WO2013191415A1 - 기판 처리 장치 - Google Patents

기판 처리 장치 Download PDF

Info

Publication number
WO2013191415A1
WO2013191415A1 PCT/KR2013/005263 KR2013005263W WO2013191415A1 WO 2013191415 A1 WO2013191415 A1 WO 2013191415A1 KR 2013005263 W KR2013005263 W KR 2013005263W WO 2013191415 A1 WO2013191415 A1 WO 2013191415A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
passage
supply hole
flow path
substrate
Prior art date
Application number
PCT/KR2013/005263
Other languages
English (en)
French (fr)
Inventor
양일광
송병규
김경훈
김용기
신양식
Original Assignee
주식회사 유진테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진테크 filed Critical 주식회사 유진테크
Priority to US14/400,816 priority Critical patent/US20150122177A1/en
Priority to CN201380032575.5A priority patent/CN104412364B/zh
Priority to JP2015513955A priority patent/JP5952961B2/ja
Publication of WO2013191415A1 publication Critical patent/WO2013191415A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Definitions

  • the present invention relates to a substrate processing apparatus, and more particularly, to an apparatus capable of processing a substrate by forming a uniform plasma density using the upper antenna and the side antenna.
  • the semiconductor device has many layers on a silicon substrate, and these layers are deposited on the substrate through a deposition process.
  • This deposition process has several important issues, which are important in evaluating the deposited films and selecting the deposition method.
  • the first is the 'qulity' of the deposited film. This means composition, contamination levels, defect density, and mechanical and electrical properties.
  • the composition of the films can vary depending on the deposition conditions, which is very important for obtaining a specific composition.
  • the second is uniform thickness across the wafer.
  • the thickness of the film deposited on the nonplanar pattern on which the step is formed is very important. Whether the thickness of the deposited film is uniform may be determined through step coverage defined by dividing the minimum thickness deposited on the stepped portion by the thickness deposited on the upper surface of the pattern.
  • Another issue with deposition is filling space. This includes gap filling between the metal lines with an insulating film including an oxide film. The gap is provided to physically and electrically insulate the metal lines.
  • uniformity is one of the important issues associated with the deposition process, and non-uniform films result in high electrical resistance on metal lines and increase the likelihood of mechanical failure.
  • An object of the present invention is to provide a substrate processing apparatus that can improve the process uniformity with respect to the entire surface of the substrate.
  • Another object of the present invention to provide a substrate processing apparatus that can improve the plasma density.
  • a substrate processing apparatus includes: a chamber in which an upper portion is opened and a passage through which a substrate enters and exits is formed; A chamber cover which closes an upper portion of the chamber to provide an internal space in which a process is performed on the substrate and has a gas supply hole formed to penetrate a ceiling wall; An upper antenna installed at an upper center of the chamber cover to form an electric field at the center of the inner space, and generating a plasma from a source gas supplied to the inner space; A side antenna installed to surround the side of the chamber cover to form an electric field at an edge of the inner space, and generating a plasma from a source gas supplied to the inner space; And a gas supply pipe connected to the gas supply hole to supply the source gas to the internal space, wherein the gas supply hole is disposed outside the upper antenna.
  • the substrate processing apparatus may be installed in close contact with the ceiling surface of the chamber cover and further include a ring block plate for diffusing a source gas toward the substrate, and the block plate may be disposed at the center to correspond to the upper antenna.
  • the flow path may include an inner flow path formed along a circumference of the opening to correspond to a central portion of the substrate; And a connection passage connecting the gas supply hole and the inner passage, and the gas injection holes may be formed on an inner circumferential surface of the block plate.
  • the flow path may include an inner flow path formed along a circumference of the opening to correspond to a central portion of the substrate; And a connection flow path connecting the gas supply hole and the inner flow path, and the gas injection holes may be spaced apart from the inner flow path.
  • the distribution density of the gas injection ports may increase as the gas injection hole is moved away from the gas supply hole.
  • the diameter of the gas injection holes may increase as the distance from the gas supply hole.
  • the flow path may include an inner flow path formed along a circumference of the opening to correspond to a central portion of the substrate; An outer passage formed outside the inner passage; And a plurality of connection passages connecting the inner passage and the outer passage, the gas supply hole may be formed on the outer passage, and the gas injection holes may be formed on the inner passage and the outer passage, respectively.
  • connection passages may increase as the distance from the gas supply hole increases.
  • the gas injection ports may have a higher distribution density on the inner channel than the outer channel.
  • the diameter of the gas injection holes formed on the inner passage may be larger than the diameter of the gas injection holes formed on the outer passage.
  • the flow path may include an inner flow path formed along a circumference of the opening to correspond to a central portion of the substrate; An outer passage formed outside the inner passage; And a plurality of connection passages connecting the inner passage and the outer passage, wherein the gas supply hole is formed on the outer passage, and the gas injection holes are formed on the inner circumferential surface of the block plate and the outer passage, respectively. Can be.
  • the flow path connects one side of the outer flow path located on the opposite side of the gas supply hole and the other side of the outer flow path adjacent to the gas supply hole with respect to the center of the opening, and a plurality of auxiliary connection flow paths arranged side by side.
  • the connection passages may be parallel to the auxiliary connection passages.
  • the flow passage may include a semicircular inner flow passage formed along a circumference of the opening so as to correspond to a central portion of the substrate and formed on an opposite side of the gas supply hole with respect to the center of the opening; A semicircular outer channel formed on an outer side of the inner channel and formed on an opposite side of the inner channel based on the center of the opening; A connection flow passage having one end connected to the gas supply hole and the other end connected to a center portion of the outer flow passage; And an auxiliary connection channel connecting both ends of the inner channel and both ends of the outer channel, wherein the gas injection ports may be spaced apart on the inner channel and the outer channel.
  • the present invention it is possible to improve the process uniformity of the entire surface of the substrate.
  • FIG. 1 is a view schematically showing a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an internal space shown in FIG. 1.
  • FIG. 3 is a cross-sectional view showing an embodiment of the block plate and the flow of the source gas shown in FIG.
  • FIG. 4 is a diagram illustrating a flow of source gas and plasma formed in the internal space illustrated in FIG. 1.
  • FIG. 5 is a cross-sectional view showing a first modification of the block plate and the flow of the source gas shown in FIG.
  • FIG. 6 is a cross-sectional view showing a second modification of the block plate and the source gas of FIG. 1.
  • FIG. 7 is a cross-sectional view showing a third modification of the block plate and the flow of the source gas shown in FIG. 1.
  • FIG. 8 is a cross-sectional view showing a fourth modification of the block plate shown in FIG. 1 and the flow of source gas.
  • FIG. 9 is a cross-sectional view showing a fifth modification of the block plate shown in FIG. 1 and the flow of source gas.
  • FIG. 10 is a view showing a thickness distribution of a thin film deposited through a conventional substrate processing apparatus.
  • FIGS. 1 to 4 Embodiments of the invention may be modified in various forms, the scope of the invention should not be construed as limited to the embodiments described below. These embodiments are provided to explain in detail the present invention to those skilled in the art. Accordingly, the shape of each element shown in the drawings may be exaggerated to emphasize a more clear description.
  • the plasma process of the Inductively Coupled Plasma (ICP) method will be described as an example, but the present invention can be applied to various plasma processes.
  • the substrate is described as an example, but the present invention may be applied to various target objects.
  • FIG. 1 is a view schematically showing a substrate processing apparatus 1 according to an embodiment of the present invention
  • FIG. 2 is a view showing an internal space shown in FIG.
  • the substrate processing apparatus 1 includes a main chamber 10 and a chamber lid 14.
  • the main chamber 10 has an open shape at an upper portion thereof, and has a passage 7 through which the substrate W is accessible.
  • the gate valve 5 is installed outside the passage 7, and the passage 7 can be opened or closed by the gate valve 5.
  • the chamber cover 14 closes the open upper portion of the main chamber 10 and forms an internal space that is blocked from the outside.
  • the substrate W is loaded into the interior space through the passage 7, and the process for the substrate W is performed in the interior space.
  • the susceptor cover 20 is installed to surround the upper and side portions of the susceptor 30, and during the process, the substrate W is placed on the upper part of the susceptor cover 20.
  • the cross section of the susceptor cover 20 has a 'c' shape, and the lower side extends toward the lower portion of the susceptor 30.
  • the susceptor 30 corresponds to the shape of the substrate W (for example, circular).
  • the support shaft 42 is connected to the lower portion of the susceptor 30, and the support shaft 42 is installed to penetrate the through hole 8 formed in the lower portion of the main chamber 10.
  • the fixed ring 45 is connected to the lower end of the support shaft 42
  • the drive unit 40 is connected to the fixed ring 45 to lift the fixed ring 45 and the support shaft 42.
  • the susceptor 30 moves up and down together with the support shaft 42.
  • the upper end of the bellows 45 is connected to the lower surface of the main chamber 10, and the lower end of the bellows 45 is connected to the fixing ring 45.
  • the support shaft 42 is connected to the fixing ring 45 through the interior of the bellows 45.
  • the bellows 45 not only prevents the source gas supplied into the interior space from leaking to the outside through the through hole 8, but also prevents the vacuum atmosphere formed in the interior space from being damaged.
  • the lift pins 55 support the substrate W loaded on the susceptor 30.
  • the lift pins 55 are installed on guide holes (not shown) passing through the susceptor 30 and the susceptor cover 20, and move along the guide holes as the susceptor 30 moves up and down.
  • the lower ends of the lift pins 55 are supported by the support plate 56 installed on the bottom surface of the main chamber 10, and the lift pins 55 are provided.
  • the upper end of the protrusion protrudes from the upper surface of the susceptor cover 20.
  • the lift pins 55 support the loaded substrate (W).
  • the lower end of the lift pins 55 is spaced apart from the support plate 56 while the susceptor 30 is raised, and the upper end of the lift pins 55 is an upper surface of the susceptor cover 20.
  • the substrate W is placed on the upper surface of the susceptor cover 20, and the process for the substrate W is performed while the susceptor 30 is raised.
  • the upper antenna 80 is installed in the upper center portion of the chamber cover 14, the side antenna 85 is installed to surround the side of the chamber cover (14).
  • the upper antenna 80 may have a spiral shape located at substantially the same height, and the side antenna 85 may have a spiral shape disposed along the height direction of the chamber cover 14.
  • the gas supply hole 65 is formed through the ceiling wall of the chamber cover 14 and is disposed outside the upper antenna 80 to prevent interference with the upper antenna 80.
  • the gas supply pipe 62 is connected to the gas supply hole 65, and the gas storage tank 60 in which the source gas is stored is connected to the gas supply hole 65 through the gas supply pipe 62.
  • the source gas is supplied to the internal space through the gas supply hole 65.
  • the upper antenna 80 and the side antenna 85 form an electric field in the inner space, and generate a plasma from the source gas.
  • FIG. 10 is a view showing a thickness distribution of a thin film deposited through a conventional substrate processing apparatus.
  • the sizes of the main chamber 10 and the chamber cover 14 are increasing.
  • the electric field is formed nonuniformly across the center and the edge of the inner space.
  • the thin film deposited on the substrate W by using plasma is also nonuniformly formed, and the thickness of the thin film deposited on the center portion and the edge portion of the substrate W varies.
  • the electric field formed through the upper antenna 80 is concentrated at the center portion B of the internal space, and the electric field formed through the side antenna 85 is concentrated at the edge portion A of the internal space. Through this, a uniform electric field may be formed in the internal space.
  • the shape of the upper antenna 80 and the side antenna 85 may be modified according to the electric field formed in the central portion B and the edge portion A, respectively.
  • the upper antenna 80 and the side antenna 85 are connected to a high frequency power source (RF generator) through a matcher 95, and the upper antenna and the side antenna 85 form an electric field using a high frequency current.
  • the high frequency current supplied to the upper antenna 80 and the side antenna 85 may be changed according to the size of the electric field required, and different high frequency currents may be supplied.
  • the housing 17 may be installed above the main chamber 10, and the matching unit 95 may be installed above the housing 17.
  • the auxiliary bar 27 is installed in a state where the lower end is fixed to the bottom surface of the main chamber 10, is spaced apart from the side wall of the main chamber (10).
  • the susceptor cover 20 is positioned lower than the upper end of the auxiliary bar 27, and the side and the auxiliary bar of the susceptor cover 20 during the process progress.
  • the lower part of the susceptor 30 may be isolated from the internal space through the 27. Therefore, it is possible to prevent the plasma and the reaction by-products, which will be described later, from moving to the through hole 8 through the lower portion of the susceptor 30.
  • the auxiliary bar 27 has a step at an intermediate height, and the baffle 51 is installed at the step formed on the side wall of the main chamber 10 and the step of the auxiliary bar 27.
  • the baffle 51 is installed in a substantially horizontal state, and the baffle 51 has a plurality of exhaust holes 52.
  • the main chamber 10 has an exhaust port 53, which is formed on the side wall opposite the passage 7.
  • the exhaust line 54 is connected to the exhaust port 53, and the exhaust pump 55 is installed on the exhaust line 54.
  • Plasma and reaction by-products generated in the inner space are discharged to the outside through the exhaust port 53 and the exhaust line 54, and the exhaust pump 55 forcibly discharges them.
  • the plasma and the reaction by-products and the like are introduced into the exhaust port 53 through the exhaust holes 52 of the baffle 51.
  • FIG. 3 is a cross-sectional view showing an embodiment of the block plate shown in Figure 1 and the flow of the source gas
  • Figure 4 is a view showing the flow of the source gas and plasma formed in the internal space shown in FIG.
  • the source gas is supplied to the inner space of the main chamber 10 through the gas supply hole 65
  • the upper antenna 80 and the side antenna 85 is the electric field at the center and the edge of the inner space, respectively
  • the generated plasma reacts with the surface of the substrate W to deposit a thin film on the substrate W.
  • the plasma and the reaction by-products, etc. are discharged to the exhaust port 53 through the baffle 51. It moves and is discharged to the outside.
  • the discharge space 50 is recessed from the lower surface of the main chamber 10, it is formed in a circular shape along the lower edge of the main chamber (10). Since the discharge space 50 is formed by the side walls of the main chamber 10 and the baffle 51 and the auxiliary bar 27, the discharge space 50 is partially blocked from the outside so that the plasma and the reaction by-products are discharged through the baffle 51. ), And moves to the exhaust port 53 along the discharge space 50. Thus, as shown in FIG. 4, the flow direction on the surface of the substrate W is radially formed from the center of the substrate W toward the edge.
  • the block plate 70 is installed in close contact with the ceiling surface of the chamber cover 14, and diffuses the source gas discharged through the gas supply hole 65 toward the surface of the substrate (W).
  • the block plate 70 has a plurality of gas injection holes 75, and the source gas is diffused through the gas injection holes 75.
  • the block plate 70 has a ring shape in which an opening 71 is formed in the central portion, and the opening 71 has a diameter of the central portion B of the internal space (or a diameter of the upper antenna 80). And may have substantially the same diameter.
  • the block plate 70 has a channel recessed from one surface corresponding to the ceiling surface of the chamber cover 14, and the channel has an inner channel 72 and a connection channel 74.
  • the inner channel 72 has a circular shape formed along the circumference of the opening 71, and the inner channel 72 is formed to be as close to the opening 71 as possible so that the source gas can be injected toward the center of the substrate W. do.
  • the connection passage 74 is a straight line connecting the gas supply hole 65 and the inner passage 72.
  • the gas injection holes 75 may be spaced apart from the inner flow passage 72 and may be inclined toward the center (or center) of the substrate W. As illustrated in FIG. The source gas is injected through the gas injection holes 75, and the injected source gas may move toward the center of the substrate W.
  • the injected source gas (or plasma generated through the electric field) is the surface of the substrate (W) As the phase flows from the center to the edge, the plasma may react evenly with the surface of the substrate W to deposit a uniform thin film on the surface of the substrate W.
  • the gas injection holes 75 may be deformed according to a distance spaced from the gas supply hole 65 (or one end of the connection channel 74 connected to the inner channel 72). . That is, since the pressure of the source gas along the inner passage 72 increases as it approaches the gas supply hole 65 and decreases as it moves away from the gas supply hole 65, the distribution density of the gas injection holes 75 is reduced. The distance from the gas 65 may increase, and the diameter of the gas injection holes 75 may increase from the gas supply hole 65. Since the pressure of the source gas decreases as the position of the gas injection port 75 moves away from the gas supply hole 65, the amount of source gas supplied to the internal space can be uniformly adjusted through a difference in distribution density or diameter.
  • the gas injection holes 75 may be formed on the partition wall 77 (or the inner circumferential surface) positioned between the opening 71 and the inner flow path 72. Therefore, the source gas is injected toward the opening 71, and after plasma is generated by the upper antenna 80 on the opening 71, the plasma is respectively directed from the opening 71 toward the center portion and the edge portion of the substrate W. Move. Therefore, the plasma may react evenly with the surface of the substrate W to deposit a uniform thin film on the surface of the substrate W.
  • the distribution density of the gas injection holes 75 may increase as the distance from the gas supply holes 65, the diameter of the gas injection holes 75 to be far from the gas supply holes 65 Can increase.
  • FIG. 6 is a cross-sectional view showing a second modification of the block plate and the source gas of FIG. 1.
  • the flow passage further has a circular outer flow passage 78 located outside the inner flow passage 72, and the gas supply hole 65 is formed on the outer flow passage 78.
  • the connection flow path 74 has a linear shape connecting the inner flow path 72 and the outer flow path 78 and is disposed radially about the opening 71.
  • the gas injection holes 75 are spaced apart from the inner flow passage 72 and the outer flow passage 78, and the gas injection holes 75 formed on the inner flow passage 72 may form a central portion (or center) of the substrate W. It may be inclined toward.
  • the source gas moves toward the central portion of the substrate W through the gas injection holes 75 formed on the inner channel 72, and the source gas may flow from the center portion toward the edge on the surface of the substrate W. In addition, it may move toward the edge portion of the substrate W through the gas injection holes 75 formed on the outer passage 75.
  • the width of the inner channel 72 may be larger than the width of the outer channel 78, and the amount of source gas supplied through the gas injection holes 75 formed on the inner channel 72 is greater than the width of the outer channel 72. It may be greater than the amount of source gas supplied through the gas injection holes 75 formed on the. Through this, the amount of source gas supplied to the central portion of the substrate W can be compensated.
  • connection flow path 74 may be larger on the side farther from the gas supply hole 65 than the side closer to the gas supply hole 65.
  • the distribution density of the gas injection holes 75 may increase with distance from the gas supply hole 65, and the diameter of the gas injection holes 75 may increase with distance from the gas supply hole 65.
  • FIG. 7 is a cross-sectional view showing a third modification of the block plate and the flow of the source gas shown in FIG. 1.
  • the gas injection holes 75 formed on the inner channel 72 may be formed on the partition wall 77 (or the inner circumferential surface) positioned between the opening 71 and the inner channel 72. have.
  • the flow path further has auxiliary connection flow paths 79, and the auxiliary connection flow paths 79 are located on the outer side of the gas supply hole 65 based on the center of the opening 71.
  • One side of 78 is connected to the other side of the outer passage 78 located on the opposite side of the gas supply hole (65).
  • the auxiliary connection passages 79 may be disposed in parallel with each other, and may uniformly adjust the pressure of the source gas in the outer passage 78 through the auxiliary connection passages 79.
  • the connection passages 74 may be arranged in parallel with the auxiliary connection passages 79.
  • FIG. 9 is a cross-sectional view showing a fifth modification of the block plate shown in FIG. 1 and the flow of source gas.
  • the inner flow passage 72 is formed on the opposite side of the gas supply hole 65 with respect to the center of the opening 71 and may have a semicircular shape.
  • the outer channel 78 may be formed to be as close to the inner channel 72 as possible on the outer side of the inner channel 72 and may have a semicircular shape formed on the opposite side of the inner channel 72 with respect to the center of the opening 71. have.
  • connection passage 74 is a straight line connecting the gas supply hole 65 and the outer flow passage 78.
  • the auxiliary connection channel 79 connects both ends of the inner channel 72 and both ends of the outer channel 78.
  • the gas injection holes 75 may be spaced apart from the inner flow passage 72 and the outer flow passage 78, and the gas injection holes 75 may be inclined toward the central portion (or the center) of the substrate W.
  • the source gas moves along the outer channel 78 and moves to the inner channel 72 through the auxiliary connecting channel 79.
  • the source gas moves through the gas injection holes 75 toward the center portion of the substrate W, and the source gas may flow from the center portion to the edge on the surface of the substrate W.
  • the distribution density of the gas injection holes 75 may increase as the distance from the gas supply hole 65, the diameter of the gas injection holes 75 may increase as the distance from the gas supply hole (65). .
  • the width of the inner channel 72 may be larger than the width of the outer channel 78.
  • the present invention can be applied to various types of semiconductor manufacturing equipment and manufacturing methods.

Abstract

본 발명의 일 실시예에 의하면, 기판 처리 장치는, 상부가 개방되며, 일측에 기판이 출입하는 통로가 형성되는 챔버; 상기 챔버의 상부를 폐쇄하여 상기 기판에 대한 공정이 이루어지는 내부공간을 제공하며, 천정벽을 관통하도록 형성된 가스공급홀을 가지는 챔버덮개; 상기 챔버덮개의 상부 중앙에 설치되어 상기 내부공간의 중앙부에 전계를 형성하며, 상기 내부공간에 공급된 소스가스로부터 플라즈마를 생성하는 상부안테나; 상기 챔버덮개의 측부를 감싸도록 설치되어 상기 내부공간의 가장자리부에 전계를 형성하며, 상기 내부공간에 공급된 소스가스로부터 플라즈마를 생성하는 측부안테나; 그리고 상기 가스공급홀과 연결되어 상기 내부공간에 상기 소스가스를 공급하는 가스공급관을 포함하며, 상기 가스공급홀은 상기 상부안테나의 외측에 배치된다.

Description

기판 처리 장치
본 발명은 기판 처리 장치에 관한 것으로, 더욱 상세하게는 상부안테나와 측부안테나를 이용하여 균일한 플라즈마 밀도를 형성함으로써 기판을 처리할 수 있는 장치에 관한 것이다.
반도체 장치는 실리콘 기판 상에 많은 층들(layers)을 가지고 있으며, 이와 같은 층들은 증착공정을 통하여 기판 상에 증착된다. 이와 같은 증착공정은 몇가지 중요한 이슈들을 가지고 있으며, 이와 같은 이슈들은 증착된 막들을 평가하고 증착방법을 선택하는 데 있어서 중요하다.
첫번째는 증착된 막의 '질'(qulity)이다. 이는 조성(composition), 오염도(contamination levels), 손실도(defect density), 그리고 기계적·전기적 특성(mechanical and electrical properties)을 의미한다. 막들의 조성은 증착조건에 따라 변할 수 있으며, 이는 특정한 조성(specific composition)을 얻기 위하여 매우 중요하다.
두번째는, 웨이퍼를 가로지르는 균일한 두께(uniform thickness)이다. 특히, 단차(step)가 형성된 비평면(nonplanar) 형상의 패턴 상부에 증착된 막의 두께가 매우 중요하다. 증착된 막의 두께가 균일한지 여부는 단차진 부분에 증착된 최소 두께를 패턴의 상부면에 증착된 두께로 나눈 값으로 정의되는 스텝 커버리지(step coverage)를 통하여 판단할 수 있다.
증착과 관련된 또 다른 이슈는 공간을 채우는 것(filling space)이다. 이는 금속라인들 사이를 산화막을 포함하는 절연막으로 채우는 갭 필링(gap filling)을 포함한다. 갭은 금속라인들을 물리적 및 전기적으로 절연시키기 위하여 제공된다.
이와 같은 이슈들 중 균일도는 증착공정과 관련된 중요한 이슈 중 하나이며, 불균일한 막은 금속배선(metal line) 상에서 높은 전기저항(electrical resistance)을 가져오며, 기계적인 파손의 가능성을 증가시킨다.
본 발명의 목적은 기판의 전면에 대하여 공정균일도를 개선할 수 있는 기판처리장치를 제공하는 데 있다.
본 발명의 다른 목적은 플라즈마 밀도를 개선할 수 있는 기판처리장치를 제공하는 데 있다.
본 발명의 또 다른 목적들은 다음의 상세한 설명과 도면으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 의하면, 기판 처리 장치는, 상부가 개방되며, 일측에 기판이 출입하는 통로가 형성되는 챔버; 상기 챔버의 상부를 폐쇄하여 상기 기판에 대한 공정이 이루어지는 내부공간을 제공하며, 천정벽을 관통하도록 형성된 가스공급홀을 가지는 챔버덮개; 상기 챔버덮개의 상부 중앙에 설치되어 상기 내부공간의 중앙부에 전계를 형성하며, 상기 내부공간에 공급된 소스가스로부터 플라즈마를 생성하는 상부안테나; 상기 챔버덮개의 측부를 감싸도록 설치되어 상기 내부공간의 가장자리부에 전계를 형성하며, 상기 내부공간에 공급된 소스가스로부터 플라즈마를 생성하는 측부안테나; 그리고 상기 가스공급홀과 연결되어 상기 내부공간에 상기 소스가스를 공급하는 가스공급관을 포함하며, 상기 가스공급홀은 상기 상부안테나의 외측에 배치된다.
상기 기판 처리 장치는, 상기 챔버덮개의 천정면에 밀착하여 설치되며, 상기 기판을 향해 소스가스를 확산하는 링 형상의 블록 플레이트를 더 포함하며, 상기 블록 플레이트는, 상기 상부안테나와 대응되도록 중앙에 형성된 개구; 상기 천정면과 대향되는 일면으로부터 함몰된 유로; 그리고 상기 유로와 연통되어 상기 소스가스를 분사하는 복수의 가스분사구들을 가질 수 있다.
상기 유로는, 상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로; 그리고 상기 가스공급홀과 상기 내측유로를 연결하는 연결유로를 가지며, 상기 가스분사구들은 상기 블록 플레이트의 내주면에 형성될 수 있다.
상기 유로는, 상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로; 그리고 상기 가스공급홀과 상기 내측유로를 연결하는 연결유로를 가지며, 상기 가스분사구들은 상기 내측유로 상에 이격형성될 수 있다.
상기 가스분사구들의 분포밀도는 상기 가스공급홀로부터 멀어질수록 증가할 수 있다.
상기 가스분사구들의 직경은 상기 가스공급홀로부터 멀어질수록 증가할 수 있다.
상기 유로는, 상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로; 상기 내측유로의 외측에 형성되는 외측유로; 그리고 상기 내측유로와 상기 외측유로를 연결하는 복수의 연결유로들를 가지며, 상기 가스공급홀은 상기 외측유로 상에 형성되고, 상기 가스분사구들은 상기 내측유로 및 상기 외측유로 상에 각각 형성될 수 있다.
상기 연결유로들의 폭은 상기 가스공급홀로부터 멀어질수록 증가할 수 있다.
상기 가스분사구들은 상기 외측유로에 비해 상기 내측유로 상에 높은 분포밀도를 가질 수 있다.
상기 내측유로 상에 형성된 상기 가스분사구들의 직경이 상기 외측유로 상에 형성된 상기 가스분사구들의 직경보다 클 수 있다.
상기 유로는, 상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로; 상기 내측유로의 외측에 형성되는 외측유로; 그리고 상기 내측유로와 상기 외측유로를 연결하는 복수의 연결유로들를 가지며, 상기 가스공급홀은 상기 외측유로 상에 형성되고, 상기 가스분사구들은 상기 상기 블록 플레이트의 내주면 및 상기 외측유로 상에 각각 형성될 수 있다.
상기 유로는, 상기 개구의 중심을 기준으로, 상기 가스공급홀의 반대측에 위치한 상기 외측유로의 일측과 상기 가스공급홀에 근접한 상기 외측유로의 타측을 연결하며, 서로 나란하게 배치된 복수의 보조연결유로들을 더 가지며, 상기 연결유로들은 상기 보조연결유로들과 나란할 수 있다.
상기 유로는, 상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성되며, 상기 개구의 중심을 기준으로 상기 가스공급홀의 반대측에 형성되는 반원 형상의 내측유로; 상기 내측유로의 외측에 형성되며, 상기 개구의 중심을 기준으로 상기 내측유로의 반대편에 형성되는 반원 형상의 외측유로; 일단부가 상기 가스공급홀과 연결되고, 타단부가 상기 외측유로의 중앙부와 연결되는 연결유로; 그리고 상기 내측유로의 양단부와 상기 외측유로의 양단부를 연결하는 보조연결유로를 가지며, 상기 가스분사구들은 상기 내측유로 및 상기 외측유로 상에 이격형성될 수 있다.
본 발명의 일 실시예에 의하면 기판의 전면에 대한 공정균일도를 개선할 수 있다. 또한, 상부안테나 및 측부안테나를 이용하여 내부공간에 형성되는 플라즈마 밀도를 개선할 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 2는 도 1에 도시한 내부공간을 나타내는 도면이다.
도 3은 도 1에 도시한 블록 플레이트의 실시예 및 소스가스의 흐름을 나타내는 단면도이다.
도 4는 도 1에 도시한 내부공간에 형성된 소스가스 및 플라즈마의 유동을 나타내는 도면이다.
도 5는 도 1에 도시한 블록 플레이트의 제1 변형예 및 소스가스의 흐름을 나타내는 단면도이다.
도 6은 도 1에 도시한 블록 플레이트의 제2 변형예 및 소스가스의 흐름을 나타내는 단면도이다.
도 7은 도 1에 도시한 블록 플레이트의 제3 변형예 및 소스가스의 흐름을 나타내는 단면도이다.
도 8은 도 1에 도시한 블록 플레이트의 제4 변형예 및 소스가스의 흐름을 나타내는 단면도이다.
도 9는 도 1에 도시한 블록 플레이트의 제5 변형예 및 소스가스의 흐름을 나타내는 단면도이다.
도 10은 종래의 기판처리장치를 통해 증착된 박막의 두께 분포를 나타내는 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도 1 내지 도 4를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
한편, 이하에서는 ICP(Inductively Coupled Plasma) 방식의 플라스마 공정을 예로 들어 설명하나, 본 발명은 다양한 플라스마 공정에 응용될 수 있다. 또한, 이하에서는 기판을 예로 들어 설명하나, 본 발명은 다양한 피처리체에 응용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판 처리 장치(1)를 개략적으로 나타내는 도면이며, 도 2는 도 1에 도시한 내부공간을 나타내는 도면이다. 도 1에 도시한 바와 같이, 기판 처리 장치(1)는 메인챔버(10)와 챔버 덮개(14)를 포함한다. 메인챔버(10)는 상부가 개방된 형상이며, 일측에 기판(W)이 출입가능한 통로(7)를 가진다. 게이트밸브(5)는 통로(7)의 외부에 설치되며, 통로(7)는 개이트밸브(5)에 의해 개방되거나 폐쇄될 수 있다.
챔버덮개(14)는 메인챔버(10)의 개방된 상부를 폐쇄하며, 외부로부터 차단된 내부공간을 형성한다. 기판(W)은 통로(7)를 통해 내부공간 내에 로딩되며, 기판(W)에 대한 공정은 내부공간 내에서 이루어진다.
서셉터커버(20)는 서셉터(30)의 상부 및 측부를 감싸도록 설치되며, 공정진행시, 기판(W)은 서셉터커버(20)의 상부에 놓여진다. 서셉터커버(20)의 단면은 'ㄷ'자 형상이며, 측부 하단은 서셉터(30)의 하부를 향해 연장된다. 서셉터(30)는 기판(W)의 형상(예를 들면, 원형)과 대응된다. 지지축(42)은 서셉터(30)의 하부에 연결되며, 지지축(42)은 메인챔버(10)의 하부에 형성된 관통공(8)을 관통하도록 설치된다. 또한, 고정링(45)은 지지축(42)의 하단부에 연결되며, 구동부(40)는 고정링(45)에 연결되어 고정링(45) 및 지지축(42)을 승강한다. 서셉터(30)는 지지축(42)과 함께 승강한다.
벨로우즈(45)의 상단은 메인챔버(10)의 하부면에 연결되며, 벨로우즈(45)의 하단은 고정링(45)에 연결된다. 지지축(42)은 벨로우즈(45)의 내부를 통해 고정링(45)에 연결된다. 벨로우즈(bellows)(45)는 내부공간의 내부에 공급된 소스가스가 관통공(8)을 통해 외부로 누출되는 것을 방지할 뿐만 아니라, 내부공간에 형성된 진공분위기가 훼손되는 것을 방지한다.
도 1 및 도 2에 도시한 바와 같이, 리프트핀들(55)은 서셉터(30)의 상부에 로딩된 기판(W)을 지지한다. 리프트핀들(55)은 서셉터(30) 및 서셉터커버(20)를 관통하는 가이드홀(도시안함) 상에 설치되며, 서셉터(30)가 승강함에 따라 가이드홀을 따라 이동한다.
도 1에 도시한 바와 같이, 서셉터(30)가 하강한 상태에서 리프트핀들(55)의 하단은 메인챔버(10)의 바닥면에 설치된 지지판(56)에 의해 지지되며, 리프트핀들(55)의 상단은 서셉터커버(20)의 상부면으로부터 돌출된다. 이때, 리프트핀들(55)은 로딩된 기판(W)을 지지한다. 도 2에 도시한 바와 같이, 서셉터(30)가 상승한 상태에서 리프트핀들(55)의 하단은 지지판(56)으로부터 이격되며, 리프트핀들(55)의 상단은 서셉터커버(20)의 상부면과 대체로 일치한다. 이때, 기판(W)은 서셉터커버(20)의 상부면에 놓이며, 기판(W)에 대한 공정은 서셉터(30)가 상승한 상태에서 이루어진다.
상부안테나(80)는 챔버덮개(14)의 상부 중앙부에 설치되며, 측부안테나(85)는 챔버덮개(14)의 측부를 감싸도록 설치된다. 상부안테나(80)는 대체로 동일한 높이에 위치하는 나선 형상일 수 있으며, 측부안테나(85)는 챔버덮개(14)의 높이방향을 따라 배치된 나선 형상일 수 있다. 가스공급홀(65)은 챔버덮개(14)의 천정벽을 관통하여 형성되며, 상부안테나(80)의 외측에 배치되어 상부안테나(80)와 간섭이 발생하는 것을 방지한다. 가스공급관(62)은 가스공급홀(65)에 연결되며, 소스가스가 저장된 가스저장탱크(60)는 가스공급관(62)을 통해 가스공급홀(65)에 연결된다. 소스가스는 가스공급홀(65)을 통해 내부공간에 공급된다. 상부안테나(80) 및 측부안테나(85)는 내부공간에 전계를 형성하며, 소스가스로부터 플라즈마를 생성한다.
도 10은 종래의 기판처리장치를 통해 증착된 박막의 두께 분포를 나타내는 도면이다. 최근 기판(W)의 사이즈가 300mm(12인치)에서 450mm(18인치)로 대형화됨에 따라, 메인챔버(10) 및 챔버덮개(14)의 사이즈가 증가하는 추세다. 이로 인해, 내부공간 내에 균일한 전계를 형성하는 데 어려움이 있으며, 플라즈마의 밀도 역시 불균일하게 분포된다. 즉, 내부공간의 중앙부와 가장자리부를 가로질러 전계가 불균일하게 형성된다. 따라서, 도 10에 도시한 바와 같이, 플라즈마를 이용하여 기판(W) 상에 증착된 박막 또한 불균일하게 형성되며, 기판(W)의 중앙부와 가장자리부에 증착된 박막의 두께가 달라진다.
상부안테나(80)를 통해 형성된 전계는 내부공간의 중앙부(B)에 집중되며, 측부안테나(85)를 통해 형성된 전계는 내부공간의 가장자리부(A)에 집중된다. 이를 통해, 내부공간 내에 균일한 전계를 형성할 수 있다. 상부안테나(80) 및 측부안테나(85)의 형상은 중앙부(B) 및 가장자리부(A)에 형성되는 전계에 따라 각각 변형될 수 있다.
상부안테나(80) 및 측부안테나(85)는 정합기(95)를 통해 고주파 전원(RF generator)에 연결되며, 상부안테나 및 측부안테나(85)는 고주파 전류를 이용하여 전계를 형성한다. 상부안테나(80) 및 측부안테나(85)에 공급되는 고주파 전류는 요구되는 전계의 크기에 따라 변경될 수 있으며, 서로 다른 고주파 전류가 공급될 수 있다. 하우징(17)은 메인챔버(10)의 상부에 설치되며, 정합기(95)는 하우징(17)의 상부에 설치될 수 있다.
한편, 도 1에 도시한 바와 같이, 보조바(27)는 하단이 메인챔버(10)의 바닥면에 고정된 상태에서 기립된 상태로 설치되며, 메인챔버(10)의 측벽으로부터 이격된다. 도 2에 도시한 바와 같이, 서셉터(30)의 상승시, 서셉터커버(20)는 보조바(27)의 상단보다 낮게 위치하며, 공정진행시 서셉터커버(20)의 측부와 보조바(27)를 통해 서셉터(30)의 하부는 내부공간과 격리될 수 있다. 따라서, 후술하는 플라즈마 및 반응부산물 등이 서셉터(30)의 하부를 통해 관통공(8)으로 이동하는 것을 방지할 수 있다.
보조바(27)는 중간 높이에 단차를 가지며, 배플(51)은 메인챔버(10)의 측벽에 형성된 단차 및 보조바(27)의 단차에 설치된다. 배플(51)은 대체로 수평한 상태로 설치되며, 배플(51)은 복수의 배기홀들(52)을 가진다. 메인챔버(10)는 배기포트(53)를 가지며, 배기포트(53)는 통로(7)의 반대편 측벽에 형성된다. 배기라인(54)은 배기포트(53)에 연결되며, 배기펌프(55)는 배기라인(54) 상에 설치된다. 내부공간 내에서 생성된 플라즈마 및 반응부산물 등은 배기포트(53) 및 배기라인(54)을 통해 외부로 배출되며, 배기펌프(55)는 이들을 강제배출한다. 플라즈마 및 반응부산물 등은 배플(51)의 배기홀들(52)을 통해 배기포트(53)로 유입된다.
도 3은 도 1에 도시한 블록 플레이트의 실시예 및 소스가스의 흐름을 나타내는 단면도이며, 도 4는 도 1에 도시한 내부공간에 형성된 소스가스 및 플라즈마의 유동을 나타내는 도면이다. 앞서 설명한 바와 같이, 소스가스는 가스공급홀(65)을 통해 메인챔버(10)의 내부공간에 공급되며, 상부안테나(80) 및 측부안테나(85)는 내부공간의 중앙부 및 가장자리부에 각각 전계를 형성하여 소스가스로부터 플라즈마를 생성한다. 도 4에 도시한 바와 같이, 생성된 플라즈마는 기판(W)의 표면과 반응하여 기판(W) 상에 박막을 증착하며, 플라즈마 및 반응부산물 등은 배플(51)을 통해 배기포트(53)로 이동하여 외부로 배출된다.
이때, 배출공간(50)이 메인챔버(10)의 하부면으로부터 함몰형성되며, 메인챔버(10)의 하부 가장자리를 따라 원형으로 형성된다. 배출공간(50)은 메인챔버(10)의 측벽과 배플(51) 및 보조바(27)에 의해 형성되므로, 외부로부터 일부 차단되어 플라즈마 및 반응부산물 등은 배플(51)을 통해 배출공간(50)으로 이동하며, 배출공간(50)을 따라 배기포트(53)로 이동한다. 따라서, 도 4에 도시한 바와 같이, 기판(W)의 표면 상에서 유동방향은 기판(W)의 중심부로부터 가장자리를 향해 방사상으로 형성된다.
블록 플레이트(70)는 챔버덮개(14)의 천정면에 밀착하여 설치되며, 가스공급홀(65)을 통해 배출된 소스가스를 기판(W)의 표면을 향해 확산한다. 블록 플레이트(70)는 복수의 가스분사홀들(75)을 가지며, 소스가스는 가스분사홀들(75)을 통해 확산된다. 도 3에 도시한 바와 같이, 블록 플레이트(70)는 중앙부에 개구(71)가 형성된 링 형상이며, 개구(71)는 내부공간의 중앙부(B)의 직경(또는 상부안테나(80)의 직경)과 대체로 동일한 직경을 가질 수 있다.
또한, 도 2 및 도 3에 도시한 바와 같이, 블록 플레이트(70)는 챔버덮개(14)의 천정면과 대응되는 일면으로부터 함몰된 유로를 가지며, 유로는 내측유로(72) 및 연결유로(74)를 가진다. 내측유로(72)는 개구(71)의 둘레를 따라 형성된 원형 형상이며, 내측유로(72)는 개구(71)에 최대한 인접하도록 형성되어 소스가스가 기판(W)의 중앙부를 향해 분사될 수 있도록 한다. 연결유로(74)는 가스공급홀(65)과 내측유로(72)를 연결하는 직선 형상이다.
블록 플레이트(70)는 챔버덮개(14)의 천정면에 밀착하여 설치되므로, 유로는 외부로부터 차단되며, 가스공급홀(65)을 통해 공급된 소스가스는 유로를 따라 흐른다. 가스분사구들(75)은 내측유로(72) 상에 이격형성되며, 기판(W)의 중앙부(또는 중심)를 향해 경사진 형상일 수 있다. 소스가스는 가스분사구들(75)을 통해 분사되며, 분사된 소스가스는 기판(W)의 중앙부를 향해 이동할 수 있다. 앞서 설명한 바와 같이, 기판(W)의 표면 상에서 유동방향은 기판(W)의 중심부로부터 가장자리를 향해 방사상으로 형성되므로, 분사된 소스가스(또는 전계를 통해 생성된 플라즈마)는 기판(W)의 표면 상에서 중심부로부터 가장자리를 향해 흐르며, 플라즈마는 기판(W)의 표면과 고르게 반응하여 기판(W)의 표면 상에 균일한 박막을 증착할 수 있다.
한편, 도 3에 도시한 바와 달리, 가스분사구들(75)은 가스공급홀(65)(또는 내측유로(72)와 연결된 연결유로(74)의 일단)로부터 이격된 거리에 따라 변형될 수 있다. 즉, 내측유로(72)를 따라 소스가스의 압력은 가스공급홀(65)에 근접할수록 높아지고 가스공급홀(65)로부터 멀어질수록 낮아지므로, 가스분사구들(75)의 분포밀도는 가스공급홀(65)로부터 멀어질수록 증가할 수 있으며, 가스분사구들(75)의 직경은 가스공급홀(65)로부터 멀어질수록 증가할 수 있다. 가스분사구(75)의 위치가 가스공급홀(65)로부터 멀어질수록 소스가스의 압력이 감소하므로, 분포밀도 또는 직경의 차이를 통해 내부공간에 공급되는 소스가스의 양을 균일하게 조절할 수 있다.
본 발명을 바람직한 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 바람직한 실시예들에 한정되지 않는다.
이하, 본 발명의 실시예를 첨부된 도 5 내지 도 9를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
도 5는 도 1에 도시한 블록 플레이트의 제1 변형예 및 소스가스의 흐름을 나타내는 단면도이다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하며, 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다. 도 5에 도시한 바와 같이, 가스분사구들(75)은 개구(71)와 내측유로(72) 사이에 위치하는 격벽(77)(또는 내주면) 상에 형성될 수 있다. 따라서, 소스가스는 개구(71)를 향해 분사되며, 개구(71) 상에서 상부안테나(80)에 의해 플라즈마가 생성된 후, 플라즈마는 개구(71)로부터 기판(W)의 중앙부 및 가장자리부를 향해 각각 이동한다. 따라서, 플라즈마는 기판(W)의 표면과 고르게 반응하여 기판(W)의 표면 상에 균일한 박막을 증착할 수 있다. 한편, 앞서 설명한 바와 같이, 가스분사구들(75)의 분포밀도는 가스공급홀(65)로부터 멀어질수록 증가할 수 있으며, 가스분사구들(75)의 직경은 가스공급홀(65)로부터 멀어질수록 증가할 수 있다.
도 6은 도 1에 도시한 블록 플레이트의 제2 변형예 및 소스가스의 흐름을 나타내는 단면도이다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하며, 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다. 도 6에 도시한 바와 같이, 유로는 내측유로(72)의 외측에 위치하는 원형 형상의 외측유로(78)를 더 가지며, 가스공급홀(65)은 외측유로(78) 상에 형성된다. 연결유로(74)는 내측유로(72)와 외측유로(78)를 연결하는 직선 형상이며, 개구(71)를 중심으로 방사상으로 배치된다.
가스분사구들(75)은 내측유로(72) 및 외측유로(78) 상에 이격형성되며, 내측유로(72) 상에 형성된 가스분사구들(75)은 기판(W)의 중앙부(또는 중심)를 향해 경사진 형상일 수 있다. 소스가스는 내측유로(72) 상에 형성된 가스분사구들(75)을 통해 기판(W)의 중앙부를 향해 이동하며, 소스가스는 기판(W)의 표면 상에서 중심부로부터 가장자리를 향해 흐를 수 있다. 또한, 외측유로(75) 상에 형성된 가스분사구들(75)을 통해 기판(W)의 가장자리부를 향해 이동할 수 있다.
한편, 내측유로(72)의 폭은 외측유로(78)의 폭보다 클 수 있으며, 내측유로(72) 상에 형성된 가스분사구들(75)을 통해 공급되는 소스가스의 양이 외측유로(72) 상에 형성된 가스분사구들(75)을 통해 공급되는 소스가스의 양보다 많을 수 있다. 이를 통해, 기판(W)의 중앙부에 공급되는 소스가스의 양을 보상할 수 있다.
또한, 연결유로(74)의 폭은 가스공급홀(65)에 가까운 쪽보다 가스공급홀(65)에 먼 쪽이 더 클 수 있다. 가스분사구들(75)의 분포밀도는 가스공급홀(65)로부터 멀어질수록 증가할 수 있으며, 가스분사구들(75)의 직경은 가스공급홀(65)로부터 멀어질수록 증가할 수 있다.
도 7은 도 1에 도시한 블록 플레이트의 제3 변형예 및 소스가스의 흐름을 나타내는 단면도이다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하며, 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다. 도 6에 도시한 바와 달리, 내측유로(72) 상에 형성된 가스분사구들(75)은 개구(71)와 내측유로(72) 사이에 위치하는 격벽(77)(또는 내주면) 상에 형성될 수 있다.
도 8은 도 1에 도시한 블록 플레이트의 제4 변형예 및 소스가스의 흐름을 나타내는 단면도이다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하며, 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다. 도 6에 도시한 바와 달리, 유로는 보조연결유로들(79)을 더 가지며, 보조연결유로들(79)은 개구(71)의 중심을 기준으로, 가스공급홀(65)에 근접한 외측유로(78)의 일측과 가스공급홀(65)의 반대측에 위치한 외측유로(78)의 타측을 연결한다. 보조연결유로들(79)은 서로 나란하게 배치되며, 보조연결유로들(79)을 통해 외측유로(78) 내에서 소스가스의 압력을 균일하게 조절할 수 있다. 연결유로들(74)은 보조연결유로들(79)과 나란하게 배치될 수 있다.
도 9는 도 1에 도시한 블록 플레이트의 제5 변형예 및 소스가스의 흐름을 나타내는 단면도이다. 이하에서는 앞서 설명한 실시예와 구별되는 내용에 대해서만 설명하며, 생략된 설명은 앞서 설명한 내용으로 대체될 수 있다. 도 9에 도시한 바와 같이, 내측유로(72)는 개구(71)의 중심을 기준으로 가스공급홀(65)의 반대측에 형성되며, 반원형상일 수 있다. 또한, 외측유로(78)는 내측유로(72)의 외측에 최대한 내측유로(72)에 근접하도록 형성되며, 개구(71)의 중심을 기준으로 내측유로(72)의 반대편에 형성된 반원 형상일 수 있다. 연결유로(74)는 가스공급홀(65)과 외측유로(78)를 연결하는 직선 형상이다. 보조연결유로(79)는 내측유로(72)의 양단부 및 외측유로(78)의 양단부를 연결한다. 가스분사구들(75)은 내측유로(72) 및 외측유로(78) 상에 이격형성되며, 가스분사구들(75)은 기판(W)의 중앙부(또는 중심)를 향해 경사진 형상일 수 있다. 소스가스는 외측유로(78)를 따라 이동하며, 보조연결유로(79)를 통해 내측유로(72)로 이동한다. 소스가스는 가스분사구들(75)을 통해 기판(W)의 중앙부를 향해 이동하며, 소스가스는 기판(W)의 표면 상에서 중심부로부터 가장자리를 향해 흐를 수 있다.
한편, 가스분사구들(75)의 분포밀도는 가스공급홀(65)로부터 멀어질수록 증가할 수 있으며, 가스분사구들(75)의 직경은 가스공급홀(65)로부터 멀어질수록 증가할 수 있다. 또한, 내측유로(72)의 폭이 외측유로(78)의 폭보다 클 수 있다.
본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.
본 발명은 다양한 형태의 반도체 제조설비 및 제조방법에 응용될 수 있다.

Claims (13)

  1. 상부가 개방되며, 일측에 기판이 출입하는 통로가 형성되는 챔버;
    상기 챔버의 상부를 폐쇄하여 상기 기판에 대한 공정이 이루어지는 내부공간을 제공하며, 천정벽을 관통하도록 형성된 가스공급홀을 가지는 챔버덮개;
    상기 챔버덮개의 상부 중앙에 설치되어 상기 내부공간의 중앙부에 전계를 형성하며, 상기 내부공간에 공급된 소스가스로부터 플라즈마를 생성하는 상부안테나;
    상기 챔버덮개의 측부를 감싸도록 설치되어 상기 내부공간의 가장자리부에 전계를 형성하며, 상기 내부공간에 공급된 소스가스로부터 플라즈마를 생성하는 측부안테나; 및
    상기 가스공급홀과 연결되어 상기 내부공간에 상기 소스가스를 공급하는 가스공급관을 포함하며,
    상기 가스공급홀은 상기 상부안테나의 외측에 배치되는 것을 특징으로 하는 기판 처리 장치.
  2. 제1항에 있어서,
    상기 기판 처리 장치는,
    상기 챔버덮개의 천정면에 밀착하여 설치되며, 상기 기판을 향해 소스가스를 확산하는 링 형상의 블록 플레이트를 더 포함하며,
    상기 블록 플레이트는,
    상기 상부안테나와 대응되도록 중앙에 형성된 개구;
    상기 천정면과 대향되는 일면으로부터 함몰된 유로; 및
    상기 유로와 연통되어 상기 소스가스를 분사하는 복수의 가스분사구들을 가지는 것을 특징으로 하는 기판 처리 장치.
  3. 제2항에 있어서,
    상기 유로는,
    상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로; 및
    상기 가스공급홀과 상기 내측유로를 연결하는 연결유로를 가지며,
    상기 가스분사구들은 상기 블록 플레이트의 내주면에 형성되는 것을 특징으로 하는 기판 처리 장치.
  4. 제2항에 있어서,
    상기 유로는,
    상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로; 및
    상기 가스공급홀과 상기 내측유로를 연결하는 연결유로를 가지며,
    상기 가스분사구들은 상기 내측유로 상에 이격형성되는 것을 특징으로 하는 기판 처리 장치.
  5. 제3항 또는 제4항에 있어서,
    상기 가스분사구들의 분포밀도는 상기 가스공급홀로부터 멀어질수록 증가하는 것을 특징으로 하는 기판 처리 장치.
  6. 제3항 또는 제4항에 있어서,
    상기 가스분사구들의 직경은 상기 가스공급홀로부터 멀어질수록 증가하는 것을 특징으로 하는 기판 처리 장치.
  7. 제2항에 있어서,
    상기 유로는,
    상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로;
    상기 내측유로의 외측에 형성되는 외측유로; 및
    상기 내측유로와 상기 외측유로를 연결하는 복수의 연결유로들를 가지며,
    상기 가스공급홀은 상기 외측유로 상에 형성되고, 상기 가스분사구들은 상기 내측유로 및 상기 외측유로 상에 각각 형성되는 것을 특징으로 하는 기판 처리 장치.
  8. 제7항에 있어서,
    상기 연결유로들의 폭은 상기 가스공급홀로부터 멀어질수록 증가하는 것을 특징으로 하는 기판 처리 장치.
  9. 제7항에 있어서,
    상기 가스분사구들은 상기 외측유로에 비해 상기 내측유로 상에 높은 분포밀도를 가지는 것을 특징으로 하는 기판 처리 장치.
  10. 제7항에 있어서,
    상기 내측유로 상에 형성된 상기 가스분사구들의 직경이 상기 외측유로 상에 형성된 상기 가스분사구들의 직경보다 큰 것을 특징으로 하는 기판 처리 장치.
  11. 제2항에 있어서,
    상기 유로는,
    상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성된 내측유로;
    상기 내측유로의 외측에 형성되는 외측유로; 및
    상기 내측유로와 상기 외측유로를 연결하는 복수의 연결유로들를 가지며,
    상기 가스공급홀은 상기 외측유로 상에 형성되고,
    상기 가스분사구들은 상기 상기 블록 플레이트의 내주면 및 상기 외측유로 상에 각각 형성되는 것을 특징으로 하는 기판 처리 장치.
  12. 제7항 또는 제11항 중 어느 한 항에 있어서,
    상기 유로는,
    상기 개구의 중심을 기준으로, 상기 가스공급홀의 반대측에 위치한 상기 외측유로의 일측과 상기 가스공급홀에 근접한 상기 외측유로의 타측을 연결하며, 서로 나란하게 배치된 복수의 보조연결유로들을 더 가지며,
    상기 연결유로들은 상기 보조연결유로들과 나란한 것을 특징으로 하는 기판 처리 장치.
  13. 제2항에 있어서,
    상기 유로는,
    상기 기판의 중앙부와 대응되도록 상기 개구의 둘레를 따라 형성되며, 상기 개구의 중심을 기준으로 상기 가스공급홀의 반대측에 형성되는 반원 형상의 내측유로;
    상기 내측유로의 외측에 형성되며, 상기 개구의 중심을 기준으로 상기 내측유로의 반대편에 형성되는 반원 형상의 외측유로;
    일단부가 상기 가스공급홀과 연결되고, 타단부가 상기 외측유로의 중앙부와 연결되는 연결유로; 및
    상기 내측유로의 양단부와 상기 외측유로의 양단부를 연결하는 보조연결유로를 가지며,
    상기 가스분사구들은 상기 내측유로 및 상기 외측유로 상에 이격형성되는 것을 특징으로 하는 기판 처리 장치.
PCT/KR2013/005263 2012-06-20 2013-06-14 기판 처리 장치 WO2013191415A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/400,816 US20150122177A1 (en) 2012-06-20 2013-06-14 Apparatus for processing substrate
CN201380032575.5A CN104412364B (zh) 2012-06-20 2013-06-14 基板处理装置
JP2015513955A JP5952961B2 (ja) 2012-06-20 2013-06-14 基板処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120066080A KR101383291B1 (ko) 2012-06-20 2012-06-20 기판 처리 장치
KR10-2012-0066080 2012-06-20

Publications (1)

Publication Number Publication Date
WO2013191415A1 true WO2013191415A1 (ko) 2013-12-27

Family

ID=49768970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005263 WO2013191415A1 (ko) 2012-06-20 2013-06-14 기판 처리 장치

Country Status (6)

Country Link
US (1) US20150122177A1 (ko)
JP (1) JP5952961B2 (ko)
KR (1) KR101383291B1 (ko)
CN (1) CN104412364B (ko)
TW (1) TWI504777B (ko)
WO (1) WO2013191415A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698433B1 (ko) * 2015-04-30 2017-01-20 주식회사 에이씨엔 기상식각 및 세정을 위한 플라즈마 장치
KR102462931B1 (ko) 2015-10-30 2022-11-04 삼성전자주식회사 가스 공급 유닛 및 기판 처리 장치
US10832936B2 (en) * 2016-07-27 2020-11-10 Lam Research Corporation Substrate support with increasing areal density and corresponding method of fabricating
JP2019109980A (ja) * 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
KR102139615B1 (ko) * 2018-07-10 2020-08-12 세메스 주식회사 기판 처리 장치
KR102253808B1 (ko) * 2019-01-18 2021-05-20 주식회사 유진테크 기판 처리 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020018154A (ko) * 2000-08-30 2002-03-07 조셉 제이. 스위니 막 형성 방법 및 막 형성 장치
KR20100060087A (ko) * 2008-11-27 2010-06-07 세메스 주식회사 세라믹 돔 구조체 및 이를 이용하는 플라즈마 처리 장치
KR20110079509A (ko) * 2009-12-31 2011-07-07 엘아이지에이디피 주식회사 기판 처리 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948458A (en) * 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
JPH06349761A (ja) * 1993-06-03 1994-12-22 Kokusai Electric Co Ltd 半導体製造装置用ガス供給ノズル及び半導体製造装置
JPH11135296A (ja) * 1997-07-14 1999-05-21 Applied Materials Inc マルチモードアクセスを有する真空処理チャンバ
US5982100A (en) * 1997-07-28 1999-11-09 Pars, Inc. Inductively coupled plasma reactor
KR20010062209A (ko) * 1999-12-10 2001-07-07 히가시 데쓰로 고내식성 막이 내부에 형성된 챔버를 구비하는 처리 장치
JP3492289B2 (ja) * 2000-06-22 2004-02-03 三菱重工業株式会社 プラズマcvd装置
JP4502639B2 (ja) * 2003-06-19 2010-07-14 財団法人国際科学振興財団 シャワープレート、プラズマ処理装置、及び、製品の製造方法
JP2006210727A (ja) * 2005-01-28 2006-08-10 Hitachi High-Technologies Corp プラズマエッチング装置およびプラズマエッチング方法
US7651587B2 (en) * 2005-08-11 2010-01-26 Applied Materials, Inc. Two-piece dome with separate RF coils for inductively coupled plasma reactors
US7674394B2 (en) * 2007-02-26 2010-03-09 Applied Materials, Inc. Plasma process for inductively coupling power through a gas distribution plate while adjusting plasma distribution
TW200847207A (en) * 2007-05-18 2008-12-01 Giga Byte Comm Inc Electroluminescence keypad set
JP4982320B2 (ja) * 2007-09-27 2012-07-25 大日本スクリーン製造株式会社 基板処理装置
KR101003382B1 (ko) * 2008-02-13 2010-12-22 주식회사 유진테크 플라즈마 처리장치 및 방법
KR101108879B1 (ko) * 2009-08-31 2012-01-30 주식회사 원익아이피에스 가스분사장치 및 이를 이용한 기판처리장치
CN102115879B (zh) * 2009-12-31 2013-06-26 丽佳达普株式会社 基板处理装置
US9336996B2 (en) * 2011-02-24 2016-05-10 Lam Research Corporation Plasma processing systems including side coils and methods related to the plasma processing systems
JP5800547B2 (ja) * 2011-03-29 2015-10-28 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US9095038B2 (en) * 2011-10-19 2015-07-28 Advanced Micro-Fabrication Equipment, Inc. Asia ICP source design for plasma uniformity and efficiency enhancement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020018154A (ko) * 2000-08-30 2002-03-07 조셉 제이. 스위니 막 형성 방법 및 막 형성 장치
KR20100060087A (ko) * 2008-11-27 2010-06-07 세메스 주식회사 세라믹 돔 구조체 및 이를 이용하는 플라즈마 처리 장치
KR20110079509A (ko) * 2009-12-31 2011-07-07 엘아이지에이디피 주식회사 기판 처리 장치

Also Published As

Publication number Publication date
KR101383291B1 (ko) 2014-04-10
JP2015523717A (ja) 2015-08-13
US20150122177A1 (en) 2015-05-07
TW201400640A (zh) 2014-01-01
CN104412364B (zh) 2017-03-29
JP5952961B2 (ja) 2016-07-13
TWI504777B (zh) 2015-10-21
KR20130142673A (ko) 2013-12-30
CN104412364A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2013191415A1 (ko) 기판 처리 장치
WO2011004987A2 (ko) 확산판을 선택적으로 삽입설치하는 기판처리장치 및 기판처리방법
KR102024584B1 (ko) 대칭적인 플라즈마 프로세스 챔버
WO2015057023A1 (ko) 기판 처리장치
WO2009104918A2 (en) Apparatus and method for processing substrate
WO2010101369A2 (ko) 가스 분배 장치 및 이를 구비하는 기판 처리 장치
WO2015102256A1 (ko) 기판처리장치 및 기판처리방법
KR100992392B1 (ko) 플라즈마 반응장치
WO2011129492A1 (ko) 가스 분사 유닛 및 이를 이용한 박막 증착 장치 및 방법
WO2015105284A1 (ko) 기판 처리장치
WO2015005607A1 (ko) 기판 처리장치
KR20090024520A (ko) 배기 유닛 및 이를 이용하는 배기방법, 상기 배기 유닛을포함하는 기판 처리 장치
WO2015083884A1 (ko) 기판 처리 장치
WO2014098486A1 (ko) 기판처리장치 및 히터의 온도조절방법
WO2016167555A1 (ko) 기판처리장치
WO2009104919A2 (en) Apparatus and method for processing substrate
WO2022211220A1 (ko) 기판 처리 장치
WO2013191414A1 (ko) 기판처리장치
WO2009104917A2 (en) Apparatus and method for processing substrate
WO2015083883A1 (ko) 기판 처리 장치
WO2013122311A1 (ko) 기판 처리 모듈 및 이를 포함하는 기판 처리 장치
WO2019066299A1 (ko) 샤워헤드 및 기판처리장치
KR102104301B1 (ko) 배플 및 이를 갖는 기판 처리 장치
WO2023080324A1 (ko) 상부 전극 유닛, 그리고 이를 포함하는 기판 처리 장치
WO2023033259A1 (ko) 기판 처리 장치 및 유전체 판 정렬 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400816

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015513955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806773

Country of ref document: EP

Kind code of ref document: A1