WO2013191263A1 - 多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造 - Google Patents

多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造 Download PDF

Info

Publication number
WO2013191263A1
WO2013191263A1 PCT/JP2013/067006 JP2013067006W WO2013191263A1 WO 2013191263 A1 WO2013191263 A1 WO 2013191263A1 JP 2013067006 W JP2013067006 W JP 2013067006W WO 2013191263 A1 WO2013191263 A1 WO 2013191263A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
heat insulating
porous plate
heat
filler
Prior art date
Application number
PCT/JP2013/067006
Other languages
English (en)
French (fr)
Inventor
崇弘 冨田
重治 橋本
拓 西垣
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP13807307.7A priority Critical patent/EP2865722B1/en
Priority to JP2014521515A priority patent/JP6072787B2/ja
Publication of WO2013191263A1 publication Critical patent/WO2013191263A1/ja
Priority to US14/574,564 priority patent/US20150104626A1/en
Priority to US15/157,534 priority patent/US10385801B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0037Materials containing oriented fillers or elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249974Metal- or silicon-containing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a heat insulating film for improving a heat insulating effect and a heat insulating film structure. Moreover, it is related with the coating composition for forming the porous plate-shaped filler contained in a heat insulation film and a heat insulation film.
  • Patent Document 1 discloses a coating film having a high surface hardness and capable of preventing scratches.
  • the coating film is formed by dispersing hollow particles made of silica shells in a binder.
  • the wear resistance of the hollow particles made of silica shell and the high hardness can improve the wear resistance of the substrate on which the coating film is formed.
  • flame retardance can be improved by the heat insulation of the hollow particle which consists of silica shells.
  • Patent Document 2 discloses an internal combustion engine including a structural member with improved heat insulation performance.
  • a heat insulating material is disposed adjacent to the inner wall of the exhaust passage, and high-temperature working gas (exhaust gas) flows along a flow path formed by the heat insulating material.
  • each particle of MSS (spherical mesoporous silica) particles having an average particle diameter of 0.1 to 3 ⁇ m is laminated in a state where the particles are closely packed via a bonding material.
  • Innumerable mesopores having an average pore diameter of 1 to 10 nm are formed in the MSS particles.
  • Patent Document 1 since hollow particles made of silica shells having an outer diameter of about 30 to 300 nm are dispersed substantially uniformly in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder, the heat insulating property of the coating film is improved. can get. Further, in Patent Document 2, since MSS (spherical mesoporous silica) particles having mesopores having an average particle diameter of 0.1 to 3 ⁇ m and an average pore diameter of 1 to 10 nm are stacked in a dense state, the heat insulating performance is high.
  • MSS spherical mesoporous silica
  • An object of the present invention is to provide a heat insulating film and a heat insulating film structure with improved heat insulating effect. Moreover, it is providing the coating composition for forming the porous plate-shaped filler contained in a heat insulation film and a heat insulation film.
  • the present inventors have used a plate-like filler having an aspect ratio of 3 or more, a minimum length of 0.1 to 50 ⁇ m, and a porosity of 20 to 99% as a heat insulating film. It has been found that the above problems can be solved. That is, according to the present invention, the following porous plate filler, coating composition, heat insulating film, and heat insulating film structure are provided.
  • a porous plate filler having a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 ⁇ m, and a porosity of 20 to 99%.
  • porous plate-like filler according to any one of the above [1] to [3], comprising nano-order pores or nano-order particles or crystal grains.
  • the metal oxide is an oxide of one element selected from the group consisting of Zr, Y, Al, Si, Ti, Nb, Sr, and La, or a composite oxide of two or more elements [6] ]
  • porous plate filler according to any one of the above [1] to [7], comprising particles having a particle diameter of 1 nm to 10 ⁇ m.
  • porous plate filler according to any one of [1] to [8], wherein a coating layer having a thickness of 1 nm to 1 ⁇ m is provided on at least a part of the surface.
  • [11] Selected from the group consisting of the porous plate filler according to any one of [1] to [10] above, an inorganic binder, an inorganic polymer, an organic-inorganic hybrid material, an oxide sol, and water glass One or more coating compositions.
  • a heat insulating film using a porous plate-like filler having a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 ⁇ m, and a porosity of 20 to 99% is a spherical or cubic filler.
  • FIG. 1 shows an embodiment of the porous plate filler 1 of the present invention.
  • the porous plate-like filler 1 of the present invention has a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 ⁇ m, and a porosity of 20 to 99%.
  • the apparent particle density is measured by an immersion method using mercury.
  • the true density is measured by a pycnometer method after sufficiently pulverizing the porous plate filler.
  • the aspect ratio is defined by the maximum length / minimum length of the porous plate-like filler 1.
  • the maximum length is the maximum length when the particles (porous plate filler 1) are sandwiched between a pair of parallel surfaces.
  • the minimum length is the minimum length when the particles are sandwiched between a pair of parallel surfaces, and corresponds to a so-called thickness in the case of a flat plate shape.
  • the plate shape of the porous plate-like filler 1 of the present invention is only a flat plate (a flat and uncurved plate) as long as the aspect ratio is 3 or more and the minimum length is 0.1 to 50 ⁇ m.
  • a curved plate-like one and a plate-like one whose thickness (minimum length) is not constant are also included.
  • the shape may be a fiber shape, a needle shape, a lump shape, or the like.
  • the porous plate-like filler 1 of the present invention is preferably flat.
  • the surface shape of the plate may be any shape such as a square, a square, a triangle, a hexagon, and a circle.
  • the heat insulating effect can be improved by including such a porous plate-like filler 1 in the heat insulating film 3 as described later.
  • the porous plate-like filler 1 is preferably configured to include nano-order pores, or nano-order particles or crystal grains.
  • the nano-order refers to those of 1 nm or more and less than 1000 nm.
  • the porous plate-like filler 1 of the present invention preferably has pores having a pore diameter of 10 to 500 nm.
  • One pore may be included in one filler, or a large number (porous particles) may be included.
  • a hollow particle is a particle in which one closed pore exists inside the particle.
  • the porous particles are particles whose inside is porous, that is, particles containing pores other than the hollow particles.
  • the porous plate-like filler 1 of the present invention includes not only porous particles but also hollow particles. That is, the number of pores contained in the porous plate-like filler 1 may be one or many, and the pores may be closed pores or open pores. When the porous plate-like filler 1 having such pores is included in the heat insulating film 3, the heat insulating effect can be improved by the pores.
  • Examples of the material of the porous plate-like filler 1 include hollow glass beads, hollow ceramic beads, fly ash balloons, and hollow silica.
  • examples include mesoporous silica, mesoporous titania, mesoporous zirconia, and shirasu balloon.
  • the porous plate-shaped filler obtained with the manufacturing method mentioned later is also mentioned.
  • the minimum length of the porous plate filler 1 is 0.1 to 50 ⁇ m, and preferably 10 ⁇ m or less.
  • the heat insulating film 3 can be made thin. That is, even if it is the thin heat insulation film 3, the heat insulation effect can be improved.
  • the porous plate-like filler 1 of the present invention preferably has a thermal conductivity of 1 W / (m ⁇ K) or less.
  • the thermal conductivity is more preferably 0.5 W / (m ⁇ K) or less, and still more preferably 0.3 W / (m ⁇ K) or less.
  • the porous plate-like filler 1 having such a thermal conductivity is included in the heat insulating film 3, the heat insulating effect can be improved.
  • the porous plate-like filler 1 preferably has a heat capacity of 10 to 3000 kJ / (m 3 ⁇ K).
  • the heat capacity is more preferably 10 to 2500 kJ / (m 3 ⁇ K), still more preferably 10 to 2000 kJ / (m 3 ⁇ K).
  • the porous plate-like filler 1 having a heat capacity in such a range is included in the heat insulating film 3, the heat insulating effect can be improved.
  • the porous plate-like filler 1 is preferably configured to include particles having a particle size of 1 nm to 10 ⁇ m.
  • the particle may be a particle (single crystal particle) made of one crystal grain or a particle (polycrystalline particle) made of a large number of crystal grains. That is, the porous plate-like filler 1 is preferably a collection of particles having a particle size in this range.
  • the particle size the size of one particle in the particle group constituting the skeleton of the porous plate-like filler 1 (diameter if spherical, maximum diameter otherwise) was measured from an electron microscope image. Is.
  • the particle diameter is more preferably 1 nm to 5 ⁇ m, and further preferably 1 nm to 1 ⁇ m.
  • the porous plate-like filler 1 preferably contains a metal oxide, and more preferably consists only of a metal oxide. This is because when the metal oxide is included, the thermal conductivity tends to be low because the ionic bond between the metal and oxygen is stronger than the metal non-oxide (for example, carbide or nitride).
  • a metal oxide for example, carbide or nitride
  • the porous plate-like filler 1 is an oxide of one element selected from the group consisting of Zr, Y, Al, Si, Ti, Nb, Sr, and La, or a composite oxide of two or more elements. Preferably there is. This is because when the metal oxide is an oxide or composite oxide of these elements, heat conduction due to lattice vibration (phonon), which is a main cause of heat conduction, is less likely to occur.
  • the porous platy filler 1 of the present invention preferably has a coating layer 7 having a thickness of 1 nm to 1 ⁇ m on at least a part of the surface.
  • the coating layer 7 is preferably a heat resistance film that suppresses heat transfer and / or reflects radiant heat and / or scatters lattice vibrations (phonons). It is preferable to form a thermal resistance film of several tens of nm on the surface of the porous plate filler 1 because the thermal conductivity of the heat insulating film 3 can be further lowered.
  • the heat resistance film is not required to be the same material as the porous plate-like filler to be coated, and it is desirable to coat the porous plate-like filler 1 with a different material (for example, alumina, zinc oxide).
  • a different material for example, alumina, zinc oxide.
  • the heat resistance film is dense or porous, but it is preferably dense.
  • the heat resistance film is formed on a part of the surface of the porous plate filler, an effect of lowering the thermal conductivity can be obtained. However, the entire surface of the porous plate filler 1 is covered with the heat resistance film. If it is broken, the effect of lowering the thermal conductivity can be obtained.
  • porous plate filler 1 of the present invention a method for producing the porous plate filler 1 of the present invention will be described.
  • Examples of the method for producing the porous plate-like filler 1 include press molding, cast molding, extrusion molding, injection molding, tape molding, doctor blade method, and the like. Will be described as an example.
  • a slurry for forming a green sheet is prepared by adding a pore former, a binder, a plasticizer, a solvent and the like to the ceramic powder and mixing them with a ball mill or the like.
  • Ceramic powders include zirconia powder, partially stabilized zirconia powder (eg, yttria partially stabilized zirconia powder), fully stabilized zirconia powder (eg, yttria fully stabilized zirconia powder), alumina powder, silica powder, titania powder, oxidation Lanthanum powder, yttria powder, rare earth zirconate powder (eg lanthanum zirconate powder), rare earth silicate powder (eg yttrium silicate powder), niobate powder (eg strontium niobate powder), mullite powder, spinel Powder, zircon particles, magnesia powder, yttria powder, ceria powder, silicon carbide powder, silicon nitride powder, aluminum nitride powder, and the like can be used.
  • partially stabilized zirconia powder eg, yttria partially stabilized zirconia powder
  • fully stabilized zirconia powder eg, yt
  • the powder is not limited to a dry powder, and a powder in a colloidal state (sol state) dispersed in water or an organic solvent may be used.
  • pore former latex particles, melamine resin particles, PMMA particles, polyethylene particles, polystyrene particles, carbon black particles, foamed resins, water-absorbing resins and the like can be used.
  • binder polyvinyl butyral resin (PVB), polyvinyl alcohol resin / polyvinyl acetate resin / polyacrylic resin, or the like can be used.
  • the plasticizer DBP (dibutyl phthalate), DOP (dioctyl phthalate), or the like can be used.
  • solvent xylene, 1-butanol and the like can be used.
  • the viscosity is adjusted to 100 to 10,000 cps by subjecting the green sheet forming slurry to a vacuum defoaming treatment. Then, using a doctor blade device, a green sheet is formed so that the thickness after firing becomes 0.1 to 100 ⁇ m, and the outer shape is cut to a size of (0.5 to 200) mm ⁇ (0.5 to 200) mm I do.
  • the cut molded body is fired at 800 to 2300 ° C. for 0.5 to 20 hours, and is appropriately pulverized after firing, whereby a porous thin plate filler (porous plate filler 1) can be obtained.
  • processing such as cutting or punching into a predetermined surface shape (square, quadrilateral, hexagonal, circular), etc. in the state of the green sheet before firing, firing it, and without pulverizing after firing, it is porous A thin plate filler can also be obtained.
  • the coating composition of the present invention comprises at least one selected from the group consisting of the above-mentioned porous plate-like filler 1 and an inorganic binder, an inorganic polymer, an organic-inorganic hybrid material, an oxide sol, and water glass. ,including. Furthermore, a dense filler, a viscosity modifier, a solvent, a dispersant, and the like may be included.
  • the heat insulation film 3 can be formed by applying, drying and / or heat-treating the coating composition.
  • Specific materials included in the coating composition include cement, bentonite, aluminum phosphate, silica sol, alumina sol, boehmite sol, zirconia sol, titania sol, tetramethyl orthosilicate, tetraethyl orthosilicate, polysilazane, polycarbosilane, polyvinyl silane, Polymethylsilane, polysiloxane, polysilsesquioxane, silicone, geopolymer, sodium silicate and the like.
  • acrylic-silica hybrid materials acrylic-silica hybrid materials, epoxy-silica hybrid materials, phenol-silica hybrid materials, polycarbonate-silica hybrid materials, nylon-silica hybrid materials, nylon-clay hybrid materials
  • acrylic-alumina hybrid material an acrylic-calcium silicate hydrate hybrid material, and the like are desirable.
  • the viscosity of the coating composition is preferably from 0.1 to 5000 mPa ⁇ s, more preferably from 0.5 to 1000 mPa ⁇ s.
  • the viscosity is less than 0.1 mPa ⁇ s, it may flow after coating and the thickness of the coating film may become inhomogeneous. If it is greater than 5000 mPa ⁇ s, it may not be fluid and difficult to apply uniformly.
  • thermal insulation film 3 is demonstrated using FIG.
  • the above-mentioned porous plate-like filler 1 is dispersed and arranged in a matrix 3 m for bonding the porous plate-like filler 1.
  • the matrix 3m is a component that exists around the porous plate-like filler 1 and between these particles, and is a component that binds between these particles.
  • the porous plate-like filler 1 is preferably arranged (laminated) in layers.
  • the term “layered arrangement” as used herein refers to a matrix in which a number of porous plate-like fillers 1 are oriented in a direction in which the minimum length of the porous plate-like filler 1 is parallel to the thickness direction of the heat insulating film 3. It says that it exists in 3m.
  • the position of the porous plate-like filler 1 (the position of the center of gravity) is regularly and periodically arranged in the X, Y, and Z directions (where the Z direction is the thickness direction) of the heat insulating film 3. It is not necessary, and there is no problem even if it exists randomly.
  • the number of stacked layers is 1 or more, but a larger number of stacked layers is preferable, and 5 or more is desirable.
  • the heat transfer path is refracted and lengthened, and the heat insulating effect can be improved.
  • the position of the porous plate-like filler 1 is not aligned in the Z direction (which is shifted alternately), because the heat transfer path is refracted and becomes longer, preferable.
  • the heat insulating film 3 of the present invention preferably contains at least one of ceramics, glass, and resin as the matrix 3m.
  • ceramics or glass is more preferable.
  • the material that forms the matrix 3m include silica, alumina, mullite, zirconia, titania, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, calcium silicate, and calcium aluminate. , Calcium aluminosilicate, aluminum phosphate, potassium aluminosilicate, glass and the like. These are preferably amorphous from the viewpoint of thermal conductivity.
  • the material of the matrix 3m is ceramics, it is desirable to be an aggregate of fine particles having a particle size of 500 nm or less. By making an aggregate of fine particles having a particle size of 500 nm or less into the matrix 3 m, the thermal conductivity can be further reduced.
  • the material used as the matrix 3m is resin, a silicone resin, a polyimide resin, a polyamide resin, an acrylic resin, an epoxy resin, etc. can be mentioned.
  • the matrix 3m portion having a high thermal conductivity is the main heat transfer path, but the heat insulating film 3 of the present invention includes the porous plate-like filler 1, and the heat transfer path transfers heat.
  • the direction (thickness direction) that you do not want. That is, since the length of the heat transfer path is increased, the thermal conductivity can be lowered.
  • the bonding area between the porous plate-like fillers 1 through the matrix 3m is larger than that of the spherical filler 31 (see FIG. 6), the strength of the entire heat insulating film is increased, and erosion and peeling are less likely to occur. .
  • the heat insulating film 3 has an overall porosity of 10 to 99%, the porosity of the porous plate-like filler 1 is 20 to 99%, and the porosity of the matrix 3m is 0 to 70%. Preferably there is.
  • the heat insulating film 3 of the present invention preferably has a thickness of 1 ⁇ m to 5 mm. By setting it as such thickness, the heat insulation effect can be acquired, without having a bad influence on the characteristic of the base material 8 coat
  • FIG. The thickness of the heat insulating film 3 can be appropriately selected within the above range depending on the application.
  • Insulation film 3 of the present invention preferably has a heat capacity is 1500kJ / (m 3 ⁇ K) or less, further preferably 1000kJ / (m 3 ⁇ K) or less, 500kJ / (m 3 ⁇ K ) or less Most preferably. If the heat capacity is low, for example, when the heat insulating film 3 is formed in the engine combustion chamber 20 (see FIG. 4), the gas temperature in the engine combustion chamber 20 is likely to decrease after the fuel is exhausted. Thereby, problems, such as abnormal combustion of the engine 10, can be suppressed.
  • the heat insulating film 3 of the present invention preferably has a thermal conductivity of 1.5 W / (m ⁇ K) or less.
  • the heat insulating film 3 is more preferably 1 W / (m ⁇ K) or less, and most preferably 0.5 W / (m ⁇ K) or less. Heat transfer can be suppressed by having low thermal conductivity.
  • the heat insulating film 3 can be formed by applying the coating composition described above on the substrate 8 and drying it. It can also be formed by heat treatment after drying. At this time, the thick heat insulating film 3 can be formed by repeating application and drying or heat treatment. Alternatively, after the heat insulating film 3 is formed on the temporary base material, the temporary base material is removed to separately produce the heat insulating film 3 formed in a thin plate shape alone.
  • the material 8 may be bonded or bonded.
  • metal, ceramics, glass, plastic, wood, cloth, paper, or the like can be used. In particular, examples where the substrate 8 is a metal include iron, iron alloy, stainless steel, aluminum, aluminum alloy, nickel alloy, cobalt alloy, tungsten alloy, and copper alloy.
  • FIG. 4 shows an engine combustion chamber structure according to an embodiment of the heat insulating film structure.
  • the engine combustion chamber structure which is an embodiment of the heat insulating film structure of the present invention, is a heat insulating film formed on the surface constituting the engine combustion chamber 20 of the engine component 21 (base material 8). 3 is provided.
  • the heat insulating film 3 of the present invention By providing the heat insulating film 3 of the present invention, the heat insulating performance of the engine combustion chamber 20 can be improved.
  • the heat insulating film 3 is provided on the surface (inner wall) of the engine constituent member 21 constituting the engine combustion chamber 20. Specifically, the upper surface 14s of the piston 14, the intake valve 16, the valve heads 16s and 17s of the exhaust valve 17, the bottom surface 13s of the cylinder head 13, and the like can be given.
  • the engine 10 includes a cylinder block 11 in which a cylinder 12 is formed, and a cylinder head 13 attached so as to cover the upper surface of the cylinder block 11.
  • a piston 14 is provided in the cylinder 12 of the cylinder block 11 so as to be slidable in the vertical direction.
  • a spark plug 15 is attached to the cylinder head 13.
  • an intake valve 16 and an exhaust valve 17 are attached.
  • the intake valve 16 is configured to open and close an intake passage 18 formed in the cylinder head 13
  • the exhaust valve 17 is configured to open and close an exhaust passage 19.
  • the heat insulating film 3 is provided on the upper surface 14 s of the piston 14. Similarly, the heat insulating film 3 is provided on the valve heads 16 s and 17 s of the intake valve 16, the exhaust valve 17, and the bottom surface 13 s of the cylinder head 13. These surfaces are surfaces that form the engine combustion chamber 20, and by providing the heat insulating film 3 on these surfaces, the heat insulating performance can be improved.
  • Fuel is supplied to the engine combustion chamber 20 surrounded by the cylinder 12, the cylinder head 13, and the piston 14 by opening the intake valve 16, and is burned by being ignited by the spark plug 15. By this combustion, the piston 14 is pushed down. The exhaust gas generated by the combustion is exhausted by opening the exhaust valve 17.
  • the engine 10 (see FIG. 4) needs to ensure the heat insulating property of the engine combustion chamber 20 during combustion in the cycle of intake ⁇ combustion ⁇ expansion ⁇ exhaust. Therefore, when the heat insulating film 3 is provided in the engine combustion chamber 20, It is necessary to set the thickness to such an extent that a heat insulating effect can be obtained. However, if the air newly sucked during intake takes heat accumulated in the heat insulating film 3 and the gas temperature becomes high, problems such as abnormal combustion may occur. Therefore, it is preferable that the heat insulating film 3 has a thickness that can obtain a heat insulating effect and has a small heat capacity.
  • the thickness of the heat insulating film 3 is more preferably in the range of 1 ⁇ m to 5 mm, and further preferably in the range of 10 ⁇ m to 1 mm. By setting the thickness of the heat insulating film 3 within this range, it is possible to suppress problems such as abnormal combustion while ensuring a sufficient heat insulating effect.
  • FIG. 5A shows another embodiment of the heat insulating film structure.
  • the embodiment of FIG. 5A is an embodiment of a heat insulating film structure in which the buffer bonding layer 4 (first buffer bonding layer 4a), the heat insulating film 3, and the surface dense layer 2 are formed on the substrate 8.
  • the heat insulating film structure of the present invention preferably includes a surface dense layer 2 containing ceramics and / or glass on the surface of the heat insulating film 3 and having a porosity of 5% or less.
  • the surface dense layer 2 is formed on the outermost surface of the heat insulating film 3 to prevent the absorption of fuel and the adhesion of burning residue Can do.
  • the surface dense layer 2 is provided on the surface of the heat insulating film 3
  • the engine combustion chamber 20 is provided with the heat insulating film 3
  • radiation is reflected by the surface dense layer 2 when fuel is burned in the engine combustion chamber 20.
  • heat can be radiated from the surface dense layer 2.
  • the heat insulating film 3 can suppress heat transfer from the surface dense layer 2 to the engine constituent member 21. For this reason, at the time of fuel combustion, the temperature of the inner wall of the engine constituent member 21 (the wall surface constituting the engine combustion chamber 20) easily rises following the gas temperature of the engine combustion chamber 20.
  • the heat insulating film structure of the present invention is between the base material 8 and the heat insulating film 3 (FIG. 5A) and / or between the heat insulating film 3 and the surface dense layer 2 (see FIG. 5B: second buffer bonding layer 4b). It is preferable that the buffer bonding layer 4 is thinner than the heat insulating film 3.
  • the reaction between the base material 8 and the heat insulating film 3 is required when used at a high temperature or in an environment subjected to a thermal cycle. Separation due to thermal expansion mismatch can be suppressed.
  • the surface dense layer 2 is a layer containing ceramics denser than the heat insulating film 3 formed on the surface of the heat insulating film 3 having a porous structure.
  • the surface dense layer 2 has a porosity of 5% or less, preferably 0.01 to 4%, more preferably 0.01 to 3%.
  • Such a dense layer can prevent heat transfer due to convection of gas (fuel) during fuel combustion. Moreover, since it is dense, it is difficult for the fuel to absorb, soot, and burnt residue.
  • the material of the surface dense layer 2 is preferably similar to that of the heat insulating film 3, and more preferably the same composition and a porosity of 5% or less.
  • the surface dense layer 2 can be formed of ceramics, such as alumina, silica, mullite, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, titania, zirconia, zinc oxide, glass and the like. Can be mentioned.
  • the surface dense layer 2 is made of a material that suppresses radiant heat transfer from the combustion flame, which is a heat source, during combustion of the fuel. Moreover, it is preferable that the surface dense layer 2 is easy to radiate its own heat when the fuel is exhausted.
  • the surface dense layer 2 having a porosity of 5% or less can suppress radiant heat transfer to the inner wall of the engine combustion chamber 20 immediately after the start of combustion to the previous combustion period. Further, in the late combustion stage to the exhaust process, when the temperature becomes low, heat is radiated from the surface dense layer 2 to the exhaust gas, whereby the intake gas introduced next can be prevented from becoming high temperature.
  • the surface dense layer 2 preferably has a reflectance greater than 0.5 at a wavelength of 2 ⁇ m. By having such a reflectance, conduction of heat to the heat insulating film 3 can be suppressed.
  • the surface dense layer 2 preferably has an emissivity of greater than 0.5 at a wavelength of 2.5 ⁇ m. Moreover, by having such an emissivity, the heated surface dense layer 2 can be easily cooled.
  • the surface dense layer 2 is preferably as thin as possible, but a thickness in the range of 10 nm to 100 ⁇ m is appropriate. Further, the heat capacity of the surface dense layer 2 is preferably at 3000kJ / (m 3 ⁇ K) or less, and more preferably 1000kJ / (m 3 ⁇ K) or less.
  • the inner wall of the engine component 21 Becomes easy to follow the gas temperature in the engine combustion chamber 20. The temperature difference between the gas temperature and the surface dense layer 2 is reduced, and cooling loss can be reduced.
  • the surface dense layer 2 preferably has a thermal conductivity of 3 W / (m ⁇ K) or less. By setting the thermal conductivity within this range, heat conduction to the heat insulating film 3 can be suppressed.
  • the buffer bonding layer 4 is a layer thinner than the heat insulating film 3 between the base material 8 (engine component 21) and the heat insulating film 3 and / or between the heat insulating film 3 and the surface dense layer 2. It is.
  • the buffer bonding layer 4 can eliminate mismatch between the thermal expansion and Young's modulus of both layers in contact with the buffer bonding layer 4 and suppress peeling due to thermal stress.
  • the buffer bonding layer 4 is preferably a material having an adhesive function or a material that can be formed as a thin film.
  • the buffer bonding layer 4 include a layer made of an inorganic binder, an inorganic polymer, an oxide sol, water glass, a brazing material, and a plating film.
  • the buffer bonding layer 4 may be a layer in which a material similar to the heat insulating film 3 is combined with these materials.
  • membrane 3 formed independently in thin plate shape can also be obtained by joining to the base material 8 (engine component member 21) etc. with said material.
  • the buffer bonding layer 4 preferably has a larger thermal expansion coefficient than any one of the other two adjacent layers, and a smaller thermal expansion coefficient than the other.
  • the buffer bonding layer 4 preferably has a Young's modulus smaller than the other two adjacent layers. If comprised in this way, the mismatch between layers can be eliminated and peeling by a thermal stress can be suppressed.
  • the buffer bonding layer 4 preferably has a large thermal resistance.
  • the thermal resistance is preferably 10 ⁇ 6 m 2 K / W or more. Further, it is preferably 10 ⁇ 6 to 10 m 2 K / W, more preferably 10 ⁇ 5 to 10 m 2 K / W, and further preferably 10 ⁇ 4 to 10 m 2 K / W.
  • the thermal resistance is preferably 10 ⁇ 6 m 2 K / W or more. Further, it is preferably 10 ⁇ 6 to 10 m 2 K / W, more preferably 10 ⁇ 5 to 10 m 2 K / W, and further preferably 10 ⁇ 4 to 10 m 2 K / W.
  • the buffer bonding layer 4 has a material composition that suppresses the mutual reaction between the layers in contact with each other. This improves the oxidation resistance and the reaction resistance, and improves the durability of the heat insulating film 3. To do.
  • the first buffer bond is formed on the engine component member 21.
  • a material to be the layer 4a is applied (for example, in the case of an inorganic binder or inorganic polymer, oxide sol, water glass, brazing material) or formed by plating, and the heat insulating film 3 is formed thereon.
  • the heat insulating film 3 is formed by applying a coating composition in which the porous plate-like filler 1 is dispersed in an inorganic binder, an inorganic polymer, an oxide sol, water glass or the like on a predetermined substrate 8, drying, and further It can be formed by heat treatment.
  • a porous thin plate may be separately prepared and attached to the engine component 21 using a material for forming the first buffer bonding layer 4a as a binder.
  • the second buffer bonding layer 4b is provided between the heat insulating film 3 and the surface dense layer 2
  • the second buffer bonding layer 4b is formed on the heat insulating film 3 in the same manner as the first buffer bonding layer 4a.
  • the dense surface layer 2 is formed thereon.
  • the surface dense layer 2 is formed by forming the heat insulating film 3 (or forming the second buffer bonding layer 4b), sputtering method, PVD method, EB-PVD method, CVD method, AD method, thermal spraying, plasma spraying. It can be formed by a method, a cold spray method, plating, heat treatment after wet coating, or the like.
  • a dense thin plate is separately prepared as the surface dense layer 2, and the material for forming the heat insulating film 3 is combined with the base material (the first buffer bonding layer 4a or the engine component member 21) as a binder. Also good.
  • a dense thin plate may be separately prepared as the surface dense layer 2 and bonded to the heat insulating film 3 by the second buffer bonding layer 4b.
  • a yttria partially stabilized zirconia powder is added with a pore former (latex particles or melamine resin particles), polyvinyl butyral resin (PVB) as a binder, DOP as a plasticizer, xylene and 1-butanol as a solvent, and a ball mill.
  • a green sheet forming slurry For 30 hours to prepare a green sheet forming slurry.
  • the slurry is subjected to vacuum defoaming treatment to adjust the viscosity to 4000 cps, and then a green sheet is formed by a doctor blade device so that the thickness after firing is 5 ⁇ m, and the outer shape is cut to a size of 50 mm ⁇ 50 mm. went.
  • This molded body was fired at 1100 ° C. for 1 hour, and pulverized after firing to obtain a porous thin plate filler (porous plate filler 1).
  • the porous plate-like filler 1 contained pores having a pore diameter of 50 nm and had a thickness of 5 ⁇ m or less. Further, when the aspect ratio was measured for 20 arbitrary porous plate-like fillers, the value was 3 to 5. The thermal conductivity was 0.3 W / (m ⁇ K), and the porosity was 60%.
  • a coating composition containing silica sol, water glass, porous plate-like filler 1 and water is prepared, applied on the aluminum alloy as the substrate 8, dried, and then heat treated at 500 ° C. did.
  • 10 or more porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m.
  • the heat conductivity of the heat insulation film 3 was 0.8 W / (m ⁇ K), and the heat capacity was 1460 kJ / (m 3 ⁇ K).
  • Example 2 A porous plate-like filler 1 was produced in the same manner as in Example 1.
  • a coating composition containing perhydropolysilazane, amine-based catalyst, porous plate-like filler 1 and xylene is prepared, applied onto the aluminum alloy as the base material 8, dried, and then heat-treated by heat treatment at 250 ° C. Membrane 3 was obtained.
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.2 W / (m ⁇ K), and the heat capacity was 1150 kJ / (m 3 ⁇ K).
  • Example 3 The procedure was the same as in Example 1, but without rough pulverization, a porous thin plate-like tape was obtained. A zinc oxide film was formed on the surface of the tape by a CVD method. Furthermore, coarse pulverization was performed to obtain a porous plate filler 1 having a heat resistance film (coating layer 7) on the surface.
  • a coating composition containing perhydropolysilazane, an amine catalyst, the porous plate-like filler 1 and xylene is prepared, applied on the aluminum alloy as the base material 8, dried, and then heat treated at 250 ° C. A heat insulating film 3 was obtained.
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.15 W / (m ⁇ K), and the heat capacity was 1180 kJ / (m 3 ⁇ K).
  • Example 4 As in Example 1, a yttria partially stabilized zirconia powder, a pore former (latex particles or melamine resin particles), a polyvinyl butyral resin (PVB) as a binder, DOP as a plasticizer, xylene as a solvent, and 1- Butanol was added and mixed in a ball mill for 30 hours to prepare a green sheet forming slurry. The slurry is subjected to vacuum defoaming treatment to adjust the viscosity to 4000 cps, and then a green sheet is formed by a doctor blade device so that the thickness after firing is 5 ⁇ m, and the outer shape is cut to a size of 50 mm ⁇ 50 mm. went. The molded body was fired at 1100 ° C. for 1 hour. The obtained fired body was coarsely pulverized to obtain a porous plate filler 1.
  • a pore former latex particles or melamine resin particles
  • PVB polyvinyl butyral resin
  • DOP
  • the porous plate-like filler 1 contained 50 nm pores and had a thickness of 5 ⁇ m or less. Further, when the aspect ratio was measured for 20 arbitrary fillers, the value was 5 to 10. The thermal conductivity was 0.3 W / (m ⁇ K).
  • a coating composition containing perhydropolysilazane, amine-based catalyst, porous plate-like filler 1 and xylene is prepared, applied onto the aluminum alloy as the base material 8, dried, and then heat-treated by heat treatment at 250 ° C. Membrane 3 was obtained.
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.15 W / (m ⁇ K), and the heat capacity was 1160 kJ / (m 3 ⁇ K).
  • Example 5 A porous plate-like filler 1 was produced in the same manner as in Example 1.
  • a coating composition containing boehmite fiber sol, porous plate-like filler 1 and water was prepared, applied on the aluminum alloy as the base material 8, dried, and then heat treated at 500 ° C. to form the heat insulating film 3. .
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m.
  • the heat conductivity of the heat insulating film 3 was 0.25 W / (m ⁇ K), and the heat capacity was 1140 kJ / (m 3 ⁇ K).
  • Example 6 A porous plate-like filler 1 was produced in the same manner as in Example 1.
  • a coating composition containing polysiloxane, porous plate-like filler 1 and isopropyl alcohol was prepared, applied on the aluminum alloy as the base material 8, dried, and then heat treated at 500 ° C. to form the heat insulating film 3. .
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.5 W / (m ⁇ K), and the heat capacity was 1490 kJ / (m 3 ⁇ K).
  • Example 7 A porous plate-like filler 1 was produced in the same manner as in Example 1. However, yttria fully stabilized zirconia powder was used instead of yttria partially stabilized zirconia powder.
  • a coating composition containing polysiloxane, porous plate-like filler 1, and isopropyl alcohol was prepared, applied onto the aluminum alloy as the base material 8, dried, and then heat treated at 200 ° C. to form the heat insulating film 3. .
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.4 W / (m ⁇ K), and the heat capacity was 1230 kJ / (m 3 ⁇ K).
  • Example 8 A porous plate-like filler 1 was produced in the same manner as in Example 7.
  • a coating composition containing polysilsesquioxane, porous plate-like filler 1 and isopropyl alcohol is prepared, applied onto the aluminum alloy as the substrate 8, dried, and then heat treated at 200 ° C. It was set to 3.
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.3 W / (m ⁇ K), and the heat capacity was 1180 kJ / (m 3 ⁇ K).
  • Example 9 A porous plate-like filler 1 was produced in the same manner as in Example 7.
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.3 W / (m ⁇ K), and the heat capacity was 1100 kJ / (m 3 ⁇ K).
  • Example 10 A porous plate-like filler 1 was produced in the same manner as in Example 1. However, lanthanum zirconate powder was used instead of yttria partially stabilized zirconia powder.
  • a coating composition containing polysiloxane, porous plate-like filler 1, and isopropyl alcohol was prepared, applied onto the aluminum alloy as the base material 8, dried, and then heat treated at 200 ° C. to form the heat insulating film 3. .
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.25 W / (m ⁇ K), and the heat capacity was 1050 kJ / (m 3 ⁇ K).
  • Example 11 A porous plate-like filler 1 was produced in the same manner as in Example 1. However, yttrium silicate powder was used instead of yttria partially stabilized zirconia powder.
  • a coating composition containing polysiloxane, porous plate-like filler 1, and isopropyl alcohol was prepared, applied onto the aluminum alloy as the base material 8, dried, and then heat treated at 200 ° C. to form the heat insulating film 3. .
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.3 W / (m ⁇ K), and the heat capacity was 1120 kJ / (m 3 ⁇ K).
  • Example 12 A porous plate-like filler 1 was produced in the same manner as in Example 1. However, strontium niobate powder was used instead of yttria partially stabilized zirconia powder.
  • a coating composition containing polysiloxane, porous plate-like filler 1, and isopropyl alcohol was prepared, applied onto the aluminum alloy as the base material 8, dried, and then heat treated at 200 ° C. to form the heat insulating film 3. .
  • porous plate-like fillers 1 were laminated in the thickness direction of the heat insulating film 3, and the thickness thereof was about 100 ⁇ m. Moreover, the heat conductivity of the heat insulation film 3 was 0.25 W / (m ⁇ K), and the heat capacity was 1240 kJ / (m 3 ⁇ K).
  • a pore former (latex particles or melamine resin particles), polyvinyl alcohol (PVA) as a binder, a dispersant, and water were added and mixed in a ball mill for 30 hours to prepare a slurry.
  • This slurry was dried by spray drying to obtain spherical granules.
  • the granules were fired at 1100 ° C. for 1 hour.
  • the obtained fired powder was crushed and fine powder was removed to obtain a spherical filler 31.
  • the spherical filler 31 contained 50 nm pores, had an average particle size of 20 ⁇ m, a minimum particle size of 5 ⁇ m, and a porosity of 60%. Further, when the aspect ratio was measured for 20 arbitrary fillers, the value was 1 to 1.5. Moreover, the heat conductivity of the fired body obtained by forming the granules into a plate shape and firing them under the same conditions was 0.3 W / (m ⁇ K).
  • a coating composition containing silica sol, water glass, spherical filler 31 and water was prepared, applied on the aluminum alloy as the substrate 8, dried, and then heat treated at 500 ° C. to form the heat insulating film 3.
  • the heat insulating film 3 at this time contained spherical fillers 31 at random, and the thickness thereof was about 100 ⁇ m.
  • the heat insulating film structure of Comparative Example 1 is shown in FIG.
  • the heat conductivity of the heat insulating film 3 was 1.7 W / (m ⁇ K), and the heat capacity was 1550 kJ / (m 3 ⁇ K).
  • the comparative example 1 is the spherical filler 31 having an aspect ratio of 1 to 1.5
  • the heat conductivity and heat capacity of the heat insulating film 3 are larger than those of the example. That is, the heat insulating film 3 including the porous plate-like filler 1 was able to reduce the thermal conductivity and heat capacity compared to the heat insulating film 3 including the spherical filler 31.
  • the matrix 3m is introduced into that portion. Or it will remain as a void.
  • the ratio of the matrix 3m (high heat conduction component) in the heat insulating film 3 increases, so that the heat conductivity of the heat insulating film 3 tends to be high.
  • the void When remaining as a void, the void does not become a heat transfer path, so the thermal conductivity of the heat insulating film 3 is low, but the matrix 3m that bonds between the fillers is small, and sufficient strength cannot be obtained.
  • the volume ratio of the filler can be increased without creating useless voids, and the matrix 3m entering between the fillers At least, since the bonding area between the fillers through the matrix 3m is wide, sufficient strength can be obtained.
  • the heat insulating film and the heat insulating film structure of the present invention can be applied to engines such as automobiles, piping, and walls of buildings.
  • 1 porous plate-like filler
  • 2 surface dense layer
  • 3 heat insulation film
  • 3m matrix
  • 4a first buffer bonding layer
  • 4b second buffer bonding layer
  • 7 coating layer
  • 8 base material
  • 10 engine
  • 11 cylinder block
  • 12 cylinder
  • 13 cylinder head
  • 13s bottom surface of (cylinder head)
  • 14 piston
  • 14s top surface of (piston)
  • 15 spark plug
  • 16 Intake valve
  • 16s valve head
  • 17 exhaust valve
  • 17s valve head
  • 18 intake passage
  • 19 exhaust passage
  • 20 engine combustion chamber
  • 21 engine component
  • 31 spherical filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 断熱効果を向上させた断熱膜や断熱膜構造を提供する。また、断熱膜に含まれる多孔質板状フィラー、断熱膜を形成するためのコーティング組成物を提供する。本発明の断熱膜3は、多孔質板状フィラー1が、多孔質板状フィラー1を結合するためのマトリックス3mに分散して配置されている。断熱膜3は、多孔質板状フィラー1が層状に配置(積層)されていることが好ましい。多孔質板状フィラー1は、アスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である。多孔質板状フィラーを用いた断熱膜3は、球状や立方体状のフィラーを用いる場合と比べて、伝熱経路の長さが長くなり、熱伝導率を低くすることができる。

Description

多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造
 本発明は、断熱効果を向上させるための断熱膜や、断熱膜構造に関する。また、断熱膜に含まれる多孔質板状フィラー、断熱膜を形成するためのコーティング組成物に関する。
 表面に形成することにより、断熱効率や難燃性を向上させるための断熱膜が望まれている。特許文献1には、表面硬度が高く傷付きを防止できるコーティング膜が開示されている。コーティング膜は、シリカ殻からなる中空粒子をバインダーに分散してなる。シリカ殻からなる中空粒子の耐摩耗性及び高硬度によって、コーティング膜が形成された基材の耐摩耗性を向上させることができる。また、シリカ殻からなる中空粒子の断熱性によって難燃性を向上させることができる。
 特許文献2には、断熱性能を向上させた構造部材を備える内燃機関が開示されている。特許文献2の内燃機関では、排気通路の内壁に隣接して断熱材が配置され、高温の作動ガス(排気ガス)が、断熱材が形成する流路に沿って流れるように構成されている。断熱材は、平均粒径が0.1~3μmのMSS(球状メソポーラスシリカ)粒子の各粒子が接合材を介して粒子同士が密集した状態で積層されている。MSS粒子には、平均孔径1~10nmのメソ孔が無数に形成されている。
特開2008-200922号公報 特開2011-52630号公報
 特許文献1では、略30~300nmの外径のシリカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダーあるいは有機無機複合バインダー中に略均一に分散しているため、コーティング膜の断熱性が得られる。また、特許文献2では、平均粒径が0.1~3μmで平均孔径1~10nmのメソ孔を有するMSS(球状メソポーラスシリカ)粒子が密集した状態で積層されているため、断熱性能が高い。
 特許文献1や2で用いられる中空粒子や多孔質粒子は、低熱伝導率であるため、それ以外のマトリックス部分(粒子間を結合する相)が主な伝熱経路となることが推察される。これらの粒子は、立方体状又は球状であるため、熱の経路が図6に示すように比較的短くなり、熱伝導率が十分に低くならない。
 本発明の課題は、断熱効果を向上させた断熱膜や断熱膜構造を提供することにある。また、断熱膜に含まれる多孔質板状フィラー、断熱膜を形成するためのコーティング組成物を提供することにある。
 本発明者らは、アスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である多孔質板状フィラーを断熱膜に用いることにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の多孔質板状フィラー、コーティング組成物、断熱膜、及び断熱膜構造が提供される。
[1] アスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である多孔質板状フィラー。
[2] 熱伝導率が1W/(m・K)以下である前記[1]に記載の多孔質板状フィラー。
[3] 熱容量が10~3000kJ/(m・K)である前記[1]または[2]に記載の多孔質板状フィラー。
[4] ナノオーダーの気孔、またはナノオーダーの粒子もしくは結晶粒を含んで構成される前記[1]~[3]のいずれかに記載の多孔質板状フィラー。
[5] 気孔径が10~500nmの気孔を有する前記[1]~[4]のいずれかに記載の多孔質板状フィラー。
[6] 金属酸化物を含む前記[1]~[5]のいずれかに記載の多孔質板状フィラー。
[7] 前記金属酸化物がZr、Y、Al、Si、Ti、Nb、Sr、及びLaからなる群から選ばれる1の元素の酸化物あるいは2以上の元素の複合酸化物である前記[6]に記載の多孔質板状フィラー。
[8] 粒径が1nm~10μmである粒子を含んで構成されている前記[1]~[7]のいずれかに記載の多孔質板状フィラー。
[9] 表面の少なくとも一部に、厚さ1nm~1μmの被覆層を有する前記[1]~[8]のいずれかに記載の多孔質板状フィラー。
[10] 前記被覆層は、熱伝達を抑制する及び/または輻射熱を反射する、熱抵抗膜である前記[9]に記載の多孔質板状フィラー。
[11] 前記[1]~[10]のいずれかに記載の多孔質板状フィラーと、無機バインダー、無機高分子、有機無機ハイブリッド材料、酸化物ゾル、及び水ガラスからなる群より選択される一種以上と、を含むコーティング組成物。
[12] 前記[1]~[10]のいずれかに記載の多孔質板状フィラーが、前記多孔質板状フィラーを結合するためのマトリックスに分散して配置された断熱膜。
[13] 前記多孔質板状フィラーが層状に配置されている前記[12]に記載の断熱膜。
[14] 前記マトリックスとして、セラミックス、ガラス、および樹脂の少なくとも一種を含む前記[12]または[13]に記載の断熱膜。
[15] 前記マトリックスは、粒径が500nm以下のセラミックスの微粒子の集合体である前記[14]に記載の断熱膜。
[16] 厚さが1μm~5mmである前記[12]~[15]のいずれかに記載の断熱膜。
[17] 熱容量が1500kJ/(m・K)以下である前記[12]~[16]のいずれかに記載の断熱膜。
[18] 熱伝導率が1.5W/(m・K)以下である前記[12]~[17]のいずれかに記載の断熱膜。
[19] 前記[12]~[18]のいずれかに記載の断熱膜が、基材上に形成された断熱膜構造。
[20] 前記断熱膜の表面に、セラミックスおよび/またはガラスを含み、気孔率が5%以下である表面緻密層を有する前記[19]に記載の断熱膜構造。
[21] 前記基材と前記断熱膜との間、および/または前記断熱膜と表面緻密層との間に、厚さが前記断熱膜よりも薄い緩衝接合層を備える前記[20]に記載の断熱膜構造。
 アスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である多孔質板状フィラーを用いた断熱膜は、球状や立方体状のフィラーを用いる場合と比べて、伝熱経路の長さが長くなり、熱伝導率を低くすることができる。このため、薄い断熱膜であっても、従来よりも断熱効果が高い。また、マトリックスを介した多孔質板状フィラー同士の結合面積が、球状フィラーなどを用いる場合と比べて広くなるため、強度を高めることができる。
本発明の多孔質板状フィラーの一実施形態を示す模式図である。 多孔質板状フィラーの他の実施形態を示す模式図である。 本発明の断熱膜、および断熱膜構造の一実施形態を示す模式図である。 エンジンの一実施形態を示す模式図である。 本発明の断熱膜、および断熱膜構造の他の実施形態を示す模式図である。 本発明の断熱膜、および断熱膜構造のさらに他の実施形態を示す模式図である。 比較例の断熱膜、および断熱膜構造を示す模式図である。
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
1.多孔質板状フィラー
 図1に本発明の多孔質板状フィラー1の一実施形態を示す。本発明の多孔質板状フィラー1は、アスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である。本明細書において、気孔率は、次の式により求めたものである。
 気孔率(%)=(1-(見かけ粒子密度÷真密度))×100
 上記の式において、見かけ粒子密度は、水銀を用いた液浸法により測定する。また、真密度は、多孔質板状フィラーを十分に粉砕した後、ピクノメータ法で測定する。
 また、本明細書において、アスペクト比とは、多孔質板状フィラー1の最大長/最小長で定義される。ここで最大長とは、粒子(多孔質板状フィラー1)を一組の平行な面ではさんだときに最大となる長さである。また、最小長とは同様に粒子を一組の平行な面ではさんだときに最小となる長さのことであり、平板状である場合はいわゆる厚さに相当する。本発明の多孔質板状フィラー1の板状とは、アスペクト比が3以上でその最小長が0.1~50μmであるものであれば、平板状(平らで湾曲していない板)のみならず、湾曲した板状のものや、厚み(最小長)が一定ではない板状ものも含まれる。また、繊維状、針状、塊状等の形状でもよい。このうち、本発明の多孔質板状フィラー1は、平板状であることが好ましい。また、板の面形状は、正方形、四角形、三角形、六角形、円形等のいずれの形状であってもよい。
 このような多孔質板状フィラー1が、後述するように断熱膜3に含まれることにより、断熱効果を向上させることができる。
 多孔質板状フィラー1は、ナノオーダーの気孔、またはナノオーダーの粒子もしくは結晶粒を含んで構成されることが好ましい。ここで、ナノオーダーとは、1nm以上1000nm未満のものを言う。この範囲の気孔、粒子、結晶粒とすることにより、断熱効果を向上させることができる。
 本発明の多孔質板状フィラー1は、気孔径が10~500nmの気孔を有することが好ましい。気孔は、1つのフィラーに1個(中空粒子)であってもよいし、多数(多孔質粒子)を有していてもよい。中空粒子とは、粒子の内部に1つの閉気孔が存在する粒子である。多孔質粒子とは、粒子の内部が多孔質の粒子、すなわち、前記中空粒子以外の気孔を含む粒子である。本発明の多孔質板状フィラー1は、多孔質粒子のみならず、中空粒子を含むものとする。すなわち、多孔質板状フィラー1に含まれる気孔の個数は、1個でも多数でもよく、気孔は、閉気孔であっても、開気孔であってもよい。このような気孔を有する多孔質板状フィラー1が断熱膜3に含まれると、気孔によって断熱効果を向上させることができる。
 多孔質板状フィラー1の材料としては、例えば、中空ガラスビーズ、中空セラミックビーズ、フライアッシュバルーン、中空シリカなどが挙げられる。また、メソポーラスシリカ、メソポーラスチタニア、メソポーラスジルコニア、シラスバルーンなどが挙げられる。あるいは、後述する製造方法で得られる多孔質板状フィラーも挙げられる。
 多孔質板状フィラー1の最小長は、0.1~50μmであり、10μm以下であることが好ましい。多孔質板状フィラー1の最小長が短いと、断熱膜3を薄くすることができる。すなわち、薄い断熱膜3であっても、断熱効果を向上させることができる。
 本発明の多孔質板状フィラー1は、熱伝導率が1W/(m・K)以下であることが好ましい。熱伝導率は、より好ましくは0.5W/(m・K)以下、さらに好ましくは0.3W/(m・K)以下である。このような熱伝導率の多孔質板状フィラー1が断熱膜3に含まれると、断熱効果を向上させることができる。
 多孔質板状フィラー1は、熱容量が10~3000kJ/(m・K)であることが好ましい。熱容量は、より好ましくは10~2500kJ/(m・K)、さらに好ましくは10~2000kJ/(m・K)である。このような範囲の熱容量の多孔質板状フィラー1が断熱膜3に含まれると、断熱効果を向上させることができる。
 多孔質板状フィラー1は、粒径が1nm~10μmである粒子を含んで構成されていることが好ましい。粒子とは、一つの結晶粒からなる粒子(単結晶粒子)であっても良いし、多数の結晶粒からなる粒子(多結晶粒子)であっても良い。つまり、多孔質板状フィラー1がこの範囲の粒径の粒子の集まりであることが好ましい。粒径は、多孔質板状フィラー1の骨格を構成する粒子群のうちの1つの粒子の大きさ(球状であれば直径、そうでなければ最大径)を、電子顕微鏡観察の画像から計測したものである。粒径は、より好ましくは1nm~5μmであり、さらに好ましくは1nm~1μmである。このような範囲の熱容量の多孔質板状フィラー1が断熱膜3に含まれると、断熱効果を向上させることができる。
 多孔質板状フィラー1は、金属酸化物を含むことが好ましく、金属酸化物のみからなることがさらに好ましい。金属酸化物を含むと、金属の非酸化物(例えば、炭化物や窒化物)に比べて金属と酸素の間のイオン結合性が強いために熱伝導率が低くなりやすいためである。
 多孔質板状フィラー1は、金属酸化物がZr、Y、Al、Si、Ti、Nb、Sr、及びLaからなる群から選ばれる1の元素の酸化物あるいは2以上の元素の複合酸化物であることが好ましい。金属酸化物がこれらの元素の酸化物、複合酸化物であると、熱伝導の主因である格子振動(フォノン)による熱伝導が起こりにくくなるためである。
 図2に示すように、本発明の多孔質板状フィラー1は、表面の少なくとも一部に、厚さ1nm~1μmの被覆層7を有することが好ましい。さらに被覆層7は、熱伝達を抑制するおよび/又は輻射熱を反射するおよび/又は格子振動(フォノン)を散乱する、熱抵抗膜であることが好ましい。多孔質板状フィラー1の表面に数十nmの熱抵抗膜を形成させると、さらに断熱膜3の熱伝導率を下げることができるため好ましい。熱抵抗膜は、被覆される多孔質板状フィラーと同一の材料でなければよく、多孔質板状フィラー1を異種材料(例えば、アルミナ、酸化亜鉛)で被覆することが望ましい。熱抵抗膜は緻密であっても多孔質であっても問題ないが、緻密であることが好ましい。熱抵抗膜は、多孔質板状フィラーの表面の一部に形成されていることで、熱伝導率を下げる効果が得られるが、多孔質板状フィラー1の表面の全てが熱抵抗膜に覆われているとさらに熱伝導率を下げる効果が得られる。
 次に、本発明の多孔質板状フィラー1の製造方法について説明する。多孔質板状フィラー1の製造方法としては、プレス成形、鋳込み成形、押出成形、射出成形、テープ成形、ドクターブレード法等が挙げられ、いずれの方法であってもよいが、以下、ドクターブレード法を例として説明する。
 まず、セラミックス粉末に、造孔材、バインダー、可塑剤、溶剤等を加えてボールミル等により混合することにより、グリーンシート成形用スラリーを調製する。
 セラミックス粉末としては、ジルコニア粉末、部分安定化ジルコニア粉末(例えば、イットリア部分安定化ジルコニア粉末)、完全安定化ジルコニア粉末(例えば、イットリア完全安定化ジルコニア粉末)、アルミナ粉末、シリカ粉末、チタニア粉末、酸化ランタン粉末、イットリア粉末、希土類ジルコン酸塩粉末(例えば、ランタンジルコネート粉末)、希土類ケイ酸塩粉末(例えば、イットリウムシリケート粉末)、ニオブ酸塩粉末(例えば、ニオブ酸ストロンチウム粉末)、ムライト粉末、スピネル粉末、ジルコン粒子、マグネシア粉末、イットリア粉末、セリア粉末、炭化ケイ素粉末、窒化けい素粉末、窒化アルミニウム粉末等を用いることができる。これらは1種類だけでなく2種類以上を組み合わせて用いても良い。また、粉末は乾燥粉末に限らず、水や有機溶媒中に分散したコロイド状態(ゾル状態)のものを用いても良い。造孔材としては、ラテックス粒子、メラミン樹脂粒子、PMMA粒子、ポリエチレン粒子、ポリスチレン粒子、カーボンブラック粒子、発泡樹脂、吸水性樹脂等を用いることができる。バインダーとしては、ポリビニルブチラール樹脂(PVB)、ポリビニルアルコール樹脂・ポリ酢酸ビニル樹脂・ポリアクリル樹脂等を用いることができる。可塑剤としては、DBP(フタル酸ジブチル)、DOP(フタル酸ジオクチル)等を用いることができる。溶剤としては、キシレン、1-ブタノール等を用いることができる。
 上記グリーンシート成形用スラリーに真空脱泡処理を施すことにより、粘度を100~10000cpsに調整する。その後、ドクターブレード装置によって、焼成後の厚さが0.1~100μmとなるようにグリーンシートを形成し、(0.5~200)mm×(0.5~200)mmの寸法に外形切断を行う。切断した成形体を800~2300℃、0.5~20時間にて焼成し、焼成後に適宜粉砕することにより、多孔質な薄板状フィラー(多孔質板状フィラー1)を得ることができる。なお、焼成前のグリーンシートの状態で所定の面形状(正方形、四角形、六角形、円形)などに切断や打ち抜きなどの加工をし、それを焼成し、焼成後に粉砕することなく、多孔質な薄板状フィラーを得ることもできる。
2.コーティング組成物
 本発明のコーティング組成物は、上述の多孔質板状フィラー1と、無機バインダー、無機高分子、有機無機ハイブリッド材料、酸化物ゾル、及び水ガラスからなる群より選択される一種以上と、を含む。さらに、緻密質なフィラー、粘性調整剤、溶媒、分散剤等を含んでいてもよい。コーティング組成物を塗布、乾燥及び/又は熱処理することにより、断熱膜3を形成することができる。コーティング組成物に含まれる具体的な物質は、セメント、ベントナイト、リン酸アルミニウム、シリカゾル、アルミナゾル、ベーマイトゾル、ジルコニアゾル、チタニアゾル、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル、ポリシラザン、ポリカルボシラン、ポリビニルシラン、ポリメチルシラン、ポリシロキサン、ポリシルセスキオキサン、シリコーン、ジオポリマー、ケイ酸ナトリウム等である。また、有機無機ハイブリッド材料の場合、アクリル-シリカ系ハイブリッド材料、エボキシ-シリカ系ハイブリッド材料、フェノール-シリカ系ハイブリッド材料、ポリカーボネート-シリカ系ハイブリッド材料、ナイロン-シリカ系ハイブリッド材料、ナイロン-クレイ系ハイブリッド材料、アクリル-アルミナ系ハイブリッド材料、アクリル-ケイ酸カルシウム水和物系ハイブリッド材料などが望ましい。
 コーティング組成物の粘度は0.1~5000mPa・sが好ましく、0.5~1000mPa・sがさらに好ましい。粘度が0.1mPa・sより小さい場合は、塗布後に流動し塗膜の厚さが不均質になることがある。5000mPa・sより大きい場合には流動性がなく均質に塗布しにくいことがある。
3.断熱膜
 図3を用いて、断熱膜3を説明する。本発明の断熱膜3は、上述の多孔質板状フィラー1が、多孔質板状フィラー1を結合するためのマトリックス3mに分散して配置されている。マトリックス3mとは、多孔質板状フィラー1の周囲やこれらの粒子間に存在する成分であり、これらの粒子間を結合する成分である。
 本発明の断熱膜3は、多孔質板状フィラー1が層状に配置(積層)されていることが好ましい。ここで言う層状に配置とは、多孔質板状フィラー1の最小長の方向が、断熱膜3の厚さ方向と平行になる方向に、多数の多孔質板状フィラー1が配向した状態でマトリックス3m中に存在することを言う。なお、このとき、多孔質板状フィラー1の位置(重心の位置)は、断熱膜3のX、Y、Z方向(ただし、Z方向を厚さ方向とする)に整然と周期的に配置される必要はなく、ランダムに存在していても問題ない。積層数は1以上であれば問題ないが、積層数が多い方が好ましく、5以上であることが望ましい。多孔質板状フィラー1が断熱膜3の中で、層状に積層されていることにより、伝熱経路が屈折して長くなり、断熱効果を向上させることができる。特に、多孔質板状フィラー1の位置は、図3に示すように、Z方向に整然と並んでいない方が(互い違いにずれている方が)、伝熱経路がより屈折して長くなるため、好ましい。
 本発明の断熱膜3は、マトリックス3mとして、セラミックス、ガラス、および樹脂の少なくとも一種を含むことが好ましい。耐熱性の観点から、セラミックスまたはガラスがより好ましい。より具体的には、マトリックス3mとなる材料としては、例えば、シリカ、アルミナ、ムライト、ジルコニア、チタニア、窒化けい素、酸窒化けい素、炭化けい素、酸炭化けい素、カルシウムシリケート、カルシウムアルミネート、カルシウムアルミノシリケート、リン酸アルミニウム、カリウムアルミノシリケート、ガラス等を挙げることができる。これらは熱伝導率の観点から非晶質であることが好ましい。あるいは、マトリックス3mの材料がセラミックスの場合は、粒径が500nm以下の微粒子の集合体であることが望ましい。粒径が500nm以下の微粒子の集合体をマトリックス3mとすることにより、熱伝導率をさらに低くすることができる。また、マトリックス3mとなる材料が樹脂の場合は、シリコーン樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂等を挙げることができる。
 図3に示すように、熱伝導率が高いマトリックス3m部分が主な伝熱経路となるが、本発明の断熱膜3は、多孔質板状フィラー1を含み、伝熱経路は、熱を伝えたくない方向(膜の厚さ方向)に対して迂回が多くなる。すなわち、伝熱経路の長さが長くなるため、熱伝導率を低くすることができる。また、マトリックス3mを介した多孔質板状フィラー1間の結合面積は、球状フィラー31(図6参照)よりも広くなるため、断熱膜全体の強度が高められ、エロージョンや剥離などが起こりにくくなる。
 断熱膜3は、断熱膜3の全体の気孔率が10~99%であるとともに、多孔質板状フィラー1の気孔率が20~99%であり、マトリックス3mの気孔率が0~70%であることが好ましい。
 本発明の断熱膜3は、厚さが1μm~5mmであることが好ましい。このような厚さとすることにより、断熱膜3によって被覆される基材8の特性に悪影響を与えることなく、断熱効果を得ることができる。なお、断熱膜3の用途に応じてその厚さは上記範囲内で適宜選択することができる。
 本発明の断熱膜3は、熱容量が1500kJ/(m・K)以下であることが好ましく、1000kJ/(m・K)以下であることがさらに好ましく、500kJ/(m・K)以下であることが最も好ましい。低熱容量であると、例えば、エンジン燃焼室20に断熱膜3を形成した場合(図4参照)、燃料の排気後、エンジン燃焼室20内のガス温度を低下させやすい。これにより、エンジン10の異常燃焼などの問題を抑制することができる。
 本発明の断熱膜3は、熱伝導率が1.5W/(m・K)以下であることが好ましい。断熱膜3は、1W/(m・K)以下がさらに好ましく、0.5W/(m・K)以下が最も好ましい。低熱伝導率であることにより、伝熱を抑制することができる。
 断熱膜3は、上述のコーティング組成物を基材8上に塗布し、乾燥して形成させることができる。また、乾燥後に熱処理して形成させることもできる。このとき、塗布と乾燥あるいは熱処理を繰り返し行うことで厚い断熱膜3を形成することができる。あるいは、断熱膜3を仮の基材上に形成させた後、仮の基材を除去することで、単独で薄板状に形成させた断熱膜3を別途作製し、この断熱膜3を、基材8に接着あるいは接合させてもよい。基材8としては、金属、セラミックス、ガラス、プラスチック、木材、布、紙等を用いることができる。特に、基材8が金属の場合の例として、鉄、鉄合金、ステンレス、アルミニウム、アルミニウム合金、ニッケル合金、コバルト合金、タングステン合金、銅合金などが挙げられる。
4.断熱膜構造
 図3、及び図4を用いて本発明の断熱膜構造を説明する。本発明の断熱膜構造は、図3に示すように、上述の断熱膜3が、基材8上に形成された断熱膜構造である。さらに、図4は、断熱膜構造の一実施形態のエンジン燃焼室構造である。
 図4に示すように、本発明の断熱膜構造の一実施形態であるエンジン燃焼室構造は、エンジン構成部材21(基材8)のエンジン燃焼室20を構成する表面上に形成された断熱膜3を備える。本発明の断熱膜3を備えることにより、エンジン燃焼室20の断熱性能を向上させることができる。
 断熱膜3は、エンジン燃焼室20を構成するエンジン構成部材21の表面(内壁)に備えられる。具体的には、ピストン14の上面14s、吸気バルブ16、排気バルブ17のバルブヘッド16s,17s、シリンダヘッド13の底面13s等が挙げられる。
 エンジン10は、シリンダ12が形成されたシリンダブロック11と、シリンダブロック11の上面を覆って取り付けられたシリンダヘッド13とを有して構成されている。シリンダブロック11のシリンダ12内には、ピストン14が上下方向に摺動可能に備えられている。
 シリンダヘッド13には、点火プラグ15が取り付けられている。また、吸気バルブ16、排気バルブ17が取り付けられており、吸気バルブ16は、シリンダヘッド13に形成された吸気通路18を、排気バルブ17は、排気通路19を開閉するように構成されている。
 図4に示すように、ピストン14の上面14sに、断熱膜3が備えられている。また、吸気バルブ16、排気バルブ17のバルブヘッド16s,17s、シリンダヘッド13の底面13sにも同様に、断熱膜3が備えられている。これらの面は、エンジン燃焼室20を形成する面であり、これらの面に、断熱膜3を備えることにより、断熱性能を向上させることができる。
 シリンダ12、シリンダヘッド13、ピストン14によって囲まれたエンジン燃焼室20に、吸気バルブ16の開弁により燃料が供給され、点火プラグ15によって点火されることにより、燃焼される。この燃焼により、ピストン14が押し下げられる。燃焼により発生した排気ガスは、排気バルブ17が開弁されることにより排気される。
 エンジン10(図4参照)は、吸気→燃焼→膨張→排気のサイクルにおいて、燃焼時にエンジン燃焼室20の断熱性を確保する必要があり、そのため、エンジン燃焼室20に断熱膜3を設ける場合、断熱効果を得ることができる程度の厚さとする必要がある。しかし、吸気時に新たに吸入した空気が、断熱膜3にたまった熱を奪ってガス温度が高くなると、異常燃焼などの問題が生じることがある。そこで、断熱膜3は、断熱効果を得ることができる程度の厚さを有しつつ熱容量が小さいことが好ましい。そのため、断熱膜3の厚さは、1μm~5mmの範囲がより好ましく、10μm~1mmの範囲がさらに好ましい。断熱膜3の厚さをこの範囲とすることにより、断熱効果を十分なものとしつつ、異常燃焼などの問題の発生を抑制することができる。
 図5Aに断熱膜構造の他の実施形態を示す。図5Aの実施形態は、基材8上に緩衝接合層4(第一緩衝接合層4a)、断熱膜3、表面緻密層2が形成された断熱膜構造の実施形態である。
 図5Aに示すように、本発明の断熱膜構造は、断熱膜3の表面に、セラミックスおよび/またはガラスを含み、気孔率が5%以下である表面緻密層2を備えることが好ましい。自動車などのエンジンの燃焼室や配管の内表面に断熱膜3を形成する場合には、断熱膜3の最表面に表面緻密層2を形成すると、燃料の吸収や燃えカスの付着を防止することができる。
 さらに、断熱膜3の表面に表面緻密層2を有すると、エンジン燃焼室20に断熱膜3を備えた場合には、エンジン燃焼室20内における燃料の燃焼時には、表面緻密層2により輻射を反射し、排気時には、表面緻密層2から熱を放射することができる。また、断熱膜3は、表面緻密層2から、エンジン構成部材21への伝熱を抑制することができる。このため、燃料の燃焼時には、エンジン構成部材21の内壁(エンジン燃焼室20を構成する壁面)の温度が、エンジン燃焼室20のガス温度に追従して上昇しやすくなる。
 本発明の断熱膜構造は、基材8と断熱膜3との間(図5A)、および/または断熱膜3と表面緻密層2との間(図5B参照:第二緩衝接合層4b)に、厚さが断熱膜3よりも薄い緩衝接合層4を備えることが好ましい。基材8の上に断熱膜3を形成し、緩衝接合層4を設けると、高温で使用、あるいは熱サイクルを受ける環境下で使用する場合には、基材8と断熱膜3との反応や熱膨張のミスマッチによる剥離を抑制することができる。
 以下、表面緻密層2や緩衝接合層4について詳しく説明する。
(表面緻密層)
 表面緻密層2は、多孔質な構造の断熱膜3の表面に形成された断熱膜3よりも緻密なセラミックスを含む層である。表面緻密層2は、気孔率が5%以下であり、0.01~4%であることが好ましく、0.01~3%であることがより好ましい。このような緻密層により、燃料の燃焼時のガス(燃料)の対流による熱伝達を防止することができる。また緻密なため、燃料の吸収やスス、燃えカスが付着しにくい。
 表面緻密層2の材質は断熱膜3と類似のものが好ましく、同一組成で気孔率が5%以下であるものがさらに好ましい。表面緻密層2は、セラミックスで形成することができ、例えば、アルミナ、シリカ、ムライト、窒化けい素、酸窒化けい素、炭化けい素、酸炭化けい素、チタニア、ジルコニア、酸化亜鉛、ガラスなどが挙げられる。
 表面緻密層2は、燃料の燃焼時には、熱源である燃焼炎からの輻射伝熱を抑制する材料で構成される。また、表面緻密層2は、燃料の排気時には、自身の熱を放射しやすいものであることが好ましい。これには、ウイーンの変位則(λmT=2898[μm・K]:ここで、λmは最大放射強度を示す波長、Tは温度を示す。)から予想される波長領域での反射率、輻射率を制御することが望ましい。すなわち、反射率は2μmより小さい波長において大きいことが好ましく、輻射率は2μmより大きい波長において大きいことが好ましい。
 気孔率が5%以下の表面緻密層2により、燃焼開始直後~燃焼前期にはエンジン燃焼室20を構成する内壁への輻射伝熱を抑制することができる。また、燃焼後期~排気工程で、低温になると表面緻密層2から排気ガスへと熱を放射することで、次に導入される吸気ガスが高温になることを防止することができる。
 表面緻密層2は、波長2μmにおける反射率が、0.5より大きいことが好ましい。このような反射率を有することにより、断熱膜3への熱の伝導を抑制することができる。
 表面緻密層2は、波長2.5μmにおける輻射率が、0.5より大きいことが好ましい。また、このような輻射率を有することにより、熱せられた表面緻密層2を冷めやすくすることができる。
 表面緻密層2は、薄いほど好ましいが、厚さが10nm~100μmの範囲が適当である。また、表面緻密層2の熱容量は3000kJ/(m・K)以下であることが好ましく、1000kJ/(m・K)以下であることがより好ましい。厚さが上記範囲であること、また、低熱容量(薄膜、小体積)であることにより、エンジン燃焼室20に断熱膜3、表面緻密層2を備えた場合には、エンジン構成部材21の内壁の温度がエンジン燃焼室20内のガス温度に追随しやすくなる。ガス温度と表面緻密層2との温度差が小さくなり、冷却損失を低減することができる。
 表面緻密層2は、熱伝導率が3W/(m・K)以下であることが好ましい。熱伝導率をこの範囲とすることにより、断熱膜3への熱の伝導を抑制することができる。
(緩衝接合層)
 緩衝接合層4は、基材8(エンジン構成部材21)と断熱膜3との間、および/または断熱膜3と表面緻密層2との間にある、厚さが断熱膜3よりも薄い層である。緩衝接合層4により、これに接する両層の熱膨張やヤング率のミスマッチを解消し、熱応力による剥離を抑制することができる。
 緩衝接合層4としては接着機能を有するもの、あるいは、薄膜として形成させることが可能な材料が好ましい。緩衝接合層4としては、例えば、無機バインダー、無機高分子、酸化物ゾル、水ガラス、ろう材、めっき膜からなる層などが挙げられる。あるいは、緩衝接合層4としては、これらの材料に断熱膜3と類似の物質を複合化させた層であってもよい。また、単独で薄板状に形成させた断熱膜3を上記の材料により基材8(エンジン構成部材21)等に接合して得ることもできる。
 緩衝接合層4は、隣接する他の2層のいずれか一方より熱膨張係数が大きく、他方より熱膨張係数が小さいことが好ましい。また、緩衝接合層4は、隣接する他の2層よりヤング率が小さいことが好ましい。このように構成すると、層間のミスマッチを解消し、熱応力による剥離を抑制することができる。
 緩衝接合層4は、熱抵抗が大きいことが好ましく、具体的には、熱抵抗が10-6K/W以上であることが好ましい。さらに、10-6~10mK/Wであることが好ましく、10-5~10mK/Wであることがより好ましく、10-4~10mK/Wであることがさらに好ましい。このような緩衝接合層4を形成することにより、断熱効果をさらに十分なものとすることができる。また、緩衝接合層4を形成することにより、被接合体の熱膨張のミスマッチを緩衝し、耐熱衝撃性・耐熱応力性を向上させることができる。
 さらに、緩衝接合層4は、それぞれ接する層の相互の反応を抑制するような材料組成とすることが好ましく、これにより、耐酸化性や耐反応性が向上し、断熱膜3の耐久性が向上する。
(製造方法)
 次に、断熱膜構造(エンジン燃焼室構造)の製造方法について説明する。
 エンジン燃焼室20を構成する内壁(エンジン構成部材21)と断熱膜3との間に、第一緩衝接合層4aを有するように構成する場合は、エンジン構成部材21の上に、第一緩衝接合層4aとなる材料を塗布(例えば、無機バインダーあるいは無機高分子、酸化物ゾル、水ガラス、ろう材の場合)、あるいは、めっき製膜して形成し、その上に断熱膜3を形成する。
 断熱膜3は、多孔質板状フィラー1を無機バインダーあるいは無機高分子、酸化物ゾル、水ガラスなどに分散させたコーティング組成物を、所定の基材8の上に塗布し、乾燥、さらには、熱処理して形成させることができる。あるいは、多孔質な薄板を別途作製して、第一緩衝接合層4aを形成する材料を結合材として、エンジン構成部材21に貼り付けてもよい。
 断熱膜3と表面緻密層2との間に、第二緩衝接合層4bを有するように構成する場合は、断熱膜3上に、第二緩衝接合層4bを第一緩衝接合層4aと同様にして形成し、その上に表面緻密層2を形成する。
 表面緻密層2は、断熱膜3を形成した上に(または第二緩衝接合層4bを形成した上に)、スパッタ法、PVD法、EB-PVD法、CVD法、AD法、溶射、プラズマスプレー法、コールドスプレー法、めっき、湿式コーティング後の熱処理などで形成することができる。または、表面緻密層2として緻密な薄板を別途作製し、断熱膜3を形成する材料を結合材として下地材(第一緩衝接合層4a、あるいは、エンジン構成部材21)と結合して形成させてもよい。あるいは、表面緻密層2として緻密な薄板を別途作製し、第二緩衝接合層4bにより断熱膜3と結合して形成させてもよい。
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
 まず、イットリア部分安定化ジルコニア粉末に、造孔材(ラテックス粒子あるいはメラミン樹脂粒子)、バインダーとしてのポリビニルブチラール樹脂(PVB)、可塑剤としてのDOP、溶剤としてのキシレンおよび1-ブタノールを加え、ボールミルにて30時間混合し、グリーンシート成形用スラリーを調製した。このスラリーに真空脱泡処理を施すことにより、粘度を4000cpsに調整した後、ドクターブレード装置によって焼成後の厚さが5μmとなるようにグリーンシートを形成し、50mm×50mmの寸法に外形切断を行った。この成形体を1100℃、1時間にて焼成し、焼成後に粉砕して多孔質な薄板状フィラー(多孔質板状フィラー1)を得た。
 この多孔質板状フィラー1は、気孔径が50nmの気孔を含み、厚さが5μm以下であった。また、任意の多孔質板状フィラー20個についてアスペクト比を計測したところ、その値は3~5であった。また、熱伝導率は0.3W/(m・K)、気孔率は60%であった。
 次に、シリカゾル、水ガラス、多孔質板状フィラー1、水を含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、500℃の熱処理により、断熱膜3とした。このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.8W/(m・K)、熱容量は1460kJ/(m・K)であった。
<実施例2>
 実施例1と同様に多孔質板状フィラー1を作製した。
 次に、パーヒドロポリシラザン、アミン系触媒、多孔質板状フィラー1、キシレンを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、250℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.2W/(m・K)、熱容量は1150kJ/(m・K)であった。
<実施例3>
 実施例1と同様な手順だが、粗粉砕をせず、多孔質な薄板状のテープを得た。このテープの表面にCVD法により酸化亜鉛膜を形成させた。さらに、粗粉砕して、表面に熱抵抗膜(被覆層7)を有する、多孔質板状フィラー1を得た。
 次に、パーヒドロポリシラザン、アミン系触媒、上記多孔質板状フィラー1、キシレンを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、250℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.15W/(m・K)、熱容量は1180kJ/(m・K)であった。
<実施例4>
 実施例1と同様に、イットリア部分安定化ジルコニア粉末に、造孔材(ラテックス粒子あるいはメラミン樹脂粒子)、バインダーとしてのポリビニルブチラール樹脂(PVB)、可塑剤としてのDOP、溶剤としてのキシレンおよび1-ブタノールを加え、ボールミルにて30時間混合し、グリーンシート成形用スラリーを調製した。このスラリーに真空脱泡処理を施すことにより、粘度を4000cpsに調整した後、ドクターブレード装置によって焼成後の厚さが5μmとなるようにグリーンシートを形成し、50mm×50mmの寸法に外形切断を行った。この成形体を1100℃、1時間にて焼成した。得られた焼成体を粗粉砕して多孔質板状フィラー1を得た。
 この多孔質板状フィラー1は、50nmの気孔を含み、厚さが5μm以下であった。また、任意のフィラー20個についてアスペクト比を計測したところ、その値は5~10であった。また、熱伝導率は0.3W/(m・K)であった。
 次に、パーヒドロポリシラザン、アミン系触媒、多孔質板状フィラー1、キシレンを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、250℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.15W/(m・K)、熱容量は1160kJ/(m・K)であった。
<実施例5>
 実施例1と同様に多孔質板状フィラー1を作製した。
 次に、ベーマイトファイバーゾル、多孔質板状フィラー1、水を含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、500℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.25W/(m・K)、熱容量は1140kJ/(m・K)であった。
<実施例6>
 実施例1と同様に多孔質板状フィラー1を作製した。
 次に、ポリシロキサン、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、500℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.5W/(m・K)、熱容量は1490kJ/(m・K)であった。
<実施例7>
 実施例1と同様に多孔質板状フィラー1を作製した。ただし、イットリア部分安定化ジルコニア粉末の代わりに、イットリア完全安定化ジルコニア粉末を用いた。
 次に、ポリシロキサン、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.4W/(m・K)、熱容量は1230kJ/(m・K)であった。
<実施例8>
 実施例7と同様に多孔質板状フィラー1を作製した。
 次に、ポリシルセスキオキサン、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.3W/(m・K)、熱容量は1180kJ/(m・K)であった。
<実施例9>
 実施例7と同様に多孔質板状フィラー1を作製した。
 次に、アクリル-シリカ系ハイブリッド材料、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.3W/(m・K)、熱容量は1100kJ/(m・K)であった。
<実施例10>
 実施例1と同様に多孔質板状フィラー1を作製した。ただし、イットリア部分安定化ジルコニア粉末の代わりに、ランタンジルコネート粉末を用いた。
 次に、ポリシロキサン、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.25W/(m・K)、熱容量は1050kJ/(m・K)であった。
<実施例11>
 実施例1と同様に多孔質板状フィラー1を作製した。ただし、イットリア部分安定化ジルコニア粉末の代わりに、イットリウムシリケート粉末を用いた。
 次に、ポリシロキサン、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.3W/(m・K)、熱容量は1120kJ/(m・K)であった。
<実施例12>
 実施例1と同様に多孔質板状フィラー1を作製した。ただし、イットリア部分安定化ジルコニア粉末の代わりに、ニオブ酸ストロンチウム粉末を用いた。
 次に、ポリシロキサン、多孔質板状フィラー1、イソプロピルアルコールを含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、200℃の熱処理により、断熱膜3とした。
 このときの断熱膜3は多孔質板状フィラー1が厚さ方向に10枚以上積層されており、その厚さはおよそ100μmであった。また、断熱膜3の熱伝導率は0.25W/(m・K)、熱容量は1240kJ/(m・K)であった。
<比較例1>
 イットリア部分安定化ジルコニア粉末に、造孔材(ラテックス粒子あるいはメラミン樹脂粒子)、バインダーとしてのポリビニルアルコール(PVA)、分散剤、水を加え、ボールミルにて30時間混合し、スラリーを調製した。このスラリーをスプレードライにより乾燥し、球状の顆粒を得た。この顆粒を1100℃、1時間にて焼成した。得られた焼成粉体を解砕し、微粉末を取り除いて球状フィラー31を得た。
 この球状フィラー31は、50nmの気孔を含み、平均粒径20μm、最小粒径5μm、気孔率は60%であった。また、任意のフィラー20個についてアスペクト比を計測したところ、その値は1~1.5であった。また、顆粒を板状に成形し同条件で焼成して得られた焼成体の熱伝導率は0.3W/(m・K)であった。
 シリカゾル、水ガラス、球状フィラー31、水を含むコーティング組成物を調製し、基材8であるアルミニウム合金上に塗布し、乾燥後、500℃の熱処理により、断熱膜3とした。このときの断熱膜3は、球状フィラー31がランダムに含まれ、その厚さはおよそ100μmであった。比較例1の断熱膜構造を図6に示す。断熱膜3の熱伝導率は、1.7W/(m・K)、熱容量は1550kJ/(m・K)であった。
 以上の結果を、表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上のように、比較例1は、アスペクト比が1~1.5の球状フィラー31であるため、断熱膜3の熱伝導率や熱容量が、実施例に比べ大きくなった。つまり、多孔質板状フィラー1を含む断熱膜3は、球状フィラー31を含む断熱膜3に比べ、熱伝導率や熱容量を小さくすることができた。
 球状フィラー31の場合(特に粒径の揃った球状フィラーの場合)、低熱伝導なフィラーの体積割合を増やしたくても、粒子を充填した隙間が多く存在し、その部分はマトリックス3mが導入されるか、空隙として残ることになる。マトリックス3mが導入される場合には、断熱膜3中のマトリックス3m(高熱伝導成分)の割合が増えるため、断熱膜3の熱伝導率は高くなる傾向にある。空隙として残る場合は、空隙は伝熱経路にならないため断熱膜3の熱伝導率は低くなるが、フィラー間を結合するマトリックス3mが少なく、十分な強度が得られない。一方で、板状フィラーの場合は、配向してフィラーが積層されるように充填されるため、無駄な空隙を作ることなく、フィラーの体積割合を高めることができ、フィラー間に入るマトリックス3mが少なくても、マトリックス3mを介したフィラーどうしの接着面積が広いため、十分な強度が得られる。
 本発明の断熱膜、断熱膜構造は、自動車等のエンジン、配管、建築物の壁等に適用することができる。
1:多孔質板状フィラー、2:表面緻密層、3:断熱膜、3m:マトリックス、4:緩衝接合層、4a:第一緩衝接合層、4b:第二緩衝接合層、7:被覆層、8:基材、10:エンジン、11:シリンダブロック、12:シリンダ、13:シリンダヘッド、13s:(シリンダヘッドの)底面、14:ピストン、14s:(ピストンの)上面、15:点火プラグ、16:吸気バルブ、16s:バルブヘッド、17:排気バルブ、17s:バルブヘッド、18:吸気通路、19:排気通路、20:エンジン燃焼室、21:エンジン構成部材、31:球状フィラー。

Claims (21)

  1.  アスペクト比が3以上の板状で、その最小長が0.1~50μmであり、気孔率が20~99%である多孔質板状フィラー。
  2.  熱伝導率が1W/(m・K)以下である請求項1に記載の多孔質板状フィラー。
  3.  熱容量が10~3000kJ/(m・K)である請求項1または2に記載の多孔質板状フィラー。
  4.  ナノオーダーの気孔、またはナノオーダーの粒子もしくは結晶粒を含んで構成される請求項1~3のいずれか1項に記載の多孔質板状フィラー。
  5.  気孔径が10~500nmの気孔を有する請求項1~4のいずれか1項に記載の多孔質板状フィラー。
  6.  金属酸化物を含む請求項1~5のいずれか1項に記載の多孔質板状フィラー。
  7.  前記金属酸化物がZr、Y、Al、Si、Ti、Nb、Sr、及びLaからなる群から選ばれる1の元素の酸化物あるいは2以上の元素の複合酸化物である請求項6に記載の多孔質板状フィラー。
  8.  粒径が1nm~10μmである粒子を含んで構成されている請求項1~7のいずれか1項に記載の多孔質板状フィラー。
  9.  表面の少なくとも一部に、厚さ1nm~1μmの被覆層を有する請求項1~8のいずれか1項に記載の多孔質板状フィラー。
  10.  前記被覆層は、熱伝達を抑制する及び/または輻射熱を反射する、熱抵抗膜である請求項9に記載の多孔質板状フィラー。
  11.  請求項1~10のいずれか1項に記載の多孔質板状フィラーと、無機バインダー、無機高分子、有機無機ハイブリッド材料、酸化物ゾル、及び水ガラスからなる群より選択される一種以上と、を含むコーティング組成物。
  12.  請求項1~10のいずれか1項に記載の多孔質板状フィラーが、前記多孔質板状フィラーを結合するためのマトリックスに分散して配置された断熱膜。
  13.  前記多孔質板状フィラーが層状に配置されている請求項12に記載の断熱膜。
  14.  前記マトリックスとして、セラミックス、ガラス、および樹脂の少なくとも一種を含む請求項12または13に記載の断熱膜。
  15.  前記マトリックスは、粒径が500nm以下のセラミックスの微粒子の集合体である請求項14に記載の断熱膜。
  16.  厚さが1μm~5mmである請求項12~15のいずれか1項に記載の断熱膜。
  17.  熱容量が1500kJ/(m・K)以下である請求項12~16のいずれか1項に記載の断熱膜。
  18.  熱伝導率が1.5W/(m・K)以下である請求項12~17のいずれか1項に記載の断熱膜。
  19.  請求項12~18のいずれか1項に記載の断熱膜が、基材上に形成された断熱膜構造。
  20.  前記断熱膜の表面に、セラミックスおよび/またはガラスを含み、気孔率が5%以下である表面緻密層を有する請求項19に記載の断熱膜構造。
  21.  前記基材と前記断熱膜との間、および/または前記断熱膜と表面緻密層との間に、厚さが前記断熱膜よりも薄い緩衝接合層を備える請求項20に記載の断熱膜構造。
PCT/JP2013/067006 2012-06-20 2013-06-20 多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造 WO2013191263A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13807307.7A EP2865722B1 (en) 2012-06-20 2013-06-20 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure
JP2014521515A JP6072787B2 (ja) 2012-06-20 2013-06-20 断熱用多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造
US14/574,564 US20150104626A1 (en) 2012-06-20 2014-12-18 Porous Plate-Shaped Filler, Coating Composition, Heat-Insulating Film, and Heat-Insulating Film Structure
US15/157,534 US10385801B2 (en) 2012-06-20 2016-05-18 Heat-insulation film, and heat-insulation-film structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-138784 2012-06-20
JP2012138784 2012-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/574,564 Continuation US20150104626A1 (en) 2012-06-20 2014-12-18 Porous Plate-Shaped Filler, Coating Composition, Heat-Insulating Film, and Heat-Insulating Film Structure

Publications (1)

Publication Number Publication Date
WO2013191263A1 true WO2013191263A1 (ja) 2013-12-27

Family

ID=49768855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067006 WO2013191263A1 (ja) 2012-06-20 2013-06-20 多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造

Country Status (4)

Country Link
US (1) US20150104626A1 (ja)
EP (1) EP2865722B1 (ja)
JP (1) JP6072787B2 (ja)
WO (1) WO2013191263A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076317A1 (ja) * 2013-11-19 2015-05-28 日本碍子株式会社 断熱膜、および断熱膜構造
WO2015087888A1 (ja) * 2013-12-11 2015-06-18 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
WO2015087887A1 (ja) * 2013-12-11 2015-06-18 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
JP2015140703A (ja) * 2014-01-28 2015-08-03 マツダ株式会社 断熱層構造及びその製造方法
WO2015115667A1 (ja) 2014-01-31 2015-08-06 日本碍子株式会社 多孔質板状フィラー
WO2015115668A1 (ja) * 2014-01-31 2015-08-06 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
WO2015119302A1 (ja) * 2014-02-10 2015-08-13 日本碍子株式会社 多孔質板状フィラー集合体及びその製造方法、並びに多孔質板状フィラー集合体を含む断熱膜
WO2015159838A1 (ja) * 2014-04-17 2015-10-22 日本碍子株式会社 多孔質板状フィラー、断熱膜、及び多孔質板状フィラーの製造方法
WO2015163249A1 (ja) * 2014-04-23 2015-10-29 日本碍子株式会社 多孔質板状フィラー、その製造方法、及び断熱膜
TWI505938B (zh) * 2014-11-11 2015-11-01 Cheng Tsung Tsai 矽酸鈣板表層處理方法
KR20160009495A (ko) * 2014-07-15 2016-01-26 주식회사 아모그린텍 단열 점착제, 이를 구비한 복합 시트 및 전자기기
WO2016096857A1 (de) * 2014-12-18 2016-06-23 Mahle International Gmbh Kolben für einen verbrennungsmotor und verfahren zu seiner herstellung
US20160186654A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Forming method of thermal insulation film and internal combustion engine
US20160258383A1 (en) * 2012-06-20 2016-09-08 Ngk Insulators, Ltd. Heat-Insulation Film, and Heat-Insulation-Film Structure
WO2016152435A1 (ja) * 2015-03-26 2016-09-29 日本碍子株式会社 吸気ポート
JP2016216528A (ja) * 2015-05-14 2016-12-22 熱研化学工業株式会社 示温塗料及び温度検知体
WO2018020860A1 (ja) * 2016-07-29 2018-02-01 日本碍子株式会社 多孔質セラミック粒子および多孔質セラミック構造体
KR101855684B1 (ko) * 2014-07-15 2018-05-09 주식회사 아모그린텍 단열 테이프, 이를 구비한 복합 시트 및 전자기기
CN115677380A (zh) * 2022-11-15 2023-02-03 湖南博望碳陶有限公司 一种热场保温件复合陶瓷涂层的制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010184A1 (ja) * 2015-07-16 2017-01-19 日本碍子株式会社 多孔質セラミック粒子
WO2017010185A1 (ja) * 2015-07-16 2017-01-19 日本碍子株式会社 多孔質セラミック構造体
DE102015221960A1 (de) * 2015-11-09 2017-05-11 Federal-Mogul Nürnberg GmbH Schutzschicht gegen die Oxidation des Kolbens eines Verbrennungsmotors
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
US20170165949A1 (en) * 2015-12-14 2017-06-15 Industrial Technology Research Institute Heat shielding material, heat shielding composition and heat shielding structure employing the same
US10273902B2 (en) 2016-02-22 2019-04-30 Tenneco Inc. Insulation layer on steel pistons without gallery
US10859033B2 (en) * 2016-05-19 2020-12-08 Tenneco Inc. Piston having an undercrown surface with insulating coating and method of manufacture thereof
EP3504411A1 (en) * 2016-08-25 2019-07-03 Corning Incorporated Thermal barriers for engines and methods of making the same
JP6362232B2 (ja) * 2016-10-04 2018-07-25 株式会社ランドマスター 放射線照射部材
WO2018108529A1 (en) * 2016-12-12 2018-06-21 Norsk Hydro Asa Composite product
DE102017207590A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische Isolierung des Mittenkegels eines Stahlkolbens
CN107311013B (zh) * 2017-06-05 2019-02-05 上海华美电梯装饰有限公司 一种电梯保温隔音装饰板
WO2019035163A1 (ja) 2017-08-14 2019-02-21 日産自動車株式会社 遮熱部品
WO2022133467A1 (en) * 2020-12-17 2022-06-23 Cummins Inc. Combustion cylinder end face components including thermal barrier coatings
US20240353782A1 (en) * 2023-04-19 2024-10-24 Fujifilm Business Innovation Corp. Polymer film, tubular fixing member, fixing device, and image forming apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295872A (ja) * 1996-02-29 1997-11-18 Kikusui Kagaku Kogyo Kk 焼成治具用のコーティング剤
JP2000044843A (ja) * 1998-08-04 2000-02-15 Mitsubishi Heavy Ind Ltd コーティング材料及びその製造方法
JP2004043291A (ja) * 2002-05-24 2004-02-12 Nippon Sheet Glass Co Ltd 鱗片状粒子およびそれを配合した化粧料、塗料組成物、樹脂組成物およびインキ組成物
JP2004067500A (ja) * 2002-06-12 2004-03-04 Nippon Sheet Glass Co Ltd 多孔質金属酸化物薄片、その製造方法ならびにそれを配合した化粧料、塗料組成物、樹脂組成物、インキ組成物および紙
JP2005517620A (ja) * 2002-02-18 2005-06-16 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 亜酸化ケイ素、二酸化ケイ素及び/又は炭化ケイ素の面平行な構造を製造する方法、当該方法によって得られる面平行な構造ならびにその使用
JP2006521463A (ja) * 2003-01-17 2006-09-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ナノ粒子を含有する多孔質無機材料またはマトリックス材料の製造方法
JP2008506802A (ja) * 2004-07-16 2008-03-06 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ポリマー添加剤含有の多孔質無機材料
JP2008200922A (ja) 2007-02-19 2008-09-04 Grandex Co Ltd コーティング膜及びコーティング塗料
JP2010500468A (ja) * 2006-08-15 2010-01-07 エクソンモービル・ケミカル・パテンツ・インク 可塑化されたヘテロ相ポリオレフィンブレンド
JP2011052630A (ja) 2009-09-03 2011-03-17 Toyota Motor Corp 内燃機関
JP2011122074A (ja) * 2009-12-11 2011-06-23 As R&D合同会社 制振複合フィラー及びそれを用いた制振材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203772A (en) * 1977-04-18 1980-05-20 Corning Glass Works Porous zirconia containing ceramics
US5759932A (en) * 1996-11-08 1998-06-02 General Electric Company Coating composition for metal-based substrates, and related processes
US6641907B1 (en) * 1999-12-20 2003-11-04 Siemens Westinghouse Power Corporation High temperature erosion resistant coating and material containing compacted hollow geometric shapes
CN1330559C (zh) * 2002-06-12 2007-08-08 日本板硝子株式会社 薄片形式的多孔金属氧化物材料、其生产方法和包含它的化妆品、涂布材料、树脂组合物、油墨组合物和纸张
EP1769049A2 (en) * 2004-07-16 2007-04-04 Ciba Specialty Chemicals Holding Inc. Luminescent silicon oxide flakes
US9150757B2 (en) * 2010-08-17 2015-10-06 Texas State University Durable ceramic nanocomposite thermal barrier coatings for metals and refractories

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295872A (ja) * 1996-02-29 1997-11-18 Kikusui Kagaku Kogyo Kk 焼成治具用のコーティング剤
JP2000044843A (ja) * 1998-08-04 2000-02-15 Mitsubishi Heavy Ind Ltd コーティング材料及びその製造方法
JP2005517620A (ja) * 2002-02-18 2005-06-16 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 亜酸化ケイ素、二酸化ケイ素及び/又は炭化ケイ素の面平行な構造を製造する方法、当該方法によって得られる面平行な構造ならびにその使用
JP2004043291A (ja) * 2002-05-24 2004-02-12 Nippon Sheet Glass Co Ltd 鱗片状粒子およびそれを配合した化粧料、塗料組成物、樹脂組成物およびインキ組成物
JP2004067500A (ja) * 2002-06-12 2004-03-04 Nippon Sheet Glass Co Ltd 多孔質金属酸化物薄片、その製造方法ならびにそれを配合した化粧料、塗料組成物、樹脂組成物、インキ組成物および紙
JP2006521463A (ja) * 2003-01-17 2006-09-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ナノ粒子を含有する多孔質無機材料またはマトリックス材料の製造方法
JP2008506802A (ja) * 2004-07-16 2008-03-06 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ポリマー添加剤含有の多孔質無機材料
JP2010500468A (ja) * 2006-08-15 2010-01-07 エクソンモービル・ケミカル・パテンツ・インク 可塑化されたヘテロ相ポリオレフィンブレンド
JP2008200922A (ja) 2007-02-19 2008-09-04 Grandex Co Ltd コーティング膜及びコーティング塗料
JP2011052630A (ja) 2009-09-03 2011-03-17 Toyota Motor Corp 内燃機関
JP2011122074A (ja) * 2009-12-11 2011-06-23 As R&D合同会社 制振複合フィラー及びそれを用いた制振材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2865722A4

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258383A1 (en) * 2012-06-20 2016-09-08 Ngk Insulators, Ltd. Heat-Insulation Film, and Heat-Insulation-Film Structure
WO2015076317A1 (ja) * 2013-11-19 2015-05-28 日本碍子株式会社 断熱膜、および断熱膜構造
JPWO2015076317A1 (ja) * 2013-11-19 2017-03-16 日本碍子株式会社 断熱膜、および断熱膜構造
WO2015087888A1 (ja) * 2013-12-11 2015-06-18 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
WO2015087887A1 (ja) * 2013-12-11 2015-06-18 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
JPWO2015087887A1 (ja) * 2013-12-11 2017-03-16 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
JPWO2015087888A1 (ja) * 2013-12-11 2017-03-16 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
JP2015140703A (ja) * 2014-01-28 2015-08-03 マツダ株式会社 断熱層構造及びその製造方法
US10442739B2 (en) 2014-01-31 2019-10-15 Ngk Insulators, Ltd. Porous plate-shaped filler
WO2015115668A1 (ja) * 2014-01-31 2015-08-06 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
JPWO2015115667A1 (ja) * 2014-01-31 2017-03-23 日本碍子株式会社 多孔質板状フィラー
WO2015115667A1 (ja) 2014-01-31 2015-08-06 日本碍子株式会社 多孔質板状フィラー
US10392310B2 (en) 2014-02-10 2019-08-27 Ngk Insulators, Ltd. Porous plate-shaped filler aggregate, producing method therefor, and heat-insulation film containing porous plate-shaped filler aggregate
WO2015119302A1 (ja) * 2014-02-10 2015-08-13 日本碍子株式会社 多孔質板状フィラー集合体及びその製造方法、並びに多孔質板状フィラー集合体を含む断熱膜
JPWO2015119302A1 (ja) * 2014-02-10 2017-03-30 日本碍子株式会社 多孔質板状フィラー集合体及びその製造方法、並びに多孔質板状フィラー集合体を含む断熱膜
EP3133052A4 (en) * 2014-04-17 2018-01-03 NGK Insulators, Ltd. Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
US10317004B2 (en) 2014-04-17 2019-06-11 Ngk Insulators, Ltd. Porous plate-shaped filler, heat insulation film, and method for producing porous plate-shaped filler
WO2015159838A1 (ja) * 2014-04-17 2015-10-22 日本碍子株式会社 多孔質板状フィラー、断熱膜、及び多孔質板状フィラーの製造方法
JPWO2015159838A1 (ja) * 2014-04-17 2017-04-13 日本碍子株式会社 多孔質板状フィラー、断熱膜、及び多孔質板状フィラーの製造方法
WO2015163249A1 (ja) * 2014-04-23 2015-10-29 日本碍子株式会社 多孔質板状フィラー、その製造方法、及び断熱膜
US10464287B2 (en) 2014-04-23 2019-11-05 Nkg Insulators, Ltd. Porous plate-shaped filler, method for producing same, and heat insulation film
JPWO2015163249A1 (ja) * 2014-04-23 2017-04-13 日本碍子株式会社 多孔質板状フィラー、その製造方法、及び断熱膜
EP3135737A4 (en) * 2014-04-23 2018-01-03 NGK Insulators, Ltd. Porous plate-shaped filler, method for producing same, and heat insulation film
KR101855684B1 (ko) * 2014-07-15 2018-05-09 주식회사 아모그린텍 단열 테이프, 이를 구비한 복합 시트 및 전자기기
KR101713953B1 (ko) * 2014-07-15 2017-03-10 주식회사 아모그린텍 단열 점착제, 이를 구비한 복합 시트 및 전자기기
KR20160009495A (ko) * 2014-07-15 2016-01-26 주식회사 아모그린텍 단열 점착제, 이를 구비한 복합 시트 및 전자기기
TWI505938B (zh) * 2014-11-11 2015-11-01 Cheng Tsung Tsai 矽酸鈣板表層處理方法
WO2016096857A1 (de) * 2014-12-18 2016-06-23 Mahle International Gmbh Kolben für einen verbrennungsmotor und verfahren zu seiner herstellung
CN105736141B (zh) * 2014-12-26 2019-06-11 丰田自动车株式会社 隔热膜的形成方法和内燃机
US10385772B2 (en) * 2014-12-26 2019-08-20 Toyota Jidosha Kabushiki Kaisha Forming method of thermal insulation film and internal combustion engine
CN105736141A (zh) * 2014-12-26 2016-07-06 丰田自动车株式会社 隔热膜的形成方法和内燃机
US20160186654A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Forming method of thermal insulation film and internal combustion engine
WO2016152435A1 (ja) * 2015-03-26 2016-09-29 日本碍子株式会社 吸気ポート
JP2016216528A (ja) * 2015-05-14 2016-12-22 熱研化学工業株式会社 示温塗料及び温度検知体
WO2018020860A1 (ja) * 2016-07-29 2018-02-01 日本碍子株式会社 多孔質セラミック粒子および多孔質セラミック構造体
JPWO2018020860A1 (ja) * 2016-07-29 2019-05-16 日本碍子株式会社 多孔質セラミック粒子および多孔質セラミック構造体
CN115677380A (zh) * 2022-11-15 2023-02-03 湖南博望碳陶有限公司 一种热场保温件复合陶瓷涂层的制备方法
CN115677380B (zh) * 2022-11-15 2023-05-12 湖南博望碳陶有限公司 一种热场保温件复合陶瓷涂层的制备方法

Also Published As

Publication number Publication date
JP6072787B2 (ja) 2017-02-01
EP2865722B1 (en) 2019-03-13
EP2865722A1 (en) 2015-04-29
EP2865722A4 (en) 2016-03-09
JPWO2013191263A1 (ja) 2016-05-26
US20150104626A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6072787B2 (ja) 断熱用多孔質板状フィラー、コーティング組成物、断熱膜、および断熱膜構造
JP6472384B2 (ja) 断熱膜、および断熱膜構造
WO2013125704A1 (ja) エンジン燃焼室構造、および流路の内壁構造
WO2013081150A1 (ja) エンジン燃焼室構造、および流路の内壁構造
WO2013129430A1 (ja) 断熱部材、及びエンジン燃焼室構造
JP6562841B2 (ja) 多孔質板状フィラー
CN105764872B (zh) 多孔材料及绝热膜
US10317004B2 (en) Porous plate-shaped filler, heat insulation film, and method for producing porous plate-shaped filler
JP6423360B2 (ja) 断熱膜、および断熱膜構造
JP6373866B2 (ja) 断熱膜、および断熱膜構造
WO2015115668A1 (ja) 多孔質板状フィラー、及び断熱膜
JP6453235B2 (ja) 多孔質板状フィラー、及び断熱膜
JP2015093075A (ja) 熱調理器具
JP6453234B2 (ja) 断熱膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE