combustion gas path 76.
  • the combustor 38 may be constituted by a burner, for example.
  • the combustor 38 mixes and burns the anode off gas supplied from the anode 14 via the anode off gas path 64 and the cathode off gas supplied from the cathode 16 via the cathode off gas path 70.
  • Combustion gas generated by the combustion is discharged to the outside of the solid oxide fuel cell system 400 via the combustion gas path 76.
  • the combustion gas is an example of off-gas discharged from the solid oxide fuel cell 12.
  • the condensed water / off-gas heat exchanger 26 is provided in the combustion gas path 76.
  • the condensed water / off-gas heat exchanger 26 exchanges heat between the combustion gas discharged from the combustor 38 and the condensed water.
  • the device configuration and operation of the solid oxide fuel cell system 400 of the fifth embodiment can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and FIG. 7 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 400 is omitted.
  • the anode off-gas and the cathode off-gas are combusted in the combustor 38. Therefore, the temperature of the off-gas (combustion gas) supplied to the condensed water-off-gas heat exchanger 26 can be increased. it can.
  • the amount of heat exchange in the condensed water-off gas heat exchanger 26 can be increased, and the temperature of the condensed water discharged from the condensed water-off gas heat exchanger 26 can be increased. Therefore, the heat exchanger can be reduced while realizing a desired heat exchange amount, or the dew point of the air discharged from the humidifier 28 can be increased.
  • both heat exchange between the condensed water and the cathode off gas and heat exchange between the condensed water and the combustion gas may be performed.
  • Both heat exchange between the condensed water and the anode off gas and heat exchange between the condensed water and the combustion gas may be performed. All of the heat exchange between the condensed water and the cathode off gas, the heat exchange between the condensed water and the anode off gas, and the heat exchange between the condensed water and the combustion gas may be performed.
  • the solid oxide fuel cell system according to the sixth embodiment is the solid oxide fuel cell system according to the second embodiment, the modification thereof, the third embodiment, the fourth embodiment, the modification thereof, or the fifth embodiment.
  • the anode off-gas radiator is configured to dissipate the anode off-gas by exchanging heat between the liquid refrigerant and the anode off-gas, and further, a stored water amount detector for detecting the amount of water stored in the condensed water tank, and the refrigerant
  • a refrigerant circulation path that circulates the refrigerant, a refrigerant pump that is provided in the refrigerant circulation path, a refrigerant radiator that is provided in the refrigerant circulation path and radiates the refrigerant by exchanging heat between the refrigerant and the atmosphere, and water storage
  • a controller for adjusting the discharge amount of the refrigerant pump based on the detection result of the amount detector.
  • the amount of condensed water produced can be appropriately controlled according to the amount of water stored in the condensed water tank.
  • FIG. 8 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the sixth embodiment.
  • the solid oxide fuel cell system 500 of the sixth embodiment includes a water storage amount detector 40, a refrigerant circulation path 78, a refrigerant pump 42, a refrigerant radiator 44, and a controller 36. And.
  • the anode offgas radiator 18 is configured to dissipate the anode offgas by exchanging heat between the liquid refrigerant and the anode offgas.
  • the water storage detector 40 detects the amount of water stored in the condensed water tank.
  • the water storage amount detector 40 can be constituted by, for example, a water level sensor or the like.
  • the refrigerant circulation path 78 circulates the refrigerant.
  • the refrigerant circulation path 78 is configured by piping or the like.
  • the refrigerant pump 42 is provided downstream of the refrigerant radiator 44 and upstream of the anode offgas radiator 18, but the refrigerant pump 42 is downstream of the anode offgas radiator 18 and refrigerant heat dissipation. It may be provided upstream of the vessel 44.
  • water and antifreeze can be used as the refrigerant.
  • the refrigerant pump 42 is provided in the refrigerant circulation path 78 and circulates the refrigerant.
  • the refrigerant pump 42 operates, the refrigerant circulates through the refrigerant circulation path 78. That is, the refrigerant sent from the refrigerant pump 42 circulates through the anode off-gas radiator 18 and the refrigerant radiator 44 in this order and returns to the refrigerant pump 42.
  • refrigerant pump 42 for example, a plunger pump, a magnet pump, or the like can be used.
  • the refrigerant radiator 44 is provided in the refrigerant circulation path 78 and radiates heat by exchanging heat between the refrigerant and the atmosphere.
  • the heat dissipation method may be, for example, a method in which the refrigerant is cooled in the air with a radiator or the like.
  • a fin-and-tube heat exchanger or the like can be used as the refrigerant radiator 44.
  • the controller 36 adjusts the discharge amount of the refrigerant pump 42 based on the detection result of the water storage amount detector 40.
  • the controller 36 may be communicably connected to the water storage amount detector 40 and the refrigerant pump 42.
  • the configuration of the controller 36 can be the same as that of the modified example of the fourth embodiment except for the above points, and thus detailed description thereof is omitted.
  • the apparatus configuration and operation of the solid oxide fuel cell system 500 according to the modification of the sixth embodiment may be the same as those of the solid oxide fuel cell system 100 of the second embodiment. It can. 2 and FIG. 8 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 500 is omitted.
  • the controller 36 adjusts the discharge amount of the refrigerant pump 42 based on the detection result of the water storage amount detector 40.
  • the amount of condensed water generated can be appropriately controlled according to the amount of water stored in the condensed water tank 22.
  • the discharge amount of the refrigerant pump 42 is increased to increase the heat exchange amount in the anode off-gas radiator 18.
  • the cooling amount of the anode off gas increases, and the amount of condensed water generated can be increased.
  • the discharge amount of the refrigerant pump 42 is reduced to reduce the heat exchange amount in the anode off-gas radiator 18.
  • the cooling amount of the anode off gas is reduced, and the amount of condensed water generated can be reduced.
  • the amount of condensed water generated can be appropriately controlled according to the amount of water stored in the condensed water tank 22.
  • the solid oxide fuel cell system according to the seventh embodiment is the same as that of the second embodiment, the modification thereof, the third embodiment, the fourth embodiment, the modification thereof, the fifth embodiment, or the sixth embodiment.
  • the condensate circulation path includes a heat exchanger bypass path that bypasses the condensate-off gas heat exchanger and circulates the condensate, and whether the condensate circulates through the condensate-off gas heat exchanger. And a second switch for switching between circulating through the heat exchanger bypass path.
  • Switch between condensate water circulating through condensate-off gas heat exchanger or heat exchanger bypass path means that all condensed water circulates through condensate-off gas heat exchanger or condenses Not only when all of the water circulates through the heat exchanger bypass path is switched ON-OFF, but also the flow rate of the condensed water circulates through the condensed water-off gas heat exchanger, and the condensed water flows through the heat exchanger bypass path. It also includes changing the ratio with the circulating flow rate.
  • the dew point of the air discharged from the humidifier can be easily adjusted.
  • FIG. 9 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the seventh embodiment.
  • the condensed water circulation path 20 includes a heat exchanger bypass path 80 and a second switch 47.
  • the heat exchanger bypass path 80 bypasses the condensed water-off gas heat exchanger 26 and circulates the condensed water.
  • the heat exchanger bypass path 80 branches from the condensed water circulation path 20 on the upstream side of the condensed water / off gas heat exchanger 26 and is condensed without passing through the condensed water / off gas heat exchanger 26.
  • the water-off gas heat exchanger 26 is configured to join the condensed water circulation path 20 on the downstream side.
  • the second switching unit 47 switches whether condensed water circulates through the condensed water-off gas heat exchanger 26 or circulates through the heat exchanger bypass path 80.
  • the second switch 47 includes a third on-off valve 46 and a fourth on-off valve 48.
  • the heat exchanger bypass path 80 branches from a branch portion provided in the condensed water circulation path 20 that connects the condensed water tank 22 and the condensed water-offgas heat exchanger 26.
  • the third on-off valve 46 is provided in the condensed water circulation path 20 from the branch portion to the condensed water-off gas heat exchanger 26.
  • the fourth on-off valve 48 is provided in the heat exchanger bypass path 80.
  • the second switch 47 opens the third on-off valve 46 and closes the fourth on-off valve 48, for example. It is circulated through the condensed water-off gas heat exchanger 26 instead of the heat exchanger bypass path 80.
  • the second switch 47 closes the third on-off valve 46 and opens the fourth on-off valve 48 to condense the condensed water. It is circulated through the heat exchanger bypass path 80 instead of the water-off gas heat exchanger 26.
  • the third on-off valve 46 and the fourth on-off valve 48 are not only on-off valves that are selected to be fully open and fully closed, but may be flow rate adjusting valves that can continuously adjust the opening, for example.
  • the ratio of the flow rate of the condensed water circulating through the condensed water-off gas heat exchanger 26 and the flow rate of the condensed water circulating through the heat exchanger bypass path 80 is changed to be supplied to the humidifier 28.
  • the temperature of the condensed water can be controlled more effectively.
  • the second switch 47 does not necessarily need to include the third on-off valve 46 and the fourth on-off valve 48, and may be constituted by a three-way valve, for example. Alternatively, the second switch 47 may be configured by only one of the third on-off valve 46 and the fourth on-off valve 48.
  • the second switch 47 can be controlled by a controller, for example. Since the configuration of the controller in this case can be the same as that of the modification of the fourth embodiment, detailed description thereof is omitted.
  • the apparatus configuration and operation of the solid oxide fuel cell system 600 of the seventh embodiment can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and 9 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 600 is omitted.
  • the temperature of the condensed water supplied to the humidifier 28 can be easily controlled by adjusting the amount of condensed water heated in the condensed water-off gas heat exchanger 26 by the second switch 47. Therefore, the dew point of the air discharged from the humidifier 28 can be easily adjusted.
  • the solid oxide fuel cell system according to the eighth embodiment includes the second embodiment, the modification thereof, the third embodiment, the fourth embodiment, the modification thereof, the fifth embodiment, the sixth embodiment, or the seventh embodiment.
  • the condensed water circulation path includes a humidifier bypass path that bypasses the humidifier and circulates the condensed water, and the condensed water circulates through the humidifier or through the humidifier bypass path. And a third switch for switching between circulation and switching.
  • Switch between condensate water circulating through the humidifier or humidifier bypass path means that all condensed water circulates through the humidifier or all condensed water circulates through the humidifier bypass path. Or changing the ratio between the flow rate of the condensed water circulating through the humidifier and the flow rate of the condensed water circulating through the humidifier bypass path.
  • the dew point of the air discharged from the humidifier can be easily adjusted.
  • FIG. 10 is a block diagram showing an example of a schematic configuration of the solid oxide fuel cell system according to the eighth embodiment.
  • the condensed water circulation path 20 includes a humidifier bypass path 82 and a third switch 51.
  • the humidifier bypass path 82 bypasses the humidifier 28 and circulates the condensed water.
  • the heat exchanger bypass path 80 branches from the condensed water circulation path 20 on the upstream side of the humidifier 28, and does not pass through the humidifier 28, and the condensed water circulation path 20 on the downstream side of the humidifier 28. It is comprised so that it may join.
  • the third switch 51 switches whether the condensed water circulates through the humidifier 28 or the humidifier bypass path 82.
  • the third switch 51 includes a fifth on-off valve 50 and a sixth on-off valve 52.
  • the humidifier bypass path 82 branches off from a branch portion provided in the condensed water circulation path 20 that connects the condensed water-off gas heat exchanger 26 and the humidifier 28.
  • the fifth on-off valve 50 is provided in the condensed water circulation path 20 from the branch portion to the humidifier 28.
  • the sixth on-off valve 52 is provided in the humidifier bypass path 82.
  • the third switch 51 opens the fifth on-off valve 50 and closes the sixth on-off valve 52, for example. It circulates through the humidifier 28 instead of the humidifier bypass path 82.
  • the third switch 51 closes the fifth on-off valve 50 and opens the sixth on-off valve 52, for example. It circulates through the humidifier bypass path 82 instead of the humidifier 28.
  • the fifth on-off valve 50 and the sixth on-off valve 52 may be not only on-off valves that are selected to be fully open and fully closed, but also flow rate adjustment valves that can continuously adjust the opening, for example.
  • the flow rate of the condensed water supplied to the humidifier 28 is further increased. It can be controlled effectively.
  • the third switch 51 does not necessarily need to include the fifth on-off valve 50 and the sixth on-off valve 52, and may be constituted by a three-way valve, for example. Alternatively, the third switch 51 may be configured with only one of the fifth on-off valve 50 and the sixth on-off valve 52.
  • the third switch 51 can be controlled by a controller, for example. Since the configuration of the controller in this case can be the same as that of the modification of the fourth embodiment, detailed description thereof is omitted.
  • the apparatus configuration and operation of the solid oxide fuel cell system 700 of the eighth embodiment can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and FIG. 10 are denoted by the same reference numerals and names, and detailed description of the apparatus configuration and operation of the solid oxide fuel cell system 700 is omitted.
  • the dew point of the air discharged from the humidifier 28 can be easily adjusted by adjusting the flow rate of the condensed water supplied to the humidifier 28 by the third switch 51.
  • the solid oxide fuel cell system according to the ninth embodiment includes the second embodiment, the modification thereof, the third embodiment, the fourth embodiment, the modification thereof, the fifth embodiment, the sixth embodiment, or the seventh embodiment.
  • an eighth embodiment of the solid oxide fuel cell system further comprising an ion concentration detector for detecting the ion concentration of the condensed water stored in the condensed water tank, a notification device, and an ion concentration detector And a controller that issues a warning by an alarm device based on the detection result.
  • Such a configuration can reduce the possibility of salt deposition in a humidifier or heat exchanger.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a solid oxide fuel cell system according to the ninth embodiment.
  • the solid oxide fuel cell system 800 includes an ion concentration detector 54, a notification device 56, and a controller 36.
  • the ion concentration detector 54 detects the ion concentration of the condensed water stored in the condensed water tank 22.
  • the ion concentration detector 54 for example, an electric conductivity meter including a sensor disposed inside the condensed water tank 22 can be used.
  • the alarm device 56 may be, for example, a buzzer or a transmitter that transmits an alarm signal through radio.
  • the controller 36 issues an alarm by the alarm device 56 based on the detection result of the ion concentration detector 54.
  • the controller 36 may be communicably connected to the ion concentration detector 54 and the alarm device 56. For example, when the ion concentration detected by the ion concentration detector 54 is 20 mS or more, the controller 36 may control the alarm device 56 to issue an alarm. Further, when such an alarm is generated, the controller 36 discharges the condensed water stored in the condensed water tank 22 to the outside of the solid oxide fuel cell system 800, so that the solid oxide fuel cell system 100 You may supply the condensed water tank 22 with the clean water supplied from the external clean water infrastructure.
  • the configuration of the controller 36 can be the same as that of the modified example of the fourth embodiment except for the above points, and thus detailed description thereof is omitted.
  • the apparatus configuration and operation of the solid oxide fuel cell system 800 of the ninth embodiment can be the same as those of the solid oxide fuel cell system 100 of the second embodiment. 2 and 11 are denoted by the same reference numerals and names, and detailed description of the device configuration and operation of the solid oxide fuel cell system 800 is omitted.
  • the ion concentration detector 54, the notification device 56, and the controller 36 can reduce the possibility that the ion concentration of water in the condensed water circulation path 20 becomes excessively high. Therefore, it is possible to reduce the possibility that salt or the like is deposited in the humidifier 28, the condensed water-off gas heat exchanger 26, or the like.
  • One embodiment of the present invention is useful as a solid oxide fuel cell system that can supply power more stably than before in an environment where the infrastructure for supplying clean water is insufficient and the temperature tends to be high. .

Abstract

 改質器(10)と、改質器からアノード(14)へ供給される水素含有ガスと、カソード(16)へ供給される空気とを用いて発電する固体酸化物形燃料電池(12)と、アノードオフガス、および、アノードオフガスを燃焼させて得られる燃焼排ガス、の少なくともいずれか一方を放熱させて凝縮水を生成する放熱器(17)と、放熱器から供給される凝縮水を循環させる凝縮水循環経路(20)と、凝縮水循環経路に設けられ、凝縮水を貯溜する凝縮水タンク(22)と、凝縮水循環経路に設けられ、凝縮水を循環させる凝縮水ポンプ(24)と、凝縮水循環経路に設けられ、凝縮水と固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器(26)と、を備え、改質器に供給される水の少なくとも一部は凝縮水である、固体酸化物形燃料電池システム(90)。

Description

固体酸化物形燃料電池システム
 本発明は、固体酸化物形燃料電池システムに関する。より詳細には、加湿された空気と原料とを用いて水素含有ガスを生成する改質器を備えた固体酸化物形燃料電池システムに関する。
 特許文献1は、アノードからの排出ガスに含まれる水蒸気を凝縮させて液体の水を生成する凝縮器を備えた、燃料電池システムを開示する(図3)。該燃料電池システムは、固体酸化物形燃料電池システムとしても構成されうる(カラム4:52-56行)。
 特許文献2は、固体酸化物形燃料電池にて発生する排熱を利用して加温された加湿用水に接触させることによって、部分酸化反応器に送給される部分酸化用空気を露点80℃以上となるように加湿する酸化用空気加湿手段を備えた、固体酸化物形燃料電池システムを開示する(要約、図1)。部分酸化反応器は、脱硫処理された燃料ガスを酸化触媒の下で部分酸化反応させて水素を含む還元性ガスを生成する(請求項1)。加湿用水は、上水供給源から供給され、加湿手段から排出された水は貯湯タンクに貯溜される(図1)。
米国特開第7858256号明細書 特開2005-317489号公報
 上水を供給するインフラストラクチャが不十分であり、かつ、気温が高くなりやすい環境において、従来の燃料電池システムでは、安定した電力供給をすることが困難であった。
 本発明は、上記従来の課題に対応するもので、上水を供給するインフラストラクチャが不十分であり、かつ、気温が高くなりやすい環境において、従来より安定して電力を供給できる燃料電池システムを提供することを目的とする。
 また、本発明の別の目的は、固体酸化物形燃料電池システムから排出されるガスに含まれる水分を回収して原料の改質に用いる固体酸化物形燃料電池システムにおいて、エネルギーを有効利用しつつ、改質用の水の供給を安定化させることにある。
 本発明の固体酸化物形燃料電池システムの一態様(aspect)は、原料と水とを用いて水素含有ガスを生成する改質器と、アノードとカソードとを備える固体酸化物形燃料電池であって、前記改質器から前記アノードへ供給される前記水素含有ガスと、前記カソードへ供給される空気とを用いて発電する固体酸化物形燃料電池と、前記アノードから排出されるアノードオフガス、および、前記アノードオフガスを燃焼させて得られる燃焼排ガスの少なくともいずれか一方を放熱させて凝縮水を生成する放熱器と、前記放熱器から供給される前記凝縮水を循環させる凝縮水循環経路と、前記凝縮水循環経路に設けられ、前記凝縮水を貯溜する凝縮水タンクと、前記凝縮水循環経路に設けられ、前記凝縮水を循環させる凝縮水ポンプと、前記凝縮水循環経路に設けられ、前記凝縮水と前記固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器と、を備え、前記改質器に供給される前記水の少なくとも一部は前記凝縮水である。
 本発明の一態様によれば、固体酸化物形燃料電池システムから排出されるガスに含まれる水分を回収して原料の改質に用いる固体酸化物形燃料電池システムにおいて、エネルギーを有効利用しつつ、改質用の水の供給を安定化できるという効果を奏する。
 本発明の別の態様によれば、上水を供給するインフラストラクチャが不十分であり、かつ、気温が高くなりやすい環境において、従来より安定して電力を供給できるという効果を奏する。
図1は、第1実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図2は、第2実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図3は、第2実施形態の変形例にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図4は、第3実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図5は、第4実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図6は、第4実施形態の変形例にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図7は、第5実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図8は、第6実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図9は、第7実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図10は、第8実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。 図11は、第9実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 発明者らは、燃料電池システムから排出されるガスに含まれる水分を回収して原料の改質に用いる燃料電池システムにおいて、エネルギーを有効利用しつつ改質用の水の供給を安定化すべく鋭意検討を行った。その結果、以下の知見を得た。
 すなわち、燃料電池システムから排出されるガスに含まれる水分を凝縮水として貯溜する場合、凝縮水経路の内部で雑菌等が繁殖して、凝縮水を改質器へと供給するポンプに目詰まり等が発生する場合がある。該目詰まり等が、改質用の水の供給を不安定化しうる。
 そこで本発明者らは、凝縮水ポンプにより凝縮水循環経路中で凝縮水を循環させると共に、凝縮水と固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器を設け、凝縮水をオフガスにより加熱することに想到した。かかる構成では、凝縮水が加熱されることで雑菌等の繁殖を低減できる一方で、該加熱はオフガスにより行われるため、排熱エネルギーを有効利用できる。
 また、発明者らは、上水を供給するインフラストラクチャが不十分であり、かつ、気温が摂氏約50度程度にまで高くなりやすい環境において、従来よりも安定した電力供給を可能とする固体酸化物形燃料電池システムを開発すべく、鋭意検討を行った。その結果、以下の知見を得た。
 すなわち、インフラストラクチャからの水供給に依存できない場合、燃料電池から排出されるオフガスから水を回収することが考えられる。固体酸化物型燃料電池システムにおいて、アノードオフガスの露点は、例えば摂氏80度程度と高い。よって、アノードガスから凝縮水を回収すれば、気温が摂氏50度程度と高温であっても、十分な量の凝縮水を回収できる。
 しかしながら、回収した凝縮水を従来のようにポンプ等により蒸発器に供給して蒸発させる場合、微量の水を安定して蒸発器に供給可能なポンプが必要となる。かかるポンプは高価であり、メンテナンスも困難となる。
 そこで本発明者らは、蒸発器で水を蒸発させて改質器に供給するのではなく、凝縮水を燃料電池のオフガスで加温し、得られた温水を循環させ、該温水で空気を加湿して改質器に供給することに想到した。かかる構成では、水蒸気の供給量は、凝縮水の温度および循環量等を介して適切に制御できる。よって、上水を供給するインフラストラクチャが不十分であり、かつ、気温が摂氏約50度程度にまで高くなりやすい環境において、従来よりも安定して電力を供給できる。なお、空気に加え、原料が加湿されてもよい。
 (第1実施形態)
 第1実施形態の固体酸化物形燃料電池システムは、原料と水とを用いて水素含有ガスを生成する改質器と、アノードとカソードとを備える固体酸化物形燃料電池であって、改質器からアノードへ供給される水素含有ガスと、カソードへ供給される空気とを用いて発電する固体酸化物形燃料電池と、アノードから排出されるアノードオフガス、および、アノードオフガスを燃焼させて得られる燃焼排ガス、の少なくともいずれか一方を放熱させて凝縮水を生成する放熱器と、放熱器から供給される凝縮水を循環させる凝縮水循環経路と、凝縮水循環経路に設けられ、凝縮水を貯溜する凝縮水タンクと、凝縮水循環経路に設けられ、凝縮水を循環させる凝縮水ポンプと、凝縮水循環経路に設けられ、凝縮水と固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器と、を備え、改質器に供給される水の少なくとも一部は凝縮水である。
 かかる構成では、燃料電池システムから排出されるガスに含まれる水分を回収して原料の改質に用いる燃料電池システムにおいて、凝縮水が加熱されることで雑菌等の繁殖を低減できる。一方で、該加熱はオフガスにより行われるため、排熱エネルギーを有効利用できる。よって、エネルギーを有効利用しつつ、改質用の水の供給を安定化することができる。
 「固体酸化物形燃料電池から排出されるオフガス」には、カソードから排出されるカソードオフガス、アノードから排出されるアノードオフガス、および、カソードオフガスとアノードオフガスとを燃焼させて得られる燃焼ガス等が含まれる。
 「アノードオフガスを燃焼させて得られる燃焼排ガス」において、アノードオフガスを燃焼させる酸化剤ガスは、例えば、空気でもよいし、カソードオフガスでもよい。
 [装置構成]
 図1は、第1実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図1に示す例において、本実施形態の固体酸化物形燃料電池システム90は、改質器10と、固体酸化物形燃料電池12と、放熱器17と、凝縮水循環経路20と、凝縮水タンク22と、凝縮水ポンプ24と、凝縮水-オフガス熱交換器26と、改質水ポンプ27と、を備えている。
 改質器10は、原料と水とを用いて水素含有ガスを生成する。図1に示す例において、凝縮水は、改質水ポンプ27により、改質水経路61を介して、改質器10へと供給される。原料は、原料経路60を介して、改質器10へと供給される。改質器10は、アノードガス経路を介して、水素含有ガスをアノード14へと供給する。凝縮水が、改質器10へ供給されるガス(原料、空気等)を加湿するために利用されることで、凝縮水が改質器10へと供給されてもよい。
 原料は、例えば、LPGガス、プロパンガス、ブタンガス、メタンを主成分とする都市ガス等の少なくとも炭素及び水素から構成される有機化合物を含むガス、灯油、アルコール等とすることができる。灯油、アルコール等の液体原料を用いる場合には、改質器10に供給される前に、加熱されて気化されてもよい。
 改質器10では、例えば、原料と水蒸気とを用いて、水蒸気改質反応(Steam Reforming)が行われてもよい。
 改質器10では、例えば、原料に含まれる炭化水素と、加湿された空気に含まれる水と酸素とを用いて、酸化的水蒸気改質反応(Oxidative Steam Reforming)が行われてもよい。酸化的水蒸気改質反応を利用した場合、熱収支の点で改質反応が進行しやすくなり、水蒸気改質を利用する場合よりも改質器10を小型化できる。また、原料中に硫黄化合物が含まれていても、SOに変換されやすくなり、スタック内の触媒が被毒されにくくなる。
 改質器10は、例えば、容器中に改質触媒が充填されて構成される。改質触媒は、例えば、白金およびロジウムの少なくとも一方を含浸したアルミナ担体を用いることができる。なお、改質触媒は特に限定されず、例えば、水蒸気改質反応および酸化的水蒸気改質反応の少なくともいずれか一方を進行させることのできる多様な触媒を用いることができる。
 固体酸化物形燃料電池12は、アノード14とカソード16とを備える固体酸化物形燃料電池であって、改質器10からアノード14へ供給される水素含有ガスと、カソード16へ供給される空気とを用いて発電する。図1に示す例において、空気は、カソードガス経路68を介して、カソード16へと供給される。カソードガス経路68には、図示されない空気供給器を備えていてもよい。固体酸化物形燃料電池12は、例えば、アノード14とカソード16との間で発電反応を行って発電する複数の燃料電池単セルを直列に接続して構成される。
 かかる燃料電池単セルには、例えば、イットリア安定化ジルコニア(YSZ)を電解質等に用いた公知の構成を採用しうる。燃料電池単セルの材料としては、イットリビウムやスカンジウムをドープしたジルコニア、あるいはランタンガレート系の固体電解質を用いることもできる。イットリア安定化ジルコニアを用いた燃料電池単セルでは、電解質の厚みにも依存するが、例えば、摂氏600度から摂氏1000度程度の温度範囲で発電反応が行われる。
 固体酸化物形燃料電池12の発電により得られた電力は、図示されない端子を介して外部負荷へと供給される。外部付加としては、例えば、携帯電話の基地局を構成する装置とすることができる。
 放熱器17は、アノード14から排出されるアノードオフガスを放熱させて凝縮水を生成する。図1に示す例では、放熱器17は、アノード14に接続されたアノードオフガス経路64に設けられる。
 アノードオフガスの露点は、一般に、摂氏約80度と高く、摂氏50度程度にまで冷却すれば、十分な量の凝縮水が得られる。よって、放熱器17は、例えば、気温が高く上水を供給するインフラストラクチャが不十分であっても、必要量の水素含有ガスを生成するための水の全量を凝縮水で賄えるように構成されてもよい。すなわち、固体酸化物形燃料電池システム90は、高温地域においても水自立が可能な酸化的水蒸気改質反応型の固体酸化物形燃料電池システムとして構成されうる。ここでいう「水自立が可能な」とは、外部からの水供給に依存せず、原料等から得られる水により固体酸化物形燃料電池システムの運転を継続できることをいう。
 放熱器17は、アノード14から排出されるアノードオフガスを燃焼させて得られる燃焼排ガスを放熱させて凝縮水を生成してもよい。この場合、放熱器17は、燃焼排ガス経路に設けられる。燃焼排ガスの露点は、一般に、摂氏約70度と高く、摂氏50度程度にまで冷却すれば、十分な量の凝縮水が得られる。
 放熱器17は、アノードオフガスおよび燃焼排ガスの少なくともいずれか一方を冷却できる機器であれば、どのような構成であってもよい。冷却方法は、ガスを大気で直接冷却する方式でもよいし、ガスを循環不凍液等の冷媒と熱交換させ、該冷媒をラジエタ等により大気で冷却する方式であってもよい。放熱器17としては、例えば、シェルアンドチューブ式の熱交換器を用いることができる。
 凝縮水循環経路20は、放熱器17から供給される凝縮水を循環させる。図1に示す例において、凝縮水循環経路20は、配管等により構成され、凝縮水タンク22を起点とすると、凝縮水ポンプ24と、凝縮水-オフガス熱交換器26とをこの順に接続し、終点が凝縮水タンク22に接続されている。なお、凝縮水タンク22と、凝縮水ポンプ24と、凝縮水-オフガス熱交換器26との接続の順番は上記に限定されるものではない。
 凝縮水タンク22は、凝縮水循環経路20に設けられ、凝縮水を貯溜する。図1に示す例では、凝縮水タンク22に、放熱器17の下流側のアノードオフガス経路64から分岐した凝縮水供給経路66が接続されている。かかる構成では、放熱器17で生成した凝縮水が、凝縮水供給経路66を通じて、凝縮水タンク22へと供給される。なお、凝縮水供給経路66が凝縮水循環経路20の他の部位に接続されていてもよい。
 凝縮水タンク22は、起動時に凝縮水タンク22に固体酸化物形燃料電池システム90の外部にある上水インフラストラクチャから上水を供給する水供給機構を備えていてもよい。凝縮水タンク22は、不使用時に凝縮水タンク22から水を固体酸化物形燃料電池システム90の外部へと排出する水抜き機構を備えていてもよい。
 凝縮水ポンプ24は、凝縮水循環経路20に設けられ、凝縮水を循環させる。凝縮水ポンプ24が動作することにより、凝縮水タンク22に貯溜された凝縮水は、凝縮水循環経路20を循環する。すなわち、凝縮水タンク22から取り出された凝縮水は、凝縮水-オフガス熱交換器26と、加湿器28とをこの順に通って、凝縮水タンク22へと戻るように循環する。固体酸化物形燃料電池から排出されるオフガスは十分に高温であるので、凝縮水を加熱殺菌するために利用できる。凝縮水ポンプ24を用いて凝縮水を循環させることで、例えば、凝縮水が凝縮水-オフガス熱交換器26で定期的に加熱殺菌され、雑菌の増殖が抑制される。よって、凝縮水循環経路20および改質水ポンプ27等の目詰まり、および、凝縮水タンク22に設けられた水位計の故障(例えば、フロートの固着)等が生じる可能性が低減する。
 凝縮水ポンプ24としては、例えば、プランジャ式ポンプ、および、マグネット式ポンプ等を用いることができる。凝縮水ポンプ24の最小吐出量は、50g/分以上の所定の値であってもよい。凝縮水ポンプ24の最小吐出量は、100g/分以上の所定の値であってもよい。凝縮水ポンプ24の最大吐出量は、1000g/分以下の所定の値であってもよい。具体的には例えば、凝縮水ポンプ24の最小吐出量は、100g/分であってもよく、凝縮水ポンプ24の最大吐出量は、800g/分であってもよい。
 凝縮水-オフガス熱交換器26は、凝縮水循環経路20に設けられ、凝縮水と固体酸化物形燃料電池12から排出されるオフガスとの間で熱交換を行わせる。固体酸化物形燃料電池12から排出されるオフガスの温度が高いことから、該オフガスを利用することで、凝縮水を殺菌可能な程度に効率よく加熱することができる。
 図1に示す例では、オフガスはカソード16から排出されるカソードオフガスであって、凝縮水-オフガス熱交換器26は、カソード16に接続されたカソードオフガス経路70に設けられている。凝縮水-オフガス熱交換器26としては、例えば、プレート式の熱交換器、および、二重管式の熱交換器等を用いることができる。
 なお、凝縮水循環経路20に、イオン交換装置(イオン交換樹脂)が設けられてもよい。具体的には例えば、凝縮水タンク22から凝縮水-オフガス熱交換器26に至る凝縮水循環経路20に、イオン交換装置(イオン交換樹脂)が設けられてもよい。
 改質水ポンプ27は、改質水経路61に設けられ、凝縮水を改質器10へと供給する。図1の例において、改質水ポンプ27は、改質水経路61を介して凝縮水タンク22に接続されているが、改質水ポンプ27が、改質水経路61を介して凝縮水循環経路20と接続されていてもよい。図1の例において、改質水ポンプ27は、改質水経路61を介して原料経路60に接続されているが、改質水ポンプ27が、改質水経路61を介して改質器10と接続されていてもよい。
 改質水ポンプ27としては、例えば、プランジャ式ポンプ、ギアポンプ、および、マグネット式ポンプ等を用いることができる。改質水ポンプ27の最大吐出量は、30g/分以下の所定の値であってもよい。改質水ポンプ27の最大吐出量は、10g/分以下の所定の値であってもよい。改質水ポンプ27の最大吐出量は、5g/分以下の所定の値であってもよい。具体的には例えば、改質水ポンプ27の最小吐出量は、0g/分であってもよく、改質水ポンプ27の最大吐出量は、30g/分であってもよい。改質水ポンプ27の最大吐出量は、1g/分以上であってもよいし、5g/分以上であってもよい。
 改質器10への改質水供給量が少量である場合、改質水ポンプ27の容量も小さくなり、改質水ポンプ27において目詰まり等が発生しやすくなる。本実施形態の構成では、凝縮水ポンプ24を用いて凝縮水を循環させることで、例えば、凝縮水が凝縮水-オフガス熱交換器26で定期的に加熱殺菌され、雑菌の増殖が抑制される。よって、容量の小さい改質水ポンプ27においても、目詰まり等が発生しにくくなる。
 凝縮水を改質器10へと供給する手段(凝縮水供給器)は、改質水ポンプ27に限定されず、他の凝縮水供給器が用いられてもよい。凝縮水供給器としては、凝縮水を改質器10へと供給する装置であればどのようなものでもよく、改質水ポンプ27の他、例えば、第2実施形態で説明する加湿器28等が挙げられる。あるいは、凝縮水供給器は、例えば、凝縮水が重力の作用で自動的に改質器へと供給されるように構成された改質水経路でもよい。
 なお、カソードガス経路68およびカソードオフガス経路70において、カソードガス経路68を通流する空気とカソードオフガス経路70を通流するカソードオフガスとの間で熱交換をさせる、カソード空気熱交換器が設けられてもよい。かかる構成では、カソードオフガスにより、カソードに供給される前の空気が所定の温度(例えば摂氏700度)まで加熱される。カソードに供給される空気の温度を予め高くしておくことで、例えば、スタック内の温度勾配が小さくなり、熱応力により生じるクラッキング等の問題が低減される。
 第1実施形態においても、第2~9実施形態と同様の変形が可能である。
 (第2実施形態)
 第2実施形態の固体酸化物形燃料電池システムは、第1実施形態の固体酸化物形燃料電池システムであって、改質器が加湿された空気と原料とを用いて水素含有ガスを生成するものであり、放熱器がアノードから排出されるアノードオフガスを放熱させて凝縮水を生成するものであり、さらに、凝縮水循環経路に設けられ、凝縮水を用いて空気を加湿することで改質器に供給される加湿された空気を生成する加湿器を備えるものである。
 第2実施形態の固体酸化物形燃料電池システムは、加湿された空気と原料とを用いて水素含有ガスを生成する改質器と、アノードとカソードとを備える固体酸化物形燃料電池であって、改質器からアノードへ供給される水素含有ガスと、カソードへ供給される空気とを用いて発電する固体酸化物形燃料電池と、アノードから排出されるアノードオフガスを放熱させて凝縮水を生成するアノードオフガス放熱器と、アノードオフガス放熱器から供給される凝縮水を循環させる凝縮水循環経路と、凝縮水循環経路に設けられ、凝縮水を貯溜する凝縮水タンクと、凝縮水循環経路に設けられ、凝縮水を循環させる凝縮水ポンプと、凝縮水循環経路に設けられ、凝縮水と固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器と、凝縮水循環経路に設けられ、凝縮水を用いて空気を加湿することで改質器に供給される加湿された空気を生成する加湿器と、を備えている。
 かかる構成では、上水を供給するインフラストラクチャが不十分であり、かつ、気温が摂氏約50度程度にまで高くなりやすい環境において、従来よりも安定して電力を供給できる。
 「固体酸化物形燃料電池から排出されるオフガス」には、カソードから排出されるカソードオフガス、アノードから排出されるアノードオフガス、および、カソードオフガスとアノードオフガスとを燃焼させて得られる燃焼ガス等が含まれる。
 上記固体酸化物形燃料電池システムにおいて、凝縮水-オフガス熱交換器において熱交換に用いられるオフガスは、カソードから排出されるカソードオフガスであってもよい。
 かかる構成では、カソードオフガスを用いて、凝縮水を加熱できる。
 上記固体酸化物形燃料電池システムにおいて、凝縮水ポンプの最小吐出量が50g/分以上であってもよい。
 かかる構成では、一般的なポンプが利用可能なため、製造コストが飛躍的に低減される。
 上記固体酸化物形燃料電池システムにおいて、凝縮水ポンプの最小吐出量が100g/分以上であってもよい。凝縮水ポンプの最大吐出量は、例えば、1000g/分以下であってもよい。
 [装置構成]
 図2は、第2実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図2に示す例において、本実施形態の固体酸化物形燃料電池システム100は、改質器10と、固体酸化物形燃料電池12と、アノードオフガス放熱器18と、凝縮水循環経路20と、凝縮水タンク22と、凝縮水ポンプ24と、凝縮水-オフガス熱交換器26と、加湿器28と、を備えている。
 改質器10は、加湿された空気と原料とを用いて水素含有ガスを生成する。図2に示す例において、加湿された空気は、加湿器28から改質器10へと供給される。原料は、原料経路60を介して、改質器10へと供給される。改質器10は、アノードガス経路を介して、水素含有ガスをアノード14へと供給する。なお、空気に加え、原料が加湿されていてもよい。
 原料は、例えば、LPGガス、プロパンガス、ブタンガス、メタンを主成分とする都市ガス等の少なくとも炭素及び水素から構成される有機化合物を含むガス、灯油、アルコール等とすることができる。灯油、アルコール等の液体原料を用いる場合には、改質器10に供給される前に、加熱されて気化されてもよい。改質器10では、例えば、原料に含まれる炭化水素と、加湿された空気に含まれる水と酸素とを用いて、酸化的水蒸気改質反応(Oxidative Steam Reforming)が行われてもよい。酸化的水蒸気改質反応を利用した場合、熱収支の点で改質反応が進行しやすくなり、水蒸気改質を利用する場合よりも改質器10を小型化できる。また、原料中に硫黄化合物が含まれていても、SOに変換されやすくなり、スタック内の触媒が被毒されにくくなる。
 改質器10は、例えば、容器中に改質触媒が充填されて構成される。改質触媒は、例えば、白金を含浸したアルミナ担体を用いることができる。なお、改質触媒は特に限定されず、例えば、酸化的水蒸気改質反応を進行させることのできる多様な触媒を用いることができる。
 固体酸化物形燃料電池12は、アノード14とカソード16とを備える固体酸化物形燃料電池であって、改質器10からアノード14へ供給される水素含有ガスと、カソード16へ供給される空気とを用いて発電する。図2に示す例において、空気は、カソードガス経路68を介して、カソード16へと供給される。カソードガス経路68には、図示されない空気供給器を備えていてもよい。固体酸化物形燃料電池12は、例えば、アノード14とカソード16との間で発電反応を行って発電する複数の燃料電池単セルを直列に接続して構成される。
 かかる燃料電池単セルには、例えば、イットリア安定化ジルコニア(YSZ)を電解質等に用いた公知の構成を採用しうる。燃料電池単セルの材料としては、イットリビウムやスカンジウムをドープしたジルコニア、あるいはランタンガレート系の固体電解質を用いることもできる。イットリア安定化ジルコニアを用いた燃料電池単セルでは、電解質の厚みにも依存するが、例えば、摂氏600度から摂氏1000度程度の温度範囲で発電反応が行われる。
 固体酸化物形燃料電池12の発電により得られた電力は、図示されない端子を介して外部負荷へと供給される。外部付加としては、例えば、携帯電話の基地局を構成する装置とすることができる。
 アノードオフガス放熱器18は、アノード14から排出されるアノードオフガスを放熱させて凝縮水を生成する。図2に示す例では、アノードオフガス放熱器18は、アノード14に接続されたアノードオフガス経路64に設けられる。
 アノードオフガスの露点は、一般に、摂氏約80度と高く、摂氏50度程度にまで冷却すれば、十分な量の凝縮水が得られる。よって、アノードオフガス放熱器18は、例えば、気温が高く上水を供給するインフラストラクチャが不十分であっても、必要量の水素含有ガスを生成するための水の全量を凝縮水で賄えるように構成されてもよい。すなわち、固体酸化物形燃料電池システム100は、高温地域においても水自立が可能な酸化的水蒸気改質反応型の固体酸化物形燃料電池システムとして構成されうる。ここでいう「水自立が可能な」とは、外部からの水供給に依存せず、原料等から得られる水により固体酸化物形燃料電池システムの運転を継続できることをいう。
 アノードオフガス放熱器18は、アノードオフガスを冷却できる機器であれば、どのような構成であってもよい。冷却方法は、アノードオフガスを大気で直接冷却する方式でもよいし、アノードオフガスを循環不凍液等の冷媒と熱交換させ、該冷媒をラジエタ等により大気で冷却する方式であってもよい。アノードオフガス放熱器18としては、例えば、シェルアンドチューブ式の熱交換器を用いることができる。
 凝縮水循環経路20は、アノードオフガス放熱器18から供給される凝縮水を循環させる。図2に示す例において、凝縮水循環経路20は、配管等により構成され、凝縮水タンク22を起点とすると、凝縮水ポンプ24と、凝縮水-オフガス熱交換器26と、加湿器28とをこの順に接続し、終点が凝縮水タンク22に接続されている。なお、凝縮水タンク22と、凝縮水ポンプ24と、凝縮水-オフガス熱交換器26と、加湿器28との接続の順番は上記に限定されるものではない。
 凝縮水タンク22は、凝縮水循環経路20に設けられ、凝縮水を貯溜する。図2に示す例では、凝縮水タンク22に、アノードオフガス放熱器18の下流側のアノードオフガス経路64から分岐した凝縮水供給経路66が接続されている。かかる構成では、アノードオフガス放熱器18で生成した凝縮水が、凝縮水供給経路66を通じて、凝縮水タンク22へと供給される。なお、凝縮水供給経路66が凝縮水循環経路20の他の部位に接続されていてもよい。
 凝縮水タンク22は、起動時に凝縮水タンク22に固体酸化物形燃料電池システム100の外部にある上水インフラストラクチャから上水を供給する水供給機構を備えていてもよい。凝縮水タンク22は、不使用時に凝縮水タンク22から水を固体酸化物形燃料電池システム100の外部へと排出する水抜き機構を備えていてもよい。
 凝縮水ポンプ24は、凝縮水循環経路20に設けられ、凝縮水を循環させる。凝縮水ポンプ24が動作することにより、凝縮水タンク22に貯溜された凝縮水は、凝縮水循環経路20を循環する。すなわち、凝縮水タンク22から取り出された凝縮水は、凝縮水-オフガス熱交換器26と、加湿器28とをこの順に通って、凝縮水タンク22へと戻るように循環する。凝縮水ポンプ24を用いて凝縮水を循環させることで、例えば、凝縮水が凝縮水-オフガス熱交換器26で定期的に加熱殺菌され、雑菌の増殖が抑制され、凝縮水循環経路20の目詰まり等が生じる可能性が低減する。
 凝縮水ポンプ24としては、例えば、プランジャ式ポンプ、および、マグネット式ポンプ等を用いることができる。凝縮水ポンプ24の最小吐出量は、50g/分以上の所定の値であってもよい。凝縮水ポンプ24の最小吐出量は、100g/分以上の所定の値であってもよい。凝縮水ポンプ24の最大吐出量は、1000g/分以下の所定の値であってもよい。具体的には例えば、凝縮水ポンプ24の最小吐出量は、100g/分であってもよく、凝縮水ポンプ24の最大吐出量は、800g/分であってもよい。
 凝縮水-オフガス熱交換器26は、凝縮水循環経路20に設けられ、凝縮水と固体酸化物形燃料電池12から排出されるオフガスとの間で熱交換を行わせる。図2に示す例では、オフガスはカソード16から排出されるカソードオフガスであって、凝縮水-オフガス熱交換器26は、カソード16に接続されたカソードオフガス経路70に設けられている。
 凝縮水-オフガス熱交換器26としては、例えば、プレート式の熱交換器、および、二重管式の熱交換器等を用いることができる。
 なお、凝縮水循環経路20に、イオン交換装置(イオン交換樹脂)が設けられてもよい。具体的には例えば、凝縮水タンク22から凝縮水-オフガス熱交換器26に至る凝縮水循環経路20に、イオン交換装置(イオン交換樹脂)が設けられてもよい。
 加湿器28は、凝縮水循環経路20に設けられ、凝縮水を用いて空気を加湿することで改質器10に供給される加湿された空気を生成する。空気は、空気経路62を介して、加湿器28へと供給される。空気経路62には、ブロワ等の空気供給器が設けられてもよい。加湿された空気は、図2に示す例では、原料経路60を通流する原料に添加されるが、改質器10へと直接供給されてもよい。加湿器28としては、例えば、中空糸式の加湿器、バブラ式の加湿器等を用いることができる。加湿器28の動作温度は、例えば摂氏100度未満の所定の温度(例えば、摂氏60度)としうる。加湿器28は、空気を加湿するだけでなく、凝縮水を用いて原料を加湿してもよい。この場合、加湿器28には、空気経路62および原料経路60の両方が接続されてもよい。あるいは、空気および原料のそれぞれを凝縮水を用いて加湿するために、複数の加湿器が設けられてもよい。
 なお、カソードガス経路68およびカソードオフガス経路70において、カソードガス経路68を通流する空気とカソードオフガス経路70を通流するカソードオフガスとの間で熱交換をさせる、カソード空気熱交換器が設けられてもよい。かかる構成では、カソードオフガスにより、カソードに供給される前の空気が所定の温度(例えば摂氏700度)まで加熱される。カソードに供給される空気の温度を予め高くしておくことで、例えば、スタック内の温度勾配が小さくなり、熱応力により生じるクラッキング等の問題が低減される。
 [動作]
 以下、第2実施形態の固体酸化物形燃料電池システムの動作例について説明する。なお、以下の説明はあくまで動作の一例であって、具体的な数値等は適宜に変更されうる。以下の例では、カソード空気熱交換器(図示せず)が設けられ、カソードに供給される空気と、カソードオフガスとの間で熱交換が行われる構成を想定する。
 燃料電池の発電出力を1500W、燃料利用率Ufを75%、原料の組成はLPGを想定して、プロパン(C)とブタン(C10)とをそれぞれ50%ずつ含有する組成とする。平均組成を化学式Cで表すと、C3.5となる。
 酸化的水蒸気改質反応の反応式は、炭化水素の転換率を100%とすると、以下の通りとなる。
Figure JPOXMLDOC01-appb-C000001
 ここで、O/C=2α/n、S/C=β/nとなる。なお、a、b、c、dは水素含有ガスの組成、改質器の特性、および、改質温度等によって変化する。ここで、O/CにおけるOは、水(HO)に由来する酸素原子を含まず、酸素(O)に由来する酸素原子のみを含む。
 以下、O/C=0.8、S/C=1.2(α=1.4、β=4.2)の場合について説明する。ここで、1モルのC3.5が完全燃焼するときにOは5.75モル必要となる。α=1.4のとき、1モルのC3.5に対するOの供給量は、式(1)より1.4モルとなるから、λ=1.4/5.75≒0.24となる。なお、O/CおよびS/Cの値は上記に限定されず、固体酸化物形燃料電池システムの運転が可能な範囲であれば、どのような値であってもよい。
 凝縮水タンク22に貯溜された凝縮水の温度は、摂氏約60度とする。具体的には例えば、凝縮水ポンプ24は、500g/分の流量で、凝縮水を凝縮水-オフガス熱交換器26へと送る。凝縮水-オフガス熱交換器26において、凝縮水は、カソード空気熱交換器から排出されるカソードオフガスによって約900Wだけ加熱され、摂氏約85度となる。
 加熱された凝縮水は、加湿器28へ供給される。加湿器28において、7.7g/分の水が空気に供給されて空気が加湿される。このとき、凝縮水から水の蒸発潜熱として約350Wのエネルギーが奪われる。よって、加湿器28から排出される空気および凝縮水の温度は摂氏約75度となる。加湿された空気は、燃料ガスと混合されて改質器10へと供給される。加湿器28から排出された凝縮水は、配管およびラジエタ等で冷却され、摂氏約60度の温水として凝縮水タンク22に貯溜される。
 改質器10は、加湿された空気と原料とを用いて酸化的水蒸気改質反応を進行させ、水素含有ガスを生成する。加湿された空気と原料とが混合された改質前のガスの組成は、酸化的水蒸気改質反応に適した値である、O/C=0.8、S/C=1.2となっているため、改質器10において、酸化的水蒸気改質反応が好適に進行する。
 また、凝縮水ポンプ24の吐出量、カソードオフガスの温度、および、カソードオフガスの流量等に脈動が生じた場合でも、水の熱容量が大きいことから、凝縮水循環経路20内の凝縮水の温度は急激に変動しにくく、改質前のガスのO/CやS/Cも安定する。よって、改質器10において炭素が析出しにくくなる。
 [変形例]
 本変形例の固体酸化物形燃料電池システムは、第2実施形態の固体酸化物形燃料電池システムであって、凝縮水-オフガス熱交換器において熱交換に用いられるオフガスが、アノードから排出されるアノードオフガスである、固体酸化物形燃料電池システムである。
 かかる構成では、上水を供給するインフラストラクチャが不十分であり、かつ、気温が摂氏約50度程度にまで高くなりやすい環境において、従来よりも安定して電力を供給できる。また、アノードオフガスを用いて、凝縮水を加熱できる。
 図3は、第2実施形態の変形例にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。本変形例の固体酸化物形燃料電池システム100Aは、凝縮水と熱交換するオフガスが、アノード14から排出されるアノードオフガスである点が、第2実施形態の固体酸化物形燃料電池システム100と異なっている。
 凝縮水-オフガス熱交換器26は、凝縮水循環経路20に設けられ、凝縮水と固体酸化物形燃料電池12から排出されるオフガスとの間で熱交換を行わせる。本変形例において、凝縮水-オフガス熱交換器26は、アノード14に接続されたアノードオフガス経路64に設けられている。凝縮水-オフガス熱交換器26としては、例えば、プレート式の熱交換器、および、二重管式の熱交換器等を用いることができる。
 以上の点を除けば、本変形例の固体酸化物形燃料電池システム100Aの装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図3とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム100Aの装置構成および動作に関する詳細な説明を省略する。
 本変形例では、上水を供給するインフラストラクチャが不十分であり、かつ、気温が摂氏約50度程度にまで高くなりやすい環境において、従来よりも安定して電力を供給できる。また、アノードオフガスを用いて、凝縮水を加熱できる。
 第2実施形態と本変形例とを組合せてもよい。すなわち、凝縮水とアノードオフガスとの熱交換と、凝縮水とカソードオフガスとの熱交換との、両方が行われてもよい。
 (第3実施形態)
 第3実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例の固体酸化物形燃料電池システムであって、さらに、凝縮水循環経路において、加湿器の下流かつ凝縮水タンクの上流に設けられ、凝縮水を放熱させる凝縮水放熱器を備えている。
 かかる構成では、例えば、凝縮水タンクで凝縮水が再蒸発して水蒸気が逆流する可能性を低減できる。あるいは例えば、加湿器の温度を高くして、空気をより効果的に加湿できる。
 図4は、第3実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図4に例示するように、第3実施形態の固体酸化物形燃料電池システム200は、凝縮水放熱器30を備えている。
 凝縮水放熱器30は、凝縮水循環経路20において、加湿器28の下流かつ凝縮水タンク22の上流に設けられ、凝縮水を放熱させる。放熱方法は、例えば、凝縮水をラジエタ等により大気で冷却する方式であってもよい。凝縮水放熱器30としては、例えばフィンアンドチューブ式の熱交換器等を用いることができる。
 以上の点を除けば、第3実施形態の固体酸化物形燃料電池システム200の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図4とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム200の装置構成および動作に関する詳細な説明を省略する。
 固体酸化物形燃料電池システム200では、凝縮水放熱器30により、加湿器28から排出された凝縮水が冷却されて凝縮水タンク22へと供給される。かかる構成では、加湿器28と凝縮水タンク22との温度差を大きくできる。よって、例えば、凝縮水タンク22で凝縮水が再蒸発して水蒸気がカソードオフガス経路70に向かって逆流する可能性を低減できる。あるいは例えば、加湿器28の温度を高くして、空気をより効果的に加湿できる。
 第3実施形態においても、第2実施形態と同様の変形が可能である。
 (第4実施形態)
 第4実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態の固体酸化物形燃料電池システムであって、さらに、加湿器をバイパスすることで加湿されない空気を改質器に供給するバイパス空気経路と、加湿器を経由して改質器に空気を供給するか、バイパス空気経路を経由して改質器に空気を供給するか、を切り替える第1切替器と、を備えている。
 かかる構成では、起動時間を短縮できる。
 「加湿器を経由して改質器に空気を供給するか、バイパス空気経路を経由して改質器に空気を供給するか、を切り替える」とは、加湿器を経由して改質器に空気の全部を供給するか、バイパス空気経路を経由して改質器に空気の全部を供給するか、をON-OFFで切り替える場合のみならず、加湿器を経由して改質器に空気を供給する流量と、バイパス空気経路を経由して改質器に空気を供給する流量との比率を変化させることも含む。
 図5は、第4実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図5に例示するように、第4実施形態の固体酸化物形燃料電池システム300は、バイパス空気経路72と、第1切替器33とを備えている。
 バイパス空気経路72は、加湿器28をバイパスすることで加湿されない空気を改質器に供給する。図2に示す例では、バイパス空気経路72は、加湿器28の上流側の空気経路62から分岐して、加湿器28を介さずに、加湿器28の下流側の空気経路62に合流するように構成されている。
 第1切替器33は、加湿器28を経由して改質器に空気を供給するか、バイパス空気経路72を経由して改質器に空気を供給するか、を切り替える。図5に示す例では、第1切替器33は、第1開閉弁32と第2開閉弁34とを備えている。バイパス空気経路72は、空気経路62に設けられた分岐部から分岐する。第1開閉弁32は、該分岐部から加湿器28に至る経路に設けられている。第2開閉弁34は、バイパス空気経路72に設けられている。
 第1切替器33は、例えば通常運転時において第1開閉弁32を開放し、第2開閉弁34を閉止することで、バイパス空気経路72を経由せず、加湿器28を経由して改質器10に空気を供給する。第1切替器33は、例えば起動時において第1開閉弁32を閉止し、第2開閉弁34を開放することで、加湿器28を経由せず、バイパス空気経路72を経由して改質器10に空気を供給する。第1開閉弁32および第2開閉弁34は、全開と全閉とが選択される開閉弁のみならず、例えば開度を連続的に調整できる流量調整弁であってもよい。
 第1切替器33は、必ずしも第1開閉弁32と第2開閉弁34とを備えている必要はなく、例えば三方弁で構成されていてもよい。
 第1切替器33は、例えば、制御器により制御されうる。この場合の制御器の構成は、本実施形態の変形例と同様としうるので、詳細な説明を省略する。
 以上の点を除けば、第4実施形態の固体酸化物形燃料電池システム300の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図5とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム300の装置構成および動作に関する詳細な説明を省略する。
 起動時には、改質器10および固体酸化物形燃料電池12等の温度を上昇させる必要がある。起動時に、改質器10において、酸化的水蒸気改質反応よりも発熱量の大きい、部分酸化改質反応(Partial Oxidation Reforming)を進行させることができれば、起動時間を短縮できる。本実施形態では、起動時に、第1切替器33により、バイパス空気経路72を経由して改質器10に空気を供給することで、加湿されていない空気が改質器10に供給される。よって、起動時に改質器10で部分酸化改質反応を進行させて、発熱量を大きくし、起動時間を短縮できる。
 例えば、改質器10および固体酸化物形燃料電池12等の温度が発電運転可能な温度になった時に、第1切替器33により、加湿器28を経由して改質器10に空気を供給することで、加湿された空気が改質器10に供給される。かかる制御により、発電運転時には改質器で酸化的水蒸気改質反応が進行し、効率よく水素含有ガスを生成できる。
 第4実施形態においても、第2実施形態および第3実施形態と同様の変形が可能である。
 [変形例]
 第4実施形態の変形例にかかる固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態または第4実施形態の固体酸化物形燃料電池システムであって、さらに、起動時に凝縮水ポンプを停止させる制御器を備えている。
 かかる構成では、起動時間を短縮できる。
 図6は、第4実施形態の変形例にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図6に例示するように、第4実施形態の変形例にかかる固体酸化物形燃料電池システム300Aは、制御器36を備えている。
 制御器36は、起動時に凝縮水ポンプ24を停止させる。制御器36は、凝縮水ポンプ24と通信可能に接続されていてもよい。制御器36は、制御機能を有するものであればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備えている。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリーが例示される。制御器は、集中制御を行う単独の制御器で構成されていてもよく、互いに協働して分散制御を行う複数の制御器で構成されていてもよい。
 以上の点を除けば、第4実施形態の変形例にかかる固体酸化物形燃料電池システム300Aの装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図6とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム300Aの装置構成および動作に関する詳細な説明を省略する。
 本変形例も、第4実施形態と同様、起動時に、改質器10において、酸化的水蒸気改質反応よりも発熱量の大きい、部分酸化改質反応を進行させて、起動時間を短縮するものである。本変形例では、起動時に、制御器36により、凝縮水ポンプ24の動作を停止させる。ポンプが停止すると、凝縮水-オフガス熱交換器26における凝縮水の加熱が進行せず、凝縮水循環経路20内の凝縮水の温度は、ポンプが動作する場合よりも低くなる。よって、加湿器28での空気の加湿も進行しにくくなり、加湿されていない空気が改質器10に供給される。よって、起動時に改質器10で部分酸化改質反応を進行させて、発熱量を大きくし、起動時間を短縮できる。
 例えば、改質器10および固体酸化物形燃料電池12等の温度が発電運転可能な温度になった時に、制御器36により、凝縮水ポンプ24の動作が開始され、加湿された空気が改質器10に供給される。かかる制御により、発電運転時には改質器で酸化的水蒸気改質反応が進行し、効率よく水素含有ガスを生成できる。
 本変形例は、第3実施形態および第4実施形態にも適用可能である。
 (第5実施形態)
 第5実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態または第4実施形態またはその変形例の固体酸化物形燃料電池システムであって、アノードオフガスとカソードオフガスとを燃焼させて燃焼ガスを生成する燃焼器を備え、凝縮水-オフガス熱交換器において熱交換に用いられるオフガスは、燃焼器から排出される燃焼ガスである。
 かかる構成では、加湿器から排出される空気の露点を上昇させることができる。
 図7は、第5実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図7に例示するように、第5実施形態の固体酸化物形燃料電池システム400は、燃焼器38を備えている。
 燃焼器38は、アノードオフガスとカソードオフガスとを燃焼させて燃焼ガスを生成する。図2に示す例では、燃焼器38は、その上流側がカソードオフガス経路70とアノードオフガス経路64とに接続され、その下流側が燃焼ガス経路76に接続されている。燃焼器38は例えばバーナで構成されうる。燃焼器38は、アノードオフガス経路64を介してアノード14から供給されるアノードオフガスと、カソードオフガス経路70を介してカソード16から供給されるカソードオフガスとを混合して燃焼させる。該燃焼によって生成された燃焼ガスは、燃焼ガス経路76を介して固体酸化物形燃料電池システム400の外部へと排出される。燃焼ガスは、固体酸化物形燃料電池12から排出されるオフガスの一例である。
 固体酸化物形燃料電池システム400において、凝縮水-オフガス熱交換器26は、燃焼ガス経路76に設けられる。凝縮水-オフガス熱交換器26は、燃焼器38から排出される燃焼ガスと凝縮水との間で熱交換を行わせる。
 以上の点を除けば、第5実施形態の固体酸化物形燃料電池システム400の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図7とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム400の装置構成および動作に関する詳細な説明を省略する。
 固体酸化物形燃料電池システム400では、燃焼器38でアノードオフガスとカソードオフガスとが燃焼されるため、凝縮水-オフガス熱交換器26に供給されるオフガス(燃焼ガス)の温度を高くすることができる。凝縮水-オフガス熱交換器26における熱交換量を増大でき、かつ、凝縮水-オフガス熱交換器26から排出される凝縮水の温度を上昇させることができる。よって、所望の熱交換量を実現しながら熱交換器を小さくすることができ、あるいは、加湿器28から排出される空気の露点を上昇させることができる。
 第5実施形態においても、第2実施形態および第3実施形態および第4実施形態と同様の変形が可能である。本実施形態と、第2実施形態およびその変形例とを組み合わせてもよい。例えば、凝縮水とカソードオフガスとの熱交換と、凝縮水と燃焼ガスとの熱交換との、両方が行われてもよい。凝縮水とアノードオフガスとの熱交換と、凝縮水と燃焼ガスとの熱交換との、両方が行われてもよい。凝縮水とカソードオフガスとの熱交換と、凝縮水とアノードオフガスとの熱交換と、凝縮水と燃焼ガスとの熱交換との、全部が行われてもよい。
 (第6実施形態)
 第6実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態または第4実施形態またはその変形例または第5実施形態の固体酸化物形燃料電池システムであって、アノードオフガス放熱器は、液体の冷媒とアノードオフガスとを熱交換させることでアノードオフガスを放熱させるように構成され、さらに、凝縮水タンクの貯水量を検出する貯水量検出器と、冷媒を循環させる冷媒循環経路と、冷媒循環経路に設けられ、冷媒を循環させる冷媒ポンプと、冷媒循環経路に設けられ、冷媒と大気とを熱交換させることで冷媒を放熱させる冷媒放熱器と、貯水量検出器の検出結果に基づいて冷媒ポンプの吐出量を調整する制御器と、を備えている。
 かかる構成では、凝縮水タンクの貯水量に応じて、凝縮水の生成量を適切に制御できる。
 図8は、第6実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図8に例示するように、第6実施形態の固体酸化物形燃料電池システム500は、貯水量検出器40と、冷媒循環経路78と、冷媒ポンプ42と、冷媒放熱器44と、制御器36とを備えている。
 本実施形態において、アノードオフガス放熱器18は、液体の冷媒とアノードオフガスとを熱交換させることでアノードオフガスを放熱させるように構成されている。
 貯水量検出器40は、凝縮水タンクの貯水量を検出する。貯水量検出器40は、具体的には例えば、水位センサ等で構成されうる。
 冷媒循環経路78は、冷媒を循環させる。図8に示す例において、冷媒循環経路78は、配管等により構成され、アノードオフガス放熱器18を起点とすると、冷媒放熱器44と、冷媒ポンプ42とをこの順に接続し、終点がアノードオフガス放熱器18に接続されている。なお、図8に示す例では、冷媒ポンプ42は、冷媒放熱器44の下流かつアノードオフガス放熱器18の上流に設けられているが、冷媒ポンプ42は、アノードオフガス放熱器18の下流かつ冷媒放熱器44の上流に設けられていてもよい。
 冷媒には、例えば、水および不凍液等を用いることができる。
 冷媒ポンプ42は、冷媒循環経路78に設けられ、冷媒を循環させる。冷媒ポンプ42が動作することにより、冷媒は、冷媒循環経路78を循環する。すなわち、冷媒ポンプ42から送出された冷媒は、アノードオフガス放熱器18と、冷媒放熱器44とをこの順に通って、冷媒ポンプ42へと戻るように循環する。
 冷媒ポンプ42としては、例えば、プランジャ式ポンプ、および、マグネット式ポンプ等を用いることができる。
 冷媒放熱器44は、冷媒循環経路78に設けられ、冷媒と大気とを熱交換させることで冷媒を放熱させる。放熱方法は、例えば、冷媒をラジエタ等により大気で冷却する方式であってもよい。冷媒放熱器44としては、例えば、フィンアンドチューブ式の熱交換器等を用いることができる。
 制御器36は、貯水量検出器40の検出結果に基づいて冷媒ポンプ42の吐出量を調整する。制御器36は、貯水量検出器40および冷媒ポンプ42と通信可能に接続されていてもよい。制御器36の構成については、上記の点を除き、第4実施形態の変形例と同様とすることができるので、詳細な説明を省略する。
 以上の点を除けば、第6実施形態の変形例にかかる固体酸化物形燃料電池システム500の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図8とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム500の装置構成および動作に関する詳細な説明を省略する。
 本実施形態では、制御器36が、貯水量検出器40の検出結果に基づいて冷媒ポンプ42の吐出量を調整する。かかる構成では、凝縮水タンク22の貯水量に応じて、凝縮水の生成量を適切に制御できる。
 具体的には、例えば、凝縮水タンク22の貯水量が少ない時には、冷媒ポンプ42の吐出量を大きくして、アノードオフガス放熱器18における熱交換量を増大させる。かかる制御により、アノードオフガスの冷却量が増大し、凝縮水の生成量を増やすことができる。
 あるいは、例えば、凝縮水タンク22の貯水量が多い時には、冷媒ポンプ42の吐出量を小さくして、アノードオフガス放熱器18における熱交換量を減少させる。かかる制御により、アノードオフガスの冷却量が低下し、凝縮水の生成量を減らすことができる。
 このように、本実施形態では、凝縮水タンク22の貯水量に応じて、凝縮水の生成量を適切に制御できる。
 第6実施形態においても、第2実施形態および第3実施形態および第4実施形態および第5実施形態と同様の変形が可能である。
 (第7実施形態)
 第7実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態または第4実施形態またはその変形例または第5実施形態または第6実施形態の固体酸化物形燃料電池システムであって、凝縮水循環経路は、凝縮水-オフガス熱交換器をバイパスして凝縮水を循環させる熱交換器バイパス経路と、凝縮水が凝縮水-オフガス熱交換器を通じて循環するか、熱交換器バイパス経路を通じて循環するか、を切替える第2切替器と、を備えている。
 「凝縮水が凝縮水-オフガス熱交換器を通じて循環するか、熱交換器バイパス経路を通じて循環するか、を切替える」とは、凝縮水の全部が凝縮水-オフガス熱交換器を通じて循環するか、凝縮水の全部が熱交換器バイパス経路を通じて循環するか、をON-OFFで切り替える場合のみならず、凝縮水が凝縮水-オフガス熱交換器を通じて循環する流量と、凝縮水が熱交換器バイパス経路を通じて循環する流量との比率を変化させることも含む。
 かかる構成では、加湿器から排出される空気の露点を容易に調整できる。
 図9は、第7実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図9に例示するように、第7実施形態の固体酸化物形燃料電池システム600において、凝縮水循環経路20は、熱交換器バイパス経路80と、第2切替器47とを備えている。
 熱交換器バイパス経路80は、凝縮水-オフガス熱交換器26をバイパスして凝縮水を循環させる。図9に示す例では、熱交換器バイパス経路80は、凝縮水-オフガス熱交換器26の上流側の凝縮水循環経路20から分岐して、凝縮水-オフガス熱交換器26を介さずに、凝縮水-オフガス熱交換器26の下流側の凝縮水循環経路20に合流するように構成されている。
 第2切替器47は、凝縮水が凝縮水-オフガス熱交換器26を通じて循環するか、熱交換器バイパス経路80を通じて循環するか、を切替える。
 図9に示す例では、第2切替器47は、第3開閉弁46と第4開閉弁48とを備えている。熱交換器バイパス経路80は、凝縮水タンク22と凝縮水-オフガス熱交換器26とを接続する凝縮水循環経路20に設けられた分岐部から分岐する。第3開閉弁46は、該分岐部から凝縮水-オフガス熱交換器26に至る凝縮水循環経路20に設けられている。第4開閉弁48は、熱交換器バイパス経路80に設けられている。
 第2切替器47は、加湿器28に供給される凝縮水の温度を上昇させる場合には、例えば第3開閉弁46を開放し、第4開閉弁48を閉止することで、凝縮水を、熱交換器バイパス経路80ではなく、凝縮水-オフガス熱交換器26を通じて循環させる。
 第2切替器47は、加湿器28に供給される凝縮水の温度を低下させる場合には、第3開閉弁46を閉止し、第4開閉弁48を開放することで、凝縮水を、凝縮水-オフガス熱交換器26ではなく、熱交換器バイパス経路80を通じて循環させる。
 第3開閉弁46および第4開閉弁48は、全開と全閉とが選択される開閉弁のみならず、例えば開度を連続的に調整できる流量調整弁であってもよい。かかる構成では、凝縮水-オフガス熱交換器26を通じて循環する凝縮水の流量と、熱交換器バイパス経路80を通じて循環する凝縮水の流量との比率を変化させることで、加湿器28に供給される凝縮水の温度をさらに効果的に制御できる。
 第2切替器47は、必ずしも第3開閉弁46と第4開閉弁48とを備えている必要はなく、例えば三方弁で構成されていてもよい。あるいは第2切替器47は、第3開閉弁46および第4開閉弁48のいずれか一方のみで構成されていてもよい。
 第2切替器47は、例えば、制御器により制御されうる。この場合の制御器の構成は、第4実施形態の変形例と同様としうるので、詳細な説明を省略する。
 以上の点を除けば、第7実施形態の固体酸化物形燃料電池システム600の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図9とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム600の装置構成および動作に関する詳細な説明を省略する。
 本実施形態では、第2切替器47により、凝縮水-オフガス熱交換器26における凝縮水の加熱量を調整することで、加湿器28に供給される凝縮水の温度を容易に制御できる。よって、加湿器28から排出される空気の露点を容易に調整できる。
 第7実施形態においても、第2実施形態および第3実施形態および第4実施形態および第5実施形態および第6実施形態と同様の変形が可能である。
 (第8実施形態)
 第8実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態または第4実施形態またはその変形例または第5実施形態または第6実施形態または第7実施形態の固体酸化物形燃料電池システムであって、凝縮水循環経路は、加湿器をバイパスして凝縮水を循環させる加湿器バイパス経路と、凝縮水が加湿器を通じて循環するか、加湿器バイパス経路を通じて循環するか、を切替える第3切替器と、を備えている。
 「凝縮水が加湿器を通じて循環するか、加湿器バイパス経路を通じて循環するか、を切替える」とは、凝縮水の全部が加湿器を通じて循環するか、凝縮水の全部が加湿器バイパス経路を通じて循環するか、をON-OFFで切り替える場合のみならず、凝縮水が加湿器を通じて循環する流量と、凝縮水が加湿器バイパス経路を通じて循環する流量との比率を変化させることも含む。
 かかる構成では、加湿器から排出される空気の露点を容易に調整できる。
 図10は、第8実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図10に例示するように、第8実施形態にかかる固体酸化物形燃料電池システム700において、凝縮水循環経路20は、加湿器バイパス経路82と、第3切替器51とを備えている。
 加湿器バイパス経路82は、加湿器28をバイパスして凝縮水を循環させる。図10に示す例では、熱交換器バイパス経路80は、加湿器28の上流側の凝縮水循環経路20から分岐して、加湿器28を介さずに、加湿器28の下流側の凝縮水循環経路20に合流するように構成されている。
 第3切替器51は、凝縮水が加湿器28を通じて循環するか、加湿器バイパス経路82を通じて循環するか、を切替える。
 図10に示す例では、第3切替器51は、第5開閉弁50と第6開閉弁52とを備えている。加湿器バイパス経路82は、凝縮水-オフガス熱交換器26と加湿器28とを接続する凝縮水循環経路20に設けられた分岐部から分岐する。第5開閉弁50は、該分岐部から加湿器28に至る凝縮水循環経路20に設けられている。第6開閉弁52は、加湿器バイパス経路82に設けられている。
 第3切替器51は、加湿器28に供給される凝縮水の流量を増加させる場合には、例えば第5開閉弁50を開放し、第6開閉弁52を閉止することで、凝縮水を、加湿器バイパス経路82ではなく、加湿器28を通じて循環させる。
 第3切替器51は、加湿器28に供給される凝縮水の流量を減少させる場合には、例えば第5開閉弁50を閉止し、第6開閉弁52を開放することで、凝縮水を、加湿器28ではなく、加湿器バイパス経路82を通じて循環させる。
 第5開閉弁50および第6開閉弁52は、全開と全閉とが選択される開閉弁のみならず、例えば開度を連続的に調整できる流量調整弁であってもよい。かかる構成では、加湿器28を通じて循環する凝縮水の流量と、加湿器バイパス経路82を通じて循環する凝縮水の流量との比率を変化させることで、加湿器28に供給される凝縮水の流量をさらに効果的に制御できる。
 第3切替器51は、必ずしも第5開閉弁50と第6開閉弁52とを備えている必要はなく、例えば三方弁で構成されていてもよい。あるいは第3切替器51は、第5開閉弁50および第6開閉弁52のいずれか一方のみで構成されていてもよい。
 第3切替器51は、例えば、制御器により制御されうる。この場合の制御器の構成は、第4実施形態の変形例と同様としうるので、詳細な説明を省略する。
 以上の点を除けば、第8実施形態の固体酸化物形燃料電池システム700の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図10とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム700の装置構成および動作に関する詳細な説明を省略する。
 本実施形態では、第3切替器51により、加湿器28へ供給される凝縮水の流量を調整することで、加湿器28から排出される空気の露点を容易に調整できる。
 第8実施形態においても、第2実施形態および第3実施形態および第4実施形態および第5実施形態および第6実施形態および第7実施形態と同様の変形が可能である。
 (第9実施形態)
 第9実施形態の固体酸化物形燃料電池システムは、第2実施形態またはその変形例または第3実施形態または第4実施形態またはその変形例または第5実施形態または第6実施形態または第7実施形態または第8実施形態の固体酸化物形燃料電池システムであって、さらに、凝縮水タンクに貯溜されている凝縮水のイオン濃度を検出するイオン濃度検出器と、報知器と、イオン濃度検出器の検出結果に基づいて報知器により警報を発する制御器と、を備えている。
 かかる構成では、加湿器や熱交換器において塩等が析出する可能性を低減できる。
 図11は、第9実施形態にかかる固体酸化物形燃料電池システムの概略構成の一例を示すブロック図である。
 図11に例示するように、第9実施形態にかかる固体酸化物形燃料電池システム800は、イオン濃度検出器54と、報知器56と、制御器36とを備えている。
 イオン濃度検出器54は、凝縮水タンク22に貯溜されている凝縮水のイオン濃度を検出する。イオン濃度検出器54としては、例えば、凝縮水タンク22の内部に配置されたセンサを備える電気伝導度計等を用いることができる。
 報知器56は、例えば、ブザー、無線を通じて警報信号を送信する送信機等を用いることができる。
 制御器36は、イオン濃度検出器54の検出結果に基づいて報知器56により警報を発する。制御器36は、イオン濃度検出器54および報知器56と通信可能に接続されていてもよい。制御器36は、例えば、イオン濃度検出器54により検出されたイオン濃度が20mS以上である場合に、報知器56を制御して、警報を発してもよい。制御器36は、さらに、かかる警報が発生された場合に、凝縮水タンク22に貯溜された凝縮水を固体酸化物形燃料電池システム800の外部に排出し、固体酸化物形燃料電池システム100の外部にある上水インフラストラクチャから供給される上水を凝縮水タンク22に供給してもよい。制御器36の構成については、上記の点を除き、第4実施形態の変形例と同様とすることができるので、詳細な説明を省略する。
 以上の点を除けば、第9実施形態の固体酸化物形燃料電池システム800の装置構成および動作は、第2実施形態の固体酸化物形燃料電池システム100と同様とすることができる。よって、図2と図11とで共通する構成要素については、同一の符号および名称を付して、固体酸化物形燃料電池システム800の装置構成および動作に関する詳細な説明を省略する。
 本実施形態では、イオン濃度検出器54と報知器56と制御器36とにより、凝縮水循環経路20内の水のイオン濃度が過度に高くなる可能性を低減できる。よって、加湿器28や凝縮水-オフガス熱交換器26等において塩等が析出する可能性を低減できる。
 第9実施形態においても、第2実施形態および第3実施形態および第4実施形態および第5実施形態および第6実施形態および第7実施形態および第8実施形態と同様の変形が可能である。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の一態様は、上水を供給するインフラストラクチャが不十分であり、かつ、気温が高くなりやすい環境において、従来より安定して電力を供給できる固体酸化物形燃料電池システムとして有用である。
 10 改質器
 12 固体酸化物形燃料電池
 14 アノード
 16 カソード
 18 アノードオフガス放熱器
 20 凝縮水循環経路
 22 凝縮水タンク
 24 凝縮水ポンプ
 26 凝縮水-オフガス熱交換器
 27 改質水ポンプ
 28 加湿器
 30 凝縮水放熱器
 32 第1開閉弁
 33 第1切替器
 34 第2開閉弁
 36 制御器
 38 燃焼器
 40 貯水量検出器
 42 冷媒ポンプ
 44 冷媒放熱器
 46 第3開閉弁
 47 第2切替器
 48 第4開閉弁
 50 第5開閉弁
 51 第3切替器
 52 第6開閉弁
 54 イオン濃度検出器
 56 報知器
 60 原料経路
 61 改質水経路
 62 空気経路
 64 アノードオフガス経路
 66 凝縮水供給経路
 68 カソードガス経路
 70 カソードオフガス経路
 72 バイパス空気経路
 76 燃焼ガス経路
 78 冷媒循環経路
 80 熱交換器バイパス経路
 82 加湿器バイパス経路
 100、100A、200、300、300A、400、500、600、700、800 固体酸化物形燃料電池システム

Claims (13)

  1.  原料と水とを用いて水素含有ガスを生成する改質器と、
     アノードとカソードとを備える固体酸化物形燃料電池であって、前記改質器から前記アノードへ供給される前記水素含有ガスと、前記カソードへ供給される空気とを用いて発電する固体酸化物形燃料電池と、
     前記アノードから排出されるアノードオフガス、および、前記アノードオフガスを燃焼させて得られる燃焼排ガス、の少なくともいずれか一方を放熱させて凝縮水を生成する放熱器と、
     前記放熱器から供給される前記凝縮水を循環させる凝縮水循環経路と、
     前記凝縮水循環経路に設けられ、前記凝縮水を貯溜する凝縮水タンクと、
     前記凝縮水循環経路に設けられ、前記凝縮水を循環させる凝縮水ポンプと、
     前記凝縮水循環経路に設けられ、前記凝縮水と前記固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器と、を備え、
     前記改質器に供給される前記水の少なくとも一部は前記凝縮水である、
     固体酸化物形燃料電池システム。
  2.  加湿された空気と原料とを用いて水素含有ガスを生成する改質器と、
     アノードとカソードとを備える固体酸化物形燃料電池であって、前記改質器から前記アノードへ供給される前記水素含有ガスと、前記カソードへ供給される空気とを用いて発電する固体酸化物形燃料電池と、
     前記アノードから排出されるアノードオフガスを放熱させて凝縮水を生成するアノードオフガス放熱器と、
     前記アノードオフガス放熱器から供給される前記凝縮水を循環させる凝縮水循環経路と、
     前記凝縮水循環経路に設けられ、前記凝縮水を貯溜する凝縮水タンクと、
     前記凝縮水循環経路に設けられ、前記凝縮水を循環させる凝縮水ポンプと、
     前記凝縮水循環経路に設けられ、前記凝縮水と前記固体酸化物形燃料電池から排出されるオフガスとの間で熱交換を行わせる凝縮水-オフガス熱交換器と、
     前記凝縮水循環経路に設けられ、前記凝縮水を用いて空気を加湿することで前記改質器に供給される前記加湿された空気を生成する加湿器と、
     を備える、固体酸化物形燃料電池システム。
  3.  前記凝縮水ポンプの最小吐出量が50g/分以上である、請求項2に記載の固体酸化物形燃料電池システム。
  4.  前記凝縮水-オフガス熱交換器において熱交換に用いられるオフガスは、前記カソードから排出されるカソードオフガスである、請求項2または3に記載の固体酸化物形燃料電池システム。
  5.  前記凝縮水-オフガス熱交換器において熱交換に用いられるオフガスは、前記アノードから排出されるアノードオフガスである、請求項2または3に記載の固体酸化物形燃料電池システム。
  6.  さらに、前記凝縮水循環経路において、前記加湿器の下流かつ前記凝縮水タンクの上流に設けられ、前記凝縮水を放熱させる凝縮水放熱器を備える、請求項2ないし5のいずれかに記載の固体酸化物形燃料電池システム。
  7.  さらに、前記加湿器をバイパスすることで加湿されない空気を前記改質器に供給するバイパス空気経路と、
     前記加湿器を経由して前記改質器に空気を供給するか、前記バイパス空気経路を経由して前記改質器に空気を供給するか、を切り替える第1切替器と、を備える、請求項2ないし6のいずれかに記載の固体酸化物形燃料電池システム。
  8.  さらに、起動時に前記凝縮水ポンプを停止させる制御器を備える、請求項2ないし7のいずれかに記載の固体酸化物形燃料電池システム。
  9.  前記アノードオフガスと前記カソードオフガスとを燃焼させて燃焼ガスを生成する燃焼器を備え、
     前記凝縮水-オフガス熱交換器において熱交換に用いられるオフガスは、前記燃焼器から排出される前記燃焼ガスである、請求項2ないし8のいずれかに記載の固体酸化物形燃料電池システム。
  10.  前記アノードオフガス放熱器は、液体の冷媒と前記アノードオフガスとを熱交換させることで前記アノードオフガスを放熱させるように構成され、
     さらに、
     前記凝縮水タンクの貯水量を検出する貯水量検出器と、
     前記冷媒を循環させる冷媒循環経路と、
     前記冷媒循環経路に設けられ、前記冷媒を循環させる冷媒ポンプと、
     前記冷媒循環経路に設けられ、前記冷媒と大気とを熱交換させることで前記冷媒を放熱させる冷媒放熱器と、
     前記貯水量検出器の検出結果に基づいて前記冷媒ポンプの吐出量を調整する制御器と、
     を備える、請求項2ないし9のいずれかに記載の固体酸化物形燃料電池システム。
  11.  前記凝縮水循環経路は、
      前記凝縮水-オフガス熱交換器をバイパスして前記凝縮水を循環させる熱交換器バイパス経路と、
      前記凝縮水が前記凝縮水-オフガス熱交換器を通じて循環するか、前記熱交換器バイパス経路を通じて循環するか、を切替える第2切替器と、を備える、請求項2ないし10のいずれかに記載の固体酸化物形燃料電池システム。
  12.  前記凝縮水循環経路は、
      前記加湿器をバイパスして前記凝縮水を循環させる加湿器バイパス経路と、
      前記凝縮水が前記加湿器を通じて循環するか、前記加湿器バイパス経路を通じて循環するか、を切替える第3切替器と、を備える、請求項2ないし10のいずれかに記載の固体酸化物形燃料電池システム。
  13.  さらに、前記凝縮水タンクに貯溜されている凝縮水のイオン濃度を検出するイオン濃度検出器と、
     報知器と、
     前記イオン濃度検出器の検出結果に基づいて前記報知器により警報を発する制御器と、
     を備える、請求項1ないし11のいずれかに記載の固体酸化物形燃料電池システム。
PCT/JP2013/002561 2012-06-28 2013-04-16 固体酸化物形燃料電池システム WO2014002345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13810600.0A EP2869379B1 (en) 2012-06-28 2013-04-16 Solid oxide fuel cell system
JP2013533047A JP5380633B1 (ja) 2012-06-28 2013-04-16 固体酸化物形燃料電池システム
IN2077MUN2014 IN2014MN02077A (ja) 2012-06-28 2013-04-16
US14/395,389 US20150118589A1 (en) 2012-06-28 2013-04-16 Solid oxide fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012145875 2012-06-28
JP2012-145875 2012-06-28

Publications (1)

Publication Number Publication Date
WO2014002345A1 true WO2014002345A1 (ja) 2014-01-03

Family

ID=49782552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002561 WO2014002345A1 (ja) 2012-06-28 2013-04-16 固体酸化物形燃料電池システム

Country Status (5)

Country Link
US (1) US20150118589A1 (ja)
EP (1) EP2869379B1 (ja)
JP (1) JP5380633B1 (ja)
IN (1) IN2014MN02077A (ja)
WO (1) WO2014002345A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105700A (ja) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 水素生成システムおよび燃料電池システム
JP2018060775A (ja) * 2016-09-30 2018-04-12 アイシン精機株式会社 燃料電池システム
JP2018107098A (ja) * 2016-12-28 2018-07-05 東京瓦斯株式会社 燃料電池システム、及び二酸化炭素分離方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6534116B2 (ja) * 2015-05-22 2019-06-26 パナソニックIpマネジメント株式会社 固体酸化物形燃料電池システム
JP6887090B2 (ja) * 2016-10-13 2021-06-16 パナソニックIpマネジメント株式会社 水素生成システムおよび燃料電池システム
CN210245634U (zh) * 2019-08-14 2020-04-03 潍柴动力股份有限公司 Sofc水管理系统及新能源汽车

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141095A (ja) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd 固体高分子形燃料電池システムおよびその運転方法
JP2004311451A (ja) * 2004-07-26 2004-11-04 Sanyo Electric Co Ltd 燃料電池用水素製造装置および燃料電池用水素製造方法
JP2005129237A (ja) * 2003-10-21 2005-05-19 Matsushita Electric Ind Co Ltd 燃料電池システムの水処理装置
JP2005158501A (ja) * 2003-11-26 2005-06-16 Ebara Ballard Corp 触媒燃焼装置及び燃料電池コージェネレーションシステム
JP2005276757A (ja) * 2004-03-26 2005-10-06 Ebara Ballard Corp 燃料電池コジェネレーションシステム
JP2005317405A (ja) * 2004-04-30 2005-11-10 Kyocera Corp 燃料電池構造体の運転方法
JP2005317489A (ja) 2004-03-29 2005-11-10 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2006093157A (ja) * 2000-03-23 2006-04-06 Sanyo Electric Co Ltd 固体高分子型燃料電池システム
WO2006088053A1 (ja) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. 燃料電池システム及びその運転方法
WO2006137390A1 (ja) * 2005-06-20 2006-12-28 Kyocera Corporation 固体酸化物形燃料電池システム
JP2009140695A (ja) * 2007-12-05 2009-06-25 Hitachi Ltd 燃料電池の排熱回収システムおよび方法
US7858256B2 (en) 2005-05-09 2010-12-28 Bloom Energy Corporation High temperature fuel cell system with integrated heat exchanger network
JP2012104321A (ja) * 2010-11-09 2012-05-31 Osaka Gas Co Ltd 燃料電池発電システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242118B1 (en) * 1999-10-14 2001-06-05 International Fuel Cells Llc Method and apparatus for removing contaminants from the coolant supply of a fuel cell power plant
JP5092186B2 (ja) * 2001-03-09 2012-12-05 パナソニック株式会社 燃料電池コージェネシステム
US6868677B2 (en) * 2001-05-24 2005-03-22 Clean Energy Systems, Inc. Combined fuel cell and fuel combustion power generation systems
US6740435B2 (en) * 2001-08-06 2004-05-25 Utc Fuel Cells, Llc System and method for preparing fuel for fuel processing system
US8367256B2 (en) * 2008-01-09 2013-02-05 Fuelcell Energy, Inc. Water recovery assembly for use in high temperature fuel cell systems
EP2509145A4 (en) * 2009-12-01 2017-04-05 Panasonic Corporation Fuel cell system and method of controlling fuel cell system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093157A (ja) * 2000-03-23 2006-04-06 Sanyo Electric Co Ltd 固体高分子型燃料電池システム
JP2002141095A (ja) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd 固体高分子形燃料電池システムおよびその運転方法
JP2005129237A (ja) * 2003-10-21 2005-05-19 Matsushita Electric Ind Co Ltd 燃料電池システムの水処理装置
JP2005158501A (ja) * 2003-11-26 2005-06-16 Ebara Ballard Corp 触媒燃焼装置及び燃料電池コージェネレーションシステム
JP2005276757A (ja) * 2004-03-26 2005-10-06 Ebara Ballard Corp 燃料電池コジェネレーションシステム
JP2005317489A (ja) 2004-03-29 2005-11-10 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2005317405A (ja) * 2004-04-30 2005-11-10 Kyocera Corp 燃料電池構造体の運転方法
JP2004311451A (ja) * 2004-07-26 2004-11-04 Sanyo Electric Co Ltd 燃料電池用水素製造装置および燃料電池用水素製造方法
WO2006088053A1 (ja) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. 燃料電池システム及びその運転方法
US7858256B2 (en) 2005-05-09 2010-12-28 Bloom Energy Corporation High temperature fuel cell system with integrated heat exchanger network
WO2006137390A1 (ja) * 2005-06-20 2006-12-28 Kyocera Corporation 固体酸化物形燃料電池システム
JP2009140695A (ja) * 2007-12-05 2009-06-25 Hitachi Ltd 燃料電池の排熱回収システムおよび方法
JP2012104321A (ja) * 2010-11-09 2012-05-31 Osaka Gas Co Ltd 燃料電池発電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105700A (ja) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 水素生成システムおよび燃料電池システム
JP2018060775A (ja) * 2016-09-30 2018-04-12 アイシン精機株式会社 燃料電池システム
JP2018107098A (ja) * 2016-12-28 2018-07-05 東京瓦斯株式会社 燃料電池システム、及び二酸化炭素分離方法

Also Published As

Publication number Publication date
JPWO2014002345A1 (ja) 2016-05-30
EP2869379A4 (en) 2015-07-29
EP2869379A1 (en) 2015-05-06
US20150118589A1 (en) 2015-04-30
IN2014MN02077A (ja) 2015-08-21
JP5380633B1 (ja) 2014-01-08
EP2869379B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP5380633B1 (ja) 固体酸化物形燃料電池システム
US8293416B2 (en) Fuel cell system
US9318761B2 (en) Cogeneration system
JP5528451B2 (ja) 燃料電池装置
JP2018110122A (ja) 燃料電池システム
KR100724017B1 (ko) 연료 전지 시스템과 그의 운전 방법
JP2013229203A (ja) 固体酸化物形燃料電池システム
TWI323953B (ja)
JP2014089919A (ja) 固体酸化物形燃料電池システム
JP2013105612A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2011023168A (ja) 燃料電池システム
JP2010272288A (ja) 燃料電池システム
JP2009021047A (ja) 屋内設置式燃料電池発電システム
JP2000156236A (ja) 固体高分子型燃料電池システム
JP2017068913A (ja) 燃料電池システム
US7531259B2 (en) Fuel cell cooling and water management system
JP2015041443A (ja) 固体酸化物形燃料電池システム
WO2012153484A1 (ja) 燃料電池システム及びその運転方法
JP2014182923A (ja) 燃料電池システム及びその運転方法
JP2017069104A (ja) 燃料電池システム
JP2005317489A (ja) 固体酸化物形燃料電池システム
JP2007242493A (ja) 燃料電池システムおよびその運転停止方法
JP2010198896A (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2006179346A (ja) 燃料電池発電システム及びその運転方法
KR101295237B1 (ko) 연료전지 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013533047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14395389

Country of ref document: US

Ref document number: 2013810600

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE