WO2006088053A1 - 燃料電池システム及びその運転方法 - Google Patents

燃料電池システム及びその運転方法 Download PDF

Info

Publication number
WO2006088053A1
WO2006088053A1 PCT/JP2006/302643 JP2006302643W WO2006088053A1 WO 2006088053 A1 WO2006088053 A1 WO 2006088053A1 JP 2006302643 W JP2006302643 W JP 2006302643W WO 2006088053 A1 WO2006088053 A1 WO 2006088053A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fuel cell
water tank
cell system
recovered
Prior art date
Application number
PCT/JP2006/302643
Other languages
English (en)
French (fr)
Inventor
Masao Yamamoto
Masataka Ozeki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007503680A priority Critical patent/JP4971130B2/ja
Priority to US11/884,620 priority patent/US20090130529A1/en
Publication of WO2006088053A1 publication Critical patent/WO2006088053A1/ja
Priority to US12/764,627 priority patent/US8445158B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates electricity while being supplied with hydrogen and oxygen and being cooled by cooling water.
  • a fuel cell system capable of high-efficiency small-scale power generation is easy to construct a system for using thermal energy generated during power generation.
  • Development is in progress as a distributed power generation system that can achieve efficiency.
  • the fuel cell system includes a fuel cell as a main body of the power generation unit.
  • This fuel cell is a cell that directly converts chemical energy possessed by fuel (hydrogen) and oxidant (oxygen) into electrical energy by a predetermined electrochemical reaction. Therefore, in the fuel cell system, during power generation operation, hydrogen as fuel and oxygen as oxidant are supplied to the fuel cell, respectively. Then, in the fuel cell, a predetermined electrochemical reaction using the supplied hydrogen and oxygen proceeds, and the chemical energy of hydrogen and oxygen is directly converted into electric energy by the predetermined electrochemical reaction. In addition, heat and water are generated. Then, electric energy generated by a predetermined electrochemical reaction in the fuel cell is supplied toward the fuel cell system power load.
  • the heat generated by the predetermined electrochemical reaction is recovered by the cooling water circulated inside the fuel cell in order to bring the temperature of the fuel cell to a temperature within a predetermined range.
  • the recovered heat is used for hot water supply or the like in a heat exchanger or the like of the fuel cell system.
  • the fuel cell system is provided with a hydrogen generator, and the hydrogen generator generates a reformed gas rich in hydrogen. This reformed gas is supplied to the fuel cell as a substantial fuel.
  • the fuel cell system also includes an air supply device, and air is supplied to the fuel cell as a substantial oxidant by the air supply device.
  • the fuel cell system sets the temperature of the fuel cell that generates heat during power generation operation to a predetermined value.
  • a cooling water tank for storing the cooling water for cooling the fuel cell, and a pump for supplying the cooling water stored in the cooling water tank to the flow path in the fuel cell.
  • the water purification device that purifies the cooling water supplied by this pump before supplying it to the flow path in the fuel cell, and the heat of the cooling water that has been discharged from the fuel cell power for the purpose of hot water supply, etc. And heat exchange for use.
  • the water purification apparatus includes an ion exchange resin (or an ion removal filter) in order to remove conductive ions such as metal ions that may be eluted into the cooling water in heat exchange and fuel cells.
  • the ion exchange resin is supplied with cooling water that has passed through the fuel cell and the heat exchanger ⁇ .
  • This ion exchange resin removes conductive ions such as metal ions eluted in the cooling water, and the cooling water from which these conductive ions have been removed is supplied to the fuel cell. It becomes possible to prevent a short circuit.
  • the ion exchange resins constituting the water purification apparatus have a problem that the heat-resistant temperature is relatively low. This is particularly remarkable when an anion exchange resin is used as the ion exchange resin.
  • the temperature of the fuel cell during power generation operation rises to about 70 ° C to 80 ° C even when a polymer electrolyte fuel cell is used as the fuel cell. Therefore, the temperature of the cooling water circulated by the pump to cool the fuel cell is about 70 ° C to 80 ° C when the heat recovered by the cooling water in the heat exchanger is not fully utilized. Rise up to.
  • This proposed fuel cell system has a cooling water for cooling the fuel cell in order to effectively remove conductive ions eluted in the cooling water without adversely affecting the life of the ion exchange resin.
  • a condensed water tank for storing the collected water, a second pump and water supply path for supplying the water stored in the condensed water tank to the cooling water tank, and water supplied by the second pump.
  • a water purifier that purifies the water before it is supplied to the cooling water tank and a water discharge path for discharging the cooling water surplus in the cooling water tank to the condensed water tank are provided.
  • water stored in the condensate tank is supplied to the second time at the start and end of the power generation operation of the fuel cell system, or at the start or end of the power generation operation.
  • the pump is activated and purified by the water purification device, it is pumped up to the cooling water tank.
  • the second pump is operated, whereby water is circulated between the condensed water tank and the cooling water tank through the water supply path, the water purification device, and the water discharge path.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-141095
  • the power generation operation of the fuel cell system and the water purification operation of the water purification device are inseparably integrated, and the water purification device is stopped when the power generation operation of the fuel cell system is stopped. Since the water purification operation was also stopped, there were cases in which bacteria (ie bacteria) in the water propagated when the power generation operation of the fuel cell system was stopped.
  • the problem of this butterfly breeding is that when the water purification equipment is equipped with activated carbon in addition to ion exchange resin, the activated carbon is the total organic carbon (hereinafter simply referred to as TOC) that nourishes the nocteria.
  • TOC total organic carbon
  • the present invention has been made in view of such circumstances, and is a water supply that effectively suppresses the propagation of bacteria in water during the stop of the power generation operation of the fuel cell system with a simple configuration.
  • the objective is to provide a fuel cell system that is unlikely to cause trouble in its function and purification function.
  • the inventors of the present invention have noticed that the bacteria in the water reproductively grow while the power generation operation of the fuel cell system is stopped. It was found that a part of the water containing bacteria stays inside the activated carbon of the dredger. In order to prevent the bacteria in the water from proliferating significantly while the power generation operation of the fuel cell system is stopped, the bacteria are discharged from the activated carbon of the water purification apparatus that adsorbs and stores a large amount of TOC. In addition, it was found that it is effective to circulate water through the activated carbon of the water purification device at a predetermined cycle and flow rate during the suspension period.
  • a first fuel cell system includes a fuel cell that generates power using an oxidant gas and a fuel gas, and an oxidation gas discharged from the fuel cell.
  • a fuel cell system comprising a water purification device that purifies using a TOC adsorbent incorporated in the fuel cell, and a control device, wherein the control device operates the pump during a stop period of the fuel cell system to provide the water
  • This is a fuel cell system that controls the movement of water in the supply channel.
  • control device controls the water to move in the water supply channel by operating the pump during the stop period of the fuel cell system. Can be suppressed.
  • control device controls the pump to periodically move in the water supply flow path by periodically operating the pump during the stop period.
  • control device operates the pump periodically during the stop period to control the water to regularly move in the water supply channel, so that the propagation of bacteria in the water can be prolonged. It becomes possible to suppress effectively over.
  • control device controls the pump to periodically move the water in the water supply channel by periodically operating the pump at a cycle capable of suppressing bacterial growth during the stop period. To do.
  • control device controls the pump to regularly move in the water supply flow path by periodically operating the pump at a period that can suppress bacterial growth during the stop period. Therefore, it becomes possible to more effectively suppress the propagation of bacteria in water over a long period of time.
  • control device controls the pump to regularly move in the water supply flow path by periodically operating the pump in a period of 72 hours or more and 168 hours or less during the stop period. To do.
  • the control device controls the pump to regularly move in the water supply flow path by periodically operating the pump at a period of 72 hours to 168 hours during the stop period. Therefore, it is possible to practically suppress the propagation of bacteria in the water over a long period of time. In addition, it is possible to effectively suppress the propagation of bacteria in the water and to minimize the load on the ion exchanger of the water purification apparatus.
  • the purified water tank is provided with a cooling water tank for storing the cooling water.
  • the purified water tank is a cooling water tank that stores cooling water, the purity of the water in the cooling water tank can be maintained at a certain level.
  • a second water supply flow path for supplying water from the cooling water tank to the recovered water tank is provided, and the control device performs the pumping operation during the stop period of the fuel cell system.
  • the control device performs the pumping operation during the stop period of the fuel cell system.
  • the water in the cooling water tank passes through the water supply channel and the second water supply channel, and the second water supply channel, the recovered water tank, and the water purifier. Since the water is circulated so as to return to the cooling water tank in order, water can be circulated suitably.
  • a second fuel cell system according to the present invention is the first fuel cell system according to the present invention, further comprising a cooling water tank that stores the cooling water in the purified water tank.
  • the water in the purified water tank can be supplied to the cooling water tank.
  • the cooling water and the purified water can be stored independently, so that water can be circulated appropriately.
  • the apparatus further includes a second pump for supplying water from the purified water tank to the cooling water tank.
  • the configuration is powerful, it is further provided with a second pump for supplying water from the purified water tank to the cooling water tank. It becomes possible to supply the cooling water tank appropriately.
  • a second water supply passage for supplying water from the cooling water tank to the recovered water tank is provided, and the control device is operated before the fuel cell system is stopped.
  • the pump is operated to control the water to circulate between the purified water tank, the cooling water tank, and the recovered water tank through the water supply channel and the second water supply channel.
  • the water in the purified water tank passes through the water supply channel and the second water supply channel, the cooling water tank, the second water supply channel, the recovered water tank, And since it circulates so that it may return to a purified water tank through a water purification apparatus in order, it becomes possible to circulate water suitably.
  • a third water supply channel for supplying water from the purified water tank to the recovered water tank is provided, and the control device is in a period during which the fuel cell system is stopped. Then, the pump is operated to control the water to circulate between the purified water tank and the recovered water tank through the water supply channel and the third water supply channel.
  • the water in the purified water tank and the cooling water in the cooling water tank are separated so as not to be mixed, so that conductive ions such as metal ions contained in the cooling water are supplied to the water purification device. It is possible to prevent the supply.
  • Equation (1) the load on the ion exchanger that the water purifier has can be minimized.
  • the water purification apparatus further includes an ion exchanger.
  • the water purification apparatus power S ion exchanger is further provided, so that the water in the recovered water tank can be effectively purified.
  • the fuel cell system of the embodiment of the present invention there is provided a water supply function that effectively suppresses the propagation of bacteria in water with a simple configuration while the power generation operation of the fuel cell system is stopped, and It is difficult for the purification function to fail! It becomes possible to provide a fuel cell system.
  • FIG. 1 schematically shows a configuration of a fuel cell system according to Embodiment 1 of the present invention. It is a block diagram.
  • FIG. 2 is a block diagram schematically showing a configuration of a fuel cell system according to Embodiment 2 of the present invention.
  • FIG. 3 is a block diagram schematically showing a configuration of a fuel cell system according to Embodiment 3 of the present invention. Explanation of symbols
  • FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 1 of the present invention.
  • the solid lines between the components constituting the fuel cell system indicate the paths through which water, fuel gas, oxidant gas, etc. flow, and the arrows on the solid lines indicate water and fuel. The flow direction during normal operation of gas or oxidant gas is shown. Further, FIG. 1 shows only components necessary for explaining the present invention, and illustration of other components is omitted.
  • a fuel cell system 100 includes a fuel cell 1 as the main body of the power generation unit.
  • the fuel cell 1 is a solid cell.
  • a polymer electrolyte fuel cell is used.
  • This fuel cell 1 is a fuel gas (or reformer) rich in hydrogen that is discharged from a hydrogen generator not shown in FIG. 1 and supplied to the anode side (or fuel electrode side) of the fuel cell 1. Gas) and an oxidant gas (usually air) supplied to the power sword side (or air electrode side) of the fuel cell 1 by an air supply device equipped with a blower or the like not specifically shown in FIG. Then, power generation is performed to output predetermined power.
  • the fuel cell 1 directly transmits the chemical energy possessed by hydrogen in the fuel gas and oxygen in the oxidant gas to the electric energy by a predetermined electrochemical reaction using a predetermined catalyst. Convert. By this energy conversion operation, the fuel cell 1 supplies electric energy (electric power) toward the load connected to the fuel cell system 100.
  • the oxidant gas supplied to the power sword side of the fuel cell 1 uses moisture contained in the oxidant gas after being used for power generation inside the fuel cell 1. Then, it is adjusted to a predetermined humidified state in advance.
  • the humidification of the oxidant gas is insufficient, for example, a part of the cooling water stored in the cooling water tank 4 to be described later is evaporated inside the fuel cell 1, thereby Humidification is adjusted to appropriate humidification.
  • the fuel gas supplied to the anode side of the fuel cell 1 is adjusted to a predetermined humidified state in the hydrogen generator described above.
  • the fuel cell 1 generates heat during the power generation operation.
  • the heat generated in the fuel cell 1 is sequentially recovered by the cooling water supplied to the cooling water channel 1 a formed inside the fuel cell 1.
  • the detailed description of the internal configuration of the fuel cell 1 is omitted here because the internal configuration of the fuel cell 1 and the internal configuration of a general solid polymer fuel cell are the same.
  • the fuel cell system 100 includes a fuel side condenser 2a and an oxidant side condenser 2b.
  • a water condensing mechanism using an air cooling fan is configured in the fuel side condenser 2a and the oxidant side condenser 2b.
  • These fuel-side condenser 2a and oxidant-side condenser 2b are used for surplus fuel gas (hereinafter referred to as exhaust fuel gas) and surplus oxidant gas (hereinafter referred to as exhaust fuel gas) that are not used for power generation discharged from fuel cell 1.
  • exhaust fuel gas surplus fuel gas
  • surplus oxidant gas hereinafter referred to as exhaust fuel gas
  • the water generated by a predetermined electrochemical reaction in the fuel cell 1 contained in the exhaust oxidant gas is recovered by a condensation mechanism.
  • the exhaust fuel gas and the exhaust oxidant gas discharged from the fuel cell 1 are connected to the fuel side condenser 2a and the oxidant side condenser 2b via the exhaust fuel gas path a and the exhaust oxidant gas path b.
  • the exhaust fuel gas from which moisture has been removed by the fuel side condenser 2a is supplied to the hydrogen generator described above.
  • the exhaust fuel gas is supplied to a flame burner included in the hydrogen generator, and is burned in order to advance the reforming reaction in the flame burner. Further, the exhaust oxidant gas from which moisture has been removed by the oxidant side condenser 2b is released to the outside of the fuel cell system 100 in the present embodiment.
  • the water recovered by the fuel side condenser 2a and the oxidant side condenser 2b is supplied to a recovered water tank 3 to be described later via the fuel side recovery water path c and the oxidant side recovery water path d. .
  • the configurations of the fuel side condenser 2a and the oxidant side condenser 2b are the same as the configuration of the condenser used in a general fuel cell system. Description is omitted.
  • the fuel cell system 100 includes a recovered water tank 3.
  • This recovered water tank 3 the water recovered by the fuel-side condenser 2 a and the oxidizing agent side condenser 2b is supplied through the fuel-side rotating Osamumizu path c and the oxidant side collecting water passage d.
  • the recovered water tank 3 stores water discharged from the fuel side condenser 2a and the oxidant side condenser 2b.
  • the water stored in the collection water tank 3 is appropriately supplied toward the constituent elements that use the water in the fuel cell system 100. Examples of components using water include a hydrogen generator not particularly shown in FIG. 1 and a cooling water tank 4 described later.
  • a recovered water drain port 3a for discharging water is provided at a predetermined position on the side wall. Excess water in the recovered water tank 3 is discharged from the recovered water drain port 3a to the outside of the fuel cell system 100 by overflow.
  • the recovered water tank 3 communicates with the atmosphere through the overflow-type recovered water drain port 3a.
  • the amount of water stored in the recovered water tank 3 is appropriately controlled.
  • a pipe connected to an infrastructure capable of supplying water such as a water channel is connected to a predetermined position of the recovered water tank 3 via an on-off valve or the like. . Then, before the fuel cell system 100 is started, in order to store a necessary amount of water in the recovered water tank 3, water is supplied to the tap power recovered water tank 3 through the piping and the on-off valve.
  • the fuel cell system 100 includes a cooling water tank 4! /.
  • This cooling water tank 4 Stores cooling water for cooling the fuel cell 1 that generates heat during power generation operation.
  • the cooling water stored in the cooling water tank 4 is supplied to a cooling water flow path la inside the fuel cell 1 through a cooling water supply path e by a cooling water circulation pump 5 such as a plunger pump. .
  • a cooling water circulation pump 5 such as a plunger pump.
  • the cooling water whose temperature has risen due to the heat generated in the fuel cell 1 discharged from the cooling water flow path la is cooled by transferring heat through the heat exchanger 6 and then cooled via the cooling water discharge path f. Returned to water tank 4.
  • the cooling water stored in the cooling water tank 4 is used for cooling water flow formed inside the cooling water tank 4 and the fuel cell 1 in order to cool the fuel cell 1 that generates heat during power generation. It is circulated by the cooling water circulation pump 5 between the passage la. Due to the circulation of the cooling water by the cooling water circulation pump 5, the heat generated at the time of power generation in the fuel cell 1 is sequentially recovered, whereby the fuel cell 1 is cooled.
  • a cooling water drain port 4a for discharging the cooling water is provided at a predetermined position on the side wall.
  • One end of the cooling water return path h is disposed at the cooling water drain 4a.
  • the other end of the cooling water return path h is arranged inside the recovered water tank 3.
  • Excessive cooling water in the cooling water tank 4 is discharged to the recovered water tank 3 through the cooling water return path h by overflow from the cooling water discharge port 4a.
  • the cooling water tank 4 communicates with the atmosphere through the overflow cooling water return path h, the recovered water tank 3 and the recovered water drain port 3a.
  • the fuel cell system 100 includes the heat exchange ⁇ 6 described above.
  • This heat exchanger 6 is provided between the cooling water whose temperature has been discharged from the cooling water flow path la of the fuel cell 1 and the water to which the external power of the fuel cell system 100 is also supplied for the purpose of hot water supply or the like. Exchange heat.
  • the heat exchanger 6 discharges the cooling water that has been cooled by recovering heat toward the cooling water tank 4 via the cooling water discharge path f.
  • the cooling water whose temperature has been lowered returned from the heat exchanger 6 to the cooling water tank 4 is transferred from the cooling water tank 4 to the cooling water flow path la of the fuel cell 1 by the cooling water circulation pump 5. Is supplied again.
  • the fuel cell system 100 includes a water purifier 7 having a predetermined impurity removing member.
  • This water purifier 7 purifies the water supplied from the recovered water tank 3 to the cooling water tank 4 via the purified water discharge path g by the recovered water supply pump 8 such as a plunger pump.
  • the power supply terminal of the recovered water supply pump 8 can intermittently supply power.
  • the power supply device 9 is connected to the output terminal of the power supply device 10 including a storage battery capable of supplying electric power regardless of the operation state of the fuel cell system 100 via the power switch 9 capable of functioning.
  • the water purification apparatus 7 includes activated carbon 7a and ion-exchange resin 7b as predetermined impurity removing members.
  • Activated carbon 7a selectively removes TOC, which is a nutrient for the growth of bacteria mixed in water from the atmosphere, by adsorption.
  • the ion exchange resin 7 b selectively removes conductive ions such as metal ions eluted in water in the fuel cell 1 and the heat exchanger 6.
  • the volume of the water purification apparatus 7 is about 2L.
  • the impurities removing member used in the water purification apparatus 7 is not limited to the activated carbon 7a and the ion-exchangeable resin 7b. Impurities capable of removing impurities such as conductive ions in water and TOC. As long as it is a removal member (ie, ion exchanger, TOC adsorbent), any impurity removal member such as zeolite or ceramic may be used.
  • the fuel cell system 100 includes a control device 101.
  • the control device 101 appropriately controls the operation of each component constituting the fuel cell system 100.
  • the control device 101 includes a storage unit, a central processing unit (CPU), and the like, although not particularly shown in FIG.
  • a program related to the operation of each component of the fuel cell system 100 is stored in advance in the storage unit of the control device 101, and is controlled based on the program stored in this storage unit!
  • the device 101 appropriately controls the operation of the fuel cell system 100.
  • the recovered water tank 3, the water purification device 7, the purified water discharge path g, the cooling water tank 4, and the cooling The water return path h constitutes a first circulation path A of water.
  • the recovered water supply pump 8 extracts water from the recovered water tank 3 and supplies the extracted water to the water purification device 7.
  • the water purified in the water purification apparatus 7 is supplied to the cooling water tank 4 through the purified water discharge path g.
  • the excess water supplied to the cooling water tank 4 is discharged from the cooling water drain 4a and then returned to the recovered water tank 3 via the cooling water return path h.
  • the fuel cell system 100 is configured such that the water stored in the recovered water tank 3 can be circulated through the first circulation path A.
  • the fuel cell system 100 according to the present embodiment includes a raw material supply device, a hydrogen generation device, and an air supply device, although not particularly shown in FIG.
  • the raw material supply device supplies a raw material such as natural gas used to generate hydrogen to the hydrogen generation device.
  • this raw material supply apparatus is configured to supply natural gas as a raw material from its infrastructure.
  • the force of using natural gas as a raw material for generating hydrogen is not limited to this form, but is a hydrocarbon component such as LPG, alcohol such as methanol, or naphtha. Any raw material may be used as long as it is a raw material containing an organic compound composed of at least carbon and hydrogen carbonate as exemplified by the components.
  • LPG is used as a raw material
  • an LPG tank is provided in the raw material supply device.
  • the hydrogen generator is composed of at least carbon and hydrogen exemplified by natural gas supplied from the raw material supplier, hydrocarbon components such as LPG, alcohols such as methanol, or naphtha components.
  • the reforming reaction which uses raw materials containing organic compounds and water vapor, proceeds mainly, and this reforming reaction produces a fuel gas rich in hydrogen.
  • This hydrogen generator has a reforming section for advancing the reforming reaction, and a carbon monoxide conversion for reducing carbon monoxide in the reformed gas discharged from the reforming section. Part (hereinafter referred to as the metamorphic part) and a carbon monoxide removing part (hereinafter referred to as the purifying part).
  • the reforming unit burns a part of the raw material or supplies fuel gas for supplying the reforming catalyst for proceeding with the reforming reaction and the heat necessary for favorably proceeding with the reforming reaction. It has a flame burner that burns the exhaust fuel gas that is returned (ie, fuel cell 1), and a sirocco fan for supplying combustion air.
  • the shift section includes a shift catalyst that reacts carbon monoxide in the fuel gas discharged from the reforming section with water vapor.
  • the purification unit also includes a CO removal catalyst for converting the carbon monoxide and carbon monoxide in the fuel gas discharged from the transformation unit to acid or methane.
  • the air supply device supplies air as an oxidant gas to the power sword side of the fuel cell 1 by sucking the air.
  • This air supply device is usually provided with a blower.
  • a blower such as a sirocco fan is preferably used.
  • a first operation period from immediately after startup of the fuel cell system until the fuel cell can output rated output power, and fuel after the first operation period.
  • the second operation period during which the battery can output the rated output power (steady operation period), and post-processing is performed until the output of the fuel cell power after this second operation period stops.
  • the three operating periods are defined as the “operating period” of the power generation operation of the fuel cell system.
  • a period other than the operation period of the fuel cell system is defined as a “stop period” of the power generation operation of the fuel cell system. Note that during this stop period, the control device of the fuel cell system is supplied with electric power necessary for the operation of the control device, such as commercial power.
  • each component of the fuel cell system can be appropriately operated by being controlled by the control device.
  • the fuel cell system 100 performs the following operation under the control of the control device 101.
  • a hydrogen generator is installed.
  • natural gas which is a raw material for generating hydrogen
  • water is supplied to the reforming section of the hydrogen generator in order to generate steam for advancing the reforming reaction.
  • the reforming catalyst provided in the reforming section is heated by the heat generated by burning the exhaust fuel gas or the like in the flame burner.
  • air is supplied to a sirocco fan-powered flame burner for supplying combustion air for combustion of the exhaust fuel gas and the like.
  • the reforming unit of the hydrogen generator generates fuel gas containing abundant hydrogen by the steam reforming reaction.
  • the reformed gas produced in the reforming section of this hydrogen generator is then supplied to the shift section and the purification section.
  • the carbon monoxide contained in the fuel gas is effectively reduced and removed.
  • the fuel cell 1 generates heat due to an electrochemical reaction for power generation.
  • the heat generated in the fuel cell 1 is generated by the cooling water formed in the fuel cell 1 by the cooling water tank 4 through the cooling water supply path e and the cooling water discharge path f. It is sequentially collected by being circulated through the water flow path la.
  • the heat recovered by the cooling water circulated by the cooling water circulation pump 5 is used for the purpose of hot water supply or the like in the heat exchange 6, for example. Also, if for some reason the amount of cooling water in the cooling water tank 4 is insufficient, or if the quality of the cooling water stored in the cooling water tank 4 is poor, the recovered water can be recovered as necessary. Purified water is replenished from the tank 3 to the cooling water tank 4 through the water purification device 7 and the purified water discharge path g.
  • This replenishment of water is performed by the operation of the recovered water supply pump 8.
  • the recovered water supply pump 8 operates to replenish water when the power switch 9 is turned on and power for driving is supplied from the power supply device 10.
  • the amount of cooling water in the cooling water tank 4 becomes excessive, the cooling water is discharged from the cooling water tank 4 to the recovered water tank 3 through the cooling water drain 4a and the cooling water return path h. Is done.
  • the quality of the cooling water in the cooling water tank 4 is maintained, and the amount of stored water is appropriately controlled.
  • the fuel cell 1 discharges exhaust fuel gas and exhaust oxidant gas containing water generated during power generation.
  • These exhaust fuel gas and exhaust oxidant gas are The fuel gas is supplied to the fuel side condenser 2a and the oxidant side condenser 2b via the fuel gas path a and the exhaust oxidant gas path b. Then, in the fuel side condenser 2a and the oxidant side condenser 2b, the water contained in the exhaust fuel gas and the exhaust oxidant gas is recovered.
  • the fuel-side condenser 2a and the oxidant-side condenser 2b receive the water recovered from the exhaust fuel gas and the exhaust oxidant gas via the fuel-side recovery water path c and the oxidant-side recovery water path d. Then, send to recovered water tank 3.
  • the water sent from the fuel side condenser 2a and the oxidant side condenser 2b to the recovered water tank 3 is operated as required by the recovered water supply pump 8 during the power generation operation. Is supplied to the cooling water tank 4.
  • the water stored in the recovered water tank 3 is purified by the water purification device 7 and then supplied to the cooling water tank 4.
  • TOC is selectively removed by the activated carbon 7a, and conductive ions such as metal ions are selectively removed by the ion exchange resin 7b.
  • the water stored in the recovered water tank 3 is purified, and the purified water is supplied to the cooling water tank 4.
  • the water collected from the exhaust fuel gas and the exhaust oxidizer gas by the fuel side condenser 2a and the acid / oxidizer side condenser 2b is supplied to the recovered water tank 3.
  • the power generation operation is performed continuously without replenishing the water used in the hydrogen generator or the cooling water stored in the cooling water tank 4 from the outside of the fuel cell system 100. If the amount of water in the recovered water tank 3 is insufficient for some reason, water is replenished from the water supply to the recovered water tank 3. Further, when the amount of water in the recovered water tank 3 becomes excessive, the excess water is discharged outside the fuel cell system 100 due to the overflow of the recovered water drain port 3a of the recovered water tank 3. As a result, the amount of water stored in the collection water tank 3 is appropriately controlled.
  • the recovered water in the recovered water tank 3 and the cooling water in the cooling water tank 4 can come into contact with the atmosphere.
  • Bacteria and TOC are mixed in the reject water from the atmosphere.
  • the TOC mixed in the recovered water and the cooling water is circulated between the recovered water tank 3 and the cooling water tank 4 through the water purification device 7 by the recovered water supply pump 8.
  • the water is selectively adsorbed by the activated carbon 7a in the water purification apparatus 7.
  • the amount of TOC adsorbed on activated carbon 7a is It increases with the elapsed time of power generation operation of battery system 100.
  • TOC is a nutrient of bacteria, and the growth of bacteria is promoted as the amount of TOC adsorbed increases.
  • the power generation operation and the water purification operation of the water purification device 7 for example, in the present embodiment, from the recovered water tank 3 to the water purification device 7.
  • Purified water is supplied to the recovered water by the water purifier 7 and the purified water is supplied from the water purifier 7 to the cooling water tank 4).
  • the power generation operation of the fuel cell system 100 is stopped, the supply of recovered water from the recovered water tank 3 to the water purification apparatus 7 is stopped.
  • the water with bacteria stays inside the activated carbon 7a rich in nutrients that adsorbs the TOC of the water purification device 7 in large quantities, so a large amount of nocteria. May breed.
  • problems such as supply pressure loss due to flow path blockage or flow path narrowing occur in the purified water discharge path g and cooling water return path h for sending recovered water or cooling water.
  • the water supply function and purification function may be impaired. This failure related to the water supply function and the purification function becomes a factor that hinders the normal power generation operation of the fuel cell system 100 at the time of restart or the like.
  • the control device 101 turns on the power switch 9 in a predetermined cycle and period during the stop period of the fuel cell system 100, and thereby supplies power to the recovered water supply pump 8 from the power supply device 10. To do. Then, the recovered water supply pump 8 is operated at a predetermined cycle and supply amount during the stop period of the fuel cell system 100 to overflow the cooling water in the cooling water tank 4 from the cooling water discharge port 4a, thereby recovering the recovered water. Water is forcibly circulated between the tank 3 and the cooling water tank 4 through a water purification device 7 as shown in the first circulation path A shown in FIG.
  • the predetermined cycle for circulating water is within one week (168 hours). Within 3 days or more (72 hours or more) or 1 week (within 168 hours). The reason for this is that if water is not circulated for more than one week in the first circulation path A shown in FIG. 1, water such as the purified water discharge path g and the cooling water return path h is added to the water in the fuel cell system 100. This is because bacteria of such a degree as to block the flow path propagate.
  • the predetermined cycle for circulating water is 3 days or more because if water is circulated within a cycle of 3 days or less, the load on the ion exchange resin 7b of the water purification device 7 increases. This is to reduce the load on the replacement resin 7b and prevent its deterioration.
  • the predetermined circulation amount when circulating water is about 2. OL in one circulation operation.
  • water is circulated for 40 minutes at a rate of 50 cc per minute in one circulation operation.
  • the predetermined circulation amount in one circulation operation is preferably about 2.4 L.
  • the volume of the water purification device 7 of the fuel cell system 100 according to the present embodiment is about 2 L, and the water circulation rate is about 2.4 L as described above. ⁇ This is the force that makes it possible to reliably replace the volume of water remaining in device 7.
  • the recovered water supply pump 8 is operated at a predetermined cycle and period during the stop period of the fuel cell system 100, and thereby the recovered water tank is operated at a predetermined cycle and a circulation amount.
  • the recovered water tank is operated at a predetermined cycle and a circulation amount.
  • the activated carbon 7a constituting the water purification device 7 sequentially adsorbs and stores TOC that is sequentially mixed into the water from the atmosphere.
  • the amount of TOC adsorbed by activated charcoal 7a depends on the environment where fuel cell system 100 is installed and the TOC adsorption capacity of activated charcoal 7a, but the amount by which bacteria can propagate significantly in a relatively short period of time. It is thought that it will reach to.
  • nocteria is usually classified into aerobic bacteria and anaerobic bacteria.
  • aerobic bacteria are bacteria that require oxygen to reproduce.
  • Anaerobic bacteria are bacteria that do not require oxygen to reproduce.
  • the fuel cell system 100 does not actively supply oxygen to the water that circulates or stagnates during its operation and shutdown periods, so the recovery water tank 3 and the activated carbon 7a of the water purification device 7 Bacteria that propagate in water are considered to be mainly anaerobic bacteria.
  • the propagation speed of bacteria varies depending on the kind of the bacteria. For example, aerobic bacteria divide approximately once every 20-30 minutes, consuming oxygen and TOC for reproduction. Specifically, assuming that one aerobic bacterium repeats division at a rate of once every 20 minutes and none of the aerobic bacteria produced by subsequent breeding die, it will be about 12 hours later. Breeds up to 1 billion.
  • anaerobic bacteria even in an environment where there is sufficient TOC for breeding, repeats division at a rate of about once every 4 hours, unlike the breeding speed of aerobic bacteria. In this case, even if it is assumed that none of the anaerobic bacteria produced by the subsequent breeding is repeated once every four hours, the number of anaerobic bacteria after 12 hours is About 8 pieces.
  • a predetermined amount is maintained during the stop period of the fuel cell system 100.
  • the recovered water supply pump 8 is operated in a cycle and a period, whereby the water is forcibly circulated between the recovered water tank 3 and the cooling water tank 4 at a predetermined cycle and circulation rate.
  • the bacteria-containing water is discharged from the activated carbon 7a of the water purification apparatus 7 at a predetermined cycle and the retention of the bacteria-containing water is prevented. Effective for breeding without wasting energy Can be suppressed.
  • the present invention it is possible to provide a highly reliable fuel cell system 100 in which the water supply function and the purification function do not easily fail.
  • Examples of the stop period of the power generation operation of the fuel cell system 100 include a nighttime when the power consumption of the load is low and a period of going out for a long time when the power consumption of the load is low. During such nighttime and outings, the power generation operation of the fuel cell system 100 is stopped, while power is supplied to the commercial power load.
  • bacteria are not significantly propagated in the water inside the fuel cell system 100 by simply using a sterilizer such as an ultraviolet irradiation device or a heating device. Since it is controlled by circulating water using the existing recovered water supply pump 8 during the stop period of the fuel cell system 100, it is possible to save energy without adding new components such as a new ultraviolet irradiation device or heating device. It is possible to suppress effectively by a simple configuration without wasting. That is, it is possible to provide the fuel cell system 100 that ensures economic efficiency and energy saving.
  • a sterilizer such as an ultraviolet irradiation device or a heating device. Since it is controlled by circulating water using the existing recovered water supply pump 8 during the stop period of the fuel cell system 100, it is possible to save energy without adding new components such as a new ultraviolet irradiation device or heating device. It is possible to suppress effectively by a simple configuration without wasting. That is, it is possible to provide the fuel cell system 100 that ensures economic efficiency and energy saving.
  • the cycle of water circulation in the fuel cell system 100 is within one week (within 168 hours), more preferably over three days (within 72 hours) within one week (168 hours). Within).
  • the recovered water supply pump 8 is operated to circulate the water between the cooling water tank 4 and the recovered water tank 3, the temperature of the water is relatively low due to standing for a long time.
  • the adsorption characteristics of organic components such as TOC of the activated carbon 7a are reduced.
  • the heat resistance temperature of the ion exchange resin 7b is exceeded, the ion exchange resin 7b is thermally denatured.
  • the water circulation cycle is set to a long cycle as described above, the temperature of the water stored in the recovered water tank 3 and the cooling water tank 4 is surely lowered. Therefore, it is possible to avoid problems such as a decrease in the adsorption characteristics of the activated carbon 7a and thermal denaturation of the ion exchange resin 7b.
  • the predetermined cycle for forcibly circulating water between the recovered water tank 3 and the cooling water tank 4 is preferably within one week (within 168 hours). The period is 3 days or more (72 hours or more) and 1 week (168 hours or less), but is not limited to such a cycle. Further, in the present embodiment, the force that makes the predetermined circulation amount when the water is forcibly circulated between the recovered water tank 3 and the cooling water tank 4 about 2.OL is limited to such a circulation amount. None happen.
  • the predetermined cycle and amount of circulation forcibly circulating water between the recovered water tank 3 and the cooling water tank 4 can affect the degree of bacterial propagation in the water supply function and the purification function in the fuel cell system 100. Any cycle and circulation volume can be used as long as it does not cause a failure.
  • the propagation speed of bacteria in water varies depending on the type of the fuel cell system 100, so the volume of the recovered water tank 3, the cooling water tank 4, the water purification device 7, etc.
  • the cycle and amount of water circulation should be set according to the open area and the type of bacteria.
  • the propagation speed of bacteria in water also changes depending on the water temperature. For example, in winter when the water temperature is low, the propagation speed of bacteria in water is slow. However, in the summer when the water temperature is high, the speed of bacterial growth in the water is high.
  • the power generation operation of the fuel cell system 100 is started and then stopped for a relatively short period of time, the amount of TOC and bacteria mixed into the water is relatively small. The probability of doing is small. Therefore, in consideration of the configuration and operating conditions of the fuel cell system 100 and the type of bacteria, it is not necessary to fix the cycle and amount of water circulation to a certain value. Set it appropriately!
  • the controller 101 controls the water to be circulated between the recovered water tank 3 and the cooling water tank 4 forcibly.
  • the control apparatus 101 sufficiently discharges water from the activated carbon 7a of the water purification apparatus 7.
  • the recovered water supply pump 8 may be operated during the stop period of the fuel cell system 100 to control the water to move in the purified water discharge path g. That is, water is prevented from staying for a long time in the activated carbon 7a of the water purification apparatus 7. Any means that can be stopped can be employed as a means for preventing the water supply function and the purification function from being disturbed in the fuel cell system 100.
  • the amount of water circulated between the recovered water tank 3 and the cooling water tank 4 is determined while taking into account that the volume of the water purification device 7 is about 2L. In order to surely replace the water staying in the purification device 7 with the recovered water supplied from the recovered water tank 3, it is preferably about 2.4 L per circulation.
  • the amount of water circulated is used to ensure the replacement of water in the water purification apparatus 7 and to minimize the load on the ion exchange resin 7b of the water purification apparatus 7. It is basically the same as the volume of the device 7.
  • the amount of water circulated between the recovered water tank 3 and the cooling water tank 4 is set so that the amount of water circulated (moved) per operation exceeds the volume of the activated carbon 7a. It is at least necessary to be done.
  • the recovered water supply pump 8 is operated at a predetermined cycle and period during the stop period of the fuel cell system 100, and thereby the predetermined cycle and the circulation amount.
  • the water level in each of the recovered water tank 3 and the cooling water tank 4 varies in the depth direction of each of the recovered water tank 3 and the cooling water tank 4 due to the forced circulation of water.
  • the fluctuation of the water level in the recovered water tank 3 and the cooling water tank 4 is caused by the progress of decay of the recovered water in the recovered water tank 3 over time and the cooling water in the cooling water tank 4. Effectively inhibits each decay progression over time.
  • the reason for this is that the general decay of water in a so-called water storage tank is particularly likely to proceed at the interface between the inner wall surface of the water storage tank and water and air in a situation where the water level does not fluctuate. That is, according to the present embodiment, during the period when the fuel cell system 100 is stopped, the recovered water supply pump 8 is operated to forcibly circulate the water, thereby forcing the water levels of the recovered water and the cooling water. Therefore, even if bacteria are mixed in the recovered water and cooling water from the recovered water tank 3 and the cooling water tank 4 in the recovered water tank 3 and the cooling water drain 4a, the recovered water and cooling water It becomes possible to effectively suppress the corruption.
  • the water spoilage suppression effect is obtained as a derivative effect peculiar to the fuel cell system by the water circulation operation. And by the synergistic effect of the water spoilage suppression effect due to the water level fluctuation and the water spoilage suppression effect due to the water circulation operation, the fuel cell system 100 is more effective in the progress of water spoilage than before. It becomes possible to suppress.
  • the force describing the mode in which the fuel cell system 100 includes a polymer electrolyte fuel cell as the fuel cell 1 is not limited to such a mode.
  • the fuel cell system 100 may include a phosphoric acid fuel cell, an alkaline fuel cell, or the like as the fuel cell 1. Even with such a configuration, it is possible to obtain the same effect as the present embodiment.
  • FIG. 2 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 2 of the present invention.
  • solid lines between the components constituting the fuel cell system indicate paths through which water, fuel gas, oxidant gas, and the like flow, and arrows on the solid lines indicate water flow. And the flow direction during normal operation of fuel gas or oxidant gas.
  • FIG. 2 only the components necessary for explaining the present invention are shown, and the other components are not shown.
  • the same components as those of the fuel cell system 100 shown in the first embodiment are denoted by the same reference numerals.
  • fuel cell system 200 has a configuration that is substantially the same as the configuration of fuel cell system 100 shown in the first embodiment.
  • the configuration of the fuel cell system 200 according to the embodiment is that a purified water tank 11 that stores water purified by the water purification device 7 and water is supplied from the purified water tank 11 to the cooling water tank 4 Yes It is different from the configuration of the fuel cell system 100 shown in Embodiment 1 in that it further includes a purified water supply pump 12. The other points are the same as the configuration of the fuel cell system 100 shown in the first embodiment.
  • the fuel cell system 200 includes the purified water tank 11.
  • the purified water tank 11 stores the purified water discharged from the water purification device 7 before supplying it to the cooling water tank 4.
  • the water purified by the water purification apparatus 7 is supplied to the purified water tank 11 through the purified water discharge path i.
  • the excess water in the purified water tank 11 is discharged from the purified water drain 1 la provided at a predetermined position in the purified water tank 11 and then returned to the purified water tank. Returned to recovered water tank 3 via path k. That is, in the present embodiment, instead of the first circulation path A of water shown in the first embodiment, the second circulation path B for circulating water shown in FIG. 2 is formed.
  • the fuel cell system 200 shown in the present embodiment provides the purified water tank 11 to form the second circulation path B of water, and the first circulation path A of water shown in FIG.
  • the upper force also has a feature that makes the cooling water tank 4 independent.
  • the fuel cell system 200 includes a purified water supply pump 12.
  • the purified water supply pump 12 supplies the water stored in the purified water tank 11 to the cooling water tank 4 through the purified water supply path j.
  • water is replenished from the purified water tank 11 to the cooling water tank 4.
  • the control device 101 performs a predetermined cycle during the stop period of the fuel cell system 200.
  • power is supplied from the power supply device 10 to the recovered water supply pump 8 by turning on the power switch 9 during the period.
  • the recovered water supply pump 8 is operated at a predetermined cycle and period, and thereby water is supplied from the recovered water tank 3 to the water purifier 7 at a predetermined cycle and circulation rate.
  • the water purified in the water purification apparatus 7 is pushed out by the water supplied to the water purification apparatus 7 by the recovered water supply pump 8, and the purified water discharge path i Is supplied to the purified water tank 11.
  • the surplus water in the purified water tank 11 is discharged from the purified water drain port 11a and then returned to the recovered water tank 3 through the purified water return path k.
  • water is circulated between the recovered water tank 3 and the purified water tank 11 via the water purification device 7 in the second circulation. It is characterized by forced circulation as in ring route B. Then, by draining the water having bacteria from the activated carbon 7a of the water purification apparatus 7 at a predetermined cycle and preventing the retention of the water having bacteria, the bacteria in the water propagate significantly in the fuel cell system 200. This is reliably and effectively suppressed without wasting energy. Also according to the present invention, it is possible to provide a highly reliable fuel cell system 200 in which the water supply function and the purification function do not easily fail.
  • the second circulation path B of water shown in FIG. 2 and the cooling water tank 4 are independent, so that the cooling water stored in the cooling water tank 4 is It will not be returned to the recovered water tank 3.
  • the load on the ion exchange resin 7b due to the conductive ions is reduced, the ion exchange removal ability of the ion exchange resin 7b is effectively utilized, thereby further purifying the collected water more reliably. It becomes possible.
  • the cycle and the amount of circulation of water between the recovered water tank 3 and the purified water tank 11 are obtained by, for example, pre-sampling the degree of bacterial growth in water.
  • Appropriate settings may be made in consideration of the configuration of the fuel cell system 200 based on the evaluation results evaluated in this way.
  • the size of the purified water tank 11 (maximum water storage amount) may be determined based on the viewpoint of securing the amount of cooling water that is insufficient in the cooling water tank 4 during the power generation operation. Other points are the same as those in the first embodiment.
  • FIG. 3 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 3 of the present invention.
  • solid lines between the components constituting the fuel cell system indicate paths through which water, fuel gas, oxidant gas, and the like flow, and arrows on the solid lines indicate water flow. And the flow direction during normal operation of fuel gas or oxidant gas.
  • FIG. 3 only the components necessary for explaining the present invention are shown, and the other components are not shown.
  • FIG. 3, V the same components as those of the fuel cell systems 100 and 200 shown in the first and second embodiments are denoted by the same reference numerals.
  • fuel cell system 300 according to the present embodiment has substantially the same configuration as that of fuel cell system 200 shown in the second embodiment.
  • the configuration of the fuel cell system 300 according to the present embodiment is the same as the configuration of the fuel cell system 200 in that it includes the purified water tank 11 and the cooling water tank 4 shown in FIG. It has a purified water supply pump 12 for supplying purified water from the purified water tank 11 to the cooling water tank 4! /, NA! /, Point and accompanying !, purified water
  • the purified water drain 1 1 la of the tank 11 is supplied from the la to the cooling water tank 4 so that the water purified by the overflow is supplied. It is different from the configuration.
  • a cooling water drain port 4a is provided at a predetermined position in the cooling water tank 4, and excess cooling water is returned to the recovered water tank 3 from the cooling water drain port 4a via the cooling water return path h.
  • the fuel cell system 300 includes the purified water tank 11 in the same manner as the configuration of the fuel cell system 200 described in the second embodiment.
  • the purified water tank 11 stores the purified water discharged from the water purification device 7 in the same manner as in the second embodiment.
  • the water purified by the water purification apparatus 7 is transferred to the purified water tank 11 via the purified water discharge path 1 instead of the purified water discharge path i in the same manner as in the second embodiment. Supplied.
  • the excess water in the purified water tank 11 is supplied to the cooling water tank 4 by overflow through the purified water drain port 11a.
  • the fuel cell system 300 as shown in FIG.
  • the water level at the time of overflow in cooling water tank 4 is configured to be lower than the water level at the time of overflow in purified water tank 11 It has been. Therefore, it is possible to move the purified water from the purified water tank 11 to the cooling water tank 4, but on the contrary, the purified water tank 4 is directed to the purified water tank 11.
  • the cooling water cannot be moved. That is, the fuel cell system 300 according to the present embodiment is configured such that water moves unilaterally from the purified water tank 11 toward the cooling water tank 4.
  • the excess cooling water in the cooling water tank 4 is discharged from the cooling water discharge port 4a of the cooling water tank 4 by overflow, and then returned to the recovered water tank 3 via the cooling water return path h. That is, in the present embodiment, as shown in FIG. 3, instead of the first circulation path A and the second circulation path B of water shown in the first and second embodiments, the third circulation of water is performed. Path C is formed.
  • water can be supplied from the purified water tank 11 to the cooling water tank 4 without using water supply means such as a pump.
  • One end of the purified water drain port 1 la of the water tank 11 is connected to a predetermined position in the cooling water tank 4.
  • the purified water tank 11 can also supply water to the cooling water tank 4.
  • the fuel cell system 300 has a feature that a third circulation path C of water is formed instead of the first circulation path A and the second circulation path B.
  • the control device 101 in order to prevent the water having bacteria from staying in the activated carbon 7a for a long time, the control device 101 has a predetermined cycle and period during the stop period of the fuel cell system 300.
  • the power switch 9 By setting the power switch 9 to the ON state, power is supplied from the power supply device 10 to the recovered water supply pump 8.
  • the recovered water supply pump 8 is operated at a predetermined cycle and period, and thereby water is supplied from the recovered water tank 3 to the water purifier 7 at a predetermined cycle and circulation rate.
  • the water purified in the water purification device 7 is pushed out by the water supplied to the water purification device 7 by the recovered water supply pump 8 and is passed through the purified water discharge path 1 to the purified water tank. Supplied to 11.
  • the surplus water in the purified water tank 11 is supplied to the cooling water tank 4 via the purified water discharge port 11a due to overflow.
  • excess water in the cooling water tank 4 is overflowed, and the cooling water drain 4a and The recovered water tank 3 is supplied again via the cooling water return path h.
  • the amount of water circulated between the purified water tank 11 and the cooling water tank 4 and the recovered water tank 3 is determined in the same manner as in the first and second embodiments. Considering that the volume of the dredging device 7 is about 2L, in order to reliably replace the water staying in the water purifying dripping device 7 with the water supplied from the recovery water tank 3, About 2.4L per hit.
  • the purified water tank 11 can also supply water to the cooling water tank 4 without using water supply means such as a pump.
  • water supply means such as a pump.
  • the configuration of the fuel cell system 300 can be simplified. Further, since it is not necessary to use a water supply means such as a pump, it is possible to suppress the power consumption of the fuel cell system 300 and to provide the fuel cell system 300 at a lower cost.
  • the force illustrating the configuration in which the cooling water tank 4 and the purified water tank 11 are connected by the purified water drain port 11a It will never be done.
  • the cooling water tank 4 and the purified water tank 11 are integrally formed, and the cooling water tank 4 is cooled so that water can flow from the purified water tank 11 to the cooling water tank 4.
  • the water and the purified water in the purified water tank 11 are separated by a predetermined partition wall. Even with such a configuration, it is possible to obtain operations and effects similar to those obtained in the present embodiment.
  • the cycle and the amount of circulation of the water between the purified water tank 11 and the cooling water tank 4 and the recovered water tank 3 are the same as those in the first and second embodiments. Set as appropriate do it. Also, the size of the purified water tank 11 (maximum water storage amount) is secured in the cooling water tank 4 in the cooling water tank 4 during the power generation operation as in the case of the second embodiment. The decision can be made based on the viewpoint. The other points are the same as in the first and second embodiments.

Abstract

 酸化剤ガス及び燃料ガスを用いて発電する燃料電池(1)と、前記燃料電池から排出される排出ガスから回収される水を貯える回収水タンク(3)と、前記燃料電池を冷却するための冷却水として用いられる水を貯える貯水タンク(4)と、前記回収水タンクの水を前記貯水タンクに供給するための水供給流路(g)と、前記水供給流路において前記回収水タンクから前記貯水タンクに向けて水を通流させるためのポンプ(8)と、前記ポンプにより通流される水を前記水供給流路上で前記貯水タンクに供給前に内蔵するTOC吸着体(7a)により浄化する水浄化装置(7)と、制御装置(101)と、を備える燃料電池システム(100)であって、前記制御装置が、前記燃料電池システムの停止期間中に前記ポンプを動作させて前記水供給流路において水が移動するよう制御する。

Description

明 細 書
燃料電池システム及びその運転方法
技術分野
[0001] 本発明は、水素及び酸素が供給されて燃料電池が冷却水により冷却されながら発 電する燃料電池システムに関する。
背景技術
[0002] 従来から、高効率な小規模発電が可能である燃料電池システムは、発電の際に発 生する熱エネルギーを利用するためのシステムの構築が容易であるため、高 、エネ ルギ一利用効率を実現することが可能な分散型の発電システムとして開発が進めら れている。
[0003] 燃料電池システムは、その発電部の本体として、燃料電池を備えて 、る。この燃料 電池は、燃料 (水素)及び酸化剤 (酸素)が有する化学エネルギーを所定の電気化学 反応により電気エネルギーに直接変換する電池である。従って、燃料電池システム では、発電運転の際、燃料電池に燃料としての水素と酸化剤としての酸素とが各々 供給される。すると、燃料電池では、その供給される水素及び酸素を用いる所定の電 気化学反応が進行して、この所定の電気化学反応により水素及び酸素が有する化 学エネルギーが電気工ネルギ一に直接変換されると共に、熱及び水が生成する。そ して、この燃料電池での所定の電気化学反応により生成する電気エネルギーが、燃 料電池システム力 負荷に向けて供給される。ここで、所定の電気化学反応に伴って 発生する熱は、燃料電池の温度を所定の範囲内の温度とするために、燃料電池の 内部に循環される冷却水によって回収される。そして、この回収される熱は、燃料電 池システムが有する熱交換器等において給湯等の目的のために用いられる。尚、通 常、燃料電池システムは水素生成装置を備えており、この水素生成装置により水素 を豊富に含む改質ガスが生成される。そして、この改質ガスが、実質的な燃料として 燃料電池に供給される。又、燃料電池システムは空気供給装置を備えており、この空 気供給装置により空気が実質的な酸化剤として燃料電池に供給される。
[0004] ところで、燃料電池システムは、発電運転中に発熱する燃料電池の温度を所定の 範囲内の温度とするために、燃料電池を冷却するための冷却水を貯える冷却水タン クと、この冷却水タンクに貯えられている冷却水を燃料電池内の流路に供給するボン プと、このポンプにより供給される冷却水を燃料電池内の流路に供給する前に浄ィ匕 する水浄化装置と、燃料電池力 排出される温度上昇した冷却水の熱を給湯等の目 的に用いるための熱交 等とを備えている。ここで、水浄化装置は、熱交 及 び燃料電池において冷却水に溶出する可能性がある金属イオン等の導電性イオン を除去するために、イオン交換榭脂 (又は、イオン除去フィルター)を備えている。そし て、燃料電池システムの発電運転の際、このイオン交換樹脂には、燃料電池及び熱 交 ^^等を通過した冷却水が供給される。このイオン交換榭脂により、冷却水に溶出 した金属イオン等の導電性イオンが除去され、この導電性イオンが除去された冷却 水が燃料電池に供給されるので、導電性イオンによる燃料電池での短絡を防止する ことが可能になる。
[0005] し力しながら、この水浄ィ匕装置を構成するイオン交換樹脂の殆どは、耐熱温度が比 較的低いという問題を有している。これは、イオン交換榭脂として陰イオン交換榭脂を 用いる場合、特に顕著である。一方、発電運転時の燃料電池の温度は、燃料電池と して固体高分子型燃料電池を用いる場合でも、 70°C〜80°C程度にまで上昇する。 従って、燃料電池を冷却するためにポンプにより循環される冷却水の温度も、熱交換 器等において冷却水により回収した熱が十分に利用されない場合等には、 70°C〜8 0°C程度にまで上昇する。そのため、ポンプにより水浄ィ匕装置に供給される冷却水の 温度力 Sイオン交換樹脂の耐熱温度を超える場合等には、イオン交換樹脂の熱劣化 が進行して、これによりイオン交換樹脂の寿命が短くなることがあった。
[0006] そこで、イオン交換樹脂の寿命に悪影響を与えることなく冷却水に溶出した導電性 イオンを効果的に除去することが可能な燃料電池システムが提案されている(例えば 、特許文献 1参照)。
[0007] この提案された燃料電池システムは、イオン交換樹脂の寿命に悪影響を与えること なく冷却水に溶出した導電性イオンを効果的に除去するために、燃料電池を冷却す るための冷却水を貯える冷却水タンクと、この冷却水タンクに貯えられて!/、る冷却水 を燃料電池内の流路に供給するためのポンプと、このポンプにより供給されて燃料電 池力 排出される温度上昇した冷却水の熱を給湯等の目的に用いるための熱交換 器等とを従来の燃料電池システムの場合と同様にして備えると共に、発電運転の際 に燃料電池力 排出された水を貯える凝縮水タンクと、この凝縮水タンクに貯えられ ている水を冷却水タンクに供給するための第 2のポンプ及び水供給経路と、この第 2 のポンプにより供給される水を冷却水タンクに供給する前に浄ィ匕する水浄ィ匕装置と、 冷却水タンクで余剰となった冷却水を凝縮水タンクに排出するための水排出経路と を備えている。
[0008] この提案された燃料電池システムでは、燃料電池システムの発電運転の開始時及 び終了時、又は、発電運転の開始時又は終了時、凝縮水タンクに貯えられている水 を第 2のポンプを作動させて水浄ィ匕装置により浄ィ匕した後に冷却水タンクに汲み上 げる。又、発電運転中において第 2のポンプを作動させて、これにより凝縮水タンクと 冷却水タンクとの間で水供給経路及び水浄化装置と水排出経路とを介して水を循環 させる。
[0009] この提案された燃料電池システムによれば、冷却水タンク力 凝縮水タンクに回収 される冷却水の温度が 70°C以上の高温であっても、燃料電池力も排出されて凝縮 水タンクに回収される水の温度力 0°C程度であるので、凝縮水タンク力 水浄ィ匕装 置に供給される水の温度力 Sイオン交換樹脂の耐熱温度を超えることは解消される。 従って、力かる構成とすることにより、イオン交換樹脂の寿命に悪影響を与えることな ぐ冷却水に溶出した導電性イオンを除去することが可能になる。又、凝縮水タンクと 冷却水タンクとの間で水浄ィ匕装置を介して水を循環させることによれば、水の浄化が 連続して行われるので、燃料電池システムの発電運転中にぉ ヽても冷却水の水質維 持を行うことが可能になる。
[0010] つまり、上記提案によれば、イオン交換樹脂の寿命に悪影響を与えることなく冷却 水に溶出した導電性イオンを除去することが可能な燃料電池システムを提供すること が可能になる。
特許文献 1 :特開 2002— 141095号公報
発明の開示
発明が解決しょうとする課題 [0011] し力しながら、上述した従来の提案では、燃料電池システムの発電運転と水浄化装 置の浄水運転とは一体不可分の関係にあり、燃料電池システムの発電運転の停止 時には水浄化装置の浄水運転も停止されるので、燃料電池システムの発電運転の 停止時において水中のバクテリア (即ち、細菌類)が繁殖する場合があった。このバタ テリアの繁殖の問題は、水浄ィ匕装置がイオン交換榭脂に加えて活性炭を備えている 場合には、その活性炭がノ クテリアの養分となる全有機炭素(以下、単に TOCという
)を吸着及び貯蔵してバクテリアの繁殖を促進するので、特に顕著であった。そして、 水中のバクテリアが著しく繁殖した場合、その繁殖したバクテリアにより送水流路に流 路閉塞又は流路狭窄等が発生して、この流路閉塞又は流路狭窄等によって水の供 給機能及び浄化機能に障害が発生する場合があった。この水の供給機能及び浄ィ匕 機能に係る障害は、再起動時等における燃料電池システムの正常な発電運転を阻 害する要因となっていた。
[0012] 本発明は、このような事情に鑑みてなされたものであり、燃料電池システムの発電 運転の停止中における水中のバクテリアの繁殖を簡易な構成により効果的に抑制す る、水の供給機能及び浄化機能に障害が発生し難!ヽ燃料電池システムを提供するこ とを目的としている。
課題を解決するための手段
[0013] 本発明者らは、鋭意検討の結果、燃料電池システムの発電運転の停止中において 水中のバクテリアが著しく繁殖するのは、水の循環により TOCを大量に吸着及び貯 続した水浄ィ匕装置の活性炭の内部にバクテリアを有する水の一部が滞留するためで あることを突き止めた。そして、燃料電池システムの発電運転の停止中において水中 のバクテリアが著しく繁殖することを抑制するためには、 TOCを大量に吸着及び貯蔵 した水浄ィ匕装置の活性炭の内部からバクテリアを排出するために、停止期間中にお いて所定の周期及び流量で水浄化装置の活性炭に水を流通させることが効果的で あることを見出した。
[0014] そして、上記従来の課題を解決するために、本発明に係る第 1の燃料電池システム は、酸化剤ガス及び燃料ガスを用いて発電する燃料電池と、前記燃料電池から排出 される酸化剤ガス及び燃料ガスの少なくとも何れカゝから回収される水を貯える回収水 タンクと、前記燃料電池を冷却するための冷却水として用いられる水を貯える浄ィ匕水 タンクと、前記回収水タンクの水を前記浄化水タンクに供給するための水供給流路と 、前記水供給流路にお 、て前記回収水タンクから前記浄化水タンクに向けて水を通 流させるためのポンプと、前記ポンプにより通流される水を前記水供給流路上で前記 浄化水タンクに供給前に内蔵する TOC吸着体により浄化する水浄化装置と、制御装 置と、を備える燃料電池システムであって、前記制御装置が、前記燃料電池システム の停止期間中に前記ポンプを動作させて前記水供給流路にお!/、て水が移動するよ う制御する、燃料電池システムである。
[0015] 力かる構成とすると、制御装置が燃料電池システムの停止期間中にポンプを動作さ せて水供給流路において水が移動するよう制御するので、水中のバクテリアの繁殖 を長期間に渡って抑制することが可能になる。
[0016] この場合、前記制御装置が、前記停止期間中に前記ポンプを定期的に動作させて 前記水供給流路において水が定期的に移動するよう制御する。
[0017] 力かる構成とすると、制御装置が停止期間中にポンプを定期的に動作させて水供 給流路において水が定期的に移動するよう制御するので、水中のバクテリアの繁殖 を長期間に渡って効果的に抑制することが可能になる。
[0018] この場合、前記制御装置が、前記停止期間中に前記ポンプをバクテリアの繁殖を 抑制可能な周期で定期的に動作させて前記水供給流路において水が定期的に移 動するよう制御する。
[0019] 力かる構成とすると、制御装置が停止期間中にポンプをバクテリアの繁殖を抑制可 能な周期で定期的に動作させて水供給流路において水が定期的に移動するよう制 御するので、水中のバクテリアの繁殖を長期間に渡ってより一層効果的に抑制するこ とが可能になる。
[0020] この場合、前記制御装置が、前記停止期間中に前記ポンプを 72時間以上 168時 間以内の周期で定期的に動作させて前記水供給流路において水が定期的に移動 するよう制御する。
[0021] 力かる構成とすると、制御装置が停止期間中にポンプを 72時間以上 168時間以内 の周期で定期的に動作させて水供給流路において水が定期的に移動するよう制御 するので、水中のバクテリアの繁殖を長期間に渡って現実的に抑制することが可能 になる。又、水中のバクテリアの繁殖を効果的に抑制することが可能になると共に、水 浄ィ匕装置が有するイオン交換体への負荷を最小限にすることが可能になる。
[0022] 又、上記の場合、前記浄化水タンクとして前記冷却水を貯える冷却水タンクを備え ている。
[0023] 力かる構成とすると、浄ィ匕水タンクが冷却水を貯える冷却水タンクであるので、冷却 水タンク内の水の浄ィ匕度を一定の水準に維持することが可能になる。
[0024] この場合、前記冷却水タンクの水を前記回収水タンクに供給するための第 2の水供 給流路を備え、前記制御装置が、前記燃料電池システムの停止期間中に前記ボン プを動作させて前記水供給流路及び前記第 2の水供給流路を介して前記冷却水タ ンクと前記回収水タンクとの間で水が循環するよう制御する。
[0025] 力かる構成とすると、冷却水タンクの水が、水供給流路及び第 2の水供給流路を介 し、第 2の水供給流路、回収水タンク、及び、水浄ィ匕装置を順に通り冷却水タンクに 戻るように循環されるので、水の循環を好適に行うことが可能になる。
[0026] 又、本発明に係る第 2の燃料電池システムは、本発明に係る第 1の燃料電池システ ムにおいて、前記浄ィ匕水タンクにカ卩えて前記冷却水を貯える冷却水タンクを備え、前 記浄ィ匕水タンクの水を前記冷却水タンクに供給可能に構成されている。
[0027] 力かる構成とすると、冷却水と浄ィ匕水とを各々独立して貯えることができるので、水 の循環を好適に行うことが可能になる。
[0028] この場合、前記浄ィ匕水タンクの水を前記冷却水タンクに供給するための第 2のボン プを更に備えている。
[0029] 力かる構成とすると、浄ィ匕水タンクの水を冷却水タンクに供給するための第 2のボン プを更に備えて 、るので、必要に応じて浄ィ匕水タンクの水を冷却水タンクに適宜供 給することが可能になる。
[0030] 又、上記の場合、前記冷却水タンクの水を前記回収水タンクに供給するための第 2 の水供給流路を備え、前記制御装置が、前記燃料電池システムの停止期間中に前 記ポンプを動作させて前記水供給流路及び前記第 2の水供給流路を介して前記浄 化水タンクと前記冷却水タンクと前記回収水タンクとの間で水が循環するよう制御す る。
[0031] 力かる構成とすると、浄ィ匕水タンクの水が、水供給流路及び第 2の水供給流路を介 し、冷却水タンク、第 2の水供給流路、回収水タンク、及び、水浄化装置を順に通り浄 化水タンクに戻るように循環されるので、水の循環を好適に行うことが可能になる。
[0032] 又、上記の場合、前記浄ィ匕水タンクの水を前記回収水タンクに供給するための第 3 の水供給流路を備え、前記制御装置が、前記燃料電池システムの停止期間中に前 記ポンプを動作させて前記水供給流路及び前記第 3の水供給流路を介して前記浄 化水タンクと前記回収水タンクとの間で水が循環するよう制御する。
[0033] 力かる構成とすると、浄ィ匕水タンクの水と冷却水タンクの冷却水とが混合不能に分 離されるので、冷却水に含まれる金属イオン等の導電性イオンが水浄化装置に供給 されることを防止することが可能になる。
[0034] 又、上記の場合、前記制御装置が、前記燃料電池システムの停止期間中に前記ポ ンプを動作させる際、前記ポンプの単位時間当たりの送水能力が P1で、前記ポンプ の動作時間が T1で、前記 TOC吸着体の容積力 SV1である場合、前記 P1及び前記 T 1及び前記 VIが(1)式を満たすよう制御する。
[0035] P1 XT1≥V1 · · · (1)
力かる構成とすると、 P1及び T1及び VIが(1)式を満たすので、水浄化装置が有 するイオン交換体への負荷を最小限にすることが可能になる。
[0036] 又、上記の場合、前記水浄ィ匕装置力イオン交換体を更に備えている。
[0037] 力かる構成とすると、水浄ィ匕装置力 Sイオン交換体を更に備えているので、回収水タ ンク内の水を効果的に浄ィ匕することが可能になる。
発明の効果
[0038] 本発明の実施の形態に係る燃料電池システムによれば、燃料電池システムの発電 運転の停止中における水中のバクテリアの繁殖を簡易な構成により効果的に抑制す る、水の供給機能及び浄化機能に障害が発生し難!ヽ燃料電池システムを提供するこ とが可能になる。
図面の簡単な説明
[0039] [図 1]図 1は、本発明の実施の形態 1に係る燃料電池システムの構成を模式的に示す ブロック図である。
[図 2]図 2は、本発明の実施の形態 2に係る燃料電池システムの構成を模式的に示す ブロック図である。
[図 3]図 3は、本発明の実施の形態 3に係る燃料電池システムの構成を模式的に示す ブロック図である。 符号の説明
1 燃料電池
la 冷却水用流路
2a 燃料側凝縮器
2b 酸化剤側凝縮器
3 回収水タンク
3a 回収水排水口
4 冷却水タンク
4a 冷却水排水口
5 冷却水循環ポンプ
6 熱交換器
7 水浄化装置
7a 活性炭
7b イオン交換榭脂
8 回収水供給ポンプ
9 電源スィッチ
10 電源装置
11 浄化水タンク
11a 浄化水排水口
12 浄化水供給ポンプ
100〜300 燃料電池システム
101 制御装置
A 第 1の循環経路 B 第 2の循環経路
C 第 3の循環経路
a 排燃料ガス経路
b 排酸化剤ガス経路
c 燃料側回収水経路
d 酸化剤側回収水経路
e 冷却水供給経路
f 冷却水排出経路
g 浄化水排出経路
h 冷却水戻り経路
i 浄化水排出経路
j 浄化水供給経路
k 浄化水戻り経路
1 浄化水排出経路
発明を実施するための最良の形態
[0041] 以下、本発明を実施するための最良の形態について、図 1〜図 3を参照しながら詳 細に説明する。
[0042] (実施の形態 1)
先ず、本発明の実施の形態 1に係る燃料電池システムの構成について、図面を参 照しながら詳細に説明する。
[0043] 図 1は、本発明の実施の形態 1に係る燃料電池システムの構成を模式的に示すブ ロック図である。尚、図 1において、燃料電池システムを構成する各構成要素の間の 実線は水や燃料ガス又は酸化剤ガス等が流れる経路を示しており、それらの実線上 に記される矢印は水や燃料ガス又は酸化剤ガス等の通常運転時における流動方向 を示している。又、図 1では、本発明を説明するために必要となる構成要素のみを示 しており、それ以外の構成要素については図示を省略している。
[0044] 図 1に示すように、本実施の形態に係る燃料電池システム 100は、その発電部の本 体としての燃料電池 1を備えている。この燃料電池 1としては、本実施の形態では、固 体高分子型の燃料電池を用いている。この燃料電池 1は、図 1では特に図示しない 水素生成装置カゝら排出されて燃料電池 1のアノード側 (又は、燃料極側)に供給され る水素を豊富に含む燃料ガス (又は、改質ガス)と、図 1では特に図示しないブロア一 等を備える空気供給装置により燃料電池 1の力ソード側 (又は、空気極側)に供給さ れる酸化剤ガス (通常は、空気)とを用いて、所定の電力を出力するべく発電を行う。 具体的には、この燃料電池 1は、燃料ガス中の水素及び酸化剤ガス中の酸素が有す る化学エネルギーを、所定の触媒を用いる所定の電気化学反応により、電気工ネル ギ一に直接変換する。かかるエネルギーの変換動作により、燃料電池 1は、燃料電 池システム 100に接続された負荷に向けて電気エネルギー(電力)を供給する。ここ で、本実施の形態では、燃料電池 1の力ソード側に供給される酸化剤ガスは、燃料電 池 1の内部で発電のために使用した後の酸化剤ガスが有する水分が利用されて、予 め所定の加湿状態に調整される。又、酸化剤ガスの加湿度が不足する場合には、例 えば、後述する冷却水タンク 4に貯えられている冷却水の一部を燃料電池 1の内部で 蒸発させることにより、酸化剤ガスの加湿度が適切な加湿度に調整される。又、燃料 電池 1のアノード側に供給される燃料ガスは、上述した水素生成装置において、所定 の加湿状態に調整される。又、発電運転の際、燃料電池 1は発熱する。この燃料電 池 1にお 、て発生する熱は、燃料電池 1の内部に形成された冷却水用流路 1 aに供 給される冷却水により逐次回収される。尚、燃料電池 1の内部構成に関する詳細な 説明については、燃料電池 1の内部構成と一般的な固体高分子型燃料電池の内部 構成とが同様であるため、ここでは省略する。
又、図 1に示すように、この燃料電池システム 100は、燃料側凝縮器 2a及び酸化剤 側凝縮器 2bを備えて ヽる。これらの燃料側凝縮器 2a及び酸化剤側凝縮器 2bでは、 空冷ファンを用いる水の凝縮機構が構成されて 、る。これらの燃料側凝縮器 2a及び 酸化剤側凝縮器 2bは、燃料電池 1から排出される発電に用いられな力つた余剰の燃 料ガス (以下、排燃料ガス)及び余剰の酸化剤ガス (以下、排酸化剤ガス)に含まれる 燃料電池 1において所定の電気化学反応により生成した水を凝縮機構により回収す る。ここで、燃料電池 1から排出される排燃料ガス及び排酸化剤ガスは、排燃料ガス 経路 a及び排酸化剤ガス経路 bを介して、燃料側凝縮器 2a及び酸化剤側凝縮器 2b に供給される。又、燃料側凝縮器 2aにより水分が除去された排燃料ガスは、本実施 の形態では、上述した水素生成装置に供給される。そして、この排燃料ガスは、水素 生成装置が有する火炎バーナーに供給され、この火炎バーナーにおいて改質反応 を進行させるために燃焼される。又、酸化剤側凝縮器 2bにより水分が除去された排 酸化剤ガスは、本実施の形態では、燃料電池システム 100の外部に放出される。又 、燃料側凝縮器 2a及び酸化剤側凝縮器 2bにより回収された水は、燃料側回収水経 路 c及び酸化剤側回収水経路 dを介して、後述する回収水タンク 3に供給される。尚、 これらの燃料側凝縮器 2a及び酸化剤側凝縮器 2bの構成は、一般的な燃料電池シ ステムで用いられる凝縮器の構成と同様であるため、ここではその内部構成に関する 更なる詳細な説明は省略する。
[0046] 又、この燃料電池システム 100は、回収水タンク 3を備えている。この回収水タンク 3 には、燃料側凝縮器2 a及び酸化剤側凝縮器 2bによって回収された水が燃料側回 収水経路 c及び酸化剤側回収水経路 dを介して供給される。そして、この回収水タン ク 3は、その燃料側凝縮器 2a及び酸化剤側凝縮器 2bから排出される水を貯える。回 収水タンク 3に貯えられた水は、燃料電池システム 100における水を使用する構成要 素に向けて適宜供給される。尚、水を使用する構成要素としては、例えば、図 1では 特に図示しない水素生成装置や、後述する冷却水タンク 4等が挙げられる。ここで、 この回収水タンク 3の本実施の形態では側壁における所定の位置には、水を排出す るための回収水排水口 3aが設けられている。回収水タンク 3における過剰な水は、こ の回収水排水口 3aからオーバーフローによって燃料電池システム 100の外部に排 出される。又、この回収水タンク 3は、このオーバーフロー方式の回収水排水口 3aを 通じて大気に連通している。これによつて、回収水タンク 3における貯水量が適切に 制御される。尚、図 1では特に図示しないが、回収水タンク 3の所定の位置には、水 道等の水を供給可能なインフラストラクチャーに接続されている配管が開閉弁等を介 して接続されている。そして、燃料電池システム 100の起動前、回収水タンク 3に必要 量の水を貯えるために、水道力 回収水タンク 3に前記配管及び開閉弁等を介して 水が供給される。
[0047] 又、この燃料電池システム 100は、冷却水タンク 4を備えて!/、る。この冷却水タンク 4 は、発電運転の際に発熱する燃料電池 1を冷却するための冷却水を貯える。この冷 却水タンク 4に貯えられて 、る冷却水は、プランジャーポンプ等の冷却水循環ポンプ 5によって冷却水供給経路 eを介して燃料電池 1の内部の冷却水用流路 laに供給さ れる。又、この冷却水用流路 laから排出される燃料電池 1の発熱によって温度上昇 した冷却水は、熱交換器 6で熱伝達して冷却された後、冷却水排出経路 fを介して冷 却水タンク 4に戻される。つまり、この冷却水タンク 4に貯えられている冷却水は、発電 中に発熱する燃料電池 1を冷却するために、冷却水タンク 4と燃料電池 1の内部に形 成されている冷却水用流路 laとの間で冷却水循環ポンプ 5により循環される。この冷 却水循環ポンプ 5による冷却水の循環により、燃料電池 1において発電時に発生す る熱が逐次回収されて、これにより燃料電池 1が冷却される。又、この冷却水タンク 4 の本実施の形態では側壁における所定の位置には、冷却水を排出するための冷却 水排水口 4aが設けられている。この冷却水排水口 4aには、冷却水戻り経路 hの一端 が配置されている。又、冷却水戻り経路 hの他端は、回収水タンク 3の内部に配置さ れている。冷却水タンク 4における過剰な冷却水は、冷却水排水口 4aからオーバー フローにより冷却水戻り経路 hを介して回収水タンク 3に排出される。又、この冷却水 タンク 4は、このオーバーフロー方式の冷却水戻り経路 h、回収水タンク 3、及び回収 水排水口 3aを通じて大気に連通して 、る。
[0048] 又、この燃料電池システム 100は、上述した熱交^^ 6を備えて 、る。この熱交換 器 6は、燃料電池 1の冷却水用流路 laから排出される温度上昇した冷却水と、給湯 等の目的のために燃料電池システム 100の外部力も供給される水との間で熱を交換 する。そして、この熱交翻6は、熱が回収されて冷却された冷却水を、冷却水タンク 4に向けて冷却水排出経路 fを介して排出する。尚、熱交換器 6から冷却水タンク 4に 戻された温度低下した冷却水は、冷却水循環ポンプ 5によって冷却水タンク 4から燃 料電池 1の冷却水用流路 laに冷却水供給経路 eを介して再び供給される。
[0049] 又、この燃料電池システム 100は、所定の不純物除去部材を有する水浄化装置 7 を備えている。この水浄ィ匕装置 7は、回収水タンク 3から冷却水タンク 4にプランジャ 一ポンプ等の回収水供給ポンプ 8により浄ィ匕水排出経路 gを介して供給される水を浄 化する。ここで、回収水供給ポンプ 8の電源端子は、電力の供給を断続することが可 能な電源スィッチ 9を介して、燃料電池システム 100の運転状況に関わらず電力を供 給可能な蓄電池等を備える電源装置 10の出力端子に接続されている。又、水浄ィ匕 装置 7は、本実施の形態では、所定の不純物除去部材として、活性炭 7aとイオン交 換榭脂 7bとを備えている。活性炭 7aは、大気中から水に混入したバクテリアが繁殖 するための養分となる TOCを吸着によって選択的に除去する。又、イオン交換榭脂 7 bは、燃料電池 1及び熱交換器 6において水に溶出する金属イオン等の導電性ィォ ンを選択的に除去する。又、本実施の形態では、水浄ィ匕装置 7の容積を約 2Lとして いる。尚、水浄ィ匕装置 7に用いる不純物除去部材としては、活性炭 7a及びイオン交 換榭脂 7bに限定されることはなぐ水中の導電性イオン及び TOC等の不純物を除去 することが可能な不純物除去部材 (即ち、イオン交換体、 TOC吸着体)であれば、ゼ オライト、セラミック等の如何なる不純物除去部材を用いても構わな 、。
[0050] 更に、この燃料電池システム 100は、制御装置 101を備えている。この制御装置 10 1は、燃料電池システム 100を構成する各構成要素の動作を適宜制御する。ここで、 この制御装置 101は、例えば、図 1では特に図示しないが、記憶部、中央演算処理 装置 (CPU)等を備えている。尚、燃料電池システム 100の各構成要素の動作に係 るプログラムは予め制御装置 101の記憶部に記憶されており、この記憶部に記憶さ れて ヽるプログラムに基づ!/、て、制御装置 101が燃料電池システム 100の動作を適 宜制御する。
[0051] そして、図 1に示すように、本実施の形態に係る燃料電池システム 100では、回収 水タンク 3と水浄ィ匕装置 7と浄ィ匕水排出経路 gと冷却水タンク 4と冷却水戻り経路 hとに よって、水の第 1の循環経路 Aが構成されている。この水の第 1の循環経路 Aにおい て、回収水供給ポンプ 8は回収水タンク 3から水を取り出し、その取り出した水を、水 浄化装置 7に供給する。そして、水浄ィ匕装置 7において浄化された水を、浄化水排出 経路 gを介して冷却水タンク 4に供給する。冷却水タンク 4に供給された水の過剰分 は、冷却水排水口 4aから排出された後、冷却水戻り経路 hを介して回収水タンク 3に 戻される。このように、本実施の形態に係る燃料電池システム 100は、回収水タンク 3 に貯えられて 、る水を第 1の循環経路 Aにお 、て循環させることが可能に構成されて いる。 [0052] 尚、本実施の形態に係る燃料電池システム 100は、図 1では特に図示しないが、原 料供給装置と、水素生成装置と、空気供給装置とを備えている。
[0053] 原料供給装置は、水素生成装置に向けて、水素を生成するために用いる天然ガス 等の原料を供給する。本実施の形態では、この原料供給装置を、原料としての天然 ガスをそのインフラストラクチャーから供給する構成としている。尚、本実施の形態で は、水素を生成するための原料として天然ガスを用いている力 この形態に限定され ることはなく、 LPG等の炭化水素系成分、メタノール等のアルコール、或いは、ナフサ 成分等に例示される少なくとも炭素及び水素カゝら構成される有機化合物を含む原料 であれば、如何なる原料を用いてもよい。例えば、原料として LPGが用いられる場合 には、原料供給装置には LPGタンクが配設される。
[0054] 又、水素生成装置は、原料供給装置から供給される天然ガス、 LPG等の炭化水素 系成分、メタノール等のアルコール、或いは、ナフサ成分等に例示される少なくとも炭 素及び水素から構成される有機化合物を含む原料と水蒸気とが用いられる改質反応 を主に進行させ、この改質反応によって水素を豊富に含む燃料ガスを生成する。尚、 この水素生成装置は、改質反応を進行させるための改質部と、この改質部から排出 される改質ガス中の一酸ィヒ炭素を低減するための一酸ィヒ炭素変成部(以下、変成部 という)及び一酸化炭素除去部(以下、浄ィ匕部という)とを備えている。改質部は、改 質反応を進行させるための改質触媒と、改質反応を好適に進行させるために必要な 熱を供給するための、原料の一部を燃焼させる、或いは燃料ガスの供給先 (即ち、燃 料電池 1)力 戻される排燃料ガスを燃焼させる火炎バーナーと、燃焼空気供給用の シロッコファンとを備えている。又、変成部は、改質部から排出される燃料ガス中の一 酸化炭素と水蒸気とを反応させる変成触媒を備えている。又、浄化部は、変成部から 排出される燃料ガス中の一酸ィ匕炭素を酸ィ匕或いはメタンィ匕させるための CO除去触 媒を備えている。尚、これらの変成部及び浄ィ匕部は、燃料ガスに含まれる一酸化炭 素を効果的に低減するために、それぞれの化学反応に適した温度条件の下、各々 運転される。
[0055] 又、空気供給装置は、大気を吸入することにより、燃料電池 1の力ソード側に酸化剤 ガスとしての空気を供給する。この空気供給装置は、通常、ブロア一を備えている。こ のブロア一としては、シロッコファン等の送風器が好適に用いられる。
[0056] 次に、本発明の実施の形態 1に係る燃料電池システムの発電のための基本的な動 作について、図面を参照しながら詳細に説明する。
[0057] 本明細書では、燃料電池システムの起動直後から燃料電池が定格出力の電力を 出力可能になるまでの第 1の運転期間 (起動動作期間)と、この第 1の運転期間後の 燃料電池が定格出力の電力を出力可能な第 2の運転期間 (定常運転期間)と、この 第 2の運転期間後の燃料電池力 の電力の出力が停止するまでの後処理等が行わ れる第 3の運転期間 (停止動作期間)との 3つの運転期間を合わせて、燃料電池シス テムの発電運転の「運転期間」と定義する。又、この燃料電池システムの運転期間以 外の期間を、燃料電池システムの発電運転の「停止期間」と定義する。尚、この停止 期間において、燃料電池システムの制御装置には、制御装置が動作するために必 要な電力が商用電源等力も供給されている。又、燃料電池システムの各構成要素は 、制御装置によって制御されることにより適宜動作することが可能な状態とされている
[0058] 燃料電池システム 100は、制御装置 101の制御によって以下の動作を行う。
[0059] 先ず、図 1に示す燃料電池システム 100の発電運転を開始する際には、燃料電池 1の発電運転に必要となる水素を豊富に含む燃料ガスを生成するために、水素生成 装置を作動させる。具体的には、水素を生成するための原料となる天然ガスを、原料 供給装置から水素生成装置の改質部に供給する。又、改質反応を進行させるための 水蒸気を生成するために、水素生成装置の改質部に水を供給する。この際、改質反 応を進行させるために、改質部に設けられている改質触媒を、火炎バーナーにおい て排燃料ガス等を燃焼させて発生する熱により加熱する。又、この排燃料ガス等の燃 焼のために、燃焼空気供給用のシロッコファン力 火炎バーナーに空気を供給する。 これにより、水素生成装置の改質部は、水蒸気改質反応によって水素を豊富に含む 燃料ガスを生成する。尚、この水素生成装置の改質部で生成される改質ガスは、そ の後、変成部及び浄化部に供給される。そして、その変成部及び浄ィ匕部において、 燃料ガスに含まれる一酸ィ匕炭素が効果的に低減及び除去される。そして、変成部及 び浄ィ匕部において一酸ィ匕炭素が効果的に低減及び除去された良質な燃料ガスが、 燃料電池 1のアノード側に供給される。
[0060] 水素生成装置から燃料電池 1のアノード側に水素を豊富に含む燃料ガスが供給さ れると共に、空気供給装置から燃料電池 1の力ソード側に酸化剤ガスが供給されると 、燃料電池 1では、そのアノード側及び力ソード側に供給される燃料ガス及び酸化剤 ガスが用いられて、所定の電力を出力するべく発電が行われる。尚、発電に用いられ な力つた排燃料ガスは、燃料電池 1のアノード側力も排出され、燃料側凝縮器 2aによ つて除湿された後、排燃料ガス経路 aを介して水素生成装置に戻される。そして、水 素生成装置が有する火炎バーナーに供給され、この火炎バーナーにおいて改質反 応を進行させるために燃焼される。又、燃料電池 1の力ソード側から排出される排酸 ィ匕剤ガスは、酸化剤側凝縮器 2bによって除湿された後、排酸化剤ガス経路 bを介し て燃料電池システム 100の外部に排出される。
[0061] この発電運転の際、燃料電池 1は、発電のための電気化学反応によって発熱する。
この燃料電池 1で発生する熱は、冷却水タンク 4が有する冷却水が冷却水循環ボン プ 5によって冷却水供給経路 e及び冷却水排出経路 fを介して燃料電池 1の内部に 形成されている冷却水用流路 laに循環されることにより逐次回収される。ここで、この 冷却水循環ポンプ 5により循環される冷却水によって回収された熱は、例えば、熱交 6において給湯等の目的のために利用される。又、何らかの原因により冷却水タ ンク 4における冷却水の量が不足した場合や、冷却水タンク 4に貯えられて 、る冷却 水の水質が悪ィ匕した場合には、必要に応じて回収水タンク 3から冷却水タンク 4に向 けて水浄ィ匕装置 7及び浄ィ匕水排出経路 gを介して浄化された水の補充が行われる。 この水の補充は、回収水供給ポンプ 8の動作によって行われる。回収水供給ポンプ 8 は、電源スィッチ 9が ON状態とされて電源装置 10から駆動用の電力が供給されるこ とにより、水を補充するべく動作する。又、冷却水タンク 4における冷却水の量が過剰 となった場合には、冷却水タンク 4から回収水タンク 3に向けて冷却水排水口 4a及び 冷却水戻り経路 hを介して冷却水の排出が行われる。これにより、冷却水タンク 4にお ける冷却水の水質が維持されると共に、その貯水量が適切に制御される。
[0062] 又、この発電運転の際、燃料電池 1からは、発電に伴って生成した水を含む排燃料 ガス及び排酸化剤ガスが排出される。これらの排燃料ガス及び排酸化剤ガスは、排 燃料ガス経路 a及び排酸化剤ガス経路 bを介して、燃料側凝縮器 2a及び酸化剤側凝 縮器 2bに供給される。そして、その燃料側凝縮器 2a及び酸化剤側凝縮器 2bにおい て、排燃料ガス及び排酸化剤ガスに含まれる水が回収される。そして、これらの燃料 側凝縮器 2a及び酸化剤側凝縮器 2bは、排燃料ガス及び排酸化剤ガスカゝら回収した 水を、燃料側回収水経路 c及び酸化剤側回収水経路 dを介して、回収水タンク 3に送 出する。
[0063] 上述したように、燃料側凝縮器 2a及び酸化剤側凝縮器 2bから回収水タンク 3に送 出された水は、発電運転の際、必要に応じて、回収水供給ポンプ 8の動作によって 冷却水タンク 4に供給される。この際、回収水タンク 3に貯えられている水は、水浄ィ匕 装置 7によって浄化された後、冷却水タンク 4に供給される。この水浄ィ匕装置 7では、 活性炭 7aによって TOCが選択的に除去されると共に、イオン交換榭脂 7bによって 金属イオン等の導電性イオンが選択的に除去される。これにより、回収水タンク 3に貯 えられている水が浄ィ匕され、その浄ィ匕された水が冷却水タンク 4に供給される。このよ うに、本実施の形態に係る燃料電池システム 100では、燃料側凝縮器 2a及び酸ィ匕 剤側凝縮器 2bによって排燃料ガス及び排酸化剤ガスカゝら回収した水を回収水タンク 3に貯えることにより、通常は、水素生成装置で使用する水や冷却水タンク 4に貯える 冷却水を燃料電池システム 100の外部より補充することなぐ連続して発電動作が行 われる。尚、何らかの原因により回収水タンク 3における水の量が不足した場合には、 水道から回収水タンク 3に向けて水の補充が行われる。又、回収水タンク 3における 水の量が過剰となった場合には、その過剰な水が回収水タンク 3の回収水排水口 3a 力もオーバーフローにより燃料電池システム 100の外部に排出される。これにより、回 収水タンク 3における貯水量が適切に制御される。
[0064] ところで、燃料電池システム 100では、既述のように、回収水タンク 3内の回収水及 び冷却水タンク 4内の冷却水は大気と接触可能であるため、それらの回収水及び冷 却水に大気中からバクテリアや TOC等が混入する。ここで、回収水及び冷却水に混 入した TOCは、それらが回収水タンク 3と冷却水タンク 4との間で回収水供給ポンプ 8 によって水浄ィ匕装置 7を介して循環されることにより、水浄ィ匕装置 7における活性炭 7 aにより選択的に吸着される。この場合、活性炭 7aにおける TOCの吸着量は、燃料 電池システム 100の発電運転の経過時間に応じて増加する。尚、 TOCはバクテリア の養分であり、 TOCの吸着量が増加するに従ってバクテリアの繁殖が促進される。 回収水や冷却水においてバクテリアが大量に繁殖した場合には、その大量に繁殖し たバクテリアが水の流動性を悪化させるので、回収水や冷却水を送水するための流 路に流路閉塞又は流路狭窄が発生する可能性が高い。
[0065] 一方、燃料電池システム 100にお 、ては、通常、その発電運転と、水浄化装置 7の 浄水運転 (例えば、本実施の形態では、回収水タンク 3から水浄ィ匕装置 7へ回収水を 供給して、その供給される回収水を水浄ィ匕装置 7により浄ィ匕して、その浄ィ匕した水を 水浄化装置 7から冷却水タンク 4へ供給する浄水運転)とは、一体不可分の関係にあ る。従って、燃料電池システム 100の発電運転が停止している場合には、回収水タン ク 3から水浄ィ匕装置 7への回収水の供給が停止する。そして、燃料電池システム 100 の発電運転の停止時には、バクテリアを有する水が水浄ィ匕装置 7の TOCを大量に吸 着した栄養源に富む活性炭 7aの内部に滞留するので、ノ クテリアが大量に繁殖する 場合がある。この場合、回収水や冷却水を送水するための浄化水排出経路 g及び冷 却水戻り経路 hに流路閉塞又は流路狭窄による供給圧損等の問題が生じて、これに より燃料電池システム 100において水の供給機能及び浄化機能に障害が発生する 場合がある。この水の供給機能及び浄化機能に係る障害は、再起動時等における 燃料電池システム 100の正常な発電運転を阻害する要因となる。
[0066] そこで、本実施の形態では、発電運転の停止期間中における水中のバクテリアの 繁殖を簡易な構成により効果的に抑制して、水の供給機能及び浄化機能に障害が 発生し難 ヽ燃料電池システムを提供するために、燃料電池システム 100の停止期間 において制御装置 101が所定の周期及び期間で電源スィッチ 9を ON状態として、こ れにより電源装置 10から回収水供給ポンプ 8に電力を供給する。そして、燃料電池 システム 100の停止期間中に回収水供給ポンプ 8を所定の周期及び供給量で動作 させて、冷却水タンク 4内の冷却水を冷却水排水口 4aからオーバーフローさせること により、回収水タンク 3と冷却水タンク 4との間で水浄ィ匕装置 7を介して所定の周期及 び循環量で図 1に示す第 1の循環経路 Aの如く水を強制的に循環させる。
[0067] ここで、本実施の形態では、水を循環させる所定の周期を、 1週間以内(168時間 以内)、より好ましくは、 3日以上(72時間以上) 1週間以内(168時間以内)としている 。その理由は、図 1に示す第 1の循環経路 Aにおいて水を 1週間以上循環させない 場合には、燃料電池システム 100内の水に、浄化水排出経路 g及び冷却水戻り経路 h等の水が流動する経路を閉塞せしめる程度のバクテリアが繁殖するためである。又 、水を循環させる所定の周期を 3日以上とするのは、 3日以内の周期で水を循環させ ると水浄ィ匕装置 7のイオン交換榭脂 7bに対する負荷が増加するので、イオン交換榭 脂 7bに対する負荷を低減してその劣化を防止するためである。
[0068] 又、本実施の形態では、水を循環させる際の所定の循環量を、 1回の循環動作に おいて約 2. OLとしている。具体的には、本実施の形態では、水の循環に係る電力 消費量を鑑みて、 1回の循環動作において毎分 50ccの割合で 40分間に渡って水を 循環させる。この場合、 1回の循環動作における所定の循環量を、約 2. 4Lとすること 力 り好ましい。具体的には、 1回の循環動作において毎分 60ccの割合で 40分間に 渡って水を循環させることがより好ましい。その理由は、本実施の形態に係る燃料電 池システム 100の水浄化装置 7の容積は約 2Lであり、上述の如く水の循環量を約 2. 4Lとすることによれば、水浄ィ匕装置 7に滞留する容積分の水を確実に置換することが 可能になる力 である。
[0069] このように、本実施の形態では、燃料電池システム 100の停止期間中に所定の周 期及び期間で回収水供給ポンプ 8を動作させ、これにより所定の周期及び循環量で 回収水タンク 3と冷却水タンク 4との間で水を循環させることにより、燃料電池システム 100において水中のバクテリアが著しく繁殖することを、エネルギーを浪費することな く効果的に抑制する。
[0070] 本実施の形態に係る燃料電池システム 100におけるバクテリアの繁殖の抑制作用 及び効果は、以下の如く推測及び説明される。
[0071] 即ち、燃料電池システム 100の発電運転の際、水浄化装置 7を構成する活性炭 7a には、大気中から水に逐次混入する TOCが逐次吸着及び貯蔵される。この際、活性 炭 7aが吸着する TOCの量は、燃料電池システム 100を設置する場所の環境や活性 炭 7aの TOCの吸着能力にもよるが、比較的短期間においてバクテリアを著しく繁殖 させ得る量にまで到達すると考えられる。 [0072] 一方、ノ クテリアは、通常、好気性バクテリアと嫌気性バクテリアとに分類される。こ こで、好気性バクテリアとは、繁殖するために酸素を必要とするバクテリアである。又、 嫌気性バクテリアとは、繁殖するために酸素を必要としないバクテリアである。尚、燃 料電池システム 100においては、その運転期間及び停止期間において循環又は滞 留する水に対して酸素を積極的に供給しないことから、回収水タンク 3や水浄化装置 7の活性炭 7a等の水に繁殖するバクテリアは主に嫌気性バクテリアであると考えられ る。
[0073] ところで、バクテリアの繁殖スピードは、そのバクテリアの種類によって異なる。例え ば、好気性バクテリアは、繁殖のために酸素及び TOCを消費しながら、概ね 20〜30 分に 1回の割合で分裂を繰り返していく。具体的には、 1個の好気性バクテリアは、 2 0分に 1回の割合で分裂を繰り返し、その後の繁殖により生成する好気性バクテリア の何れもが死滅しないと仮定すると、 12時間後には約 10億個にまで繁殖する。一方 、嫌気性バクテリアは、繁殖のための TOCが十分に存在する環境であっても、好気 性バクテリアの繁殖スピードとは異なり、概ね 4時間に 1回の割合で分裂を繰り返す。 この場合、概ね 4時間に 1回の割合で分裂を繰り返し、その後の繁殖により生成する 嫌気性バクテリアの何れもが死滅しないと仮定しても、 1個の嫌気性バクテリアの 12 時間後における数は約 8個程度である。
[0074] つまり、燃料電池システム 100において、水中でのバクテリアの著しい繁殖を抑制 するためには、 TOCを大量に吸着している活性炭 7aの内部にバクテリアを有する水 を長時間 (例えば、本実施の形態では、 1週間以上)滞留させないことが非常に効果 的であると考えられる。
[0075] そこで、本実施の形態では、上述したように、活性炭 7aの内部にバクテリアを有す る水が長時間滞留することを防止するために、燃料電池システム 100の停止期間中 において所定の周期及び期間で回収水供給ポンプ 8を動作させ、これにより所定の 周期及び循環量で回収水タンク 3と冷却水タンク 4との間で水を強制的に循環させる 。これにより、所定の周期で水浄ィ匕装置 7の活性炭 7aからバクテリアを有する水が排 出され、バクテリアを有する水の滞留が防止されるので、燃料電池システム 100にお いて水中のバクテリアが著しく繁殖することを、エネルギーを浪費することなく効果的 に抑制することが可能になる。そして、本発明により、水の供給機能及び浄化機能に 障害が発生し難い、信頼性の高い燃料電池システム 100を提供することが可能にな る。尚、燃料電池システム 100の発電運転の停止期間としては、負荷の消費電力量 が少ない夜間や、負荷の消費電力量が少なくなる長期間外出する期間等が挙げら れる。このような夜間や外出期間では、燃料電池システム 100の発電運転は停止さ れ、その一方で商用電源力 負荷に対して電力の供給が行われる。
[0076] 又、本実施の形態では、燃料電池システム 100の内部の水でバクテリアが著しく繁 殖することを、紫外線の照射装置や加熱装置等の殺菌装置を利用して抑制するので はなぐ単に燃料電池システム 100の停止期間中に既設の回収水供給ポンプ 8を用 いて水を循環させることにより抑制するので、新たな紫外線照射装置や加熱装置等 の構成要素を追加することなぐ又、エネルギーを浪費することなぐ簡易な構成によ り効果的に抑制することが可能になる。つまり、経済性及び省エネルギー性を確保し た燃料電池システム 100を提供することが可能になる。
[0077] 又、本実施の形態では、燃料電池システム 100における水の循環の周期を、 1週間 以内(168時間以内)、より好ましくは、 3日以上(72時間以上) 1週間以内(168時間 以内)としている。力かる形態によれば、回収水供給ポンプ 8を作動させて冷却水タン ク 4と回収水タンク 3との間で水を循環させる際、長時間の放置により水の温度が比 較的低い温度にまで冷却されており、これにより水浄ィ匕装置 7の活性炭 7a及びィォ ン交換樹脂 7bに対して高温状態の水が供給されることを防止することができるので、 活性炭 7a及びイオン交換榭脂 7bが熱劣化することを防止することが可能になる。例 えば、 70°Cの水が水浄ィ匕装置 7に供給された場合には、活性炭 7aの TOC等の有機 成分の吸着特性が低下する。又、この場合には、イオン交換榭脂 7bの耐熱温度を越 すので、イオン交換榭脂 7bが熱変性する。しかし、水の循環周期を上述の如く長い 周期で設定する本実施の形態によれば、回収水タンク 3や冷却水タンク 4に貯えられ て!、る水の温度は確実に低下して 、るので、活性炭 7aの吸着特性の低下やイオン 交換榭脂 7bの熱変性等の問題を未然に回避することが可能になる。つまり、水浄ィ匕 装置 7の水浄ィ匕特性を長期に渡って確保した燃料電池システム 100を提供すること が可能なる。 [0078] ここで、本実施の形態では、回収水タンク 3と冷却水タンク 4との間で水を強制的に 循環させる際の所定の周期を、 1週間以内(168時間以内)、より好ましくは、 3日以 上(72時間以上) 1週間以内(168時間以内)としているが、このような周期に限定さ れることはない。又、本実施の形態では、回収水タンク 3と冷却水タンク 4との間で水 を強制的に循環させる際の所定の循環量を約 2. OLとしている力 このような循環量 に限定されることはない。つまり、回収水タンク 3と冷却水タンク 4との間で水を強制的 に循環させる所定の周期及び循環量は、バクテリアの繁殖の程度を燃料電池システ ム 100において水の供給機能や浄化機能に障害が発生しない程度とすることが可能 であれば、如何なる周期及び循環量であってもよ ヽ。
[0079] 例えば、水中でのバクテリアの繁殖スピードは、燃料電池システム 100の構成ゃバ クテリアの種類によって変化するので、回収水タンク 3や冷却水タンク 4や水浄ィ匕装 置 7等の容積や開放面積、及びバクテリアの種類等に応じて、水を循環させる周期 及び循環量を設定すればよい。又、水中でのバクテリアの繁殖スピードは、水温によ つても変化する。例えば、水温が低くなる冬季においては、水中でのバクテリアの繁 殖スピードは遅い。しかし、水温が高くなる夏季においては、水中でのバクテリアの繁 殖スピードは早い。又、燃料電池システム 100の発電運転を開始した後、比較的短 期間でその発電運転を停止した場合においては、水への TOC及びバクテリアの混 入量は比較的少ないので、その後にバクテリアが繁殖する確率は小さくなる。従って 、水を循環する周期及び循環量を一定の値に固定する必要はなぐ燃料電池システ ム 100の構成及び運転状況やバクテリアの種類等を鑑みて、水を循環させる所定の 周期及び循環量を適宜設定すればよ!ヽ。
[0080] 又、本実施の形態では、制御装置 101が回収水タンク 3と冷却水タンク 4との間で 水を強制的に循環させるよう制御する形態を示しているが、このような形態に限定さ れることはない。例えば、水浄ィ匕装置 7の活性炭 7aにおいて水が長期間に渡って滞 留することを防止するために、制御装置 101が、水浄ィ匕装置 7の活性炭 7a内から水 を十分に排出させるよう、燃料電池システム 100の停止期間中に回収水供給ポンプ 8を動作させて浄ィ匕水排出経路 gにおいて水が移動するよう制御する形態としてもよ い。即ち、水浄ィ匕装置 7の活性炭 7aにおいて水が長期間に渡って滞留することを防 止可能な手段であれば、如何なる手段であっても、燃料電池システム 100において 水の供給機能や浄化機能に障害を発生させないための手段として採用することが可 能である。
[0081] 又、本実施の形態では、回収水タンク 3と冷却水タンク 4との間の水の循環量を、水 浄ィ匕装置 7の容積が約 2Lであることを考慮しながら、水浄化装置 7内に滞留する水 を回収水タンク 3から供給する回収水により確実に置換するために、好ましくは 1回の 循環当たり約 2. 4Lとしている。ここで、この水の循環量は、水浄ィ匕装置 7における水 の置換を確実に行うと共に、水浄ィ匕装置 7のイオン交換榭脂 7bに対する負荷を最小 限とするために、水浄ィ匕装置 7の容積と同一とすることが基本である。その理由は、こ の水の循環量が水浄ィ匕装置 7の容積を大幅に超える場合には、イオン交換榭脂 7b への負荷が増加するので、イオン交換榭脂 7bの寿命に悪影響を及ぼす力 である。 このように、回収水タンク 3と冷却水タンク 4との間の水の循環量を水浄ィ匕装置 7の容 積と同一とすることを基本として、状況に応じて水浄化装置 7の容積よりもイオン交換 榭脂 7bに悪影響を及ぼさない程度において若干多くすることにより、水浄ィ匕装置 7の 浄水機能を損なわずに水中のバクテリアの繁殖を効果的に抑制することが可能にな る。
[0082] 尚、上述したように、燃料電池システム 100において水の供給機能や浄化機能に 障害を発生させないためには、水浄ィ匕装置 7の活性炭 7aにおける水の滞留を防止 することが重要である。力かる観点に基づけば、回収水タンク 3と冷却水タンク 4との 間の水の循環量は、 1回当たりの水の循環量 (移動量)が活性炭 7aの容積以上とな るように設定されることが最低限必要である。
[0083] 又、本実施の形態では、上述したように、燃料電池システム 100の停止期間中にお いて所定の周期及び期間で回収水供給ポンプ 8を動作させ、これにより所定の周期 及び循環量で回収水タンク 3と冷却水タンク 4との間で水を強制的に循環させる。こ の際、水を強制的に循環させることに起因して、回収水タンク 3及び冷却水タンク 4の 各々における水位が、回収水タンク 3及び冷却水タンク 4の各々の深さ方向において 変動する。ここで、この回収水タンク 3及び冷却水タンク 4における水位の変動は、回 収水タンク 3内の回収水の経時的な腐敗進行、及び、冷却水タンク 4内の冷却水の 経時的な腐敗進行の各々を、効果的に抑制する。その理由は、所謂貯水タンク内で の水の一般的な腐敗は、水位が変動しない状況下において、その貯水タンクの内壁 面と水と空気とが接触する界面で特に進行し易いからである。つまり、本実施の形態 によれば、燃料電池システム 100の停止期間中にお 、て回収水供給ポンプ 8を動作 させて水を強制的に循環させ、これにより回収水及び冷却水の水位を強制的に変動 させるので、回収水タンク 3及び冷却水タンク 4の回収水排水口 3a及び冷却水排水 口 4aから回収水及び冷却水にバクテリアが混入した場合であっても、回収水及び冷 却水の腐敗を効果的に抑制することが可能になる。ここで、かかる水の腐敗抑制効 果は、水の循環動作による燃料電池システム特有の派生効果として得られるもので ある。そして、この水位変動に起因する水の腐敗抑制効果と、水の循環動作に起因 する水の腐敗抑制効果との相乗効果により、燃料電池システム 100において水の腐 敗進行を従来以上に効果的に抑制することが可能になる。
[0084] 尚、本実施の形態では、燃料電池システム 100が固体高分子型の燃料電池を燃料 電池 1として備える形態について説明している力 このような形態に限定されることは ない。例えば、燃料電池システム 100がリン酸型燃料電池やアルカリ型燃料電池等 を燃料電池 1として備える形態としてもよい。カゝかる構成としても、本実施の形態と同 様の効果を得ることが可能である。
[0085] (実施の形態 2)
図 2は、本発明の実施の形態 2に係る燃料電池システムの構成を模式的に示すブ ロック図である。尚、図 2においても、燃料電池システムを構成する各構成要素の間 の実線は水や燃料ガス又は酸化剤ガス等が流れる経路を示しており、それらの実線 上に記される矢印は、水や燃料ガス又は酸化剤ガス等の通常運転時における流動 方向を示している。又、図 2においても、本発明を説明するために必要な構成要素の みを示しており、それ以外の構成要素については図示を省略している。又、図 2にお いて、実施の形態 1で示した燃料電池システム 100の構成要素と同一の構成要素に ついては、同一の符号を付している。
[0086] 図 2に示すように、本実施の形態に係る燃料電池システム 200は、実施の形態 1で 示した燃料電池システム 100の構成と概ね同一の構成を備えている。しかし、本実施 の形態に係る燃料電池システム 200の構成は、水浄化装置 7で浄化された水を貯え る浄ィ匕水タンク 11と、この浄ィ匕水タンク 11から冷却水タンク 4に向けて水を供給する 浄ィ匕水供給ポンプ 12とを更に備えて ヽる点で、実施の形態 1で示す燃料電池システ ム 100の構成と異なっている。尚、その他の点については、実施の形態 1で示す燃料 電池システム 100の構成と同様である。
[0087] 上述したように、本実施の形態に係る燃料電池システム 200は、浄ィ匕水タンク 11を 備えている。この浄ィ匕水タンク 11は、水浄化装置 7から排出される浄化された水を冷 却水タンク 4に供給する前に貯える。ここで、水浄ィ匕装置 7で浄化された水は、浄ィ匕 水排出経路 iを介して浄ィ匕水タンク 11に供給される。又、浄ィ匕水タンク 11において過 剰となった水は、浄ィ匕水タンク 11における所定の位置に設けられた浄ィ匕水排水口 1 laから排出された後、浄ィ匕水戻り経路 kを介して回収水タンク 3に戻される。つまり、 本実施の形態では、実施の形態 1で示した水の第 1の循環経路 Aに代えて、図 2に 示す水を循環するための第 2の循環経路 Bが形成されている。このように、本実施の 形態で示す燃料電池システム 200は、浄ィ匕水タンク 11を設けて水の第 2の循環経路 Bを形成して、図 1に示す水の第 1の循環経路 A上力も冷却水タンク 4を独立させる点 を特徴事項として有して ヽる。
[0088] 又、図 2に示すように、この燃料電池システム 200は、浄化水供給ポンプ 12を備え ている。この浄ィ匕水供給ポンプ 12は、浄ィ匕水タンク 11に貯えられている水を、浄ィ匕 水供給経路 jを介して冷却水タンク 4に供給する。この浄化水供給ポンプ 12の動作に よって、冷却水タンク 4における冷却水の水量が不足した場合、浄ィ匕水タンク 11から 冷却水タンク 4に水の補充が行われる。
[0089] 本実施の形態では、活性炭 7aの内部にバクテリアを有する水が長時間滞留するこ とを防止するために、燃料電池システム 200の停止期間中にお 、て制御装置 101が 所定の周期及び期間で電源スィッチ 9を ON状態とすることにより、電源装置 10から 回収水供給ポンプ 8に電力を供給する。そして、所定の周期及び期間で回収水供給 ポンプ 8を動作させて、これにより、所定の周期及び循環量で回収水タンク 3から水浄 化装置 7に水を供給する。又、水浄ィ匕装置 7において浄化された水は、回収水供給 ポンプ 8によって水浄ィ匕装置 7に供給される水により押し出されて、浄化水排出経路 i を介して浄ィ匕水タンク 11に供給される。そして、浄ィ匕水タンク 11において余剰となつ た水は、浄化水排水口 11aから排出された後、浄ィ匕水戻り経路 kを介して、回収水タ ンク 3に戻される。このように、本実施の形態では、燃料電池システム 200の停止期間 中に、回収水タンク 3と浄ィ匕水タンク 11との間で水浄ィ匕装置 7を介して水を第 2の循 環経路 Bの如く強制的に循環させることを特徴としている。そして、所定の周期で水 浄ィ匕装置 7の活性炭 7aからバクテリアを有する水を排出して、バクテリアを有する水 の滞留を防止することにより、燃料電池システム 200において水中のバクテリアが著 しく繁殖することを、エネルギーを浪費することなく確実にかつ効果的に抑制する。本 発明によっても、水の供給機能及び浄化機能に障害が発生し難い、信頼性の高い 燃料電池システム 200を提供することが可能になる。
[0090] 又、本実施の形態によれば、図 2に示す水の第 2の循環経路 Bと冷却水タンク 4とが 独立しているので、冷却水タンク 4に貯えられている冷却水が回収水タンク 3に戻され ることはない。これにより、燃料電池 1の冷却水用流路 laにおいて冷却水に溶出した 金属イオン等の導電性イオンが水浄ィ匕装置 7に供給されることが防止されるので、導 電性イオンによるイオン交換榭脂 7bへの負荷を低減又は解消することが可能になる 。つまり、イオン交換榭脂 7bの劣化を抑制することが可能になる。又、導電性イオン によるイオン交換榭脂 7bへの負荷が低減するので、イオン交換榭脂 7bのイオン交換 除去能が有効に利用され、これにより回収した水の浄ィ匕をより一層確実に行うことが 可能になる。その結果、本実施の形態によれば、燃料電池システム 200における水 の浄ィ匕度をより一層改善することが可能になる。
[0091] 尚、本実施の形態でも、回収水タンク 3と浄ィ匕水タンク 11との間で水を循環させる 周期及び循環量は、例えば、水中でのバクテリアの繁殖の程度を予めサンプリングし て評価した評価結果等に基づいて、燃料電池システム 200の構成等も考慮して、適 宜設定すればよい。又、浄ィ匕水タンク 11の大きさ(最大貯水量)は、発電運転の際に 冷却水タンク 4において不足する冷却水の水量を確保する観点に基づいて決定す ればよい。尚、その他の点については、実施の形態 1の場合と同様である。
[0092] (実施の形態 3)
図 3は、本発明の実施の形態 3に係る燃料電池システムの構成を模式的に示すブ ロック図である。尚、図 3においても、燃料電池システムを構成する各構成要素の間 の実線は水や燃料ガス又は酸化剤ガス等が流れる経路を示しており、それらの実線 上に記される矢印は、水や燃料ガス又は酸化剤ガス等の通常運転時における流動 方向を示している。又、図 3においても、本発明を説明するために必要な構成要素の みを示しており、それ以外の構成要素については図示を省略している。又、図 3にお V、ても、実施の形態 1及び 2で示した燃料電池システム 100及び 200の構成要素と同 一の構成要素については、同一の符号を付している。
[0093] 図 3に示すように、本実施の形態に係る燃料電池システム 300は、実施の形態 2で 示した燃料電池システム 200の構成と概ね同一の構成を備えている。しかし、本実施 の形態に係る燃料電池システム 300の構成は、図 2に示す浄化水タンク 11と冷却水 タンク 4とを備えている点においては燃料電池システム 200の構成と同様であるが、 浄ィ匕水タンク 11から冷却水タンク 4に浄ィ匕された水を供給するための浄ィ匕水供給ポ ンプ 12を有して!/、な!/、点と、それに伴!、浄化水タンク 11の浄化水排水口 1 laから冷 却水タンク 4に向けてオーバーフローにより浄ィ匕された水が供給されるように構成され ている点で、実施の形態 2で示す燃料電池システム 200の構成と異なっている。又、 冷却水タンク 4における所定の位置に冷却水排水口 4aが設けられており、その冷却 水排水口 4aから冷却水戻り経路 hを介して余剰の冷却水が回収水タンク 3に戻され るように構成されて ヽる点で、実施の形態 2で示す燃料電池システム 200の構成と異 なっている。尚、その他の点については、実施の形態 1及び 2で示す燃料電池システ ム 100及び 200の構成と同様である。
[0094] 上述したように、本実施の形態に係る燃料電池システム 300は、実施の形態 2で示 した燃料電池システム 200の構成と同様にして、浄ィ匕水タンク 11を備えている。この 浄ィ匕水タンク 11は、水浄ィ匕装置 7から排出される浄化された水を、実施の形態 2の場 合と同様にして貯える。ここで、水浄ィ匕装置 7で浄化された水は、実施の形態 2の場 合と同様にして、浄化水排出経路 iに換えて浄化水排出経路 1を介して、浄化水タンク 11に供給される。そして、本実施の形態では、浄ィ匕水タンク 11において過剰となつ た水が、浄化水排水口 11aを介してオーバーフローにより冷却水タンク 4に供給され るよう構成されている。ここで、燃料電池システム 300では、図 3に示すように、浄ィ匕水 タンク 11におけるオーバーフロー時の水位と冷却水タンク 4におけるオーバーフロー 時の水位とを比較した場合、冷却水タンク 4におけるオーバーフロー時の水位が浄 化水タンク 11におけるオーバーフロー時の水位よりも低くなるように構成されて 、る。 従って、浄ィ匕水タンク 11から冷却水タンク 4に向けて浄ィ匕された水を移動させること は可能であるが、それとは反対に、冷却水タンク 4から浄ィ匕水タンク 11に向けて冷却 水を移動させることはできない。つまり、本実施の形態に係る燃料電池システム 300 では、水が浄ィ匕水タンク 11から冷却水タンク 4に向けて一方的に移動するように構成 されている。そして、冷却水タンク 4において過剰となった冷却水は、冷却水タンク 4 の冷却水排水口 4aからオーバーフローにより排出され、その後、冷却水戻り経路 hを 介して回収水タンク 3に戻される。つまり、本実施の形態では、図 3に示すように、実 施の形態 1及び 2で示した水の第 1の循環経路 A及び第 2の循環経路 Bに代えて、水 の第 3の循環経路 Cが形成されている。このように、本実施の形態で示す燃料電池シ ステム 300では、ポンプ等の送水手段を用いることなく浄ィ匕水タンク 11から冷却水タ ンク 4へ水を供給可能とするために、浄ィ匕水タンク 11の浄ィ匕水排水口 1 laの一端が 冷却水タンク 4における所定の位置に接続されている。これにより、浄ィ匕水タンク 11 力も冷却水タンク 4へ水を供給可能としている。そして、燃料電池システム 300は、第 1の循環経路 A及び第 2の循環経路 Bに代えて水の第 3の循環経路 Cが形成されて いる点を、その特徴事項として有している。
本実施の形態では、活性炭 7aの内部にバクテリアを有する水が長時間滞留するこ とを防止するために、燃料電池システム 300の停止期間中にお 、て制御装置 101が 所定の周期及び期間で電源スィッチ 9を ON状態とすることにより、電源装置 10から 回収水供給ポンプ 8に電力を供給する。そして、所定の周期及び期間で回収水供給 ポンプ 8を動作させて、これにより、所定の周期及び循環量で回収水タンク 3から水浄 化装置 7に水を供給する。又、水浄ィ匕装置 7において浄化された水は、回収水供給 ポンプ 8により水浄ィ匕装置 7に供給される水により押し出されて、浄化水排出経路 1を 介して浄ィ匕水タンク 11に供給される。そして、浄ィ匕水タンク 11で余剰となった水は、 オーバーフローによって浄ィ匕水排水口 11aを介して冷却水タンク 4に供給される。又 、冷却水タンク 4で余剰となった水は、オーバーフローによって冷却水排水口 4a及び 冷却水戻り経路 hを介して回収水タンク 3に再び供給される。尚、本実施の形態でも、 実施の形態 1及び 2の場合と同様にして、浄ィ匕水タンク 11及び冷却水タンク 4と回収 水タンク 3との間の水の循環量を、水浄ィ匕装置 7の容積が約 2Lであることを考慮しな がら、水浄ィ匕装置 7内に滞留する水を回収水タンク 3から供給する水により確実に置 換するために、 1回の循環当たり約 2. 4Lとしている。
[0096] このように、本実施の形態では、燃料電池システム 300の停止期間中、浄化水タン ク 11及び冷却水タンク 4と回収水タンク 3との間で水を図 3に示す第 3の循環経路 C の如く強制的に循環させる。そして、実施の形態 1及び 2の場合と同様、所定の周期 で水浄ィ匕装置 7の活性炭 7aからバクテリアを有する水を排出して、バクテリアを有す る水の滞留を防止することにより、燃料電池システム 300において水中のバクテリア が著しく繁殖することを、エネルギーを浪費することなく確実にかつ効果的に抑制す る。本発明によっても、水の供給機能及び浄化機能に障害が発生し難い、信頼性の 高い燃料電池システム 300を提供することが可能になる。
[0097] 又、本実施の形態によれば、ポンプ等の送水手段を用いることなく浄ィ匕水タンク 11 力も冷却水タンク 4へ水を供給することが可能となるため、実施の形態 2で示した燃料 電池システム 200の構成と比べて、燃料電池システム 300の構成を簡略ィ匕することが 可能になる。又、ポンプ等の送水手段を用いる必要がないので、燃料電池システム 3 00の消費電力を抑制することができると共に、燃料電池システム 300をより安価に提 供することが可能になる。
[0098] 尚、本実施の形態では、冷却水タンク 4と浄ィ匕水タンク 11とが浄ィ匕水排水口 11aに より接続されている形態を例示している力 このような形態に限定されることはない。 例えば、冷却水タンク 4と浄ィ匕水タンク 11とが一体的に形成され、浄ィ匕水タンク 11か ら冷却水タンク 4への水のオーバーフローが可能となるように冷却水タンク 4の冷却水 と浄ィ匕水タンク 11の浄ィ匕水とが所定の隔壁により離隔されて 、る形態としてもょ 、。こ のような構成としても、本実施の形態において得られる作用及び効果と同様の作用 及び効果を得ることが可能である。
[0099] 又、本実施の形態でも、浄ィ匕水タンク 11及び冷却水タンク 4と回収水タンク 3との間 で水を循環させる周期及び循環量は、実施の形態 1及び 2の場合と同様、適宜設定 すればよい。又、浄ィ匕水タンク 11の大きさ(最大貯水量)も、実施の形態 2の場合と同 様、発電運転の際に冷却水タンク 4にお 、て不足する冷却水の水量を確保する観点 に基づいて決定すればよい。尚、その他の点については、実施の形態 1及び 2の場 合と同様である。
産業上の利用可能性
本発明の実施の形態に係る燃料電池システムは、燃料電池システムの発電運転の 停止中における水中のノ クテリアの繁殖を簡易な構成により効果的に抑制する、水 の供給機能及び浄化機能に障害が発生し難 ヽ燃料電池システムとして、産業上利 用することが可能である。

Claims

請求の範囲
[1] 酸化剤ガス及び燃料ガスを用いて発電する燃料電池と、
前記燃料電池カゝら排出される酸化剤ガス及び燃料ガスの少なくとも何れかから回 収される水を貯える回収水タンクと、
前記燃料電池を冷却するための冷却水として用いられる水を貯える浄ィ匕水タンクと 前記回収水タンクの水を前記浄化水タンクに供給するための水供給流路と、 前記水供給流路にお 、て前記回収水タンクから前記浄化水タンクに向けて水を通 流させるためのポンプと、
前記ポンプにより通流される水を前記水供給流路上で前記浄化水タンクに供給前 に内蔵する TOC吸着体により浄化する水浄化装置と、
制御装置と、を備える燃料電池システムであって、
前記制御装置が、前記燃料電池システムの停止期間中に前記ポンプを動作させて 前記水供給流路にお 、て水が移動するよう制御する、燃料電池システム。
[2] 前記制御装置が、前記停止期間中に前記ポンプを定期的に動作させて前記水供 給流路において水が定期的に移動するよう制御する、請求項 1記載の燃料電池シス テム。
[3] 前記制御装置が、前記停止期間中に前記ポンプをバクテリアの繁殖を抑制可能な 周期で定期的に動作させて前記水供給流路において水が定期的に移動するよう制 御する、請求項 2記載の燃料電池システム。
[4] 前記制御装置が、前記停止期間中に前記ポンプを 72時間以上 168時間以内の周 期で定期的に動作させて前記水供給流路において水が定期的に移動するよう制御 する、請求項 3記載の燃料電池システム。
[5] 前記浄ィ匕水タンクとして前記冷却水を貯える冷却水タンクを備えている、請求項 1 記載の燃料電池システム。
[6] 前記冷却水タンクの水を前記回収水タンクに供給するための第 2の水供給流路を 備え、
前記制御装置が、前記燃料電池システムの停止期間中に前記ポンプを動作させて 前記水供給流路及び前記第 2の水供給流路を介して前記冷却水タンクと前記回収 水タンクとの間で水が循環するよう制御する、請求項 5記載の燃料電池システム。
[7] 前記浄ィ匕水タンクに加えて前記冷却水を貯える冷却水タンクを備え、
前記浄ィ匕水タンクの水を前記冷却水タンクに供給可能に構成されている、請求項 1 記載の燃料電池システム。
[8] 前記浄ィ匕水タンクの水を前記冷却水タンクに供給するための第 2のポンプを更に備 えている、請求項 7記載の燃料電池システム。
[9] 前記冷却水タンクの水を前記回収水タンクに供給するための第 2の水供給流路を 備え、
前記制御装置が、前記燃料電池システムの停止期間中に前記ポンプを動作させて 前記水供給流路及び前記第 2の水供給流路を介して前記浄化水タンクと前記冷却 水タンクと前記回収水タンクとの間で水が循環するよう制御する、請求項 7記載の燃 料電池システム。
[10] 前記浄化水タンクの水を前記回収水タンクに供給するための第 3の水供給流路を 備え、
前記制御装置が、前記燃料電池システムの停止期間中に前記ポンプを動作させて 前記水供給流路及び前記第 3の水供給流路を介して前記浄化水タンクと前記回収 水タンクとの間で水が循環するよう制御する、請求項 7記載の燃料電池システム。
[11] 前記制御装置が、前記燃料電池システムの停止期間中に前記ポンプを動作させる 際、前記ポンプの単位時間当たりの送水能力が P1で、前記ポンプの動作時間が T1 で、前記 TOC吸着体の容積力 SV1である場合、前記 P1及び前記 T1及び前記 VIが (1)式を満たすよう制御する、請求項 1記載の燃料電池システム。
P1 XT1≥V1 · · · (1)
[12] 前記水浄ィ匕装置力イオン交換体を更に備えている、請求項 1記載の燃料電池シス テム。
PCT/JP2006/302643 2005-02-18 2006-02-15 燃料電池システム及びその運転方法 WO2006088053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007503680A JP4971130B2 (ja) 2005-02-18 2006-02-15 燃料電池システム及びその運転方法
US11/884,620 US20090130529A1 (en) 2005-02-18 2006-02-15 Fuel Cell System and Operation Method Thereof
US12/764,627 US8445158B2 (en) 2005-02-18 2010-04-21 Fuel cell system and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-043247 2005-02-18
JP2005043247 2005-02-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/884,620 A-371-Of-International US20090130529A1 (en) 2005-02-18 2006-02-15 Fuel Cell System and Operation Method Thereof
US12/764,627 Continuation US8445158B2 (en) 2005-02-18 2010-04-21 Fuel cell system and operation method thereof

Publications (1)

Publication Number Publication Date
WO2006088053A1 true WO2006088053A1 (ja) 2006-08-24

Family

ID=36916457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302643 WO2006088053A1 (ja) 2005-02-18 2006-02-15 燃料電池システム及びその運転方法

Country Status (4)

Country Link
US (2) US20090130529A1 (ja)
JP (1) JP4971130B2 (ja)
CN (1) CN100448085C (ja)
WO (1) WO2006088053A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186662A (ja) * 2007-01-29 2008-08-14 Kyocera Corp 燃料電池装置
JP2008198400A (ja) * 2007-02-08 2008-08-28 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム
JP2009076216A (ja) * 2007-09-19 2009-04-09 Toshiba Corp 燃料電池発電システムとその水循環システム
JP2009081084A (ja) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd 燃料電池発電装置
JP2010113885A (ja) * 2008-11-05 2010-05-20 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムおよびその運転方法
JP2010170877A (ja) * 2009-01-23 2010-08-05 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムおよびその運転方法
US20100297513A1 (en) * 2007-10-11 2010-11-25 Shigeki Yasuda Fuel cell system
JP2010277752A (ja) * 2009-05-27 2010-12-09 Panasonic Corp 燃料電池システム
WO2011108274A1 (ja) * 2010-03-04 2011-09-09 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
WO2011118221A1 (ja) * 2010-03-25 2011-09-29 パナソニック株式会社 燃料電池システム
CN102471055A (zh) * 2009-07-08 2012-05-23 松下电器产业株式会社 燃料电池系统
WO2014002345A1 (ja) * 2012-06-28 2014-01-03 パナソニック株式会社 固体酸化物形燃料電池システム
JP5891443B2 (ja) * 2011-03-14 2016-03-23 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318381B2 (en) * 2008-06-19 2012-11-27 Motorola Mobility Llc Device and method for enhanced air circulation
DE102008030567A1 (de) * 2008-06-27 2009-12-31 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellenaggregat mit einer Speichereinrichtung zum Speichern und zum Bereitstellen von flüssigem Wasserkühlmittel
WO2011149458A1 (en) * 2010-05-27 2011-12-01 Utc Power Corporation Fuel cell contaminant removal method
KR20120064544A (ko) * 2010-12-09 2012-06-19 현대자동차주식회사 연료전지자동차의 냉각수 이온제거장치
US9184062B2 (en) * 2011-09-21 2015-11-10 Sumitomo Precision Products Co., Ltd. Metal filling device
GB2516957A (en) 2013-08-08 2015-02-11 Intelligent Energy Ltd Coolant purification
JP2017139129A (ja) * 2016-02-03 2017-08-10 アイシン精機株式会社 燃料電池システム
US10471372B2 (en) * 2016-10-27 2019-11-12 Toyota Boshoku Kabushiki Kaisha Ion exchanger
KR101930598B1 (ko) * 2016-12-30 2018-12-18 주식회사 두산 연료전지 장치
US11588161B2 (en) * 2017-07-27 2023-02-21 Kyocera Corporation Fuel cell device
DE102017214965A1 (de) 2017-08-28 2018-08-09 Audi Ag Brennstoffzellenanordnung
JP7029268B2 (ja) * 2017-10-16 2022-03-03 株式会社デンソー 燃料電池システム
FR3091417A1 (fr) * 2018-12-26 2020-07-03 Naval Group Système de piles à combustible pour un navire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822833A (ja) * 1994-07-05 1996-01-23 Osaka Gas Co Ltd 燃料電池
JPH0963611A (ja) * 1995-08-18 1997-03-07 Tokyo Gas Co Ltd 水冷式燃料電池発電装置
JPH09306524A (ja) * 1996-05-08 1997-11-28 Tokyo Gas Co Ltd 水冷式燃料電池発電装置
JP2001338668A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd 燃料電池発電装置
JP2003249252A (ja) * 2002-02-22 2003-09-05 Nissan Motor Co Ltd 移動体用燃料電池の純水純度維持システム
JP2004179128A (ja) * 2002-11-29 2004-06-24 Sanyo Electric Co Ltd 燃料電池システム
JP2005011619A (ja) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd 燃料電池発電装置
JP2005339889A (ja) * 2004-05-25 2005-12-08 Matsushita Electric Ind Co Ltd 燃料電池発電装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780714B2 (ja) 1998-09-10 2006-05-31 富士電機ホールディングス株式会社 燃料電池発電装置
JP2000208157A (ja) 1999-01-14 2000-07-28 Nissan Motor Co Ltd 燃料電池運転システム
JP3695309B2 (ja) * 2000-11-02 2005-09-14 松下電器産業株式会社 固体高分子形燃料電池システムおよびその運転方法
EP1333518B1 (en) * 2000-10-20 2011-08-24 Panasonic Corporation Fuel cell system and method of operating the system
CN1405911A (zh) * 2001-08-16 2003-03-26 亚太燃料电池科技股份有限公司 燃料电池发电系统及其废热循环冷却系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822833A (ja) * 1994-07-05 1996-01-23 Osaka Gas Co Ltd 燃料電池
JPH0963611A (ja) * 1995-08-18 1997-03-07 Tokyo Gas Co Ltd 水冷式燃料電池発電装置
JPH09306524A (ja) * 1996-05-08 1997-11-28 Tokyo Gas Co Ltd 水冷式燃料電池発電装置
JP2001338668A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd 燃料電池発電装置
JP2003249252A (ja) * 2002-02-22 2003-09-05 Nissan Motor Co Ltd 移動体用燃料電池の純水純度維持システム
JP2004179128A (ja) * 2002-11-29 2004-06-24 Sanyo Electric Co Ltd 燃料電池システム
JP2005011619A (ja) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd 燃料電池発電装置
JP2005339889A (ja) * 2004-05-25 2005-12-08 Matsushita Electric Ind Co Ltd 燃料電池発電装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186662A (ja) * 2007-01-29 2008-08-14 Kyocera Corp 燃料電池装置
JP2008198400A (ja) * 2007-02-08 2008-08-28 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム
JP2009076216A (ja) * 2007-09-19 2009-04-09 Toshiba Corp 燃料電池発電システムとその水循環システム
JP2009081084A (ja) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd 燃料電池発電装置
US20100297513A1 (en) * 2007-10-11 2010-11-25 Shigeki Yasuda Fuel cell system
JP2010113885A (ja) * 2008-11-05 2010-05-20 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムおよびその運転方法
JP2010170877A (ja) * 2009-01-23 2010-08-05 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムおよびその運転方法
JP2010277752A (ja) * 2009-05-27 2010-12-09 Panasonic Corp 燃料電池システム
CN102471055A (zh) * 2009-07-08 2012-05-23 松下电器产业株式会社 燃料电池系统
US8962199B2 (en) 2009-07-08 2015-02-24 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
WO2011108274A1 (ja) * 2010-03-04 2011-09-09 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
US8871400B2 (en) 2010-03-04 2014-10-28 Panasonic Corporation Fuel cell system and method for operating fuel cell system
JP4837808B2 (ja) * 2010-03-25 2011-12-14 パナソニック株式会社 燃料電池システム
WO2011118221A1 (ja) * 2010-03-25 2011-09-29 パナソニック株式会社 燃料電池システム
JP5891443B2 (ja) * 2011-03-14 2016-03-23 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法
WO2014002345A1 (ja) * 2012-06-28 2014-01-03 パナソニック株式会社 固体酸化物形燃料電池システム

Also Published As

Publication number Publication date
CN100448085C (zh) 2008-12-31
CN1943068A (zh) 2007-04-04
JP4971130B2 (ja) 2012-07-11
US8445158B2 (en) 2013-05-21
US20090130529A1 (en) 2009-05-21
JPWO2006088053A1 (ja) 2008-07-03
US20100203412A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4971130B2 (ja) 燃料電池システム及びその運転方法
US7763388B2 (en) Fuel cell system
JP4944382B2 (ja) 燃料電池システム
JP5528451B2 (ja) 燃料電池装置
CN1783562A (zh) 燃料电池系统及其运转方法
KR100724017B1 (ko) 연료 전지 시스템과 그의 운전 방법
JP5063189B2 (ja) 燃料電池装置
KR20110083756A (ko) 연료 전지 발전 시스템 및 그 운전 방법
JP6850195B2 (ja) 固体酸化物形燃料電池システム
JP2003031255A (ja) 燃料電池発電装置、及び凝縮水の貯水タンクへの供給方法
JP2010170877A (ja) 燃料電池発電システムおよびその運転方法
JP2005317489A (ja) 固体酸化物形燃料電池システム
JP2010277961A (ja) 燃料電池システム
JP2008198400A (ja) 燃料電池発電システム
JP2016167375A (ja) 固体高分子形燃料電池の運転方法
JP2009170131A (ja) 燃料電池発電システムおよびその運転方法
JPWO2011108274A1 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2011070981A (ja) 燃料電池コージェネレーションシステム
JP2011029116A (ja) 燃料電池装置
JP2016152191A (ja) 燃料電池システム
JP2012115784A (ja) 水処理システムおよびこれを用いた燃料電池発電システム
JP5458668B2 (ja) 燃料電池システム
JP2012160329A (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2011096422A (ja) 燃料電池コージェネレーションシステム
JP2008186662A (ja) 燃料電池装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000159.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11884620

Country of ref document: US

Ref document number: 2007503680

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713784

Country of ref document: EP

Kind code of ref document: A1