WO2014000362A1 - 触摸显示屏的驱动方法 - Google Patents

触摸显示屏的驱动方法 Download PDF

Info

Publication number
WO2014000362A1
WO2014000362A1 PCT/CN2012/084267 CN2012084267W WO2014000362A1 WO 2014000362 A1 WO2014000362 A1 WO 2014000362A1 CN 2012084267 W CN2012084267 W CN 2012084267W WO 2014000362 A1 WO2014000362 A1 WO 2014000362A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
amorphous silicon
scan line
touch
driving circuit
Prior art date
Application number
PCT/CN2012/084267
Other languages
English (en)
French (fr)
Inventor
杨康
马骏
吴天一
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP12876593.0A priority Critical patent/EP2796970B1/en
Priority to KR1020137033791A priority patent/KR101556460B1/ko
Priority to US14/064,058 priority patent/US9778769B2/en
Publication of WO2014000362A1 publication Critical patent/WO2014000362A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present invention relates to a display screen driving method, and more particularly to a driving method of a touch display screen.
  • a touch display is formed on the LCD screen.
  • a common touch display screen is mainly composed of a display panel, a touch panel, and a control circuit.
  • FIG. 1 is a schematic structural view of a display panel in the prior art.
  • the display panel 10 is composed of pixel units arranged in a thousand arrays.
  • the pixel unit may be composed of a plurality of sub-pixel units displaying different colors, for example, three respectively display red.
  • Each pixel unit is driven by a TFT (Thin Film Transistor), and the display panel 10 normally displays the display of each sub-pixel unit 11 through the horizontal display scanning line 13 and the vertical data line 12.
  • the control circuit includes a gate driving circuit 31 and a source driving circuit 32.
  • the gate driving circuit 31 respectively generates a driving signal to the display scanning line 13 of the display panel 10 according to the timing to open the row display scanning line 13 correspondingly.
  • the sub-pixel unit 11 and the opened sub-pixel unit 11 receive the data signal transmitted by the source driving circuit 32 through the data line 12 to display corresponding gray scales according to data signals of different voltages.
  • the control circuit further includes a touch driving circuit 33 and a sensing driving circuit 34.
  • the touch driving circuit 33 generates a pulsed driving signal to the touch panel of the touch panel 20 according to the timing.
  • the sensing line 34 sequentially detects the sensing unit 21 connected to the row of touch scanning lines 23 to determine whether there is a specific location where a touch occurs and a touch occurs.
  • the display scan line 13 of the display panel 10 is usually several hundred to thousands, for example, 480, 576, 1024, etc., and the touch scan line 23 of the touch panel 20 is usually a dozen. Articles to hundreds, such as 100, etc. Therefore, during the scanning process, the scanning time of the display panel 10 is usually larger than the scanning time of the touch panel 20.
  • FIG. 3 is a schematic diagram of timing distribution of the driving method of the touch display screen in the prior art.
  • the frequency (frame frequency) of the periodic scanning signal is 60 Hz, that is, the time of the CO in each period is 16.67 ms, including two timings, a first timing C1 and a second timing C2, preferably.
  • the time allocated for C1 is 14.67 ms, and the time for C2 is 2 ms.
  • the control circuit In one cycle CO, the control circuit generates a plurality of scan signals sequentially transmitted to all display scan lines of the display panel in a time of the first timing C1 to complete a scanning process on the display panel, and then at a second timing C2.
  • a plurality of scan signals are sequentially transmitted to the touch scan lines of the touch panel to complete a scanning process on the touch panel, and then the scan results of the touch panel are processed and analyzed, and then the next control is performed.
  • the display of the panel is displayed in the cycle. Therefore, in the prior art scanning mode, the scanning frequency of the touch screen is consistent with the scanning frequency of the display screen.
  • the scanning frequency of the touch screen needs to be effectively improved, and a better touch response speed can be achieved above 100 Hz or even 120 Hz, but the scanning frequency of the display panel
  • it cannot be excessively improved because if the scanning frequency of the display panel is too high, the scanning time of each display scanning line will be greatly reduced, and the charging and discharging time of each sub-pixel unit in the display panel is greatly reduced, which is easy to cause charging.
  • the discharge time is insufficient, which in turn affects the display effect of the display panel. Therefore, the prior art scanning method is difficult to effectively improve the sensitivity of the touch display panel and maintain the display effect of the display panel.
  • An object of the present invention is to provide a driving method of a touch display screen capable of improving the sensitivity of a touch display panel and maintaining the display effect of the display panel.
  • the present invention provides a driving method of a touch display screen, the touch display screen includes a display panel, a touch panel and a control circuit, and the control circuit emits a thousand periodic scanning control signals, each cycle Including at least two first timings and at least two second timings, the first timing and the second timing are alternately performed in sequence; in each first timing, the control circuit generates a plurality of scan control signals to be transmitted to the Displaying a scan line driving circuit of the display panel to control the display scan line driving circuit to emit a scan signal to different display scan lines of the display panel in different first timings in each period, and all the defects in each period In a timing, the display scan line driving circuit completes sending a scan signal to all display scan lines of the display panel; in each second timing, the control circuit generates a plurality of scan control signals to the touch panel touch
  • each second timing in each cycle is the same, and the time of each first timing is the same.
  • each cycle includes two first timings and two second timings.
  • the display scan line is composed of a first type of display scan line and a second type of display scan line.
  • the control circuit In the first first timing, the control circuit generates a plurality of scan signals sequentially transmitted to the display panel.
  • the first type of display scan lines in the second first timing, the control circuit generates a plurality of scan signals sequentially transmitted to the second type of display scan lines of the display panel.
  • the first type of display scan lines and the second type of display scan lines are interlaced and staggered. Further, the display scan line has a total of K rows, the first type display scan line is a first line to the Lth line display scan line, and the second type display scan line is a L+1 line to the Kth line A scan line is displayed, the K being a positive integer, and the L being a positive integer less than K.
  • the display scan line has 2n rows
  • the first type display scan line is a scan line from the first row to the nth row
  • the second type display scan line is the n+1th row to the 2nth row.
  • a scan line is displayed, and n is a positive integer.
  • the display scan line driving circuit includes at least one amorphous silicon gate driving circuit, each amorphous silicon gate driving circuit includes a plurality of amorphous silicon shift register circuits, and the amorphous silicon shift register circuit and The display scan lines are in one-to-one correspondence, and an output end of each amorphous silicon shift register circuit is electrically connected to a current display scan line.
  • the display scan line driving circuit includes a first amorphous silicon gate driving circuit and a second amorphous silicon gate driving circuit, the first amorphous silicon gate driving circuit and the second amorphous silicon gate The drive circuits are commonly located on one side of the display panel.
  • the display scan line has a total of K rows
  • the first amorphous silicon gate drive circuit corresponds to the first to the Lth row display scan lines
  • the second amorphous silicon gate drive circuit and The L+1th row to the Kth row class display scan lines - corresponding to where K is a positive integer and L is a positive integer less than K.
  • the display scan line has 2n rows
  • the first amorphous silicon gate drive circuit corresponds to the first to nth rows of display scan lines
  • the second type of display scan lines is the n+th
  • the 1st line to the 2nth line display the scan line - correspondingly, the n is a positive integer.
  • the display scan line driving circuit includes a first amorphous silicon gate driving circuit and a second amorphous silicon gate driving circuit, the first amorphous silicon gate driving circuit and the second amorphous silicon gate
  • the driving circuits are arranged on both sides of the display panel.
  • the amorphous silicon shift register circuit of the first amorphous silicon gate drive circuit corresponds to the first type of display scan line
  • the amorphous silicon shift of the second amorphous silicon gate drive circuit The bit register circuit corresponds to the second type of row display scan line, wherein the first type of row display scan line and the second type of row display scan line are interlaced.
  • the display scan line driving circuit includes a first amorphous silicon gate driving circuit, a second amorphous silicon gate driving circuit, a third amorphous silicon gate driving circuit, and a fourth amorphous silicon gate driving circuit.
  • the first amorphous silicon gate driving circuit and the third amorphous silicon gate driving circuit are located at one side of the display panel, the second amorphous silicon gate driving circuit and the fourth amorphous silicon gate A drive circuit is located on the other side of the display panel.
  • the display scan line has a total of K rows
  • the first amorphous silicon gate drive circuit corresponds to a first type of display scan line in the first row to the Lth row
  • the gate driving circuit corresponds to the second type of display scan lines in the first row to the Lth row
  • Displaying a scan line - correspondingly, the fourth amorphous silicon gate drive circuit and the second type of display scan line are corresponding to a second type of display scan line in the L+1th row to the Kth row, wherein
  • the K is a positive integer and the L is a positive integer less than K.
  • the display scan line has 4n rows
  • the first amorphous silicon gate driving circuit corresponds to the first type of display scan lines in the first row to the second nth row
  • the second amorphous silicon The gate driving circuit corresponds to the second type of display scan lines in the first row to the second nth row
  • Displaying a scan line - correspondingly, the fourth amorphous silicon gate drive circuit and the second type of display scan line are corresponding to a second type of display scan line in the 2n+1 row to the 4nth row, wherein
  • the n is a positive integer.
  • the frequency of the periodic scan signal sent by the control circuit is 50 Hz to 70 Hz. Further, the frequency of the periodic scan signal sent by the control circuit is 60 Hz.
  • each cycle includes two first timings and two second timings, and each second timing is lms ⁇ 2ms.
  • the driving method of the touch display screen of the present invention displays the scan lines differently for the display panel in different first timings by setting at least two first timings and at least two second timings in one cycle. Scanning, and scanning all the display scan lines of the display panel in all the first timings of one cycle, and generating a plurality of scan signals in each second timing to sequentially transmit all the touches of the touch panel
  • the scan line is configured to perform one display scan of the display panel and at least two touch scans of the touch panel in one cycle in one cycle.
  • the driving method of the touch display screen of the invention can greatly increase the frequency of the touch scanning without increasing the display scanning frequency, thereby ensuring that the display panel has sufficient scanning time to ensure clear display and improve the touch scanning. The frequency, and the noise interference is reduced, thereby improving the response speed and detection accuracy of the touch panel.
  • FIG. 1 is a schematic structural view of a display panel in the prior art.
  • FIG. 2 is a schematic structural view of a touch panel in the prior art.
  • FIG. 3 is a schematic diagram of timing distribution of a driving method of a touch display screen in the prior art.
  • FIG. 4 is a schematic diagram of timing distribution of a driving method of a touch display screen according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a display scan line driving circuit according to an embodiment of the present invention.
  • Fig. 6 is a timing chart showing the operation of the display scanning line driving circuit in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display scan line driving circuit according to another embodiment of the present invention.
  • FIG. 8 is a timing chart showing the operation of the scanning line driving circuit in another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a display scan line driving circuit according to still another embodiment of the present invention.
  • Figure 10 is a timing chart showing the operation of the scanning line driving circuit in still another embodiment of the present invention.
  • the display scan line driving circuit is configured to provide a display scan signal to the display scan line of the display panel
  • the touch scan line drive circuit is configured to provide a touch scan signal to the touch scan line of the touch panel.
  • the display scan line driving circuit of the display panel sequentially generates a plurality of scan signals to be sequentially transmitted to the display scan lines of the display panel for scanning, each scan signal pair The scanning line should be displayed.
  • the touch scanning line driving circuit sequentially generates a plurality of scanning signals to be sequentially transmitted to the touch scanning lines of the touch panel, and each scanning signal is scanned. Corresponding to a touch scan line.
  • the driving method of the touch display screen of the present invention includes at least two first timings and at least two second timings in one cycle, wherein the control circuit generates a plurality of scanning control signals in different first timings, Controlling the display scan line driving circuit to scan different display scan lines of the display panel, and completing scanning of all display scan lines of the display panel in all the first timings of one cycle, and in each second timing A plurality of scan signals are sequentially transmitted to all the touch scan lines of the touch panel, so that one display scan of the display panel and at least two touch scans of the touch panel are performed in one cycle in one cycle. .
  • the driving method of the touch display screen of the present invention can greatly improve the frequency of the touch scanning without increasing the frequency of the display scanning frequency, thereby ensuring that the display panel has sufficient scanning time to ensure clear display.
  • the frequency of the touch scan is improved, and the noise interference is reduced, thereby improving the response speed and detection accuracy of the touch panel.
  • the display of the control circuit to the display panel is scanned in a different first timing in each cycle
  • the line driving circuit transmits a scan control signal to control the display scan line driving circuit to transmit the scan signal to different display scan lines, and in all the first timings in each period, the control circuit displays the scan line to the display panel
  • the driving circuit transmits the scan control signal to control the display scan line driving circuit to complete the transfer of the scan signal to all the display scan lines of the display panel, and then selecting the display scan line for scanning in each of the first timings can be implemented in various ways, the following Each cycle includes two first timings.
  • the display scan line is composed of a first type of display scan line and a second type of display scan line.
  • the present invention is not limited to the following The scanning mode, for example, the time of the two first timings is different, the time distribution ratio of the two first timings is the same as the ratio of the number of corresponding display scanning lines in each first timing, and the like, and the plurality of first timings can be The manner in which the display panel is scanned is also within the scope of the inventive concept.
  • the control circuit generates a plurality of scan control signals to be transmitted to the display scan line drive circuit of the display panel to control the display scan line drive circuit to interleave the interlaced lines in the two first timings.
  • the scan lines of the odd-numbered rows and the even-numbered rows are scanned.
  • the first type of display scan lines are display scan lines of all odd-numbered rows, that is, the first row, the third row, the fifth row, etc. display scan lines
  • the second type of display scan line is a display scan line of all even lines, that is, the second line, the fourth line, the sixth line, etc.
  • the control circuit Generating a plurality of scan control signals to the display scan line drive circuit of the display panel to control the display scan line drive circuit to generate a plurality of scan signals sequentially transmitted to the first type of display scan lines of the display panel,
  • the control circuit In two first timings, the control circuit generates a plurality of scan control signals to be transmitted to the display scan line drive circuit of the display panel to control the display scan Generating a plurality of scan line driver circuit according to signals transmitted to the second sub-scan line display type of the display panel, so that all of the first timing within a scan cycle is completed for all scan lines of the display of the display panel.
  • the control circuit controls the display scan line driving circuit to scan the display scan lines of the previous portion and the latter portion in the two first timings, that is, the display scan lines share K rows
  • the first type of display scan lines display scan lines for the first line to the Lth line
  • the second type of display scan lines display the scan lines for the L+1th line to the Kth line, the K being a positive integer
  • the L For a positive integer less than K
  • the display scan line driving circuit scans the first type of display scan lines in the first first timing
  • the display scan line drive circuit displays the scan lines on the second type in the second first timing. Scan.
  • the number of the first type of display scan lines and the second type of display scan lines are the same.
  • the time of the first first timing is the same as the time of the second first timing, which facilitates the overall circuit design and timing control of the touch screen. That is, the display scan line has 2n lines, wherein n is a positive integer, the first type of display scan line displays scan lines for the first line to the nth line, and the second type of display scan line is the n+1th line to The 2nth row displays the scan line, that is, in the first first timing, the control circuit sends a scan signal to the scan lines of the first to nth rows, and in the first second timing, the control circuit goes to the n+1th.
  • the row to the 2nth row shows that the scan line emits a scan signal
  • the display scan line has a total of 480 lines
  • the first type of display scan line includes the first line display scan line to the ⁇ 240 line display scan line
  • the second type display scan includes line 241 showing the scan line to line 480 showing the scan line.
  • the time of the different second timings in each cycle is the same, and the times of the different first timings are the same.
  • each cycle includes two first timings and two second timings, and the frequency of the periodic scanning signal sent by the control circuit is 50 Hz to 70 Hz, for example, 60 Hz, in the frequency range, sufficient in one cycle,
  • the control circuit generates a plurality of scan control signals to be transmitted to the display scan line drive circuit of the display panel to control the display scan line drive circuit to generate a plurality of scan signals sequentially transmitted to the display scan lines of the display panel, and Each scan signal is sufficient for the sub-pixel unit in the display scan line to complete charging and discharging to achieve clear display of the display panel;
  • each cycle includes two second timings, and the second timing may be in the range of 1 ms to 2 ms, for example, 2 ms.
  • the entire scanning of the touch panel is performed twice in each cycle, and the scanning frequency of the touch panel is actually 120 Hz, thereby greatly improving the scanning frequency of the touch panel and reducing noise interference, thereby improving the touch.
  • Control panel response speed and detection accuracy are not limited to two.
  • each period includes three first timings and three second timings, that is, three times of touching in no period.
  • the full scanning of the panel which actually increases the scanning frequency of the touch panel to 180 Hz, is also within the scope of the present invention.
  • the display scan line driving circuit includes at least one amorphous silicon gate driving circuit (ASG circuit), and each amorphous silicon gate driving circuit includes a plurality of amorphous silicon shift register circuits, and the non- The crystalline silicon shift register circuit corresponds to the display scan line, and the output of each amorphous silicon shift register circuit is electrically connected to the current display scan line.
  • the amorphous silicon control circuit can design a circuit connection manner according to process requirements, so as to design different timing scan signals according to actual process requirements.
  • the structure of the display scan line driving circuit and the working timing thereof will be described in conjunction with several embodiments, and the working process of the touch display screen according to the present invention will be specifically described.
  • the scanning line driving circuit is displayed. The structure is not limited to the following embodiments.
  • FIG. 5 is a schematic structural diagram of a display scan line driving circuit according to an embodiment of the present invention.
  • Fig. 6 is a timing chart showing the scanning line driving circuit in an embodiment of the present invention.
  • a first amorphous silicon gate driving circuit ASG1L and a second amorphous silicon gate driving circuit ASG2L are disposed on one side of the display panel 10 as shown.
  • the first amorphous silicon gate driving circuit ASG1L and the second amorphous silicon gate driving circuit ASG2L are disposed on the left side of the display panel 10, and may also be common. It is disposed on the right side of the display panel 10 shown.
  • the first amorphous silicon gate driving circuit ASG1L displays the scanning line for the former portion in the first first timing, that is, the scanning of the first type of display scanning line, and the second amorphous silicon gate driving circuit ASGR is in the second In a sequence, the scan line is displayed for the latter part, that is, the second type of display scan line is scanned, and the time ratio of the first first timing to the second first timing is compared with the first type of display scan line and the second type of display scan. The proportion of the number of lines corresponds.
  • the display scan line has a total of K rows
  • the first amorphous silicon gate drive circuit ASGL is sequentially arranged by L amorphous silicon shift registers, and the scan lines are displayed with the first row to the Lth row—
  • the first amorphous silicon gate driving circuit ASGR is sequentially arranged by KL amorphous silicon shift registers, and corresponds to the L+1th row to the Kth row display scan line, wherein the K As a positive integer, the L is a positive integer less than K.
  • the display scan lines have 2n rows, wherein n is a positive integer, and the first type of display scan lines and the second type of display scan lines have the same number, the first amorphous silicon gate drive
  • the circuit is sequentially arranged by n amorphous silicon shift registers, and the scan lines are displayed corresponding to the first to nth rows, and the second type of display scan lines are sequentially arranged by n amorphous silicon shift registers. And the scan line corresponding to the n+1th line to the 2nth line is displayed.
  • the display panel 10 has a total of 480 display scan lines, then n is 240, and the display scan line of the display panel 10 includes a first type of display scan line and a second type of display scan line, and the first type of display scan line is the first line.
  • the scan line is displayed to the 240th line, and the scan line is connected to the display line of all the 241th to 480th display lines.
  • the preferred embodiment is taken as an example to illustrate the operation of the scanning line driving circuit, and the driving process of the touch display screen.
  • the set end of the first amorphous silicon shift register L1 of the first amorphous silicon gate drive circuit ASG1L Set is connected to the first start signal STV1L, and the set terminal Set of each of the other amorphous silicon shift registers L2, L3 L(nl) is connected to the output end Out of L1, L2 Ln of the previous amorphous silicon shift register, and finally
  • the reset end Reset of an amorphous silicon shift register Ln is connected to the first reset signal ResetlL, and the reset end Reset of each of the other amorphous silicon shift registers L(nl) L2 and L1 is followed by the latter amorphous silicon shift.
  • the output terminals Out of Ln L3 and L2 of the bit register are connected; similarly, the set end and the second start of the first amorphous silicon shift register L(n+1) of the second amorphous silicon gate driving circuit ASG2L
  • the signal STV2L is connected, and then the set end of each amorphous silicon shift register L(n+2), L(n+3) L(2n) and the L(n+1) of the previous amorphous silicon shift register ), the output terminal Out of L(n+2) L(2n-1) is connected, the reset end Reset of the last amorphous silicon shift register L2n and the second reset signal
  • Reset2L is connected, the reset terminal of each of the other amorphous silicon shift registers L(2n-1) L(n+2), L(n+1) and the L(2n) of the latter amorphous silicon shift register The output terminals Out of L(n+3) and L(n+2) are connected.
  • the first enable signal STV1L outputs a signal
  • each amorphous silicon shift register L1 of the first amorphous silicon gate drive circuit ASG1L under the control of the clock signal, L2, L3, ... Ln sequentially output, and finally the first reset signal ResetlL outputs a signal
  • each amorphous silicon shift register of the first amorphous silicon gate drive circuit ASG1 L completes the display of the first type Scanning of the scan line;
  • the first amorphous silicon gate driving circuit ASG1L and the second amorphous silicon gate driving circuit ASG2L have no signal output, and the touch panel completes the first touch scanning;
  • the second enable signal STV2L outputs a signal, and each amorphous silicon shift register L of the second left side circuit group ASG2L is controlled by the first clock signal CKL1 and the second clock signal CKL2 ( n+1), L(n+2)... L2n sequentially outputs, and finally the second reset signal Reset2L outputs a signal, and then each amorphous silicon shift register of the second amorphous silicon gate driving circuit ASG2L is completed.
  • the second type displays a scan of the scan line;
  • the first amorphous silicon gate driving circuit ASG1L and the second amorphous silicon gate driving circuit ASG2L have no signal output, and the touch panel completes the second touch scanning; At this point, a timing cycle CO is completed.
  • the display panel completes one display scan
  • the touch panel completes two touches.
  • Control scanning In this embodiment, a method of progressive scanning may be used for each touch scan, and the scanning manner is a method well known to those skilled in the art, and thus will not be described again.
  • FIG. 7 is a schematic structural diagram of a display scan line driving circuit according to an embodiment of the present invention.
  • Figure 8 is a timing chart showing the scanning line driving circuit in an embodiment of the present invention.
  • a first amorphous silicon gate driving circuit ASGL and a second amorphous silicon gate driving circuit ASGR are respectively disposed on two sides of the display panel 10, and the first amorphous silicon gate driving circuit is respectively disposed.
  • ASGL and the second amorphous silicon gate drive circuit ASGR are respectively arranged by n amorphous silicon shift registers, wherein n is a positive integer, and the number thereof can be specifically determined according to actual process requirements, for example, 480 display panel 10 When the scan line is displayed, n is 240.
  • the display scan line of the display panel 10 includes a first type of display scan line and a second type of display scan line, and the first type of display scan line displays scan lines for all odd lines, such as the first, third, and fifth lines. ... display the scan line, etc.
  • the second type of display scan line displays the scan line for all even lines, for example, the second, fourth, sixth, etc. display scan lines are connected.
  • the first amorphous silicon gate drive circuit ASGL displays scan lines with all odd rows of the display panel 10 - correspondingly, the second amorphous silicon gate drive circuit ASGR and all even rows of the display panel 10 display scan lines - correspond.
  • the set end Set of the first amorphous silicon shift register L1 of the first amorphous silicon gate drive circuit ASGL is connected to the first enable signal STVL, and the set end of each of the other amorphous silicon shift registers L2, L3 Ln Connected to the output terminal Out of L1, L2 L(nl) of the previous amorphous silicon shift register, the reset end Reset of the last amorphous silicon shift register Ln is connected to the first reset signal ResetL, and each other is non- Crystal silicon shift register L(nl) L2, L1 reset terminal Reset and its subsequent amorphous silicon shift register
  • the output terminals Out of Ln L3 and L2 are connected; similarly, the set terminal Set of the first amorphous silicon shift register R1 of the first amorphous silicon gate drive circuit ASGR is connected to the second enable signal STVR, and each other is non-
  • the set terminal Set of the crystal silicon shift register R2, R3 Rn is connected to the output terminal Out of R1, R2 R(nl) of the previous amorphous silicon shift register, and the reset end Reset of the last amorphous silicon shift register Rn Connected to the second reset signal ResetR, each of the other amorphous silicon shift registers
  • the output terminals Out of R3 and R2 are connected.
  • the following description shows the working process of the scan line driver circuit, and then explains the driving process of the touch screen display.
  • the first enable signal STVL outputs a signal, and under the control of the clock signals CKL1 and CKL2, each amorphous silicon shift of the first amorphous silicon gate drive circuit ASGL
  • the bit registers L1, L2, L3, ... are sequentially output, and finally the first reset signal ResetL is output, and each amorphous silicon shift register of the left circuit group ASGL completes scanning of the first type of display scan lines.
  • the first amorphous silicon gate driving circuit ASGL and the second amorphous silicon gate driving circuit ASGR have no signal output, and the touch panel completes the first touch scanning;
  • the second enable signal STVR outputs a signal, and each amorphous silicon shift register R1, R2 of the second amorphous silicon gate drive circuit ASGR is controlled by the clock signals CKR1 and CKR2. R3... sequentially output, and finally the second reset signal ResetR is output, and then each amorphous silicon shift register of the second amorphous silicon gate driving circuit ASGR completes scanning of the second type of display scan lines;
  • the first amorphous silicon gate driving circuit ASGL and the second amorphous silicon gate driving circuit ASGR have no signal output, and the touch panel completes the second touch scanning; , a timing cycle CO is completed.
  • the display panel completes one display scan, and the touch panel performs two touch scans.
  • Each touch scan can use a progressive scan method, and the scan mode is a method well known to those skilled in the art, and therefore will not be described again.
  • FIG. 9 is a schematic structural diagram of a display scan line driving circuit according to another embodiment of the present invention.
  • Fig. 10 is a timing chart showing a scanning line driving circuit in another embodiment of the present invention.
  • a first amorphous silicon gate driving circuit ASG1L, a second amorphous silicon gate driving circuit ASG1, a third amorphous silicon gate driving circuit ASG2L, and a fourth right side are respectively disposed on both sides of the display panel 10.
  • Circuit group ASG2R is a schematic structural diagram of a display scan line driving circuit according to another embodiment of the present invention.
  • Fig. 10 is a timing chart showing a scanning line driving circuit in another embodiment of the present invention.
  • a first amorphous silicon gate driving circuit ASG1L, a second amorphous silicon gate driving circuit ASG1, a third amorphous silicon gate driving circuit ASG2L, and a fourth right side are respectively disposed on both sides of the display panel 10.
  • Circuit group ASG2R is a schematic structural
  • the display scan line of the display panel 10 includes a first type of display scan line and a second type of display scan line, and the first type of scan line and the second type of scan line are alternately arranged in an interlaced manner.
  • the first amorphous silicon gate driving circuit ASG1L scans the previous portion in the first first timing
  • the first type of display line scans the scan line
  • the second amorphous silicon gate drive circuit ASG1R scans the second type of display scan lines in the scan line of the previous portion in the second first timing
  • the third non- The crystalline silicon gate driving circuit ASG2L scans the first type of display scan lines in the scan line in the second portion of the first timing
  • the fourth amorphous silicon gate drive circuit ASG2R is in the second first timing
  • the second type of display scan lines in the scan line are scanned for the latter part.
  • the time ratio of the first first timing to the second first timing corresponds to the ratio of the number of scanning lines of the previous portion and the scanning lines of the latter portion.
  • the display scan line has a total of K rows, the first portion of the scan lines includes a first row to a Lth row, and the latter portion of the scan lines includes a L+1 row to the Kth row, wherein the K is a positive integer.
  • the L is a positive integer less than K.
  • the display scan lines have a total of 4n rows, wherein n is a positive integer, the first portion shows that the scan line includes 2n, the first portion of the first type shows that the scan line has n, and the first part of the scan line has n, the former part of the second The class shows that there are n scan lines, the latter part shows that the scan lines include 2n, the first part of the first type shows that there are n scan lines, the latter part of the second type shows that there are n scan lines, and each circuit group has n each.
  • the amorphous silicon shift register has a corresponding correspondence with each of the n display scan lines of the display panel.
  • the preferred embodiment is taken as an example to illustrate the working process of the scan line driving circuit, and then the driving process of the touch screen display.
  • Each of the amorphous silicon shift registers L1, L2, Ln of the first amorphous silicon gate drive circuit ASG1L is connected to the first half of the odd-numbered display lines of the display panel 10, for example, with the first strip, the first Three, five, ... 2n-l shows the scan line, each of the amorphous silicon shift registers R1, R2, ... Rn of the second amorphous silicon gate drive circuit ASG1R and the first half of the display panel 10
  • the row display scan lines are connected, for example, the second, fourth, sixth... ... 2n shows the scan line, each amorphous silicon shift register of the third amorphous silicon gate drive circuit ASG2L L(n+1), L(n+2)...
  • L2n is connected to the second half of the odd-line display scan line of the display panel 10, for example, with the 2n+l, 2n+3, 2n +5 bars... 4n-l shows the scan line, each amorphous silicon shift register R(n+1), (n+2) of the fourth amorphous silicon gate drive circuit ASG2R... R2n is connected to the display line of the last half of the display panel 10, for example, to the 2n+2th, 2n+4th, 2n+6th, 4thth, and 4th display scan lines.
  • the set terminal Set of the first amorphous silicon shift register L(n+1) of the third amorphous silicon gate drive circuit ASG2L is connected to the third enable signal STV2L, and thereafter each amorphous silicon shift register L ( n+2),
  • L(n+3) L(2n) is set to L(n+1) of the previous amorphous silicon shift register.
  • the set terminal Set of the first amorphous silicon shift register R(n+1) of the fourth amorphous silicon gate drive circuit ASG2R is connected to the fourth enable signal STV2R, and each of the other amorphous silicon shift registers R(n) +2),
  • R(n+3) R(2n) is set to R(n+1) of the previous amorphous silicon shift register.
  • R(n+2) R(2n-1) is connected to Out, and the reset end of the last amorphous silicon shift register R2n is connected to the fourth reset signal Reset2R, and each of the other amorphous silicon shift registers.
  • the first enable signal STV1L outputs a signal, and under the control of the clock signals CKL1 and CKL2, each amorphous silicon shift of the first amorphous silicon gate drive circuit ASG1L
  • the bit registers L1, L2, L3, ... Ln are sequentially output. Since the output mode of the amorphous silicon shift register is the same as that of the left circuit group of the first embodiment, it will not be described in detail in FIG.
  • the second start signal STV1R outputs a signal at the clock signal CKR1.
  • Rn of the second amorphous silicon gate drive circuit ASG1R is sequentially output, due to the output mode of the amorphous silicon shift register
  • the output mode of the right circuit group is the same as that of the first embodiment, so it will not be repeated in FIG. 8.
  • the first reset signal Reset1L outputs a signal, and then each amorphous silicon shift register of the first left circuit group ASG1L.
  • the second reset signal ResetlR outputs a signal, each amorphous silicon shift register of the second amorphous silicon gate driving circuit ASG1R completes scanning of the second type of display scan lines of the first half of the display scan lines;
  • the first amorphous silicon gate driving circuit ASG1L, the second amorphous silicon gate driving circuit ASG1R, the third amorphous silicon gate driving circuit ASG2L, and the fourth right circuit group ASG2R There is no signal output, and the touch panel completes the first touch scan;
  • the third enable signal STV2L outputs a signal, and under the control of the clock signals CKL1 and CKL2, each amorphous silicon shift register L (n+) of the third amorphous germanium gate drive circuit ASG2L 1), L(n+2)... L2n is sequentially output.
  • the fourth start signal STV2R is outputted, and under the control of the clock signals CKL1 and CKL2, the third amorphous silicon gate drive
  • R2n of the circuit ASG2R is sequentially output, and finally the third reset signal Reset2L outputs a signal, and then the third amorphous silicon gate driving circuit
  • Each of the amorphous silicon shift registers of the ASG1R completes scanning of the first type of display scan lines in the second half of the scan lines, and then the fourth reset signal Reset2R outputs signals, and the third amorphous silicon gate drive circuit ASG2R
  • Each amorphous silicon shift register performs a scan of the second type of display scan lines in the second half of the scan lines.
  • Each touch scan can use a progressive scan method, and the scan mode is a method well known to those skilled in the art, and therefore will not be described again.
  • the structure of the display scan line driving circuit of the present invention is not limited to the structures of the above embodiments, and other methods can complete one scan of the display panel and at least two of the touch panels in one cycle.
  • the structure of the sub-scan is within the scope of the present invention.
  • the amorphous silicon shift register for displaying each of the amorphous silicon gate driving circuits in the scan line driving circuit is not limited to being controlled by two clock signals, and may also be controlled by, for example, four or six clock signals.
  • connection relationship between the output terminal, the setting terminal and the reset terminal of each amorphous silicon shift register in each corresponding amorphous silicon gate driving circuit is not limited to the connection relationship described in the above three embodiments, and the other
  • the structure of an amorphous silicon gate driving circuit capable of realizing a shift register function and capable of sequentially outputting an output signal is also within the scope of the present invention.
  • the driving method of the touch display screen of the present invention scans the touch panel
  • the circuit structure of the touch mode and the touch panel is also not limited, that is, the driving method of the touch display screen can be applied to the structure of a plurality of touch display screens, and is widely applicable, and the structure changes of the display circuit and the control circuit are more Small, easy to implement.
  • the driving method of the touch display panel of the present invention scans different display scan lines of the display panel in different first timings by setting at least two first timings and at least two second timings in one cycle. And transmitting the signals to all the display scan lines of the display panel in all the first timings of one cycle, and generating a plurality of scan signals in each second timing to sequentially transmit to all the touch scan lines of the touch panel. Therefore, one display scan of the display panel and at least two touch scans of the touch panel are performed in one cycle in one cycle.
  • the driving method of the touch display screen of the present invention can greatly improve the frequency of the touch scanning without increasing the frequency of displaying the scanning frequency, thereby ensuring that the display panel has sufficient scanning time to ensure The display is clear, and the frequency of the touch scan is improved, and the noise interference is reduced, thereby improving the response speed and detection accuracy of the touch panel.

Abstract

本发明提供一种触控显示屏的驱动方法通过在一个周期中设置至少两个第一时序和至少两个第二时序,在不同的第一时序中对显示面板不同显示扫描线进行扫描,并在一个周期所有的第一时序中完成对显示面板的所有显示扫描线的扫描,而在每一第二时序中产生多个扫描信号依次传给所述触控面板的所有触控扫描线,从而在一个周期中实现一次周期中对显示面板进行一次显示扫描和对所述触控面板进行至少两次触控扫描。本发明所述触摸显示屏的驱动方法能够在不增加显示扫描频率的同时增加显示扫描频率的同时,大幅提高触控扫描的频率,既保证了显示面板有足够的扫描时间以保证显示清晰,同时提高了触控扫描的频率,并降低了噪声干扰,进而提高了触控面板的响应速度和检测准确性。

Description

触摸显示屏的驱动方法
技术领域
本发明涉及显示屏驱动方法, 尤其涉及一种触摸显示屏的驱动方法。
背景技术
随着科技不断发展, 为达到更方便有效的操控, 触控面板已经广泛被整合
在液晶显示屏上, 形成触摸显示屏。 常见的触摸显示屏主要由显示面板、 触控 面板以及控制电路组成。
现今广泛采用的显示面板为薄膜晶体管液晶显示面板(TFT-LCD ), 图 1为 现有技术中显示面板的结构示意图。 如图 1所示, 所示显示面板 10由若千阵列 排列的像素单元组成, 对于彩色显示的显示面板 10, 像素单元可以由多个显示 不同颜色的子像素单元组成, 例如三个分別显示红绿蓝 (RGB ) 的子像素单元 11。 每一像素单元由一个 TFT (薄膜晶体管)作为驱动开关, 通常显示面板 10 通过水平向的显示扫描线 13和垂直向的数据线 12, 实现每一子像素单元 11的 显示。 控制电路包括栅极驱动电路 31 和源极驱动电路 32, 其中栅极驱动电路 31依照时序分别产生^冲式的驱动信号给显示面板 10的显示扫描线 13, 以打 开该行显示扫描线 13对应的子像素单元 11 , 打开的子像素单元 11接收源极驱 动电路 32通过数据线 12传递的数据信号, 以根据不同电压的数据信号显示相 应的灰阶。
图 2为现有技术中触控面板的结构示意图。 结合图 1和图 2, 触控面板 20 与显示面板 10相叠置设置, 触控面板 20由若干阵列排列的感测单元 21组成, 触控面板 20通过水平向的触控驱动线 23和垂直向的感应线 22, 实现对每一感 测单元 21的感测。 控制电路还包括触控驱动电路 33和感测驱动电路 34 , 其中 触控驱动电路 33依照时序分别产生脉冲式的驱动信号给触控面板 20的触控扫 描线 23,感测驱动电路 34依次对与该行触控扫描线 23连接的感应单元 21进行 检测, 以确定是否有触摸发生和触摸发生的具体位置。
为达到精确地显示效果, 显示面板 10的显示扫描线 13通常为几百条至上 千条, 例如 480条、 576条、 1024条等, 而触控面板 20的触控扫描线 23通常 为十几条至百条, 例如 100条等。 因此, 扫描过程中, 对显示面板 10的扫描时 间通常大于触控面板 20的扫描时间。
在实际触控显示过程中, 控制电路发出若干周期性的控制信号, 以驱动对 显示面板和触控面板的扫描, 图 3 为现有技术中触摸显示屏的驱动方法的时序 分配示意图。 如图 3所示, 以周期性扫描信号的频率(帧频率) 为 60Hz为例, 即每一周期 CO的时间为 16.67ms,包括两个时序一第一时序 C1和第二时序 C2, 较佳的时间分配为 C1的时间为 14.67ms, C2的时间为 2ms。在一个周期 CO内, 控制电路在第一时序 C1的时间内产生多个扫描信号依次传递给所述显示面板的 所有显示扫描线, 以完成一次对显示面板的扫描过程, 再在第二时序 C2的时间 内产生多个扫描信号依次传递给所述触控面板的触控扫描线, 以完成一次对触 控面板的扫描过程, 其后对触控面板的扫描结果进行处理分析, 进而控制下一 周期中显示面板的显示, 因而现有技术的扫描方式中, 触摸屏的扫描频率与显 示屏的扫描频率保持一致。
然而, 随着对触控面板的触控灵敏度的要求越来越高, 触摸屏的扫描频率 亟待有效提高,在 100Hz以上甚至 120Hz以上才能够达到较佳的触控响应速度, 可是显示面板的扫描频率却不能随之过度提高, 因为如杲显示面板的扫描频率 过高, 其每一条显示扫描线的扫描时间会大幅缩小, 使显示面板中每一子像素 单元的充放电时间大幅缩小, 易造成充放电时间不足, 进而影响显示面板的显 示效杲, 因此现有技术的扫描方式难以兼顾有效提高触控显示屏的灵敏度且保 持显示面板的显示效果。
发明内容
本发明的目的是提供一种能够提高有效提高触控显示屏的灵敏度且保持显 示面板的显示效果的触摸显示屏的驱动方法。 为解决上述问题, 本发明提供一种触摸显示屏的驱动方法, 所述触摸显示 屏包括显示面板、 触控面板和控制电路, 所述控制电路发出若千周期性的扫描 控制信号, 每一周期包括至少两个第一时序和至少两个第二时序, 所述第一时 序和第二时序依次交替进行; 在每一第一时序中, 所述控制电路产生多个扫描 控制信号传递给所述显示面板的显示扫描线驱动电路, 以控制所述显示扫描线 驱动电路在每一周期内不同的第一时序中, 向显示面板不同的显示扫描线发出 扫描信号, 在每一周期内所有的笫一时序中, 所述显示扫描线驱动电路完成向 显示面板的所有显示扫描线发出扫描信号; 在每一第二时序中, 所述控制电路 产生多个扫描控制信号给所述触控面板的触控扫描线驱动电路, 以控制所述触 控扫描线驱动电路依次给所述触控面板的所有触控扫描线发出扫描信号。
进一步的, 每一周期内每一第二时序的时间均相同, 且每一第一时序的时 间均相同。
进一步的, 每一周期包括两个第一时序和两个第二时序。 进一步的, 所述显示扫描线由第一类显示扫描线和第二类显示扫描线组成, 在第一个第一时序中, 所述控制电路产生多个扫描信号依次传递给所述显示面 板的第一类显示扫描线, 在第二个第一时序内, 所述控制电路产生多个扫描信 号依次传递给所述显示面板的第二类显示扫描线。
进一步的, 所述第一类显示扫描线与第二类显示扫描线为隔行交错排列。 进一步的, 所述显示扫描线共有 K行, 所述第一类显示扫描线为第一行至 第 L行显示扫描线, 所述第二类显示扫描线为第 L+1行至第 K行显示扫描线, 所述 K为正整数, 所述 L为小于 K的正整数。
进一步的, 所述显示扫描线共有 2n行, 所述第一类显示扫描线为第一行至 第 n行显示扫描线, 所述第二类显示扫描线为第 n+1行至第 2n行显示扫描线, 所述 n为正整数。
进一步的, 所述显示扫描线驱动电路包括至少一个非晶硅栅极驱动电路, 每一非晶硅栅极驱动电路包括若干非晶硅移位寄存器电路, 所述非晶硅移位寄 存器电路与所述显示扫描线一一对应, 每一非晶硅移位寄存器电路的输出端与 当前显示扫描线电连接。 进一步的, 所述显示扫描线驱动电路包括第一非晶硅栅极驱动电路和第二 非晶硅栅极驱动电路, 所述第一非晶硅栅极驱动电路和第二非晶硅栅极驱动电 路共同位于所述显示面板的一侧。
进一步的, 所述显示扫描线共有 K行, 所述第一非晶硅栅极驱动电路与第 一行至第 L行显示扫描线——对应, 所述第二非晶硅栅极驱动电路与第 L+1行 至第 K行类显示扫描线——对应其中所述 K为正整数,所述 L为小于 K的正整 数。
进一步的, 所述显示扫描线共有 2n行, 所述第一非晶硅栅极驱动电路与第 一行至第 n行显示扫描线——对应, 所述第二类显示扫描线为第 n+1行至第 2n 行显示扫描线——对应, 所述 n为正整数。
进一步的, 所述显示扫描线驱动电路包括第一非晶硅栅极驱动电路和第二 非晶硅栅极驱动电路, 所述第一非晶硅栅极驱动电路和第二非晶硅栅极驱动电 路分列于所述显示面板的两侧。
进一步的, 所述第一非晶硅栅极驱动电路的非晶硅移位寄存电路与第一类 行显示扫描线——对应, 所述第二非晶硅栅极驱动电路的非晶硅移位寄存电路 与第二类行显示扫描线——对应, 其中第一类行显示扫描线与第二类行显示扫 描线隔行交错排列。
进一步的, 所述显示扫描线驱动电路包括第一非晶硅栅极驱动电路、 第二 非晶硅栅极驱动电路、 第三非晶硅栅极驱动电路和第四非晶硅栅极驱动电路, 所述第一非晶硅栅极驱动电路和第三非晶硅栅极驱动电路位于所述显示面板的 一侧, 所述第二非晶硅栅极驱动电路和第四非晶硅栅极驱动电路位于所述显示 面板的另一侧。
进一步的, 所述显示扫描线共有 K行, 所述第一非晶硅栅极驱动电路与第 一行至第 L行中的第一类显示扫描线——对应, 所述第二非晶硅栅极驱动电路 与第一行至第 L行中的第二类显示扫描线——对应, 所述第三非晶硅栅极驱动 电路与第 L+1行至第 K行中的第一类显示扫描线——对应, 所述第四非晶硅栅 极驱动电路与所述第二类显示扫描线为第 L+1行至第 K行中的第二类显示扫描 线——对应, 其中所述 K为正整数, 所述 L为小于 K的正整数。 进一步的, 所述显示扫描线共有 4n行, 所述第一非晶硅栅极驱动电路与第 一行至第 2n行中的第一类显示扫描线——对应, 所述第二非晶硅栅极驱动电路 与第一行至第 2n行中的第二类显示扫描线——对应, 所述第三非晶硅栅极驱动 电路与第 2n+l行至第 4n行中的第一类显示扫描线——对应, 所述第四非晶硅 栅极驱动电路与所述第二类显示扫描线为第 2n+l行至第 4n行中的第二类显示 扫描线——对应, 其中所述 n为正整数。
进一步的, 所述控制电路发出的周期性扫描信号的频率为 50Hz~70Hz。 进一步的, 所述控制电路发出的周期性扫描信号的频率为 60Hz。
进一步的, 每一周期包括两个第一时序和两个第二时序, 每一第二时序的 时间为 lms〜2ms。
综上所述, 本发明所述触控显示屏的驱动方法通过在一个周期中设置至少 两个第一时序和至少两个第二时序, 在不同的第一时序中对显示面板不同显示 扫描线进行扫描, 并在一个周期所有的第一时序中完成对显示面板的所有显示 扫描线的扫描, 而在每一第二时序中产生多个扫描信号依次传给所述触控面板 的所有触控扫描线, 从而在一个周期中实现一次周期中对显示面板进行一次显 示扫描和对所述触控面板进行至少两次触控扫描。 本发明所述触摸显示屏的驱 动方法能够在不增加显示扫描频率的同时, 大幅提高触控扫描的频率, 既保证 了显示面板有足够的扫描时间以保证显示清晰, 同时提高了触控扫描的频率, 并降低了噪声干扰, 进而提高了触控面板的响应速度和检测准确性。
附图说明
图 1为现有技术中显示面板的结构示意图。
图 2为现有技术中触控面板的结构示意图。
图 3为现有技术中触摸显示屏的驱动方法的时序分配示意图。
图 4为本发明一实施例中触摸显示屏的驱动方法的时序分配示意图。
图 5为本发明一实施例中显示扫描线驱动电路的结构示意图。 图 6为本发明一实施例中显示扫描线驱动电路的工作时序图。
图 7为本发明另一实施例中显示扫描线驱动电路的结构示意图。
图 8为本发明另一实施例中显示扫描线驱动电路的工作时序图。
图 9为本发明又一实施例中显示扫描线驱动电路的结构示意图。
图 10为本发明又一实施例中显示扫描线驱动电路的工作时序图。
具体实施方式
为使本发明的内容更加清楚易懂, 以下结合说明书附图, 对本发明的内容 作进一步说明。 当然本发明并不局限于该具体实施例, 本领域内的技术人员所 熟知的一般替换也涵盖在本发明的保护范围内。
其次, 本发明利用示意图进行了详细的表述, 在详述本发明实例时, 为了 便于说明, 示意图不依照一般比例局部放大, 不应以此作为对本发明的限定。
本发明提供一种触摸显示屏的驱动方法, 所述触摸显示屏包括显示面板、 触控面板和控制电路, 所述控制电路发出若干周期性的扫描控制信号, 每一周 期包括至少两个第一时序和至少两个第二时序, 所述第一时序和第二时序依次 交替进行; 在每一第一时序中, 所述控制电路产生多个扫描控制信号传递给所 述显示面板的显示扫描线驱动电路, 以控制所述显示扫描线驱动电路在每一周 期内不同的第一时序中, 向显示面板不同的显示扫描线发出扫描信号, 在每一 周期内所有的第一时序中, 所述显示扫描线驱动电路完成向显示面板的所有显 示扫描线发出扫描信号; 在每一第二时序中, 所述控制电路产生多个扫描控制 信号给所述触控面板的触控扫描线驱动电路, 所述触控扫描线驱动电路依次给 所述触控面板的所有触控扫描线发出扫描信号, 显示面板的触控扫描线驱动扫 描触控面板上是否有触摸现象发生及触摸发生的位置。
其中, 显示扫描线驱动电路用于向所述显示面板的显示扫描线提供显示扫 描信号, 触控扫描线驱动电路用于向所述触控面板的触控扫描线提供触控扫描 信号, 在每一第一时序中, 所述显示面板的显示扫描线驱动电路依时序产生多 个扫描信号依次传递给所述显示面板的显示扫描线进行扫描, 每一扫描信号对 应一显示扫描线, 在每一第二时序中, 所述触控扫描线驱动电路依时序产生多 个扫描信号依次传给向所述触控面板的触控扫描线进行扫描, 每一扫描信号对 应一触控扫描线。
本发明所述触控显示屏的驱动方法通过在一个周期中包括至少两个第一时 序和至少两个第二时序, 在不同的第一时序中, 所述控制电路产生多个扫描控 制信号, 控制所述显示扫描线驱动电路对显示面板的不同显示扫描线的进行扫 描, 并在一个周期所有的第一时序中完成对显示面板的所有显示扫描线的扫描, 而在每一第二时序中产生多个扫描信号依次传给所述触控面板的所有触控扫描 线, 从而在一个周期中实现一次周期中对显示面板进行一次显示扫描和对所述 触控面板进行至少两次触控扫描。 故本发明所述的触摸显示屏的驱动方法能够 在不增加显示扫描频率的同时的频率的前提下, 大幅提高触控扫描的频率, 既 保证了显示面板有足够的扫描时间以保证显示清晰, 同时提高了触控扫描的频 率, 并降低了噪声干扰, 进而提高了触控面板的响应速度和检测准确性。
图 4为本发明一实施例中触摸显示屏的驱动方法的时序分配示意图。如图 4 所示, 在本实施例中, 每一周期 CO包括两个第一时序 C11和 C12, 两个第二时 序 C21和 C22, 所述第一时序和第二时序依次交替进行; 首先, 在第一个第一 时序 C11 中, 所述控制电路产生多个扫描控制信号传递给所述显示面板的显示 扫描线驱动电路, 以控制所述显示扫描线驱动电路产生多个扫描信号依次传递 给所述显示面板的部分显示扫描线; 然后, 在第一个第二时序 C12中, 控制电 路产生多个扫描控制信号给所述触控面板的触控扫描线驱动电路, 所述触控扫 描线驱动电路依次传给向所述触控面板的所有触控扫描线; 之后, 在第二个第 一时序 C21 中, 所述控制电路产生多个扫描控制信号传递给所述显示面板的显 示扫描线驱动电路, 以控制所述显示扫描线驱动电路产生多个扫描信号依次传 递给所述显示面板的余下所有显示扫描线, 在第一个第一时序 C11 和第二个第 一时序 C12共同的时间内控制电路控制显示扫描线驱动电路完成对显示面板的 所有显示扫描线传递扫描信号; 最后, 在第二个第二时序 C22中, 控制电路再 次给所述触控面板的触控扫描线驱动电路, 控制所述触控扫描线驱动电路产生 多个扫描信号依次传给向所述触控面板的所有触控扫描线。
由于在每一周期内的不同的第一时序中, 控制电路向显示面板的显示扫描 线驱动电路传递扫描控制信号, 以控制所述显示扫描线驱动电路向不同的显示 扫描线传递扫描信号, 在每一周期内所有的第一时序中, 所述控制电路向显示 面板的显示扫描线驱动电路传递扫描控制信号, 以控制显示扫描线驱动电路完 成向显示面板的所有显示扫描线传递扫描信号, 则在每一个第一时序中选择显 示扫描线进行扫描可以有多种方式实现, 以下以每一周期包括两个第一时序, 所述显示扫描线由第一类显示扫描线和第二类显示扫描线组成为例列举几种扫 描方式, 应当明确的是, 本发明并不限于以下几种扫描方式, 其他例如两个第 一时序的时间不同, 两个笫一时序的时间分配比例与每一第一时序中对应显示 扫描线的个数的比例相同等, 能够在多个第一时序中实现对显示面板扫描的方 式亦在本发明的思想范围之内。
在一实施例中, 所述控制电路产生多个扫描控制信号传递给所述显示面板 的显示扫描线驱动电路, 以控制所述显示扫描线驱动电路在两个第一时序中分 别对隔行交错排列的奇数行和偶数行的显示扫描线进行扫描, 具体地, 第一类 显示扫描线为所有奇数行的显示扫描线, 即第一行、 第三行、 第五行……等显 示扫描线, 第二类显示扫描线为所有偶数行的显示扫描线, 即第二行、 第四行、 第六行 ... ...等显示扫描线; 在第一个第一时序中, 所述控制电路产生多个扫描 控制信号传递给所述显示面板的显示扫描线驱动电路, 以控制所述显示扫描线 驱动电路产生多个扫描信号依次传递给所述显示面板的第一类显示扫描线, 在 第二个第一时序内, 所述控制电路产生多个扫描控制信号传递给所述显示面板 的显示扫描线驱动电路, 以控制所述显示扫描线驱动电路产生多个扫描信号依 次传递给所述显示面板的第二类显示扫描线, 从而在一个周期内的所有第一时 序中完成对所述显示面板的所有显示扫描线的一次扫描。
在另一实施例中, 所述控制电路在两个第一时序中分别控制显示扫描线驱 动电路对前一部分和后一部分的显示扫描线进行扫描,即所述显示扫描线共有 K 行, 所述第一类显示扫描线为第一行至第 L行显示扫描线, 所述第二类显示扫 描线为第 L+1行至第 K行显示扫描线, 所述 K为正整数, 所述 L为小于 K的 正整数, 显示扫描线驱动电路在第一个第一时序中对第一类显示扫描线进行扫 描, 显示扫描线驱动电路在第二个第一时序中对第二类显示扫描线进行扫描。 在一个较佳的实施例中, 第一类显示扫描线和第二类显示扫描线的数目相同, 则第一个第一时序的时间和第二个第一时序的时间相同, 便于触摸显示屏整体 电路设计和时序控制。 即显示扫描线共有 2n行, 其中 n为正整数,, 所述第一 类显示扫描线为第一行至第 n行显示扫描线, 所述第二类显示扫描线为第 n+1 行至第 2n行显示扫描线, 即在第一个第一时序中, 控制电路向第一行至第 n行 显示扫描线发出扫描信号, 在第一个第二时序中, 控制电路向第 n+1行至第 2n 行显示扫描线发出扫描信号, 例如所述显示扫描线一共有 480行, 则第一类显 示扫描线包括第 1行显示扫描线至笫 240行显示扫描线, 笫二类显示扫描线包 括第 241行显示扫描线至第 480行显示扫描线。
在较佳的实施例中, 每一周期内的不同的第二时序的时间均相同, 不同的 第一时序的时间均相同。 并且, 每一周期包括两个第一时序和两个第二时序, 所述控制电路发出的周期性扫描信号的频率为 50Hz〜70Hz, 例如 60Hz, 在该频 率范围内, 足够在一个周期内, 所述控制电路产生多个扫描控制信号传递给所 述显示面板的显示扫描线驱动电路, 以控制所述显示扫描线驱动电路产生多个 扫描信号依次传递给所述显示面板的显示扫描线, 并且每一扫描信号足够对应 显示扫描线中子像素单元完成充放电, 以实现显示面板的清晰显示; 每一周期 包括两个第二时序, 第二时序的时间范围可以为 lms〜2ms, 例如 2ms, 即在每 一周期中进行了两次对触控面板的全面扫描, 则触控面板的扫描频率实际为 120Hz, 从而大大提高了触控面板的扫描频率, 并降低了噪声干扰, 进而提高了 触控面板的响应速度和检测准确性。 当然, 每一周期的第一时序和第二时序并 不限制于两个, 此外, 其他例如每一周期包括三个第一时序和三个第二时序, 即在没有周期中进行三次对触控面板的全面扫描, 使触控面板的扫描频率实际 提升至 180Hz等也在本发明的思想范围之内。
在本实施例中, 所述显示扫描线驱动电路包括至少一个非晶硅栅极驱动电 路( ASG circuit ), 每一非晶硅栅极驱动电路包括若干非晶硅移位寄存器电路, 所述非晶硅移位寄存器电路与所述显示扫描线——对应, 每一非晶硅移位寄存 器电路的输出端与当前显示扫描线电连接。 所述非晶硅控制电路可以根据工艺 要求设计电路连接方式, 以便于根据实际工艺要求设计不同时序的扫描信号。 以下结合几个实施例, 说明所述显示扫描线驱动电路的结构及其工作时序, 进 而具体说明本发明所述的触摸显示屏的工作过程, 当然显示扫描线驱动电路的 结构并不仅限于以下几个实施例。
【实施例一】
图 5为本发明一实施例中显示扫描线驱动电路的结构示意图。 图 6为本发 明一实施例中显示扫描线驱动电路的时序图。 在本实施例中, 所示显示面板 10 一侧设置第一非晶硅栅极驱动电路 ASG1L和第二非晶硅栅极驱动电路 ASG2L。 如图 5所示, 在本实施例中, 第一非晶硅栅极驱动电路 ASG1L和第二非晶硅栅 极驱动电路 ASG2L共同设置于所示显示面板 10的左侧, 此外, 还可以共同设 置于所示显示面板 10的右侧。
第一非晶硅栅极驱动电路 ASG1L在第一个第一时序中对前一部分显示扫描 线, 即第一类显示扫描线进行扫描, 第二非晶硅栅极驱动电路 ASGR在第二个 第一时序中对后一部分显示扫描线, 即第二类显示扫描线进行扫描, 则第一个 第一时序与第二个第一时序的时间比例与第一类显示扫描线和第二类显示扫描 线的数目比例相应。 具体地, 在所述显示扫描线共有 K行, 第一非晶硅栅极驱 动电路 ASGL由 L个非晶硅移位寄存器顺序排列而成, 且与第一行至第 L行显 示扫描线——对应, 第一非晶硅栅极驱动电路 ASGR由 K-L个非晶硅移位寄存 器顺序排列而成, 且与第 L+1行至第 K行类显示扫描线——对应, 其中所述 K 为正整数, 所述 L为小于 K的正整数。
在较佳的实施例中, 所述显示扫描线共有 2n行, 其中 n为正整数, 第一类 显示扫描线和第二类显示扫描线的数目相同,所述第一非晶硅栅极驱动电路由 n 个非晶硅移位寄存器顺序排列而成, 且与第一行至第 n行显示扫描线——对应, 所述第二类显示扫描线由 n个非晶硅移位寄存器顺序排列而成, 且与第 n+1行 至第 2n行显示扫描线——对应。 例如显示面板 10共有 480条显示扫描线, 则 n 为 240,显示面板 10的显示扫描线包括第一类显示扫描线和第二类显示扫描线, 所述第一类显示扫描线为第一条至第 240条显示扫描线, 第二类显示扫描线为 所有第 241条至第 480显示扫描线相连。 以下以本较佳的实施例为例, 说明显 示扫描线驱动电路的工作过程, 进而说明触摸显示屏的驱动过程。
第一非晶硅栅极驱动电路 ASG1L的第一个非晶硅移位寄存器 L1的设置端 Set与第一启动信号 STV1L相连,其它每一非晶硅移位寄存器 L2、L3 L(n-l) 的设置端 Set与其前一个非晶硅移位寄存器的 Ll、 L2 Ln的输出端 Out相 连, 最后一个非晶硅移位寄存器 Ln的重置端 Reset与第一重置信号 ResetlL相 连, 其它每一非晶硅移位寄存器 L(n-l) L2、 L1的重置端 Reset与其后一 个非晶硅移位寄存器的 Ln L3、 L2的输出端 Out相连; 同理, 第二非晶硅 栅极驱动电路 ASG2L的第一个非晶硅移位寄存器 L(n+1)的设置端 Set与第二启 动信号 STV2L相连, 其后每一非晶硅移位寄存器 L(n+2)、 L(n+3) L(2n) 的设置端 Set与其前一个非晶硅移位寄存器的 L(n+1)、 L(n+2) L(2n-1)的输 出端 Out相连,最后一个非晶硅移位寄存器 L2n的重置端 Reset与第二重置信号
Reset2L相连, 其它每一非晶硅移位寄存器 L(2n-1) L(n+2)、 L(n+1)的重置 端 Set与其后一个非晶硅移位寄存器的 L(2n) L(n+3)、 L(n+2)的输出端 Out 相连。
如图 6所示, 在第一个第一时序 C11中, 第一启动信号 STV1L输出信号, 在时钟信号控制下第一非晶硅栅极驱动电路 ASG1L 的每一非晶硅移位寄存器 Ll、 L2、 L3... ... Ln依次输出, 最后第一重置信号 ResetlL输出信号, 则第一非 晶硅栅极驱动电路 ASG1 L的每一非晶硅移位寄存器完成对第一类显示扫描线的 扫描;
在第一个第二时序 C21中,第一非晶硅栅极驱动电路 ASG1L和第二非晶硅 栅极驱动电路 ASG2L均无信号输出, 此时触控面板完成进行第一次触控扫描; 在第二个第一时序 C12中, 第二启动信号 STV2L输出信号, 在第一时钟信 号 CKL1和第二时钟信号 CKL2控制下第二左侧电路组 ASG2L的每一非晶硅移 位寄存器 L(n+1)、 L(n+2)…… L2n依次输出, 最后第二重置信号 Reset2L输出信 号, 则第二非晶硅栅极驱动电路 ASG2L的每一非晶硅移位寄存器完成对第二类 显示扫描线的扫描;
在第二个第二时序 C22中,第一非晶硅栅极驱动电路 ASG1L和第二非晶硅 栅极驱动电路 ASG2L均无信号输出 , 此时触控面板完成进行第二次触控扫描; 至此, 一个时序周期 CO即完成。
故在一个扫描周期中, 显示面板完成一次显示扫描, 触控面板完成两次触 控扫描。 在本实施例中, 每次触控扫描可以采用逐行扫描的方法, 其扫描方式 为本领域技术人员所熟知的方法, 故不再赘述。
【实施例二】
图 7为本发明一实施例中显示扫描线驱动电路的结构示意图。 图 8为本发 明一实施例中显示扫描线驱动电路的时序图。 在本实施例中, 如图 7 所示, 显 示面板 10两侧分别设置第一非晶硅栅极驱动电路 ASGL和第二非晶硅栅极驱动 电路 ASGR,第一非晶硅栅极驱动电路 ASGL和第二非晶硅栅极驱动电路 ASGR 分别由 n个非晶硅移位寄存器顺序排列而成, 其中 n为正整数, 其数量可以根 据实际工艺要求具体确定,例如显示面板 10共有 480条显示扫描线,则 n为 240。
显示面板 10的显示扫描线包括第一类显示扫描线和第二类显示扫描线, 所 述第一类显示扫描线为所有奇数行显示扫描线, 例如第一条、 第三条、 第五 条 ... ...等显示扫描线, 第二类显示扫描线为所有偶数行显示扫描线, 例如第二 条、 第四条、 第六条……等显示扫描线相连。 第一非晶硅栅极驱动电路 ASGL 与所述显示面板 10的所有奇数行显示扫描线——对应, 第二非晶硅栅极驱动电 路 ASGR与显示面板 10的所有偶数行显示扫描线——对应。第一非晶硅栅极驱 动电路 ASGL的第一个非晶硅移位寄存器 L1的设置端 Set与第一启动信号 STVL 相连, 其它每一非晶硅移位寄存器 L2、 L3 Ln的设置端 Set与其前一个非 晶硅移位寄存器的 Ll、 L2 L(n-l)的输出端 Out相连, 最后一个非晶硅移 位寄存器 Ln的重置端 Reset与第一重置信号 ResetL相连,其它每一非晶硅移位 寄存器 L(n-l) L2、 L1 的重置端 Reset与其后一个非晶硅移位寄存器的
Ln L3、 L2的输出端 Out相连; 同理, 第一非晶硅栅极驱动电路 ASGR的 第一个非晶硅移位寄存器 R1的设置端 Set与第二启动信号 STVR相连, 其它每 一非晶硅移位寄存器 R2、 R3 Rn的设置端 Set与其前一个非晶硅移位寄存 器的 Rl、 R2 R(n-l)的输出端 Out相连, 最后一个非晶硅移位寄存器 Rn 的重置端 Reset 与第二重置信号 ResetR相连, 其它每一非晶硅移位寄存器
R(n-l) R2、 R1的重置端 Reset与其后一个非晶硅移位寄存器的 Rn
R3、 R2的输出端 Out相连。 以下说明显示扫描线驱动电路的工作过程, 进而说明触摸显示屏的驱动过 程
如图 8所示, 在第一个第一时序 C11中, 第一启动信号 STVL输出信号, 在时钟信号 CKL1和 CKL2控制下, 第一非晶硅栅极驱动电路 ASGL的每一非 晶硅移位寄存器 Ll、 L2、 L3... ...依次输出, 最后第一重置信号 ResetL输出, 则 左侧电路组 ASGL的每一非晶硅移位寄存器完成对第一类显示扫描线的扫描; 在第一个第二时序 C21中, 第一非晶硅栅极驱动电路 ASGL和第二非晶硅 栅极驱动电路 ASGR无信号输出, 此时触控面板完成进行第一次触控扫描; 在第二个第一时序 C12中,第二启动信号 STVR输出信号,在时钟信号 CKR1 和 CKR2控制下,第二非晶硅栅极驱动电路 ASGR的每一非晶硅移位寄存器 R1、 R2、 R3……依次输出, 最后第二重置信号 ResetR输出, 则第二非晶硅栅极驱动 电路 ASGR的每一非晶硅移位寄存器完成对第二类显示扫描线的扫描;
在第二个第二时序 C22中, 第一非晶硅栅极驱动电路 ASGL和第二非晶硅 栅极驱动电路 ASGR无信号输出, 此时触控面板完成进行第二次触控扫描; 至 此, 一个时序周期 CO即完成。
在一个扫描周期中, 显示面板完成一次显示扫描, 触控面板完成两次触控 扫描。 每次触控扫描可以釆用逐行扫描的方法, 其扫描方式为本领域技术人员 所熟知的方法, 故不再赘述。
【实施例三】
图 9为本发明另一实施例中显示扫描线驱动电路的结构示意图。 图 10为本 发明另一实施例中显示扫描线驱动电路的时序图。 如图 9所示, 显示面板 10两 侧分别设置第一非晶硅栅极驱动电路 ASG1L、 第二非晶硅栅极驱动电路 ASG1 , 第三非晶硅栅极驱动电路 ASG2L、 第四右侧电路组 ASG2R。
显示面板 10的显示扫描线包括第一类显示扫描线和第二类显示扫描线, 所 述第一类扫描线和第二类扫描线为隔行交替排列。
第一非晶硅栅极驱动电路 ASG1L在第一个第一时序中对前一部分显示扫描 线中的第一类显示扫描线进行扫描,第二非晶硅栅极驱动电路 ASG1R在第二个 第一时序中对前一部分显示扫描线中的第二类显示扫描线进行扫描, 第三非晶 硅栅极驱动电路 ASG2L在第二个第一时序中对后一部分显示扫描线中的第一类 显示扫描线进行扫描,第四非晶硅栅极驱动电路 ASG2R在第二个第一时序中对 后一部分显示扫描线中的第二类显示扫描线进行扫描。 则第一个第一时序与第 二个第一时序的时间比例与前一部分显示扫描线和后一部分显示扫描线的数目 比例相应。 具体地, 在所述显示扫描线共有 K行, 前一部分显示扫描线包括第 一行至第 L行,后一部分扫描线包括第 L+1行至第 K行,其中所述 K为正整数, 所述 L为小于 K的正整数。
在较佳的实施例中, 所述显示扫描线共有 4n行, 其中 n为正整数, 前一部 分显示扫描线包括 2n条, 前一部分的第一类显示扫描线有 n条, 前一部分的第 二类显示扫描线有 n条, 后一部分显示扫描线包括 2n条, 后一部分的第一类显 示扫描线有 n条, 后一部分的第二类显示扫描线有 n条, 各个电路组具有各 n 个非晶硅移位寄存器, 各电路组分别对应与显示面板的 n条显示扫描线——对 应。 以下以本较佳的实施例为例, 说明显示扫描线驱动电路的工作过程, 进而 说明触摸显示屏的驱动过程
第一非晶硅栅极驱动电路 ASG1L的每一非晶硅移位寄存器 Ll、 L2… ... Ln 与所述显示面板 10的前一半奇数行显示扫描线相连, 例如与第一条、 第三条、 第五条……第 2n-l条显示扫描线, 第二非晶硅栅极驱动电路 ASG1R的每一非 晶硅移位寄存器 Rl、R2…… Rn与显示面板 10的前一半偶数行显示扫描线相连, 例如第二条、 第四条、 第六条 ... ...第 2n条显示扫描线, 第三非晶硅栅极驱动电 路 ASG2L的每一非晶硅移位寄存器 L(n+1)、 L(n+2)… ... L2n与所述显示面板 10 的后一半奇数行显示扫描线相连,例如与第 2n+l条、第 2n+3条、第 2n+5条 ... ... 第 4n-l条显示扫描线, 第四非晶硅栅极驱动电路 ASG2R的每一非晶硅移位寄 存器 R(n+1)、 (n+2)…… R2n与显示面板 10的后一半偶数行显示扫描线相连, 例如与第 2n+2条、 第 2n+4条、 第 2n+6条……第 4n条显示扫描线相连。
第一非晶硅栅极驱动电路 ASG1L的第一个非晶硅移位寄存器 L1的设置端
Set与第一启动信号 STV1L相连, 其后每一非晶硅移位寄存器 L2、 L3 Ln 的设置端 Set与其前一个非晶硅移位寄存器的 Ll、 L3 L(n-l)的输出端 Out 相连, 最后一个非晶硅移位寄存器 Ln的重置端 Reset与第一重置信号 ResetlL 相连, 其它每一非晶硅移位寄存器 L(n-l) L2、 L1的重置端 Set与其后一 个非晶硅移位寄存器的 Ln L3、 L2的输出端 Out相连;
第二非晶硅栅极驱动电路 ASG1R的第一个非晶硅移位寄存器 R1的设置端
Set与第二启动信号 STV1R相连, 其后每一非晶硅移位寄存器 R2、 3 Rn 的设置端 Set与其前一个非晶硅移位寄存器的 Rl、 R3 R(n-l)的输出端 Out 相连, 最后一个非晶硅移位寄存器 Rn的重置端 Reset与第二重置信号 ResetlR 相连, 其它每一非晶硅移位寄存器 Rn R2、 R1的设置端 Set与其前一个非 晶硅移位寄存器的 R(n-l) R2、 R1的输出端 Out相连;
第三非晶硅栅极驱动电路 ASG2L的第一个非晶硅移位寄存器 L(n+1)的设置 端 Set 与第三启动信号 STV2L相连, 其后每一非晶硅移位寄存器 L(n+2)、
L(n+3) L(2n)的设置端 Set 与其前一个非晶硅移位寄存器的 L(n+1)、
L(n+2) L(2n-1)的输出端 Out相连, 最后一个非晶硅移位寄存器 L2n的重 置端 Reset 与第三重置信号 Reset2L 相连, 其它每一非晶硅移位寄存器
L(2n-1) L(n+2)、 L(n+1)的重置端 Set 与其后一个非晶硅移位寄存器的
L(2n) L(n+3)、 L(n+2)的输出端 Out相连;
第四非晶硅栅极驱动电路 ASG2R的第一个非晶硅移位寄存器 R(n+1)的设 置端 Set与第四启动信号 STV2R相连, 其它每一非晶硅移位寄存器 R(n+2)、
R(n+3) R(2n)的设置端 Set 与其前一个非晶硅移位寄存器的 R(n+1)、
R(n+2) R(2n-1)的输出端 Out相连, 最后一个非晶硅移位寄存器 R2n的重 置端 Reset 与第四重置信号 Reset2R 相连, 其它每一非晶硅移位寄存器
R(2n-1) R(n+2)、 R(n+1)的重置端 Set 与其后一个非晶硅移位寄存器的
R(2n) R(n+3)、 R(n+2)的输出端 Out相连。
如图 10所示, 在第一个第一时序 C11中, 第一启动信号 STV1L输出信号, 在时钟信号 CKL1和 CKL2控制下, 第一非晶硅栅极驱动电路 ASG1L的每一非 晶硅移位寄存器 Ll、 L2、 L3…… Ln依次输出, 由于非晶硅移位寄存器的输出 方式与实施例一左侧电路组的输出方式相同, 故在图 8 中不再赘述, 在第一启 动信号 STV1L停止之后,随即第二启动信号 STV1R输出信号,在时钟信号 CKR1 和 C R2控制下, 第二非晶硅栅极驱动电路 ASG1R的每一非晶硅移位寄存器 Rl、 R2、 R3... ... Rn依次输出, 由于非晶硅移位寄存器的输出方式与实施例一右 侧电路组的输出方式相同,故在图 8中同样不再赘述,最后第一重置信号 ResetlL 输出信号, 则第一左侧电路组 ASG1L的每一非晶硅移位寄存器完成扫描, 随后 第二重置信号 ResetlR输出信号, 则第二非晶硅栅极驱动电路 ASG1R的每一非 晶硅移位寄存器完成对前一半显示扫描线的第二类显示扫描线的扫描;
在第一个第二时序 C21中, 第一非晶硅栅极驱动电路 ASG1L、 第二非晶硅 栅极驱动电路 ASG1R, 第三非晶硅栅极驱动电路 ASG2L、 第四右侧电路组 ASG2R均无信号输出, 此时触控面板完成进行第一次触控扫描;
在第二个第一时序 C12 中, 第三启动信号 STV2L输出信号, 在时钟信号 CKL1和 CKL2控制下, 第三非晶珪栅极驱动电路 ASG2L的每一非晶硅移位寄 存器 L(n+1)、 L(n+2)…… L2n依次输出, 在第三启动信号 STV2L停止之后, 随 即第四启动信号 STV2R输出信号, 在时钟信号 CKL1和 CKL2控制下, 第三非 晶硅栅极驱动电路 ASG2R的每一非晶硅移位寄存器 R(n+1)、 R(n+2)…… R2n依 次输出, 最后第三重置信号 Reset2L 输出信号, 则第三非晶硅栅极驱动电路 ASG1R的每一非晶硅移位寄存器完成对后一半显示扫描线中的第一类显示扫描 线的扫描, 随后第四重置信号 Reset2R输出信号, 则第三非晶硅栅极驱动电路 ASG2R的每一非晶硅移位寄存器完成对后一半显示扫描线中的第二类显示扫描 线的扫描。 每次触控扫描可以釆用逐行扫描的方法, 其扫描方式为本领域技术 人员所熟知的方法, 故不再赘述。
需要明确的是, 本发明所述显示扫描线驱动电路的结构亦不仅仅局限于上 述几个实施例的结构, 其他方式能够实现在一个周期中完成显示面板的一次扫 描及触控面板的至少两次扫描的结构, 均在本发明的思想范围之内。 同时, 显 示扫描线驱动电路中每一非晶硅栅极驱动电路的非晶硅移位寄存器并不限制于 由两个时钟信号控制, 也可以由例如四个、 六个等时钟信号控制输出, 相应的 每一非晶硅栅极驱动电路中的每一非晶硅移位寄存器之间输出端、 设置端、 重 置端的连接关系亦并不限制于上述三个实施例描述的连接关系, 其他能够实现 移位寄存功能并能够依次输出输出信号的非晶硅栅极驱动电路的结构亦在本发 明的思想范围之内。 此外, 本发明所述触控显示屏的驱动方法对触控面板的扫 描方式和触控面板的电路结构亦不被限制, 即上述触控显示屏的驱动方法能够 适用于多种触控显示屏的结构中, 适用广泛, 且对显示电路和控制电路的结构 改变较小, 易于实现。
同时, 本发明所述触控显示屏的驱动方法通过在一个周期中设置至少两个 第一时序和至少两个第二时序, 在不同的第一时序中对显示面板不同显示扫描 线进行扫描, 并在一个周期所有的第一时序中完成向显示面板的所有显示扫描 线传递信号, 而在每一第二时序中产生多个扫描信号依次传给所述触控面板的 所有触控扫描线, 从而在一个周期中实现一次周期中对显示面板进行一次显示 扫描和对所述触控面板进行至少两次触控扫描。
综上所述, 本发明所述触摸显示屏的驱动方法能够在不增加显示扫描频率 的同时的频率的前提下, 大幅提高触控扫描的频率, 既保证了显示面板有足够 的扫描时间以保证显示清晰, 同时提高了触控扫描的频率, 并降低了噪声干扰, 进而提高了触控面板的响应速度和检测准确性。
虽然本发明已以较佳实施例揭露如上, 然其并非用以限定本发明, 任何所 属技术领域中具有通常知识者, 在不脱离本发明的精神和范围内, 当可作些许 的更动与润饰, 因此本发明的保护范围当视权利要求书所界定者为准。

Claims

权 利 要 求 书
1. 一种触摸显示屏的驱动方法, 所述触摸显示屏包括显示面板、 触控面板和 控制电路, 所述控制电路发出若干周期性的扫描控制信号, 每一周期包括至少 两个第一时序和至少两个第二时序, 所述第一时序和第二时序依次交替进行; 在每一第一时序中, 所述控制电路产生多个扫描控制信号传递给所述显示 面板的显示扫描线驱动电路, 以控制所述显示扫描线驱动电路在每一周期内不 同的第一时序中, 向显示面板不同的显示扫描线发出扫描信号, 在每一周期内 所有的第一时序中, 所述显示扫描线驱动电路完成向显示面板的所有显示扫描 线发出扫描信号;
在每一第二时序中, 所述控制电路产生多个扫描控制信号给所述触控面板 的触控扫描线驱动电路, 以控制所述触控扫描线驱动电路依次给所述触控面板 的所有触控扫描线发出扫描信号。
2. 如权利要求 1所述的触摸显示屏的驱动方法, 其特征在于, 每一周期内每 一第二时序的时间均相同, 且每一第一时序的时间均相同。
3. 如权利要求 1所述的触摸显示屏的驱动方法, 其特征在于, 每一周期包括 两个第一时序和两个第二时序。
4. 如权利要求 3所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线由第一类显示扫描线和第二类显示扫描线组成, 在第一个第一时序中, 所述 控制电路产生多个扫描信号依次传递给所述显示面板的第一类显示扫描线, 在 第二个第一时序内, 所述控制电路产生多个扫描信号依次传递给所述显示面板 的第二类显示扫描线。
5. 如权利要求 4所述的触摸显示屏的驱动方法, 其特征在于, 所述第一类显 示扫描线与第二类显示扫描线为隔行交错排列。
6. 如权利要求 4所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线共有 K行, 所述第一类显示扫描线为第一行至第 L行显示扫描线, 所述第二 类显示扫描线为第 L+1行至第 K行显示扫描线, 所述 K为正整数, 所述 L为小 于 K的正整数。
7. 如权利要求 6所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线共有 2n行, 所述第一类显示扫描线为第一行至第 n行显示扫描线, 所述第二 类显示扫描线为第 n+1行至第 2n行显示扫描线, 所述 n为正整数。
8. 如权利要求 1所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线驱动电路包括至少一个非晶硅栅极驱动电路, 每一非晶硅栅极驱动电路包括 若干非晶硅移位寄存器电路, 所述非晶硅移位寄存器电路与所述显示扫描线一 一对应, 每一非晶硅移位寄存器电路的输出端与当前显示扫描线电连接。
9. 如权利要求 8所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线驱动电路包括第一非晶硅栅极驱动电路和第二非晶硅栅极驱动电路, 所述第 一非晶硅栅极驱动电路和第二非晶硅栅极驱动电路共同位于所述显示面板的一 侧。
10.如权利要求 9所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线共有 K行, 所述第一非晶硅栅极驱动电路与第一行至第 L行显示扫描线—— 对应, 所述第二非晶硅栅极驱动电路与第 L+1行至第 K行类显示扫描线——对 应其中所述 K为正整数, 所述 L为小于 K的正整数。
11.如权利要求 10所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线共有 2n行, 所述第一非晶硅栅极驱动电路与第一行至第 n行显示扫描线—— 对应, 所述第二类显示扫描线为第 n+l行至第 2n行显示扫描线——对应, 所述 n为正整数。
12.如权利要求 8所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线驱动电路包括第一非晶硅栅极驱动电路和第二非晶硅栅极驱动电路, 所述第 一非晶硅栅极驱动电路和第二非晶硅栅极驱动电路分列于所述显示面板的两 侧。
13.如权利要求 12所述的触摸显示屏的驱动方法, 其特征在于, 所述第一非晶 硅栅极驱动电路的非晶硅移位寄存电路与第一类行显示扫描线——对应, 所述 第二非晶硅栅极驱动电路的非晶硅移位寄存电路与第二类行显示扫描线——对 应, 其中第一类行显示扫描线与第二类行显示扫描线隔行交错排列。
14.如权利要求 8所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线驱动电路包括第一非晶硅栅极驱动电路、 第二非晶硅栅极驱动电路、 第三非 晶硅栅极驱动电路和第四非晶硅栅极驱动电路, 所述第一非晶硅栅极驱动电路 和第三非晶硅栅极驱动电路位于所述显示面板的一侧, 所述第二非晶硅栅极驱 动电路和第四非晶娃栅极驱动电路位于所述显示面板的另一侧。
15.如权利要求 14所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线共有 K行, 所述第一非晶硅栅极驱动电路与第一行至第 L行中的第一类显示 扫描线——对应, 所述第二非晶硅栅极驱动电路与第一行至第 L行中的第二类 显示扫描线——对应, 所述第三非晶硅栅极驱动电路与第 L+1行至第 K行中的 第一类显示扫描线——对应, 所述第四非晶硅栅极驱动电路与所述第二类显示 扫描线为第 L+1行至第 K行中的第二类显示扫描线——对应,其中所述 K为正 整数, 所述 L为小于 K的正整数。
16.如权利要求 15所述的触摸显示屏的驱动方法, 其特征在于, 所述显示扫描 线共有 4n行, 所述第一非晶硅栅极驱动电路与第一行至第 2n行中的第一类显 示扫描线——对应, 所述第二非晶硅栅极驱动电路与第一行至第 2n行中的第二 类显示扫描线——对应, 所述第三非晶硅栅极驱动电路与第 2n+l行至第 4n行 中的第一类显示扫描线——对应, 所述第四非晶硅栅极驱动电路与所述第二类 显示扫描线为第 2n+l行至第 4n行中的第二类显示扫描线——对应,其中所述 n 为正整数。
17.如权利要求 1至 16中任意一项所述的触摸显示屏的驱动方法,其特征在于, 所述控制电路发出的周期性扫描信号的频率为 50Hz〜70Hz。
18.如权利要求 17中任意一项所述的触摸显示屏的驱动方法, 其特征在于, 所 述控制电路发出的周期性扫描信号的频率为 60Hz。
19.如权利要求 18中任意一项所述的触摸显示屏的驱动方法, 其特征在于, 每 一周期包括两个第一时序和两个第二时序, 每一第二时序的时间为 lms〜2ms。
PCT/CN2012/084267 2012-06-28 2012-11-08 触摸显示屏的驱动方法 WO2014000362A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12876593.0A EP2796970B1 (en) 2012-06-28 2012-11-08 Method for driving touch display screen
KR1020137033791A KR101556460B1 (ko) 2012-06-28 2012-11-08 터치 스크린의 구동 방법
US14/064,058 US9778769B2 (en) 2012-06-28 2013-10-25 Methods for driving a touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210219702.X 2012-06-28
CN201210219702XA CN103279214A (zh) 2012-06-28 2012-06-28 触摸显示屏的驱动方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/064,058 Continuation US9778769B2 (en) 2012-06-28 2013-10-25 Methods for driving a touch screen

Publications (1)

Publication Number Publication Date
WO2014000362A1 true WO2014000362A1 (zh) 2014-01-03

Family

ID=49061769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084267 WO2014000362A1 (zh) 2012-06-28 2012-11-08 触摸显示屏的驱动方法

Country Status (5)

Country Link
US (1) US9778769B2 (zh)
EP (1) EP2796970B1 (zh)
KR (1) KR101556460B1 (zh)
CN (2) CN107291304B (zh)
WO (1) WO2014000362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282475B2 (en) 2019-07-23 2022-03-22 Himax Technologies Limited Electronic device control method and electronic device applying the electronic device control method

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102224890B1 (ko) * 2013-12-04 2021-03-10 엘지디스플레이 주식회사 게이트 구동 방법 및 표시장치
US9824614B2 (en) * 2013-12-04 2017-11-21 Lg Display Co., Ltd. Gate driving method and display device
KR101872987B1 (ko) * 2013-12-10 2018-07-31 엘지디스플레이 주식회사 분할 패널을 포함하는 표시장치 및 그 구동방법
KR102203449B1 (ko) * 2013-12-31 2021-01-15 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치 및 그 구동 방법
CN104793775B (zh) * 2014-01-20 2018-03-09 瀚宇彩晶股份有限公司 触控显示装置及其驱动方法与触控感测方法
US9557840B2 (en) * 2014-02-04 2017-01-31 Apple Inc. Displays with intra-frame pause
US9424793B2 (en) 2014-02-04 2016-08-23 Apple Inc. Displays with intra-frame pause
KR102276726B1 (ko) 2014-03-10 2021-07-13 엘지디스플레이 주식회사 표시장치
CN104036738B (zh) * 2014-03-27 2016-06-01 京东方科技集团股份有限公司 一种移位寄存器单元、栅极驱动电路及显示装置
US20150355762A1 (en) * 2014-06-04 2015-12-10 Apple Inc. Mid-frame blanking
CN104063105B (zh) * 2014-06-11 2017-02-15 合肥鑫晟光电科技有限公司 一种触摸装置及触摸驱动方法
CN104078015B (zh) * 2014-06-18 2016-04-06 京东方科技集团股份有限公司 栅极驱动电路、阵列基板、显示装置及驱动方法
CN105320319A (zh) * 2014-06-30 2016-02-10 晨星半导体股份有限公司 触控式电子系统的触控装置及控制方法
CN104240631B (zh) 2014-08-18 2016-09-28 京东方科技集团股份有限公司 Goa电路及其驱动方法、显示装置
CN104199573B (zh) * 2014-08-26 2017-05-31 京东方科技集团股份有限公司 触摸驱动方法、触摸驱动装置及触摸显示屏
CN104317446B (zh) 2014-10-15 2017-12-29 京东方科技集团股份有限公司 显示装置及其驱动方法
US9847070B2 (en) * 2014-10-22 2017-12-19 Apple Inc. Display with intraframe pause circuitry
CN104464596A (zh) * 2014-12-22 2015-03-25 合肥鑫晟光电科技有限公司 一种栅极集成驱动电路、显示面板及显示装置
CN104537972B (zh) * 2014-12-26 2017-05-31 厦门天马微电子有限公司 驱动电路、触控显示面板及触控显示装置
CN104505014B (zh) * 2014-12-31 2017-02-22 厦门天马微电子有限公司 一种驱动电路、阵列基板和触控显示装置及其驱动方法
CN104485082B (zh) * 2014-12-31 2017-02-22 厦门天马微电子有限公司 一种阵列基板和触控显示装置及其驱动方法
CN104821159B (zh) * 2015-05-07 2017-04-12 京东方科技集团股份有限公司 一种栅极驱动电路、显示面板及触控显示装置
US9870087B2 (en) * 2015-05-27 2018-01-16 Novatek Microelectronics Corp. Display driving apparatus and method for driving touch display panel
CN104916243B (zh) * 2015-06-29 2017-10-17 深圳市华星光电技术有限公司 扫描驱动电路的检测方法和检测装置、液晶面板
CN105183233B (zh) * 2015-09-24 2018-02-23 深圳市华星光电技术有限公司 触控屏以及智能终端
CN105630234B (zh) * 2015-12-21 2021-01-05 上海天马微电子有限公司 一种触控显示装置及触控检测方法
CN105405385B (zh) * 2015-12-31 2019-06-07 京东方科技集团股份有限公司 Goa电路、goa电路扫描方法、显示面板和显示装置
CN107092112A (zh) * 2016-02-17 2017-08-25 晨星半导体股份有限公司 触控显示装置与相关的控制方法
CN105913816B (zh) * 2016-05-23 2019-07-30 厦门天马微电子有限公司 一种显示面板及其驱动方法、以及显示装置
CN106227385B (zh) * 2016-07-28 2019-03-26 武汉华星光电技术有限公司 触控扫描方法以及触控显示面板
CN106504722B (zh) * 2017-01-12 2019-10-01 京东方科技集团股份有限公司 一种goa分区驱动方法和装置、goa单元
CN108806571B (zh) * 2017-05-04 2021-09-21 京东方科技集团股份有限公司 栅极驱动电路及其驱动方法、阵列基板及显示装置
CN107993619B (zh) * 2017-11-06 2020-08-25 上海天马微电子有限公司 扫描电路和显示面板
CN108255342B (zh) * 2018-01-19 2021-12-21 昆山龙腾光电股份有限公司 触控显示面板的驱动方法、驱动电路以及触控显示装置
CN110737344B (zh) * 2018-07-19 2023-06-30 敦泰电子有限公司 触控显示控制电路、控制方法以及电子设备
CN110246448B (zh) * 2018-08-10 2022-05-13 友达光电股份有限公司 显示器驱动电路
CN112201193B (zh) * 2020-10-21 2023-07-21 武汉天马微电子有限公司 显示面板的驱动方法、驱动电路和显示装置
CN112269493B (zh) * 2020-10-30 2023-12-22 武汉天马微电子有限公司 一种触控显示屏及其驱动方法、电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562048A (zh) * 2008-04-15 2009-10-21 北京京东方光电科技有限公司 移位寄存器及液晶显示栅极驱动装置
CN102402330A (zh) * 2010-09-08 2012-04-04 乐金显示有限公司 具有触摸传感器的显示设备及其驱动方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983365B (zh) * 2002-04-26 2011-05-18 东芝松下显示技术有限公司 用于场致发光显示屏的驱动电路
GB2398916A (en) * 2003-02-28 2004-09-01 Sharp Kk Display and sensor apparatus
KR101152129B1 (ko) * 2005-06-23 2012-06-15 삼성전자주식회사 표시 장치용 시프트 레지스터 및 이를 포함하는 표시 장치
CN101178879B (zh) * 2006-11-06 2010-09-15 中华映管股份有限公司 液晶显示器的显示面板及其驱动方法
JP4204630B1 (ja) * 2007-05-30 2009-01-07 シャープ株式会社 走査信号線駆動回路、表示装置、およびその駆動方法
CN101978504A (zh) * 2008-06-12 2011-02-16 夏普株式会社 Tft、移位寄存器、扫描信号线驱动电路以及显示装置
CN102265244B (zh) 2008-12-24 2015-08-26 株式会社半导体能源研究所 触摸面板及其驱动方法
WO2011055570A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
CN102116951B (zh) * 2009-12-31 2013-05-15 上海天马微电子有限公司 集成式触摸显示装置及其检测方法
KR20110087904A (ko) * 2010-01-27 2011-08-03 삼성전자주식회사 터치 이미지 검출 방법 및 이를 수행하기 위한 표시 장치
CN102222475A (zh) 2010-04-14 2011-10-19 联咏科技股份有限公司 具有触控功能的显示装置及触控面板的二维感测方法
JP2011233019A (ja) * 2010-04-28 2011-11-17 Sony Corp タッチ検出機能付き表示装置、駆動回路、駆動方式、および電子機器
WO2012002043A1 (ja) * 2010-06-30 2012-01-05 シャープ株式会社 表示装置
JP5501158B2 (ja) * 2010-08-23 2014-05-21 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置、駆動回路、タッチ検出機能付き表示装置の駆動方法、および電子機器
JP5722573B2 (ja) * 2010-08-24 2015-05-20 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置
TWI407349B (zh) * 2010-12-17 2013-09-01 Au Optronics Corp 觸控面板的觸控訊號掃描次數決定方法
US8804056B2 (en) * 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
US9342183B2 (en) * 2011-03-01 2016-05-17 Sharp Kabushiki Kaisha Touch panel equipped display device and driving method for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562048A (zh) * 2008-04-15 2009-10-21 北京京东方光电科技有限公司 移位寄存器及液晶显示栅极驱动装置
CN102402330A (zh) * 2010-09-08 2012-04-04 乐金显示有限公司 具有触摸传感器的显示设备及其驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796970A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282475B2 (en) 2019-07-23 2022-03-22 Himax Technologies Limited Electronic device control method and electronic device applying the electronic device control method

Also Published As

Publication number Publication date
EP2796970B1 (en) 2023-01-04
EP2796970A1 (en) 2014-10-29
CN103279214A (zh) 2013-09-04
US9778769B2 (en) 2017-10-03
EP2796970A4 (en) 2015-02-25
US20140049512A1 (en) 2014-02-20
KR101556460B1 (ko) 2015-10-01
CN107291304A (zh) 2017-10-24
KR20140018389A (ko) 2014-02-12
CN107291304B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2014000362A1 (zh) 触摸显示屏的驱动方法
US7710377B2 (en) LCD panel including gate drivers
JP5512284B2 (ja) 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
JP4551712B2 (ja) ゲート線駆動回路
US20150138176A1 (en) Scanning signal line drive circuit and display device provided with same
JP5341191B2 (ja) 表示装置および表示装置の駆動方法
US20110063281A1 (en) Pixel array and driving method thereof and flat panel display
US20060028426A1 (en) LCD apparatus for improved inversion drive
US8482503B2 (en) Liquid crystal display with sequential and reverse sequential scan direction to improve display quality by preventing stains caused by polarization and accumulation of ions, and driving methods thereof
JP2006267999A (ja) 駆動回路チップ及び表示装置
CN102081914B (zh) 显示设备和驱动方法
KR20060090419A (ko) 게이트 구동 방법 및 그 장치와 이를 갖는 표시장치
JP3633528B2 (ja) 表示装置
CN101667388B (zh) 像素阵列及其驱动方法以及平面显示器
KR20150005259A (ko) 표시 패널 및 이를 포함하는 표시 장치
US8823626B2 (en) Matrix display device with cascading pulses and method of driving the same
TWI836740B (zh) 時序控制器電路
TWI790778B (zh) 時序控制器電路
JPH10123481A (ja) 液晶表示装置
TW202316414A (zh) 時序控制器電路
JP2009014965A (ja) 表示装置及び表示駆動装置
KR100759476B1 (ko) 액정표시 장치 및 그 구동 방법
TWI413052B (zh) 畫素陣列與其驅動方法及採用該畫素陣列之顯示面板
KR20060012857A (ko) 표시 장치
JP2012128095A (ja) ソースドライバおよび液晶表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137033791

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE